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Abstract

When a crisis hits, people often turn to social
media to ask for help, offer help, find out how
others are doing, and decide what they should
do. The growth of social media use during
crises has been helpful to aid providers as well,
giving them a nearly immediate read of the
on-the-ground situation that they might not oth-
erwise have. The amount of crisis-related con-
tent posted to social media over the past two
decades has been explosive, which, in turn, has
been a boon to Language Technology (LT) re-
searchers. In this study, we conducted a system-
atic survey of 355 papers published in the past
five years to better understand the expanding
growth of LT as it is applied to crisis content,
specifically focusing on corpora built over cri-
sis social media data as well as systems and
applications that have been developed on this
content. We highlight the challenges and possi-
ble future directions of research in this space.
Our goal is to engender interest in the LT field
writ large, in particular in an area of study that
can have dramatic impacts on people’s lives.
Indeed, the use of LT in crisis response has
already been shown to save people’s lives.

1 Introduction: Language Technologies
and Crises

The aftermath of the Haitian Earthquake of 2010
saw the development and deployment of language
technologies at a large and national scale for the
first-time ever in a crisis. Most notably, lan-
guage technologies were developed for a language
that most in the NLP field had never heard of,
and likewise most aid providers did not speak,
namely, Haitian Kreyòl. At its peak, in the hours
and days after the earthquake, first-responders in
Haiti were receiving over 5,000 SMS messages
per hour asking for help, over 80% of which were
in Kreyòl. In response to the desperate need, a
diverse group of individuals, notably driven by
the Haitians themselves, developed and deployed

technologies that could process this load, with
a heavy reliance on crowdsourcing, the latter of
which tapped into Haiti’s large world-wide dias-
pora. Although the language technologies devel-
oped at the time are archaic by today’s standards,
these technologies allowed for the rapid triaging
of the SMS messages (Meier, 2015), geolocation
(mostly through crowdsourcing) (Munro, 2013),
and even machine translation (Lewis, 2010). The
infrastructure and language technologies developed
for this crisis were credited with saving thousands
of lives (Munro, 2013).

The Haitian earthquake, and the crisis it caused,
are not unique. In fact, natural or human-caused
crises happen regularly around the globe. Popula-
tions tend to use social media (and SMS) to report
on how they are being affected. The data posted
to social media have proven essential for provid-
ing and directing aid. Further, in notable examples
and ongoing research, language technologies have
proven, or can be shown, to be essential tools in
the crisis preparedness and response toolkit.

1.1 What is a crisis?

A crisis can be described as any surprise event
that adversely affects public health or disrupts the
routines of daily life, puts (large) groups of peo-
ple in danger, may require aid for affected popula-
tions, is often unpredictable, and typically requires
rapid response (Castillo, 2016). Even so, emer-
gency service providers generally have plans or
strategies for dealing with crisis events (Akerkar,
2020). Olteanu et al. (2015b) and Castillo (2016)
describe the two principal super-types of disasters:
natural and human-induced (anthropogenic), with
meteorological, hydrological, geophysical, etc., all
being natural, and shootings, bombings, wars, de-
railments, etc., all falling under human-induced. To
see the full list of categories from Castillo (2016),
see Table 1 in Appendix A.
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1.2 What are the research questions?

In this paper, we conduct a systematic survey of the
literature on language technologies as they are ap-
plied to social media and crises. To our knowledge,
this is the most extensive and thorough survey of
its kind in this area: we reviewed over 350 papers
published in the past five years on language tech-
nologies for crisis preparedness and response (what
we call LT4CPR). The crucial research questions
(RQs) we will address in this survey are as follows:

• RQ1: What kind of corpora are available for
LT4CPR research? What are their properties?

• RQ2: What kind of approaches have been
proposed to build LT systems for CPR?

• RQ3: What kinds of real-life crisis scenarios
can LT systems potentially be applied to?

• RQ4: What are the main challenges and future
directions for LT4CPR research?

This survey summarizes the current breadth of
language technologies in crisis preparedness and
response and describes challenges and future direc-
tions for this interesting area of study.

2 Background and Related Work

There are a host of issues one must contend with
when harvesting and processing data from social
media platforms as relates to crises, much of which
relies on language technologies: identifying the lan-
guage and using language-specific tools for text or
audio in a language (or relevant multilingual mod-
els); identifying named entities of various types
within a text; identifying location information, in-
cluding fine-grained mentions; extracting timeline
information to provide a step-by-step view of a cri-
sis as it unfolds; analyzing the sentiment or stance
of affected populations; determining whether mes-
sages are relevant to the crisis at hand, and if so,
what urgency they represent (i.e., triage); filter-
ing out irrelevant content, such as misinformation
or SPAM, or even disinformation; and, producing
a summary of ongoing events for aid providers
or government bodies (i.e., a situation report, or
sitrep). All of the above rely on, or would benefit
significantly from, the use of language technolo-
gies. Crucially, given the millions of users on social
media platforms, information can be harvested to
identify the need on the ground, summarize the
extent of a disaster locally, and also direct aid.

The birth of the multidisciplinary field of Cri-
sis Informatics (Hagar, 2010, 2014; Palen and An-
derson, 2016) saw the first forays into the use of
language technologies in crisis response, focused
primarily on disaster warning, response and recov-
ery. A notable (and likely first) example of social
media use in crisis was on Twitter, where users
reported localized information regarding the San
Diego firestorm of 2007 (Sutton et al., 2008). How-
ever, it was not until Haiti in 2010 that the use
of technologies for identifying and meeting local
need demonstrated the potential for language tech-
nological solutions (albeit across SMS messages,
not social media directly) (Munro, 2013). In the
UK floods of 2012 it was noted that location infor-
mation was discernible from tweets (Meier, 2015).
This was followed by Typhoon Pablo in the Philip-
pines in the same year where tweets were systemat-
ically analyzed and categorized (Liu, 2014). How-
ever, the first Twitter classifier was developed after
the Oklahoma tornadoes of 2013. This classifier,
which was deployed during the crisis, and used
to classify the severity of need for directing aid
appropriately (Meier, 2015).

Imran et al. (2015) is the first survey that we are
aware of in the Crisis Informatics space as it relates
to social media. The survey was not entirely fo-
cused on language technologies per se, but, rather,
reviewed the academic literature that described the
extraction of crisis-relevant content from social me-
dia, including monitoring, event detection, social
media content harvesting, etc. Their survey focused
on NLP as a pre-processing step, i.e., to filter out
irrelevant content, with a very limited review of
NLP used in tweet classification. Sun et al. (2020)
reviewed the literature on applying AI in the disas-
ter management life-cycle, thoroughly describing
the life-cycle and how AI might apply, yet they
gave very little background on NLP in that con-
text. Vongkusolkit and and (2021) also surveyed
the literature from the perspective of disaster man-
agement, giving a thorough survey of papers on
social media for situational awareness, with ex-
tensive background on NLP as applied to classify-
ing and processing social media, including content,
sentiment, user, and temporal classification.

