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Abstract

This study evaluates GPT-4’s English-
to-Faroese translation capabilities, com-
paring it with multilingual models on
FLORES-200 and Sprotin datasets. We
propose a prompt optimization strategy
using Semantic Textual Similarity (STS)
to improve translation quality. Human
evaluation confirms the effectiveness of
STS-based few-shot example selection,
though automated metrics fail to capture
these improvements. Our findings advance
LLM applications for low-resource lan-
guage translation while highlighting the
need for better evaluation methods in this
context.

1 Introduction

Historically, it has been a challenge to achieve
high-quality machine translations (MT) for low-
resource languages. The lack of resources has
been shown to impact not only the development
of high performing MT models, but also the de-
velopment of high quality automated translation
metrics (Callison-Burch et al., 2011; Bojar et al.,
2014; Koehn and Knowles, 2017; Ranathunga
et al., 2023). Low-resource languages often have
to rely on string-based language independent met-
rics such as BLEU (Papineni et al., 2002) and
ChrF (Popović, 2015). However, these methods
have shown to perform poorly when compared to
neural metrics, as shown by the WMT22 Metrics
Shared Task (Freitag et al., 2022). The lack of
neural metrics developed for these languages of-
ten leaves expensive and slow human evaluation
as the only high quality alternative for detecting
nuanced improvement in translation quality.

Recent advancements in LLMs offer opportuni-
ties to mitigate the effect that low-resources have
on translation performance, leveraging few-shot

learning to achieve remarkable performances with
minimal data requirements (Brown et al., 2020).
However, there is a disparity in the translation
performance when it comes to low-resource lan-
guages vs high-resource languages (Hendy et al.,
2023; Lyu et al., 2023; Bang et al., 2023; Chang
et al., 2024). Therefore, optimizing the efficiency
of these models in data-constrained environments
demands a strategic approach in order to get the
best performance. There is still much that is un-
known about how prompt engineering and few-
shot example selection influences translation per-
formance. Furthermore, LLMs have proven to
be a competitive alternative also for what con-
cerns translation evaluation (Kocmi and Feder-
mann, 2023). However, this ability of LLMs to
assess translation has not been proven yet in the
context of low-resource languages.

We investigate how STS-driven example selec-
tion, applied with the translation query, improves
translation quality in GPT-4 Turbo (OpenAI et al.,
2024), specifically the gpt-4-1106-preview
release, for Faroese1, a critically low-resource lan-
guage. Our findings therefore demonstrate a novel
approach to improve the utility of sparse data.
Moreover, we demonstrate how current transla-
tion metrics cannot adequately capture nuances in
translation performance, advocating for the devel-
opment of more robust evaluation tools. Through
this exploration, we provide an assessment of the
state of the art of MT for Faroese, and highlight
how current automated evaluation metrics cannot
appropriately capture nuanced improvements pro-
vided by prompt engineering.

Our contributions are the following:

• Creating three synthetic parallel datasets
with 1012 sentences each from the FLO-
RES benchmark (NLLB Team et al., 2022),

1The population of the Faroe Islands is 54.000 (Statistics
Faroe Islands, 2024).
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translated from English to Faroese by GPT-4
Turbo using zero-shot, random few-shot, and
STS-based few-shot techniques respectively
2.

• Conducting an automated evaluation of
these datasets employing BLEU, ChrF, and
BERTScore metrics, alongside a GPT-4
Turbo confidence score for the few-shot
datasets.

• Ranking of translations from each dataset on
a subset of 200 sentences, performed by mul-
tiple native Faroese speakers and GPT-4. We
further ranked 200 sentences sourced from
another dataset to confirm our results.

• Benchmarking GPT-4 Turbo’s English-
Faroese translation performance against
multilingual translation models cover-
ing Faroese such as MADLAD-400 and
NLLB-200.

