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Abstract

This paper examines how well visual language
models (VLMs) understand video question
answering (VideoQA) tasks and generate re-
sponses accordingly. Recently, VLMs based on
Large Language Models (LLMs) have shown
remarkable performance, but the processes of
understanding and reasoning in VLMs remain
under-explored. To tackle this challenge, we
propose Video Understanding and Response
Consistency Assessment, VURCA, a frame-
work that incorporates a fine-grained question
generation and answering process to measure
how well the responses generated by VLMs
align with what the model understands. In
addition, we introduce an extended bench-
mark dataset, FgNExT-QA, which builds upon
NExT-QA by incorporating more fine-grained
VideoQA tasks. FgNExT-QA is designed to
evaluate fine-grained understanding in video
question answering. Through experiments, we
found that despite the strong overall QA perfor-
mance of VLMs, their understanding of both
the video content and the question remains lim-
ited. In particular, they exhibit poor video com-
prehension in fine-grained VideoQA tasks.

1 Introduction

Video Question Answering (VideoQA) (Fei et al.,
2024; Min et al., 2024) serves as a critical bench-
mark for evaluating the capabilities of foundational
Visual Language Models (VLMs) (Zhang et al.,
2023; Liu et al., 2024), particularly those trained on
large-scale multi-modal datasets (Ye et al., 2023).
Despite recent advancements in VideoQA perfor-
mance, several fundamental concerns remain under-
explored. A key question is whether these mod-
els accurately comprehend video and question to
enable robust multi-modal reasoning, or if they
merely mimic learned patterns from the training
dataset (Xiao et al., 2024). Responses based on
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Why did not the lady smile and become serious suddenly at the beginning 

Options : A. wet her clothes B. baby cries C. cannot open the box D. drop the 

baby E. talk to boy

E. talk to boy

User

VLM

Did the lady stop smiling and suddenly become serious to talk to the boy?

No, she did not stop smiling and suddenly become serious to talk to the boy.

User

Original Question

A Variation of Original Question

VLM

Figure 1: Example responses generated by
VLMs(LLaVA-OneVision) on the NExT-QA dataset.

incomplete understanding can lead to significant
issues in real-world applications, emphasizing the
need for efforts to evaluate and address these limi-
tations.

Figure 1 illustrates that VLMs often struggle to
answer a variation of the original question, which
are derived from the original question and its corre-
sponding ground truth answer, even though VLMs
generate correct answer. This observation demon-
strates that VLMs can choose correct answer even
without a precise understanding. If the answer is
chosen based on accurate understanding, it should
generate a consistent response to the variation.
From the observation, VLMs for VideoQA still
fall short in accurately understanding video con-
tents and remain under-resourced in terms of the
evaluation metrics and datasets required to assess
trained models effectively. Existing research has
primarily explored the estimation of consistency
between generated textual outputs and image in-
puts in VLMs (Khan and Fu, 2024; Geng et al.,
2024). However, we aim to evaluate the under-
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standing of video content by VLMs. This marks
a novel attempt to measure the consistency be-
tween responses and understanding in the domain
of VideoQA.

As a novel approach, we propose the
Video Understanding and Response Consistency
Assessment, VURCA, a framework designed to
investigate the understanding of VLMs through the
process of generating fine-grained verification ques-
tions, integrating answer of the VideoQA, evaluat-
ing the consistency between fine-grained answers
and initial response. First, VLMs generate an initial
response by taking a video and original question as
input. Based on the initial response and the orig-
inal question, fine-grained verification questions
are generated using an LLM. If VLM’s answer is
generated under through understanding on Video
context, it should consistently generate responses
to the variation of original questions that are se-
mantically equivalent to the initial response. To
investigate this, we input the fine-grained verifica-
tion questions along with the video into the VLMs
again to derive verification responses. Then, the
verification responses are aggregated to quantita-
tively evaluate the VLM’s understanding.

Moreover, our approach also enables the auto-
matic expansion of VideoQA datasets, which are
costly and time-intensive to construct. By extend-
ing the NExT-QA dataset, we construct FgNExT-
QA, a fine-grained question-answering dataset with
binary gold answer labels. FgNExT-QA allows us
to verify that VLMs specifically understand the
questions and can determine the correct answers.
It can also be used as an independent benchmark
for VideoQA performance evaluation.