Müller et al. (2024) restricted their paper search
to those focused on tools, their potential utility
in crisis management, and recommendations for
future work on adapting the technology better to
the target audience of crisis management decision
makers. Müller et al. (2024) is one of two papers
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Figure 1: Flowchart of paper selection following
PRISMA guidelines (Tricco et al., 2018).

that applied PRISMA (Tricco et al., 2018) as their
paper selection methodology. The second survey
paper that applied PRISMA was Edlim et al. (2024),
which focused on the use of Twitter for urgency
detection during crises, specifically highlighting
the literature on the Indonesian language (thus quite
useful for tool discovery in the context of lower-
resource languages that may be affected by crises).

3 Paper Selection

Our systematic review follows the Preferred Re-
porting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Tricco et al.,
2018). We gathered a large number of relevant
English articles published in the past five years,
from January 2020 to December 2024. The process
is illustrated in Figure 1, as explained below.

3.1 Inclusion criteria
For a study to be included in our survey, it must
meet two criteria: first, it must directly pertain to a
rapidly developing crisis such as natural disasters
(e.g., earthquake) or the onset of pandemics (e.g.,
COVID-19) or human-induced crises (e.g., break-
out of a war); thus, studies on long-term crises such
as drug wars and the opioid epidemic in the USA
are excluded. Second, the study must either build
a corpus consisting of social media data produced
during a crisis or build NLP systems using social
media data that aim to help crisis response.

3.2 The initial set of papers
Our search strategy employed three groups of key-
words: (a) social media, (b) crisis OR disaster, (c)
Natural Language Processing (NLP) OR Machine
Learning (ML) OR Language Technology (LT) OR
Artificial Intelligence (AI). These groups were com-
bined to conduct searches across three sites: the

ACL Anthology1, Google Scholar2, and Semantic
Scholar3. Furthermore, we included relevant publi-
cations from CrisisNLP and ISCRAM. We found
1,256 papers from these five sources combined.
After removing duplicates and papers published
before 2020, there were 1,072 left, which formed
our initial set of papers.

3.3 Two stages of screening

Although search queries were based on the inclu-
sion criteria, many papers in the initial set failed
to meet these criteria. We filtered out unqualified
papers in two stages. First, four NLP graduate stu-
dents manually checked the title and abstract of all
papers in the initial set and removed any unquali-
fied ones. Second, we conducted a full-text screen-
ing of the 546 remaining papers and categorized
them into four categories based on their foci: (1)
corpus construction papers, which focus on build-
ing a dataset using social media messages during
a crisis, (2) system development papers, which fo-
cus on building NLP systems that could be applied
to some crisis situations, (3) application papers,
which focus on building applications for a real cri-
sis situation, and (4) survey papers. During the
full-text screening, we recorded information (e.g.,
the modality of a corpus), which would be needed
for the various statistics reported in our study.

Ultimately, 355 articles were kept for our sur-
vey, and their distribution by year of publication
and crisis type is shown in Figure 2. In the next
three sections, we will discuss the first three types
of papers as the 23 survey papers in our final set
either concentrated on some specific NLP task (e.g.,
event detection (Edlim et al., 2024)), had little to
no coverage of NLP (e.g., Sun et al., 2020), or were
published a few years ago and thus do not capture
most recent progress in this field (e.g., Baro and
Palaoag, 2020).

4 Corpus Construction

Out of the 355 papers in our final collection, 91
(25.6%) focus on corpus construction (“corpus pa-
pers”). In this section, we discuss the properties
of the corpora with respect to modality, language,
social media platform, and annotation type (see
Figures 3-7). Each figure in this section has two
pie charts: the left shows the numbers of corpora

1https://aclanthology.org/
2https://scholar.google.com/
3https://www.semanticscholar.org/
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Figure 2: The papers included in this survey by year
and crisis type. The grey bar, N/A, means the crisis type
cannot be easily inferred from the writing of the papers.

Figure 3: Number of corpora by crisis type as in (a)
corpus papers or (b) system papers

presented in the corpora papers, and the right shows
the numbers of corpora used by the system papers.

The full list of corpus papers and the basic in-
formation on the corresponding corpora are in Ta-
bles 2-6 in Appendix B. In addition, some well-
known datasets released before 2020 are in Table 7
in the same appendix.

4.1 Modalities, languages, and platforms
Most of the corpora described in the corpus papers
are text only (81), English only (47), and collected
from Twitter alone (63).
Crisis type: Castillo (2016) defined two major
categories of crises: natural vs. human-induced
(see Table 1). As there was a surge of studies
on COVID-19, we added a third category, health-
related crisis, when reporting the number of cor-
pora by crisis type. Figure 3 shows the distribution
of corpora over three crisis categories. Some cor-
pora include data from multiple types of crises.

Figure 4: Number of corpora by language.

Figure 5: Corpora by modality. There are 7 system
papers that did not indicate the modality of the corpora.

Languages: Figure 4 shows languages of the cor-
pora in our study. Of the 89 corpora that include
text, 47 (52.8%) are English only. The next largest
percentage is for multilingual corpora, with most
of these including English in addition to other lan-
guages. Good examples of robustly multilingual
corpora include Chowdhury et al. (2020), Imran
et al. (2021a), and Abdul-Mageed et al. (2021).
The latter two are particularly noteworthy with 67
and 100+ languages represented, respectively.

Modality: As shown in Figure 5(a), the large ma-
jority (81) of the 91 newly created corpora consist
of text only; 2 corpora (Hassan et al., 2020; Alam
et al., 2022) are images only; 6 include both text
and images; 2 consist of more than two modalities
(Yuan et al., 2021; Sosa and Sharoff, 2022).

Figure 6: Number of corpora by social media platforms.
N/A means the platform information is unspecified.

Social Media Platforms: Figure 6 shows the
sources of the data in the corpora. Most of the
corpora, 63 (69.2%), were built from Twitter social
media messages. This is because of the (histori-
cally) widespread use of the platform, especially
for sharing microblog posts most useful for disaster
situations. Additionally, Twitter is often used in
research studies because its data was easy to obtain
and distribute (see discussion in §7.4).

4.2 Types of annotation

The corpora papers vary with respect to the anno-
tation types used over raw social media data. We
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Figure 7: Number of corpora by annotation type. N/A
means no additional annotation (A0).

group the annotation types into 6 broad categories,
whose distributions are shown in Figure 7.
(A0) No annotation: 10 of 91 corpora are a col-
lection of social media messages without additional
annotation. For instance, Epic (Liu et al., 2020) is a
large-scale epidemic corpus containing 20M tweets
crawled from 2006 to 2020, including tweets re-
lated to three diseases (Ebola, Cholera and Swine
Flu) and 6 global epidemic outbreaks. Such cor-
pora are valuable resources for LT4CPR research
even without additional annotations.
(A1) Labels: Out of 91 corpora, 54 include cer-
tain class labels. The labels can pertain to (a) Rele-
vance and urgency of messages (e.g., (Enzo et al.,
2022; Kayi et al., 2020)), (b) Information source
and reliability (e.g., (Ahmed et al., 2020; Sosa and
Sharoff, 2022)), (c) damage type and severity (e.g.,
(Li et al., 2020; Alam et al., 2022)), and (d) sen-
timent, stance (e.g., (Shestakov and Zaghouani,
2024; Vaid et al., 2022)), etc.

(A2) Entities, relations, and events: 7 out of
91 corpora annotated disaster-related entities, re-
lations, or events; such annotations can be used
to train emergent event detection systems (e.g.,
(Hamoui et al., 2020; Fakhouri et al., 2024)).