2 Previous Work

2.1 Machine Translation for Faroese
Historically, the limited amount of parallel data
available for Faroese has hindered the develop-
ment of MT tools for the language. However,
in recent years, efforts have been made to ad-
dress this issue and ensure better coverage of
Faroese. One such effort led to the creation of
the Sprotin’s parallel corpus (Mikkelsen, 2021),
a collection of around 100K English-Faroese hu-
man translated sentences. This corpus facilitated
the inclusion of Faroese in Microsoft Translator
and the development of a Faroese MT model,
named Vélþýðing (Símonarson et al., 2021), by
Miðeind, an Icelandic NLP company. The rise
of massively multilingual translation models has
sparked several initiatives aimed at including
low-resource languages, thanks to their capabil-
ity for cross-lingual transfer and the exploita-
tion of shared linguistic features. Notably, initia-
tives such as Google’s MADLAD 400 (Kudugunta
et al., 2023) and Meta’s No Language Left Behind
(NLLB) (NLLB Team et al., 2022) target specifi-
cally low-resource languages, including Faroese.
As of July 2024, Faroese is also included in
Google Translate, Google’s effort to develop an
MT system for over 1,000 languages (Bapna et al.,

2https://huggingface.co/datasets/
barbaroo/FLORES200_translations_GPT4

2022). The development of these multilingual
models still predominantly relies on string-based
evaluation metrics like BLEU and ChrF. Despite
the widespread criticism and the documented lim-
itations of these metrics (Reiter, 2018; Callison-
Burch et al., 2006) they continue to serve as the
de facto standard in the field, particularly for low-
resource languages, which are for the most part
not included in shared tasks aimed at metrics eval-
uations (Freitag et al., 2022; Mathur et al., 2020).
This persistence is likely due to their simplicity,
ease of implementation, historical precedent, and,
often, lack of affordable alternatives. The recent
development of a BERT model for Faroese (Snæb-
jarnarson et al., 2023) has presented the opportu-
nity to add BERTScore (Zhang et al., 2020), a met-
ric based on contextual embeddings, to the pool of
available metrics for Faroese.

2.2 The Rise of LLMs in Machine
Translation

With the recent rise of LLMs it became apparent
that transformer based MT models are not neces-
sarily the go-to solution anymore when dealing
with automatic translation. The few-shot learn-
ing capabilities of LLMs opened new avenues for
translation with small data. Brown et al. (2020),
with their paper titled "Language Models are Few-
Shot Learners", demonstrated that GPT-3 could
understand and execute tasks, including transla-
tion, with minimal examples through in-context
learning (ICL). This capacity of LLMs to adapt
to specific tasks with just a few guiding examples
represents a shift in paradigm from traditional MT
methods (Lyu et al., 2024), which often rely on
extensive supervised training.

Recently, LLMs have revealed their potential
not only as translator but also evaluators of transla-
tion (Karpinska and Iyyer, 2023; Fernandes et al.,
2023; Huang et al., 2024), reaching state-of-the-art
accuracy with respect to human evaluation (Kocmi
and Federmann, 2023). However, these results
were mostly obtained for high-resource languages,
while the potential of LLMs for translating and
evaluating translation of low-resource languages
remains mostly untapped. In the specific case
of Faroese, studies have already been conducted
to assess how well LLMs understand the lan-
guage within the context of MT. Scalvini and
Debess (2024) evaluated the language comprehen-
sion capabilities of an LLM that targets Nordic
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languages, GPT-SW3, while Debess et al. (2024)
and Simonsen and Einarsson (2024) explored
GPT-4’s performance in Faroese sentiment analy-
sis and translation from Faroese to English, where
it showed good performance.

2.3 The Role of Semantic Textual Similarity
in Prompt Engineering.

While some studies have focused on using a zero-
shot prompting technique to translate, achieving
performance comparable to those of conventional
MT systems (Jiao et al., 2023; Chang et al., 2024),
the potential of few-shot prompting, particularly
in the realm of low-resource languages, invites
further exploration. Prior research has predomi-
nantly relied on the use of randomly chosen trans-
lation examples as prompts. However, emerg-
ing studies have explored structured approaches,
such as Pattern-Exploiting Training (Schick and
Schütze, 2021), K-Nearest-Neighbour (kNN) se-
lection for choosing translation examples from a
pool of high-quality candidates (Vilar et al., 2022;
Zhu et al., 2023) or choosing examples based on
STS (Zhang et al., 2023). Such studies indicate
that the quality of translation examples plays a cru-
cial role in the effectiveness of LLMs for MT.