In the experiments, we conduct a comprehensive
analysis of how well state-of-the-art VLMs under-
stand and response correct answers in VideoQA.
Despite achieving high accuracy on VideoQA,
VLMs exhibit inconsistencies when responding
to semantically identical but rephrased questions.
This observation highlights the challenges VLMs
still face in aligning visual evidence with linguis-
tic semantics, revealing areas that require further
improvement. To encapsulate our contributions:
1) Introducing VURCA framework: We propose
a novel framework for evaluating the alignment
between video understanding and responses gener-
ated by VLMs; 2) Fine-Grained VideoQA dataset
generated automatically: We present a fine-grained
VideoQA dataset generated automatically, contain-
ing binary gold answer labels to systematically as-

sess VLM understanding and response consistency;
3) Comprehensive Analysis of VLM Performance:
Through experiments on various VLMs, we an-
alyze their current challenges and interpret these
issues in terms of understanding and response align-
ment.

2 Related Work

In videoQA tasks, a primary objective is to ensure
that the model accurately comprehends video data
and generates appropriate responses. Previous re-
search has focused on building models for video
action and dynamics recognition (Lei et al., 2018;
Bertasius et al., 2021). However, most of these
efforts fall under the category of simple perceptual-
level understanding, such as handling straightfor-
ward video (Zolfaghari et al., 2018; Lin et al.,
2019). Recent advancements in Transformer-based
language models (Vaswani et al., 2017; Brown
et al., 2020) have been accompanied by substantial
progress in visual-language models (VLMs), lead-
ing to significant improvements in video question
answering performance. Ko et al. (2023) integrated
visual encoders and LLaMA-Adapter (Zhang et al.,
2024) into LLMs to enable video understanding,
training the model to process both textual and vi-
sual inputs effectively. Min et al. (2024) and Wang
et al. (2024) demonstrated remarkable performance
improvements by first generating image captions
using a VLM, selecting frames directly relevant
to the question from the video, and then integrat-
ing these captions with the reasoning process of
an LLM, such as ChatGPT (OpenAI, 2024). (Fei
et al., 2024) extended this approach by applying
Chain-of-Thought (CoT) (Wei et al., 2024) reason-
ing capabilities from LLMs to VLMs. Recently,
Xiao et al. (2024) critically questioned the degree
to which the answers generated by such techniques
are truly grounded in the relevant visual content.
However, research verifying the alignment between
understanding and response in VLMs has yet to be
extensively explored.

3 Fine-Grained NExT-QA benchmark

Data Source. We introduce an extended bench-
mark dataset, FgNExT-QA, which builds upon
NExT-QA (Xiao et al., 2021) to better align
with fine-grained VideoQA tasks. Most existing
VideoQA datasets (Yu et al., 2019; Mangalam et al.,
2023) either consist of trimmed, short videos or
lack closed-ended answers, making them unsuit-
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Step-4
Evalua�ng Consistency
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down C. lay on floor D. just picked it up E. crawl

VLMs LLMs VLMsA. clap proudly

Did the baby throw a green cup
away while on the floor near the
end?

...

Is the baby's ac�on of clapping
proudly associated with throwing
away a green cup?

...

Yes, the baby threw 
a green cup away ...

No, the baby's 
ac�on of clapping
proudly is not ...

...

...

= 1

= 0

Figure 2: An overview of the proposed framework.

able for our purpose. In contrast, we chose the
closed-ended VideoQA subset of NExT-QA, which
provides five possible answer choices for each ques-
tion, with one correct answer. NExT-QA comprises
1,000 videos and includes a total of 8.56k existing
question-video pairs. For each question-option pair,
we generated five variations. As a result, we created
42.82k newly generated binary-answerable ques-
tions. Furthermore, we include a comprehensive
discussion of the core limitations inherited from
NExT-QA in Appendix. D
Fine-grained Question Generation. To facilitate
fine-grained question generation, we adopt open-
source LLMs. First, a question and a option are
input into the LLMs, along with few-shot exam-
ples, to generate fine-grained questions. Detailed
prompts and examples are provided in Appendix A.
For each question-option pair, up to five questions
are generated. Empirically, we observed that gen-
erating more than five questions often results in
duplicate questions. The generated questions are
closed-ended questions (Xiao et al., 2021; Man-
galam et al., 2023) that can be answered with "Yes"
or "No," which facilitates verifying consistency
with the original answer. However, due to the sam-
pling characteristics of LLMs, unintended types
of questions are occasionally generated, and such
questions are excluded from the results. Detailed
statistics on the generated questions are provided
in Appendix B.