(A3) Geo-location: For applications such as as-
sisting rescue efforts, geo-location needs to be fine-
grained to the level of geo-coordinate or physical
address (e.g., (Chen et al., 2022; Faghihi et al.,
2022)). In contrast, for applications such as mon-
itoring public opinions during a pandemic, geo-
location can be at the level of city, state, or even
country (Arapostathis, 2021).

(A4) Summary and timelines: Informative re-
ports that aggregate information from social media
messages can be invaluable during crises. How-
ever, creating a corpus of such reports could require
tremendous amount of human effort. Only two cor-
pora in our survey do so: Vitiugin and Castillo
(2022) collected crisis-related tweets and annotated

Figure 8: Number of systems by NLP tasks.

all summaries of factual claims in the messages;
CrisisLTSum (Faghihi et al., 2022) contains 1,000
crisis event timelines across four domains includ-
ing wildfires, local fires, traffic and storms.

(A5) Miscellaneous: 9 corpora include annota-
tions such as propagation networks (Haouari et al.,
2021), situation frames and morphosyntactic anno-
tations (Tracey and Strassel, 2020).

Notably, while parallel datasets in general do-
mains (e.g., news and law proceedings) are com-
mon and have been used to build MT systems in
the past three decades, corpora consisting of trans-
lations of social media data are rare and none of
the 20 multilingual corpora in Figure 4(a) include
parallel social media data.

4.3 Annotation methods
For all corpora, social media messages are ob-
tained by crawling the Internet, calling APIs of-
fered by social media platforms, or leveraging ex-
isting datasets. The raw data are often preprocessed
using filtering, removing noisy instances, etc.

Among the annotated corpora in our survey, an-
notation was performed manually for roughly two
thirds of corpora through crowd-sourcing platforms
like Amazon Mechanical Turk (e.g., (Sosea et al.,
2022)) or by in-house annotators (e.g., (Sarkar
et al., 2020)). The remaining were annotated au-
tomatically through associated metadata such as
Twitter’s location features (e.g., (Qazi et al., 2020))
or by running NLP systems such as language I.D.
(e.g., (Sosa and Sharoff, 2022)).

5 NLP System Development

Of 355 papers included in this survey, 215 (60.6%)
focus on system development ("system papers").

5.1 NLP tasks

Despite the large number of system papers, they
cover only a small number of NLP tasks, as shown
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in Figure 8.4

(T1) Classification: This group includes classi-
fication tasks such as emergency detection (e.g.,
(Restrepo-Estrada et al., 2018; Gialampoukidis
et al., 2021)), misinformation detection (e.g.,
(Apostol et al., 2023; Naeem et al., 2024)), and
disaster type classification (e.g., (Lever and Ar-
cucci, 2022; Zhang et al., 2024a)). 202 out of 292
systems (69.2%) fall into this category.

(T2) Entity, relation, and event: This group in-
cludes named entity recognition (e.g., (Lai et al.,
2022; Suleman et al., 2023)), relation extraction,
and event extraction (e.g., (Alam et al., 2019; Wang
et al., 2024a)). 40 systems belong to this category.

(T3) Geo-location: This includes Geo-tagging
and Location Mention Recognition (LMR) (e.g.,
(Essam et al., 2021; Suwaileh et al., 2022)). 11
systems belong to this group.

(T4) Summarization: There are 11 systems on
summarization, including timeline summarization
(e.g., (Khatoon et al., 2021)).

(T5) Topic modeling: 19 systems are on topic
modeling (e.g., (Bukar et al., 2022; Zhang et al.,
2024b)), an important task during crisis situations.

(T6) Other tasks: There are 9 papers on vari-
ous topics such as social network detection (e.g.,
(Momin and Kays, 2023)) and visualization (e.g.,
(Ma et al., 2022)).

5.2 Methodology

Among the 6 groups of tasks outlined above, T1,
T2 and T5 have been well-studied in the NLP field;
most system papers we surveyed simply applied
the same methodology to the crisis domain. For
T3, in order to identify Geo-locations, some stud-
ies (e.g., (Apostol et al., 2023; Ferner et al., 2020))
used external knowledge to map location names
to physical addresses while others (e.g., (Belcastro
et al., 2021)) took advantage of the geo-tags of con-
tent senders. For T4, summarization in the crisis
domain can be very complex, as one would need
to process on-going, noisy, often conflicting infor-
mation from multiple information resources and/or
modalities potentially in multiple languages. The
summarization task often involves message clas-
sification and clustering, followed by crisis time-

4As a system paper may include systems for multiple NLP
tasks, the total number of systems (292) in this pie chart is
higher than the number (215) of system papers.

Figure 9: Number of systems by year and approach.

line extraction before a summary is generated (e.g.,
(Faghihi et al., 2022)).

Due to space limits, we cannot explore the de-
tails of all system papers. We simply place them
in four groups: rule-based, statistical methods such
as Random Forest and SVM, neural network (NN-
based) and others which include methods such as
data augmentation. Figure 9 shows the number of
systems and their approaches by year.5

5.3 Evaluation

Tasks in T1-T4 correspond to annotation types A1-
A4, as discussed in §4.2; therefore, they can be eval-
uated with the corresponding corpora. As shown in
Figure 4(b)-6(b), the corpora used in the majority
of system papers are English text from Twitter.

For T5-T6, because there are no labeled corpora
serving as gold standards, the outputs (e.g., visual-
ization of damaged regions) of those systems are
rarely evaluated quantitatively.

6 Real-life Applications and Deployment

NLP systems can potentially be used to assist cri-
sis management in many ways, such as message
triaging for humanitarian organizations (Kozlowski
et al., 2020b; Amer et al., 2024), emergent event
detection (Suwaileh et al., 2023c; Simon et al.,
2021), geo-location for rescue efforts and situa-
tional assessment (Khanal et al., 2022; Suwaileh
et al., 2022), generation of situation reports and cri-
sis maps (Vitiugin and Castillo, 2022; Yang et al.,
2022), monitoring and analyzing public emotions
and responses (Wang et al., 2024b; Sosea et al.,
2022), and helping the public acquire/process infor-
mation (Hossain et al., 2020; Brunila et al., 2021a).

However, there are only 26 application papers
that describe systems that attempt to address the
"application" of LT to real-life situations (e.g., to

5The total number of systems in the figure (455) is much
higher than the number of system papers (215) as it is common
for a system paper to describe multiple systems.
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help aid providers). Of these, it is not clear how
many have been adopted by the crisis community.
This indicates a surprising gap given that one would
assume that the system development work being
carried out by LT researchers (described in §5) is
intended to be used in actual crises.

7 Challenges and Future Directions

Our survey has shown that there has been a signifi-
cant amount of work that has been done over just
the past five years applying LT to crisis manage-
ment. That said, there are still many challenges to
be addressed. We highlight 6 primary challenges
and possible future directions in this section.