Despite these advancements, the effectiveness
of using semantically similar translation exam-
ples in MT with LLMs remains an open ques-
tion. Findings by Vilar et al. (2022) and Zhang
et al. (2023) suggest that while example qual-
ity is crucial, STS alone does not strongly corre-
late with improved translation performance. On
the other hand, other research, such as the study
by Moslem et al. (2023) which utilizes lexical
fuzzy matches to find similar translations, points
towards significant benefits from employing se-
mantically related examples. It is worth noting
that most of this research has focused on high-
resource language pairs and previous iterations
of LLMs: these results might not therefore di-
rectly translate to current LLM versions and low-
resource languages. Furthermore, most LLMs are
capable of generating grammatically correct out-
put in high-resourced languages, but often fail
when zero-shot prompted in languages such as
Faroese, making generative language tasks such as
translation and summarization challenging. This
discrepancy highlights the need for further inves-
tigation into the optimal use of example selec-
tion strategies in enhancing LLM-based transla-

tion into low-resource languages. Conditioning on
grammatically correct and good translation exam-
ples has the potential to improve LLM generation
quality for low-resourced languages.

3 Methods

3.1 Prompting GPT-4 for Translation

We prompted the GPT-4 Turbo model
(’gpt-4-1106-preview’) (OpenAI et al.,
2024) for English to Faroese translation in a zero
and few-shot setting. This model was selected
based on its superior performance in Faroese
language generation at the time, as evidenced
by preliminary experiments made by the authors
of this paper. The prompting strategies used are
described below:

• Zero-shot setting.

• Few-shot setting with random selection of 12
parallel sentences from the Sprotin dataset
(Mikkelsen, 2021). We will refer to such
translations as Trand.

• Few-shot setting with selection of 12 paral-
lel sentences from the Sprotin dataset based
on the highest STS with the translation query
(Tsel). Note that the translation query is
in English, so the similarity search is based
on English examples. Their Faroese trans-
lated sentences are then used in the few-shot
prompt.

The Sprotin dataset is, to our knowledge,
the largest collection of high quality human
translated English-Faroese sentences pairs.
STS was quantified by a multilingual model,
Multilingual-E5-large (Wang et al.,
2024), which was the highest ranking multilin-
gual embedding model at the time according to
the MTEB leader board3. The system prompt
specified the proficiency of the chat-bot in the
Faroese language (’You are an expert in the
Faroese language’) and the desired translation
quality (’The translations should be of excellent
quality’). With these settings, we translated from
English to Faroese the test split of the FLORES
dataset (NLLB Team et al., 2022), comprised of
1012 sentences.

3https://huggingface.co/spaces/mteb/
leaderboard

624

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard


3.2 Comparison with SOTA MT Models
We benchmark GPT-4’s performance against
two state of the art multilingual MT models,
MADLAD-400 (10B parameters) and NLLB-200
(3B parameters). At the time of writing this paper,
the Google Translate API did not allow access to
the latest model, covering Faroese. Google Trans-
late was therefore not included in the analysis. The
models were used out of the box, without any fine-
tuning for the English-Faroese pair, to translate the
test split of the FLORES-200 dataset.