7.1 Quality of social media corpora

There are many challenges in building large, high-
quality corpora for LT4CPR research. First, it can
be difficult to gather large amounts of social media
data from real crises due to factors such as paywalls,
identifying the channels being used for a crisis (e.g.,
on Telegram, Reddit), the lack of public access to
relevant content, etc. Second, social media data
are noisy with misspellings, newly invented words,
grammatical errors, etc., all of which complicate
cleaning and annotation tasks (Derczynski et al.,
2013). Third, social media data can contain inac-
curate or misleading information, which is often
reinforced (e.g., Starbird et al., 2014), and thus
mis- and disinformation detection can be an impor-
tant step for using such data (Hossain et al., 2020).
Finally, social media users can be quite different
from the general population and any analysis based
on social media messages must take this fact into
account, e.g., in order to understand the public’s
reaction to, for example, a hurricane evacuation
order (Roy et al., 2021; Li et al., 2022c).

7.2 Lack of multilinguality

Chowdhury et al. (2020) points out that "there
are a lot of disaster-prone non-English speaking
countries." Nothing could be truer: from 1995 to
2022, there were 11,360 natural disasters around
the globe, an average of about 398 disasters per
year (Tin et al., 2024). Ranking these disasters
by death toll or number of injuries (descending),
where we treat these figures as proxies for disaster
severity, only two of the approximately 18 most
severe disasters that occurred in these 17 years
occurred in regions where English is an official lan-
guage, namely India and Pakistan, and one which

occurred in a region that considers English to be
semi-official, namely Sri Lanka.6

Given that the bulk of injuries and lives lost
occur where English is not spoken (as discerned
from Tin et al., 2024), and that the bulk of corpora
developed for LT4CPR are in English (see §4 and
Appendix B), the value of resources created for
non-English languages cannot be overstated, espe-
cially if these resources are intended for real-world
use. Tools take a cue from available corpora and
§5 shows the same English-bias. There is value in
working on English; yet we miss the boat by not
working on other languages too.

A related issue is the surprising gap in Machine
Translation research on crisis-related social me-
dia: in our search over the past five years, only
one paper focused on the use or development of
MT (Amer et al., 2023). 7 If the preponderance
of need is in non-English languages, and the bulk
of the work in LT4CPR is on English, MT could
be used as a "connective" technology, e.g., translat-
ing data from affected languages into English for
further processing.8

That said, this multilingual deficiency might at
least be partly addressed by the growing use of
LLMs (e.g., GPT, LLaMa) and large multilingual
models (e.g., XLM-RoBERTa) in this space.9 We
found 8 papers using such models for crisis-related
work, all from 2024. Although most of these

6That said, there are many regions of India, Pakistan and
Sri Lanka where, although English has (semi-)official status, it
is not widely spoken by those on the ground, indeed, by those
most likely to be affected adversely by natural disasters.

7Two recent papers, Lankford and Way (2024); Roussis
(2022) also address MT in crisis, specifically of COVID-19
related text, however, they do not cover social media, so we
excluded them from our survey. Likewise, Anastasopoulos
et al. (2020), although providing an n-way parallel corpus of
COVID-related content across 38 languages, many of which
are under-resourced and from the global south, was excluded
because it is not focused on MT in the context of social media.

8It is easy to assume that the MT technology, having been
widely commoditized by industrial MT providers, is a solved
problem for many of the world’s languages. The main industry
MT providers (Google, Microsoft, Amazon, Meta), however,
combined cover less than 200 of the world’s 7,000+ languages.
Further, it is not a given that the quality of an MT that has been
shipped for any given language pair by any given provider is
up to the task of supporting communication in crisis scenarios,
most especially if the language is low-resource. The same
issue extends to dialects of majority languages as well (see
Bird, 2022 for related discussion). We feel that there is a
significant research gap for MT in LT4CPR, specifically over
social media content.

9As an example for MT tasks specifically, Hendy et al.
(2023) shows that GPT models have caught up to, or even
surpassed, the quality of existing commercial models for high-
resource languages.
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articles focus on classification and summariza-
tion tasks using LLMs (and one on inference (Gi-
accaglia et al., 2024)), two do explore multilingual
uses (Wang et al., 2024a; Sathvik et al., 2024).

7.3 Lack of multimodality

A recurring theme in a number of the system pa-
pers is the need for multimodal (image, text, au-
dio, video) content. Applying LT techniques to
multimodal content has garnered much interest in
the field of late (e.g., (Salesky et al., 2024; Har-
alampieva et al., 2022; Hu et al., 2024)). Over 40
papers in our survey list the development of multi-
modal corpora or tools as relevant future directions
for the field. This is motivated by the increased use
of social media to post combinations of text,images
and videos. However, the bulk of the research in
LT4CPR thus far has been unimodal, specifically
text-based. In fact, 161 of the systems papers (75%)
in our survey focus solely on text, and most of the
corpus papers are text-only (81 out of 91).

Some exceptions in the corpus space include
CrisisMMD (Alam et al., 2018b), a text and image
corpus collected from Twitter, consisting of 11,400
posts and 12,708 images, M-CATNAT (Farah et al.,
2024), a text and image corpus consisting of 837
French tweets, two Weibo-based Chinese text and
image corpora (Mohanty et al., 2021; Yan et al.,
2024) and a Reddit dataset (Giaccaglia et al., 2024),
which consists of 838 posts and 35,551 images
extracted from video frames.

CrisisMMD, being the first multimodal dataset
in the crisis space, has been the focus of some
recent studies and systems: Giaccaglia et al. (2024),
Shetty et al. (2024), Giri and Deepak (2023), Kotha
et al. (2022), Liang et al. (2022), and Abavisani
et al. (2020) all classify crisis-related social media
data jointly across both text and image data. In
the case of Giaccaglia et al. (2024), the authors
include a second classification task over Reddit
text and video content using an LLM (specifically
LLaVa (Liu et al., 2023))

The existing multimodal work is promising, but
additional and much larger, annotated multimodal
crisis-focused corpora are needed to promote con-
tinued research in this space.

7.4 Lack of diversity in social media platforms

The data found in the corpora we surveyed is over-
whelmingly from Twitter/X, and the bulk of the
systems used Twitter data as well. Twitter has been
the focus for so long because it was the go-to in

the early days of Crisis Informatics (e.g., (Sutton
et al., 2008; Hughes and Palen, 2010; Vieweg et al.,
2010)), and this trend has clearly continued.

The hyperfocus on Twitter is an issue because
it ignores the vast diversity of social media plat-
forms, some much more heavily than Twitter, e.g.,
Tiktok. Also, after Twitter’s acquisition and shift
to X, the resulting changes in policies, costs, and
algorithms have driven users to flee the platform in
favor of others. Thus, it will become increasingly
important for researchers to acquire data from other
platforms, both mainstream (e.g., Youtube, Tiktok),
and alternative (e.g., Telegram, Bluesky).10

7.5 Lack of diversity in annotation types and
NLP tasks

As shown in Figures 7-8, most of the exist-
ing corpora and NLP systems focus on three
types of annotation or output: class labels, enti-
ties/relations/events, and location mentions/geo-
locations. More studies are needed on other types
of annotation or output, which might require more
extensive exploration of the needs of aid providers,
emergency managers, etc. (see §7.6). Of likely ben-
efit to the crisis community would be more work
on tasks such as misinformation detection (e.g.,
(Starbird et al., 2014; Hossain et al., 2020)), time-
line extraction (e.g., (Faghihi et al., 2022))11, casu-
alty estimation (e.g., (Wang et al., 2024a)), summa-
rization (e.g., (Vitiugin and Castillo, 2022)), text
simplification (e.g., (Temnikova, 2012; Horiguchi
et al., 2024)), visualization (e.g., (Murakami et al.,
2020)), or even automated generation of situation
reports (e.g., (Wang et al., 2024a)). These would
vastly increase the utility of LT for aid providers
and others in real-world settings. Further, as noted
in §7.2, MT research in the crisis space is virtually
non-existent as applied to social media.

7.6 Lack of engagement with the crisis
community

Lewis et al. (2011) describes what they call a Crisis
MT Cookbook, effectively a strategy for applying
MT to future crisis events, using the Haitian crisis

10It is also important to go where the users are. As an
example, in June 2022 there were 1.7B regular users of Tiktok,
yet Twitter/X had only 397M. Tiktok’s user base is growing
but Twitter/X’s growth has been relatively flat. See this chart.

11It should be noted that Faghihi et al. (2022) does not
describe a timeline extraction or summarization tool, but rather
a benchmark designed to support the development of such
tools, which consists of 1,000 crisis event timelines extracted
from Twitter for different crisis types. Resources such as this
can be very useful for fostering and promoting LT work in
such areas.
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of 2010 as a guide. There are two crucial elements
to this cookbook: (1) the content that would be
most useful in crisis situations, and (2) the infras-
tructure to support relief workers.

As noted in §4, it could be argued that the data
collected for developing corpora in the crisis do-
main are the content that would be useful for devel-
oping tools to battle future crises. They consist of
real data from real users involved in real crises.

The next step is trickier: building the tools and
infrastructure that would actually be used by relief
workers, aid providers, NGOs, emergency man-
agers, local communities, etc. What do these con-
sumers need? In other words, what does the in-
frastructure that they might use look like? Would
the systems described in the papers we surveyed
(see §5) satisfy their need? It is clear that some of
the authors of the papers reviewed in this survey
have engaged directly with the crisis community
(or work there themselves), as evidenced by the
applications described in §6. And some have en-
gaged with individuals who work in emergency
response directly, e.g., Vitiugin and Castillo (2022),
who used emergency management domain experts
to review systems’ output. But, as a whole, how
much of our infrastructural work thus far could be
directly consumed in times of crisis? How much
of our work would be accepted as useful by the
consumers described above?

We believe that engagement beyond the lan-
guage technology community is crucial if we want
to see the corpora and tools we have developed used
outside the lab. We recommend and encourage
collaborations between LT researchers and those
working in the crisis response space or with rep-
resentatives from communities who might be af-
fected by crises, such as regional and local govern-
ing bodies, language communities, etc. A holistic
approach to involvement would include organizing
joint workshops and conferences between those
working on or in crises and language technologies,
e.g., LT4CPR workshops, such as the one held at
George Mason University in the summer of 2023;
submitting to and participating in existing crisis and
crisis response conferences and workshops, e.g.,
Information Systems for Crisis Response and Man-
agement (ISCRAM); engagement with NGOs and
other organizations who regularly work in crises
or provide services (such as translation, medical
or logistical support, etc.) in response to crises,
e.g., CLEAR Global, Doctors without Borders, the
Red Cross etc.; and participation in conferences

in other areas of computer science, such as HCI,
that regularly engage in crisis informatics or related
disciplines, e.g., SIGCHI.

8 Conclusion

In reviewing the hundreds of papers for this survey,
it was obvious throughout almost all of them that
the work was being done with good intent: most
papers spoke directly to the need to provide aid in
crisis situations, and many authors highlighted how
their work could help. It was clear that the authors
were doing their work with an eye on the greater
good. This is laudable and utterly inspiring. In fact,
it makes us proud to be LT researchers.

That said, good intentions cannot operate in a
vacuum. An important question must be asked: is
the work being done for any particular task being
done based on perceived need, or being done based
on actual need? If the former, then that disconnect
might mean that the work we are doing, no matter
how inspiring, may not be consumed by those we
think might need it most. It does not diminish the
work being done, but it does mean that our lofty
aspirations might not be met.

The solution is simple: we should engage with
the broader crisis community, e.g., aid providers,
NGOs, government bodies, affected communities
(including language communities), crisis informat-
ics researchers, crisis or disaster managers (includ-
ing those operating in a local theater), and any
others who engage in crisis response work. This is
not necessarily something each individual member
of our research community would need to or should
take on, but rather the LT community writ large,
specifically those who wish to take on the daunting
tasks of creating LT4CPR.

The mere fact that there a few hundred papers
written over the past five years in the LT4CPR
space (per Appendix B and Figure 2) speaks vol-
umes. LT4CPR is not just a passing fad nor some
fancy new algorithm: those of us involved are gen-
uinely interested, as a field, in improving the lives
of others; indeed, as witnessed so many years ago
in Haiti, in saving the lives of others.

We hope our survey will generate even more
interest across the language technology disciplines
in LT4CPR and that it will offer suggestions of
differing research paths for those already involved.
There is much that has already been done. But
there is also so much more that we can do.
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Limitations

This survey included only papers in English pub-
lished in the five years of 2020-2024, and thus may
have missed studies published in other languages
or outside this time period.

Due to the large number of papers in the initial
set, most papers were manually checked by only
one annotator in each stage of screening; thus, an-
notation errors or inconsistencies are inevitable.

Finally, due to page limits for submission, while
355 papers are included in this survey from which
we gathered our statistics, only a small subset of
them are discussed individually in our paper.

Ethical Considerations

All the papers covered in our survey are publicly
available. The two-stage screening process was
done by researchers on our team. We are not aware
of any ethical issues that arose while conducting
our work.
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https://api.semanticscholar.org/CorpusID:235446745
https://api.semanticscholar.org/CorpusID:235446745
https://doi.org/10.1016/j.ipm.2019.102107
https://doi.org/10.1016/j.ipm.2019.102107
https://api.semanticscholar.org/CorpusID:272099251
https://api.semanticscholar.org/CorpusID:272099251
https://api.semanticscholar.org/CorpusID:272099251
https://api.semanticscholar.org/CorpusID:273464738
https://api.semanticscholar.org/CorpusID:273464738
https://api.semanticscholar.org/CorpusID:273464738
https://aclanthology.org/2022.coling-1.335/
https://aclanthology.org/2022.coling-1.335/


A Disaster Types

Table 1 shows Crisis categories and sub-categories
from (Olteanu et al., 2015b; Castillo, 2016).

B Corpus Papers Included in this Survey

Table 2-6 show the full list of 91 corpus papers
included in this survey, with the basic information
about the corpora presented in these studies:

• The columns show the corpus name, the year
of the publication, social media platform, cri-
sis type, modality, language, annotation type,
and the link to the corpus or the publication.

• The crisis types are C1 (natural disaster), C2
(health-related crisis), C3 (human-induced cri-
sis), and C4 (multiple types of crises).

• For the Language column, we use 3-letter lan-
guage codes for Arabic (ara), Belarusian (bel),
Catalan (cat), Chinese (zho), Croatian (hrv),
English (eng), French (fra), German (deu),
Indonesian (ind), Japanese (jpn), Portuguese
(por), Russian (rus), Spanish (spa), Tagalog
(tgl), and Ukrainian (ukr).