3.3 Evaluation on the FLORES-200 Test Set
In order to evaluate and compare translations, sev-
eral metrics were used: two string-based met-
rics, BLEU (Papineni et al., 2002) and ChrF
score (Popović, 2015), and one neural metric,
BERTScore (Zhang et al., 2023), and a human
evaluation score. Additionally, GPT-4 was asked
to provide a score estimating how confident it was
in the translation produced. The BERT model pro-
vided to BERTScore for evaluation was, to the best
of our knowledge, the only available BERT model
specifically catering to Faroese, FoBERT (Snæb-
jarnarson et al., 2023). We did not find any other
neural metric that includes Faroese among its tar-
get languages, a situation common to most low
and critically low-resource languages. Human
evaluation was carried out by three linguists who
are native speakers of Faroese. These experts
ranked the four Faroese translations - the human
translation from FLORES, the zero shot transla-
tions, Trand and Tsel - blindly from best to worst (1
to 4) (see Figure 1 for an example of the annotation
setup in Google Sheets). Annotators were pre-
sented with an error type hierarchy to align rank-
ing criteria. According to the hierarchy, sentences
with major errors like incomplete translations or
lexical errors will be ranked lower than sentences
with minor errors such as incorrect inflection or
spelling errors. The human evaluation was per-
formed on a subset of 200 translation queries, ran-
domly selected. In this subset, 12 sentences were
found which yielded two or more identical trans-
lations obtained by different translation methods
(zero-shot, Trand, Tsel or human reference). These
were given the same rank by the annotators 4. The
annotators evaluated the same examples, so that

4the ranking could then be 1, 1, 3, 4 if the top ranked
sentences are identical or 1, 2, 2, 4 if the second place trans-
lations are identical and lastly 1, 2, 3, 3 if the last rankings
are identical

inter-annotator agreement could be compared. For
comparison, we asked GPT-4 to perform the same
ranking task, over the same subset of sentences.

3.4 Replication on Another Source
In order to test the robustness of our human eval-
uation procedure and its findings, we selected
200 sentences randomly from the Sprotin corpus,
and translated them following the three transla-
tion strategies presented in Section 3.1, with the
aim to reproduce human ranking on this subset.
However, the nature of the Sprotin sentences led
us to reconsider our strategy: Sprotin is for the
most part composed by short, simple, everyday
sentences. Such sentences ended up being trans-
lated identically across translation strategies, lead-
ing to 132 sentences out of 200 having at least
two identical translations, 39 having 3 identical
sentences, and 21 having all 4 identical entries
(three GPT-4 translation strategies plus the human
translation). We considered the ranking of these
entries a challenging - if not impossible - task,
and therefore decided to change selection strat-
egy for test sentences. Preliminary results from
this evaluation attempt are discussed in Section 4.
Subsequently, we decided to select 200 sentences
randomly among longer sentences, as defined by
number of tokens in the translation query. The
threshold for selection was 18 tokens, as identi-
fied by rounding up the average number of to-
kens in a Sprotin sentence (8.8 tokens) plus 2 stan-
dard deviations (8.5). The rationale behind this
choice is that longer sentences are more likely to
be more linguistically complex and present more
opportunities for variation in translation quality.
The final subset presented an average of 28.6 to-
kens, roughly 2 tokens longer than that of FLO-
RES (26.8). This selection thus brought the two
subset closer together in terms of average sentence
length. These 200 sentences were then translated
according to the three different translation strate-
gies, and translations were ranked by two human
evaluators from best to worst (1 to 4). Out of 200
translation queries, 4 sentences were not parsed
correctly by GPT-4, yielding to incomplete trans-
lations. These sentences were excluded from the
analysis.

3.5 Annotator Agreement
To assess the degree of agreement among the
raters for the ranking tasks, we employed
Kendall’s Coefficient of Concordance (W). This
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non-parametric statistic is particularly suited for
situations where three or more raters are asked
to order a set of items, as it measures the extent
of agreement among the raters’ rankings (Kendall,
1938). Kendall’s W ranges from 0, indicating no
agreement, to 1, denoting perfect concordance.

Each assignment consisted of three Faroese na-
tive speakers for FLORES and two native speak-
ers for Sprotin providing rankings for four items.
For each assignment, we calculated Kendall’s W
to determine the level of rater agreement. We then
computed the average of these values across all as-
signments to obtain an overall measure of agree-
ment. This approach allowed us to quantify the
consistency of raters’ evaluations across multiple
independent tasks, providing a robust assessment
of inter-rater reliability in the context of our study.