• Annotation types are A0-A6 as descibed in
Section 4.2: A0 (no additional annotation),
A1 (class labels), A2 (entities, relations, and
events), A3 (geo-location), A4 (summary),
and A5 (other types of annotation).

While our corpus papers were published in 2020-
2024, there are dozens of corpora that were released
before 2020 and have been used in multiple studies
since their release. We include those corpora in
Table 7.
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Category Subcategory Examples

Natural
• Meteorological

• Hydrological

• Geophysical

• Climatological

• Biological

• tornado, hurricane

• flood, landslide

• earthquake, volcano

• wildfire, heat/cold wave

• epidemic, infestation

Anthropogenic
(Human-
Induced)

• Sociological (intentional)

• Technological (accidental)

• shooting, bombing

• derailment, building collapse

Table 1: Crisis categories and sub-categories from (Olteanu et al., 2015b; Castillo, 2016)
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Dataset Year Platform Crisis Type Language Modality Annotation Link
ArCOV-19
(Haouari et al.,
2021)

2020 twitter/x C2 ara text A5 link

COVIDLies
(Hossain et al.,
2020)

2020 twitter/x C2 eng text A0 link

CrisisImage-
Benchmarks
(Alam et al.,
2020)

2020 twitter/x, insta-
gram

C1 N/A image A1 link

Crisis Tweets
with Urgency
Labels in En-
glish, Odia and
Sinhala (Kayi
et al., 2020)

2020 twitter/x C1 multi text A1 link

EPIC (Liu
et al., 2020)

2020 twitter/x C2 eng text A0 link

EyewitnessTweets
(Zahra et al.,
2020)

2020 twitter/x C1 eng text A1 link

FloDusTA
(Hamoui et al.,
2020)

2020 twitter/x C1 ara text A2 link

French Ecolog-
ical Crisis (Ko-
zlowski et al.,
2020a)

2020 twitter/x C1 fra text A1 link

GeoCoV19
(Qazi et al.,
2020)

2020 twitter/x C2 multi text A3 link

HurricaneEmo
(Desai et al.,
2020)

2020 twitter/x C1 eng text A1 link

LORELEI
Representative
and Incident
Language
Packs (Tracey
and Strassel,
2020)

2020 various C1 multi text A1, A2, A5 link

Multilingual-
BERT-Disaster
(Chowdhury
et al., 2020)

2020 twitter/x C4 multi text A1 link

Pushshift
Telegram
(Baumgartner
et al., 2020)

2020 telegram C3 eng text A0 link

Social Media
Attributions
of Youtube
Comments
(Sarkar et al.,
2020)

2020 youtube C2 eng text A1 link

Storm-Related
Social Media
(SSM) (Grace,
2020)

2020 twitter/x C1 eng text A1 link

Table 2: Corpus Papers in 2020-2024 and the corresponding datasets (Part 1)
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https://aclanthology.org/2021.wanlp-1.9/
https://aclanthology.org/2020.nlpcovid19-2.11/
https://crisisnlp.qcri.org/crisis-image-datasets-asonam20
https://github.com/niless/urgency
https://www.researchgate.net/publication/342197963_EPIC_An_Epidemics_Corpus_Of_Over_20_Million_Relevant_Tweets
https://crisisnlp.qcri.org
https://github.com/BatoolHamawi/FloDusTA
https://github.com/DiegoKoz/french_ecological_crisis
https://crisisnlp.qcri.org/covid19
https://github.com/shreydesai/hurricane
https://aclanthology.org/2020.sltu-1.39/
https://github.com/JRC1995/Multilingual-BERT-Disaster
https://paperswithcode.com/dataset/pushshift-telegram
https://paperswithcode.com/paper/social-media-attributions-in-the-context-of
https://data.mendeley.com/datasets/5c3cpnvgx3/1


Dataset Year Platform Crisis Type Language Modality Annotation Link
#Outage (Paul
et al., 2020)

2020 twitter/x C1 eng text A1 link

(Ahmed et al.,
2020)

2020 facebook C2 eng text A1 link

(Boon-Itt
and Skunkan,
2020)

2020 twitter/x C2 eng text A1 link

(Chen et al.,
2020)

2020 twitter/x,
weibo

C2 multi text A1, A2 link

(Feng and
Kirkley, 2020)

2020 twitter/x C2 eng text A3 link

(Hassan et al.,
2020)

2020 twitter/x, flickr,
google

C1 N/A image A1 link

(Li et al., 2020) 2020 weibo C2 zho text A1 link

(Massaad and
Cherfan, 2020)

2020 twitter/x C2 eng text A2, A3 link

(Padhee et al.,
2020)

2020 twitter/x C1 eng text A1 link

(Sarol et al.,
2020)

2020 twitter/x C2 eng text A2 link

(Wang et al.,
2020)

2020 weibo C2 zho text A1 link

CML-COVID
(Dashtian and
Murthy, 2021)

2021 twitter/x C2 multi text A0 link

CrisisBench
(Alam et al.,
2021b)

2021 twitter/x C4 multi text A1 link

DisRel (Sosea
et al., 2021)

2021 twitter/x C1 eng text, image A1 link

HumAID
(Alam et al.,
2021a)

2021 twitter/x C4 eng text A1 link

Kawarith (Al-
harbi and Lee,
2021)

2021 twitter/x C4 ara text A1 link

Mega-COV
(Abdul-
Mageed
et al., 2021)

2021 twitter/x C2 multi text A1 link

Telegram
Chat Corpus
(Solopova
et al., 2021)

2021 telegram C3 eng text A1 link

Table 3: Corpus Papers in 2020-2024 and the corresponding datasets (Part 2)
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https://dl.acm.org/doi/abs/10.1145/3366423.3380251
https://www.semanticscholar.org/paper/The-COVID-19-Infodemic%3A-A-Quantitative-Analysis-Ahmed-Shahbaz/df3214d16160a5c9c2d7d2ee0b6de3bce202efcd
https://publichealth.jmir.org/2020/4/e21978
https://www.semanticscholar.org/paper/A-Novel-Machine-Learning-Framework-for-Comparison-Chen-Zhou/e3a5daecf066ab5b8e634f60559e1608b7d58d8e
https://www.semanticscholar.org/paper/b041ce63676f206bc82729e925f53e5588650f8d
https://www.semanticscholar.org/paper/Visual-Sentiment-Analysis-from-Disaster-Images-in-Hassan-Ahmad/2709d48e4a6ae90b3008c3b4a7d826ce38d8e463
https://ieeexplore.ieee.org/abstract/document/9043580
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250522/
https://arxiv.org/abs/2007.11756
https://aclanthology.org/2020.findings-emnlp.366/
https://www.jmir.org/2020/11/e22152/
https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/W1CHVU
https://crisisnlp.qcri.org/crisis_datasets_benchmarks
https://github.com/tsosea2/DisRel
https://crisisnlp.qcri.org/humaid_dataset
https://github.com/alaa-a-a/kawarith
https://aclanthology.org/2021.eacl-main.298/
https://osf.io/ck3gd/


Dataset Year Platform Crisis Type Language Modality Annotation Link
TBCOV (Im-
ran et al.,
2021b)

2021 twitter/x C2 multi text A1, A2, A3 link

(Andhale et al.,
2021)

2021 twitter/x C2 eng text A1 link

(Arapostathis,
2021)

2021 twitter/x C1 eng, spa, tam text A1, A3 link

(Brunila et al.,
2021b)

2021 twitter/x C1 eng text A1 link

(Chen et al.,
2021)

2021 twitter/x,
weibo

C2 eng, zho text A1 link

(Inkster, 2021) 2021 digital service
providers

C2 eng text A1 link

(Khurana et al.,
2021)

2021 twitter/x C2 eng text, image A1 link

(Lu et al.,
2021)

2021 weibo C2 zho text A3 link

(Obembe et al.,
2021)

2021 twitter/x C2 eng text A1 link

(Parsa et al.,
2021)

2021 twitter/x C4 eng text A1 link

(Villavicencio
et al., 2021)

2021 twitter/x C2 eng, tgl text A1 link

(Xie et al.,
2021)

2021 twitter/x C2 eng text A1 link

(Yuan et al.,
2021)

2021 twitter/x C1 eng text, image,
video, audio

A1, A2 link

BelElect (Höhn
et al., 2022)

2022 telegram C3 rus, bel text A1 link

ClimateStance
+ ClimateEng
(Vaid et al.,
2022)

2022 twitter/x, reddit C1 eng text A1 link

CovidEmo
(Sosea et al.,
2022)

2022 twitter/x C2 eng text A1 link

CrisisLTLSum
(Faghihi et al.,
2022)

2022 twitter/x C1 eng text A2, A3 link

Finegrained
Location
Tweets (Khanal
et al., 2022)

2022 twitter/x C4 eng text A3 link

HarveyNER
(Chen et al.,
2022)

2022 twitter/x C1 eng text A3 link

HumSet (Fekih
et al., 2022)

2022 various C4 eng, fra, spa text A2 link

MEDIC (Alam
et al., 2022)

2022 twitter/x, in-
stagram, flickr,
bing, google

C1 N/A image A1 link

Table 4: Corpus Papers in 2020-2024 and the corresponding datasets (Part 3)
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https://crisisnlp.qcri.org/tbcov
https://ieeexplore.ieee.org/abstract/document/9509933
https://link.springer.com/article/10.1007/s10796-021-10105-z
https://aclanthology.org/2021.adaptnlp-1.5.pdf
https://www.semanticscholar.org/paper/A-Novel-Machine-Learning-Framework-for-Comparison-Chen-Zhou/79af498389796ffb572e4bd5b1efeb8d16e9efa7
https://www.semanticscholar.org/paper/Early-Warning-Signs-of-a-Mental-Health-Tsunami%3A-A-Inkster/9ee68eb8b0924b1db40b725484c448d1c632aeb9
https://rdcu.be/d9XBI
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3757135
https://www.sciencedirect.com/science/article/pii/S2667096821000331
https://www.semanticscholar.org/paper/Climate-Action-During-COVID-19-Recovery-and-Beyond%3A-Parsa-Golab/842f4899a4bd164e2610b29479af9fcce5b6c54e
https://www.mdpi.com/2078-2489/12/5/204
https://ieeexplore.ieee.org/abstract/document/9529603
https://www.semanticscholar.org/paper/1b93ceea71305de15ad61d01239f20ad9d6db9ab
https://ojs.aaai.org/index.php/ICWSM/article/view/19378
https://github.com/roopalv54/finegrained-climate-change-social-media
https://github.com/tsosea2/CovidEmo
https://github.com/CrisisLTLSum/CrisisTimelines
https://github.com/sarthakksu/finegrained-location-data
https://github.com/brickee/HarveyNER
https://github.com/the-deep/humset
https://rdcu.be/d9Yjt


Dataset Year Platform Crisis Type Language Modality Annotation Link
(Alhammadi,
2022)

2022 twitter/x C4 eng text A1 link

(Azarpanah
et al., 2022)

2022 twitter/x C2 multi text A1 link

(Faisal et al.,
2022)

2022 twitter/x C2 eng text A1 link

(Jayasurya
et al., 2022)

2022 twitter/x C2 eng text A1 link

(Laurenti et al.,
2022), (Enzo
et al., 2022)

2022 twitter/x C2 fra text A1 link

(Li et al.,
2022a)

2022 weibo C2 zho text A2 link

(Li et al.,
2022b)

2022 various C2 zho text A1 link

(Li et al.,
2022c)

2022 twitter/x C1 eng text A1 link

(Shestakov
and Zaghouani,
2024)

2022 twitter/x C3 eng text A1 link

(Sosa and
Sharoff, 2022)

2022 telegram C2 eng, zho, spa,
rus, deu

text, video, au-
dio

A1 link

(Vitiugin and
Castillo, 2022)

2022 twitter/x C1 eng, spa, fra,
cat, tgl, hrv,
deu, jpn, por

text A1, A2, A4 link

(Zong et al.,
2022)

2022 twitter/x C2 eng text A2 link

BillionCOV
(Lamsal et al.,
2023)

2023 twitter/x C2 multi text A0 link

CrisisFACTS
(McCreadie
and Buntain,
2023)

2023 twitter/x, face-
book, reddit

C1 eng text, image A4 link

IDRISI
(Suwaileh et al.,
2023a,b,c)

2023 twitter/x C1 ara, eng text A2, A3 link

(Herur et al.,
2023)

2023 twitter/x C1 eng text A1 link

(Inamdar et al.,
2023)

2023 reddit C2 eng text A6 link

(K et al., 2023) 2023 twitter/x C1 eng text A1 link

(Kaur et al.,
2023)

2023 twitter/x C2 eng text A1 link

(Kekere et al.,
2023)

2023 twitter/x C2 eng text A2 link

(Li et al., 2023) 2023 weibo C2 zho text A1 link

(Wang et al.,
2023)

2023 twitter/x C1 eng text A1 link

(Wang et al.,
2023)

2023 twitter/x C2 eng text A1, A5 link

Table 5: Corpus Papers in 2020-2024 and the corresponding datasets (Part 4)
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https://www.semanticscholar.org/paper/RIT-Using-Machine-Learning-in-Disaster-Tweets-Using-Alhammadi/1af1b26800002408f259be515d49cf4dd671dea5
https://www.semanticscholar.org/paper/Crisis-Communications-on-Social-Media%3A-Insights-Azarpanah-Farhadloo/9385425b889182f97e131278492aadbcc3780395
https://jurnal.iaii.or.id/index.php/RESTI/article/view/4525
https://ieeexplore.ieee.org/document/9606194
https://aclanthology.org/2022.lrec-1.462/
https://www.sciencedirect.com/science/article/pii/S0167923622000239
https://www.semanticscholar.org/paper/What-We-Ask-about-When-We-Ask-about-Quarantine-and-Li-Hua/6fd2125ec5d6b2f45711502fa10f4b1c77b2237e?utm_source=direct_link
https://ojs.aaai.org/index.php/ICWSM/article/view/19320
https://aclanthology.org/2024.politicalnlp-1.7/
https://github.com/josesosajs/telegram-data-collection
https://dl.acm.org/doi/10.1145/3511095.3531279
https://aclanthology.org/2022.coling-1.335/
https://ieee-dataport.org/open-access/billioncov-enriched-billion-scale-collection-covid-19-tweets-efficient-hydration
https://eprints.gla.ac.uk/295806/
https://github.com/rsuwaileh/IDRISI/
https://www.semanticscholar.org/paper/Simple-yet-Efficient-Model-for-Disaster-Related-Herur-Shalini/be5c1b67f812308139c89e7ee422f55d7d80c7cb?utm_source=direct_link
https://www.semanticscholar.org/paper/Machine-Learning-Driven-Mental-Stress-Detection-on-Inamdar-Chapekar/66d8440202c799e89e95d0abb468789b85d8dd94?utm_source=direct_link
https://ieeexplore.ieee.org/abstract/document/10113105
https://www.semanticscholar.org/paper/A-Novel-Approach-for-the-Early-Detection-of-Medical-Kaur-Cargill/3526af567bedf77c08792f2c448a8d32065119c2
https://www.semanticscholar.org/paper/Exploring-COVID-19-public-perceptions-in-South-and-Kekere-Marivate/20f2975ede50f2f42a97b1656fd51ef03d2415bc
https://www.semanticscholar.org/paper/Exploring-the-Dynamic-Characteristics-of-Public-and-Li-Wang/3acd9e285627926a4c58cd7c6b11cee8d80398ee
https://www.sciencedirect.com/science/article/pii/S2212420923002145
https://rdcu.be/d91vB