4 Results

4.1 Automated Metrics are Blind

Automated metrics such as ChrF, BLEU and
BERTScore reveal that GPT-4 produces transla-
tions of higher quality with respect to the two MT
models, MADLAD-400 and NLLB-200 (see Ta-
ble 1) on the FLORES dataset. However, when it
comes to comparing the different GPT-4 prompt-
ing strategies in terms of translation performance,
these metrics appear to be "blind" to subtle im-
provements. By "blind," we mean that the au-
tomated metrics are not picking up on the im-
provement in performance when using the selected
method (Tsel) over random (Trand) - an improve-
ment that is evident to human evaluators. Sta-
tistical comparison between the ChrF, BLEU and
BERTScore distributions revealed no statistical
difference in translation quality between zero-shot
translation, Trand and Tsel.

4.2 Human Evaluation on FLORES

Human evaluation revealed a small, but statis-
tically significant difference between Trand and
Tsel. As Figure 2 shows, human evaluation was
consistently ranked first, followed by the STS
driven few-shot translation. We aggregated the
rankings of Trand and Tsel produced by the three
evaluators and compared them statistically by
Mann–Whitney U test, yielding a p-value of 0.006,
indicating that the two distributions are indeed dis-
similar. Interestingly, a slightly less substantial
difference was found comparing Trand with zero-
shot translations (p = 0.026), indicating that pro-

viding random examples is a useful approach, but
there is still a margin of improvement in transla-
tion quality to be exploited by example selection
and prompt optimization. To summarize, Table 2
reports how many times (in percentage) each ap-
proach received the highest rank. Although the hu-
man translation was found to be superior the vast
majority of instances, we see that each approach
was occasionally ranked first, indicating how nu-
anced the differences between the approaches can
be, when in a low-resource scenario.

4.3 Replication on the Sprotin Subset
As mentioned in Section 3, translating randomly
selected sentences from the Sprotin Corpus re-
sulted in many identical translation entries, ren-
dering the set unsuitable for ranking. However,
to gain preliminary insight into the performance of
the different translation methods on this subset, we
counted how often each strategy produced output
identical to the human translation. Interestingly,
we found that Tsel produced the highest number
of human-like translations (47), followed by Trand

(36) and zero-shot (31). When considering the hu-
man reference as the gold standard, these prelimi-
nary results mirror the hierarchy observed in the
human ranking of the FLORES sentences. The
second round of evaluation, concerning the rank-
ing of longer sentences extracted randomly from
Sprotin, showed compatible results with our previ-
ous findings over the FLORES dataset (Figure 3).
We see the human entry being consistently ranked
first, obtaining an overall ranking of 1.5, and the
zero-shot approach being ranked last overall. The
difference between Trand and Tsel is however more
pronounced in the Sprotin subset than what we ob-
served in FLORES. Statistical comparison of the
two distributions yields a p-value of 1.27 e−6, a
strong evidence that the two distributions are in
fact distinct, and that the Tsel strategy produces
statistically better translations. If we take a look
at Table 1, displaying how many times each ap-
proach was ranked first, in percentage, we find re-
markably consistent results between FLORES and
Sprotin, a result which supports the robustness of
our method and findings.

4.4 Annotator Agreement
The average Kendall’s W value obtained was
0.694 for FLORES and 0.752 for Sprotin, indi-
cating a substantial level of agreement among the
raters, which supports the reliability of the ranking
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Figure 1: Example of human evaluation setup in a spreadsheet where 4 is the lowest and 1 is the highest
rank.

Translation Method BLEU ChrF BERTScore F1

MADLAD-400 13.62± 0.53 40.89± 0.54 0.9373± 8× 10−4

NLLB-200 16.79± 0.52 48.05± 0.39 0.9474± 5× 10−4

Zero-shot GPT-4 21.36± 0.50 52.55± 0.39 0.9516± 5× 10−4

Trand few-shot GPT-4 21.09± 0.49 52.36± 0.38 0.9515± 5× 10−4

Tsel few-shot GPT-4 21.77± 0.50 53.24± 0.38 0.9524± 5× 10−4

Table 1: Translation performance of MADLAD-400, NLLB-200, and GPT-4 on the FLORES-200 dataset
for English to Faroese translations.

Figure 2: Human evaluation results, for a sub-
set of 200 FLORES sentences. Translations were
ranked from best to worst (1 to 4). The Trand

(random) and Tsel (selected) distributions are sta-
tistically different, yielding a p-value of 0.006 by
Mann-Whitney U test.

data used in our analyses.