Dataset Year Platform Crisis Type Lang/Modality Annotation Application Link
Complotto
(Marini and
Jezek, 2024)

2024 telegram C3 eng, ita text A1 link

Crisis Social
Cues (Wang
et al., 2024b)

2024 twitter/x C1 eng text A1 link

HurricaneSarc
(Sosea et al.,
2024)

2024 twitter/x C1 eng text A1 link

M-CATNAT
(Farah et al.,
2024)

2024 twitter/x C1 fra text A1 link

Ukrainian
Resilience
(Sathvik et al.,
2024)

2024 twitter/x, reddit C3 ukr text A1 link

(Boston et al.,
2024)

2024 twitter/x C1 eng text A1 link

(Dirgantara
et al., 2024)

2024 twitter/x C2 ind text A1 link

(Elakkiya et al.,
2024)

2024 twitter/x C4 eng text A1 link

(Fakhouri et al.,
2024)

2024 twitter/x C4 eng text A2 link

(Koli et al.,
2024)

2024 twitter/x C2 eng text A1 link

(Kumawat
et al., 2024)

2024 twitter/x C4 eng text A1 link

Table 6: Corpus Papers in 2020-2024 and the corresponding datasets (Part 5)
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https://aclanthology.org/2024.isa-1.6/
https://github.com/yyzhuang1991/Crisis-Social-Cues
https://github.com/tsosea2/HurricaneSarc
https://github.com/badreddineFarah/M-CATNAT
https://aclanthology.org/2024.findings-emnlp.16.pdf
https://www.semanticscholar.org/paper/Analyzing-Tweets-for-Disaster-Prediction-Boston-Seliya/26fb5b87cbfacee7219055551dddae3b77694171
https://www.semanticscholar.org/paper/The-Performance-of-Machine-Learning-Model-Bernoulli-Dirgantara-Maulana/8c10a17340639918d78fc600ed6821681c38d1f5
https://www.semanticscholar.org/paper/Deep-Learning-Approach-for-Disaster-Tweet-Elakkiya-Bista/c4cf309d53bcd2c754ce27d2220f6762925993cf
https://www.semanticscholar.org/paper/AI-Driven-Solutions-for-Social-Engineering-Attacks%3A-Fakhouri-Alhadidi/d2538096a87a071ce88499c1a3334e8a6a4d9454?utm_source=direct_link
https://aclanthology.org/2024.hcinlp-1.7/
https://www.semanticscholar.org/paper/An-Evaluation-of-Machine-Learning-Models-for-Tweets-Kumawat-Sodipo/ff78ebecede563f847f866d6ba3019dd6a733342?utm_source=direct_link


Dataset Year Platform Crisis Type Lang/Modality Annotation Application Link
Joplin 2011
(Imran et al.,
2013a,b)

2011 twitter/x C1 eng text A1 link

Sandy 2012
(Imran et al.,
2013a)

2012 twitter/x C1 eng text A1 link

ChileEarthquakeT1
(Cobo et al.,
2015)

2015 twitter/x C1 spa text A1 link

ClimateCovE350
(Olteanu et al.,
2015a)

2015 twitter/x C4 eng text A1 link

CrisisLexT26
(Olteanu et al.,
2015b)

2015 twitter/x C4 eng text A1 link

SandyHurricane-
GeoT1 (Wang
et al., 2015)

2015 twitter/x C1 eng text A3 link

SoSItalyT4
(Cresci et al.,
2015)

2015 twitter/x C1 ita text A1 link

BlackLivesMatter-
U/T1 (Olteanu
et al., 2015c)

2016 twitter/x C3 eng text A1 link

CrisisNLP (Im-
ran et al., 2016)

2016 twitter/x C4 eng, spa, fra text A1 link

Environmental-
PetitionTweets
(Proskurnia
et al., 2016)

2016 twitter/x C3 eng text A1 link

Damage As-
sessment
Dataset (DAD)
(Nguyen et al.,
2017)

2017 twitter/x C1 N/A image A1 link

Disasters on
Social Media
(DSM) (Klaas,
2017)

2017 twitter/x C4 eng text A1, A3 link

CrisisMMD
(Alam et al.,
2018b)

2018 twitter/x C1 eng text, image A1 link

Damage
Multimodal
Dataset (DMD)
(Mozannar
et al., 2018)

2018 twitter/x, insta-
gram

C1 eng text, image A1 link

Hurricane
Tweets (Alam
et al., 2018c)

2018 twitter/x C1 eng text, image A1 link

NEQ + QFL
(Alam et al.,
2018a)

2018 twitter/x C1 eng text A1 link

ArabicFloods
(Alharbi and
Lee, 2019)

2019 twitter/x C1 ara text A1 link

CleanCrisisMMD
(Gautam et al.,
2019)

2019 twitter/x C4 eng text, image A1, A2, A3 link

Table 7: Social media crisis datasets published before 2020
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https://crisisnlp.qcri.org/
https://crisisnlp.qcri.org/
https://crisislex.org/data-collections.html#ChileEarthquakeT1
https://crisislex.org/data-collections.html#ClimateCovE350
https://crisislex.org/data-collections.html#CrisisLexT26
https://crisislex.org/data-collections.html#SandyHurricaneGeoT1
https://crisislex.org/data-collections.html#SoSItalyT4
https://crisislex.org/data-collections.html#BlackLivesMatter
https://crisisnlp.qcri.org/lrec2016/lrec2016.html
https://crisislex.org/data-collections.html#EnvironmentalPetitionTweets
https://crisisnlp.qcri.org
https://www.kaggle.com/datasets/jannesklaas/disasters-on-social-media/data
https://crisisnlp.qcri.org/crisismmd
https://archive.ics.uci.edu/dataset/456/multimodal+damage+identification+for+humanitarian+computing
https://crisisnlp.qcri.org
https://crisisnlp.qcri.org
https://github.com/alaa-a-a/Arabic-Twitter-corpus-for-flood-detection
https://www.semanticscholar.org/paper/b4fcd1e15c82896347429ba9b96e6b2a09b92fde