4.5 GPT-4 is Also Blind

The confidence score provided by GPT-4 was in
alignment with human evaluation for what con-
cerns the presence of a statistical difference be-
tween Trand and Tsel (p value = 1.7 e−10), as can
be seen in Figure 5. It is however important to no-
tice how GPT-4 output a confidence score of 0.95
for 93% per cent of translations, a result which is
in line with previous findings by Kocmi and Fed-
ermann (2023). While these results align with hu-
man evaluation, the characteristics of such a dis-

Figure 3: Human evaluation results, for a sub-
set of 200 Sprotin sentences. Translations were
ranked from best to worst (1 to 4). The Trand (ran-
dom) and Tsel (selected) distributions are statisti-
cally different, yielding a p-value of 1.27 e−6 by
Mann-Whitney U test.

tribution make comparison by statistical analysis
less reliable.

To further investigate GPT-4’ s understanding
of translation nuances, we prompted GPT-4 for
translation ranking in a setting that mimics that of
human evaluation: the chatbot was asked to rank
the 4 translation option from best to worst (1 to
4), on the same set of translated sentences evalu-
ated by human experts. Notably, GPT-4 fails to
identify human translation as the best one (Fig-
ure 4). Specifically, GPT-4 ranked Trand statisti-
cally higher than Tsel (p value = 0.026) and human
translation (p value = 7.3e-4). This result there-
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Figure 4: Evaluation rankings assigned by GPT-4,
for a subset of 200 FLORES sentences. Transla-
tions were ranked from best to worst (1 to 4).

Figure 5: Confidence score assigned by GPT-4
to its own translations of the devtest split of the
FLORES-200 dataset. Values for the two distribu-
tions are plotted side by side for ease of visualiza-
tion. The labels ’selected’ and ’random’ refer re-
spectively to Tsel and Trand few-shot translations.

fore shows that GPT-4 is also blind to subtle im-
provements in translation quality and once again
underlines how automated metrics degrade in per-
formance in a low-resource setting.

5 Discussion

5.1 Challenges in Evaluating Low-Resource
Language Translation

During our study, we observed how prompt engi-
neering can in fact provide improvements in trans-
lation quality into low-resource languages such as
Faroese. In order to prove this, we used STS-
based few-shot prompting as a proof of concept.
While human evaluators were able to detect such
improvement, automated scores available for the

language, BLEU, ChrF and BERTScore, failed to
do so. That being said, among the automated
metrics used, BLEU was most sensitive in de-
tecting the improvement of the selected method
(Tsel) over the random method (Trand), albeit the
difference was small (see Table 1), with overlap-
ping confidence intervals, indicating that it was
not able to tell if there was an improvement. In
addition to utilizing the above mentioned auto-
mated metrics and human evaluation, we also uti-
lize a GPT-4 based confidence score, which is a
way to evaluate translation performance from the
model’s own perspective. We hypothesize that
prompt engineering driven improvements are too
nuanced to be detected by currently available au-
tomated metrics, including string-based metrics
(BLEU, ChrF) and BERTScore. GPT-4’s evalu-
ation also presented critical pitfalls, showing how
the model prefers its own output with respect to
the human reference. Higher performance auto-
mated metrics such as COMET and UNITE (Fre-
itag et al., 2022) are not available for Faroese
and for the majority of low-resource languages,
as these neural-based metrics require specific re-
sources like large, high-quality datasets for their
development. Translation into Faroese and related
quality evaluation poses multiple challenges, as
Faroese is not only low-resource but also a mor-
phologically rich language. Evaluating MT for
morphologically rich languages is notoriously dif-
ficult due to the complexity and variability in word
forms. These difficulties are well-documented in
the literature, with studies highlighting the short-
comings of traditional evaluation metrics when
applied to such languages (Freitag et al., 2022).
While it is true that LLMs provide new oppor-
tunities for low-resource languages, such oppor-
tunities cannot be fully taken advantage of for a
lack of appropriate methods to assess related im-
provements. In alignment with statements from
Chang et al. (2024) and Sai et al. (2020), our find-
ings highlight how automated metrics do not cap-
ture the nuances in quality as human evaluators
do. Therefore, we strongly advocate for the de-
velopment of more robust evaluation tools tailored
to low-resource contexts, and in general, for the
extension of neural metrics to low-resource lan-
guages.
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Translation Method Zero-shot Trand few-shot Tsel few-shot Human translation

FLORES - First-Rank (%) 7.83 7.33 11.67 74.33
SPROTIN - First-Rank (%) 7.14 7.65 12.75 74.23

Table 2: Percentage of times the four different translation strategies (human, zero-shot, Trand and Tsel)
were ranked first during human evaluation. Rankings for all evaluators were aggregated in the final
percentage.

5.2 Significance of Semantic Textual
Similarity in Few-shot

Our results demonstrate a small yet statistically
significant improvement in GPT-4’s translation
quality of English to Faroese when using seman-
tically similar examples, as highlighted by human
evaluation. This improvement underscores GPT-
4’s ability to utilize the context that is provided by
semantically similar examples to generate better
translations. By using semantically similar exam-
ples effectively, our study demonstrates a poten-
tial pathway to achieve higher-quality translations
without the need for an overly large dataset. Fur-
thermore, We observed a stronger impact of ex-
ample selection in the Sprotin subset, with respect
to FLORES. This might be due to several factors.
One possible aspect to consider is the type of lan-
guage and domains found in FLORES, which are
sometimes technical and not representative of ev-
ery day speech. Therefore, the Sprotin sentences
might present a better match to the examples (as
they are extracted from the same dataset). More-
over, FLORES is a well known, widely available
test dataset for translation, and there is a non neg-
ligible possibility of it being already included in
GPT-4’s training data. Had the model seen FLO-
RES already, that would limit the impact of the
prompting strategy on translation quality. Our
findings also contribute to the broader understand-
ing of prompt engineering, specifically in the con-
text of low-resource languages. There is a ben-
efit to selecting STS-based examples. Findings
from previous work about the impact of STS are
ambiguous (Vilar et al., 2022; Zhang et al., 2023;
Moslem et al., 2023). However, they were mostly
carried out on high resource languages, for which
GPT-4’s performance is generally of high quality.
Therefore, we could reasonably expect a smaller
margin of improvement, which is harder to detect
unambiguously.

5.3 Limitations and Future Works

Our study, while insightful, has certain limita-
tions that pave the way for future research. The
focus on a single LLM and language constrains
generalizability. Moreover, human evaluation in-
troduces potential biases, particularly in identify-
ing human-written translations. The datasets used
lack Faroese cultural elements, and we cannot rule
out the possibility of GPT-4 Turbo having been
trained on the FLORES dataset. To address these
limitations and expand our understanding, future
work should explore multiple LLMs, including
smaller and domain-specific models, and extend
to other low-resource languages. This broader
approach could improve the evaluation process
and provide insights into the relationship between
translation quality and corpus characteristics. Ex-
perimenting with an increased number of seman-
tically similar examples and longer paragraphs for
translation could enhance quality and offer a more
comprehensive evaluation. As open-source mod-
els for low-resource languages improve, compar-
ing their performance using our semantic similar-
ity approach could be valuable. Lastly, studying
the impact of reference corpus size and domain
specificity on STS performance could deepen our
understanding in diverse linguistic contexts.

6 Conclusion

This study shows that selecting few-shot learn-
ing examples based on STS can improve GPT-4
Turbo’s Faroese translation performance, as con-
firmed by human evaluation. However, current au-
tomated metrics fail to detect these improvements,
highlighting a critical issue in low-resource lan-
guage translation evaluation. While LLMs offer
new opportunities for language generation, the in-
ability of automated metrics to capture progress
in low-resource contexts could widen digital lan-
guage representation disparities. This situation
necessitates expensive human evaluation, poten-
tially hindering advancements. Therefore, we call
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for collaborative efforts to develop metrics specifi-
cally designed for low-resource language contexts.
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