4 Video Understanding and Response
Consistency Assessment

To investigate the understanding of VLMs, we
present VURCA, a framework designed to quan-
tify the consistency between video understanding
and responses by integrating VideoQA with fine-
granined questions generation. As illustrated in
Figure 2, the process of the proposed framework

consists of four main steps: video question answer-
ing, generation of verification question, verification
question answering and evaluating consistency

Step-1: Video Question Answering
In the first step of our framework, we instruct

the VLMs to respond to the closed-set VideoQA
task. Specifically, a video V , the original ques-
tion Q, and a set of candidate options Acands =
{A1, A2, . . . , A5}, are used as inputs for VLMs to
generate an initial response Â, which is represented
as:

VLM(V,Q,Acands) 7→ Â.

The VLMs utilize their multimodal abilities to
derive Â through an integration of visual and tex-
tual reasoning. However, the processes underlying
visual and textual reasoning remain a black box
and cannot be directly observed.

Step-2:Generation of Verification Question
In this step, we generate fine-grained verification

questions to investigate the understanding demon-
strated by VLMs in their responses. Q and Â are
input into the LLM, generating a set of fine-grained
questions qfg:

LLM(Efew-shot, Q, Â) 7→ qfg.

Using a few-shot example set Efew-shot =
{(Q1, Â1,q1

fg), (Q
2, Â2,q2

fg), . . . , (Q
n, Ân,qn

fg)},
where n represents the number of examples
provided to LLMs, we generated fine-grained
questions qfg = {qi}ki=1, where k is the number of
questions. Each qi is generated as a closed-ended
question form with a "Yes" or "No" response.

Step-3:Verification Question Answering
Each fine-grained question qi in qfg is individu-

ally input into the VLMs along with V to generate
a binary verification response ai. This process can
be expressed as follows:

VLM(V, qi) 7→ ai ∈ {1, 0}.
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Note that we encode the verification responses of
VLMs as binary numbers: 1 for "Yes" and 0 for
"No". These binary responses ensure a simple,
objective, and accurate evaluation, minimizing am-
biguity and streamlining the verification process.

Step-4:Evaluating Consistency
Finally, {ai}ki=1 are aggregated to compute a

consistency score for VLM’s understanding for
given Q. The consistency score is calculated as
the ratio of the number of "Yes" responses to the
number of the fine-grained questions. "Yes" re-
sponses indicate that the model demonstrates the
same understanding for rephrased questions based
on Â. Formally, the consistency score Scons is de-
fined as:

Scons =
1

k

k∑

i=1

ai.

By evaluating the consistency for all the questions
in VideoQA datasets, proposed framework pro-
vides an objective score to reflect its interpretative
reliability.

5 Experiments

5.1 Overview
Our study aims to address three key research ques-
tions to evaluate and comprehensively analyze
video comprehension and response consistency in
VLMs. Q1: To what extent do VLMs exhibit con-
sistent comprehension with the initial responses?
Specifically, how does the comprehension manifest
in cases where the response is correct versus when
the response is incorrect? Q2: What is VLMs’
level of understanding of other options not selected
in the initial response? Q3: Do VLMs perform
well even on fine-grained questions? To investigate
these questions, we conduct the proposed frame-
work to obtain Scons and then perform additional
comparative analyses to answer the key questions.

5.2 Experimental Settings
Our experiments, based on the close-ended
videoQA tasks of the NExT-QA benchmark, were
conducted using the proposed framework with
state-of-the-art VLMs, including Llava-OneVision
0.5b, Llava-OneVision 7b, and Llava-Video 7b. For
all VLMs, we uniformly sample 32 frames from
the videos and input them, along with the corre-
sponding questions and options, into the models.
The generation of fine-grained questions, which is a
part of the proposed framework, is carried out using

Model NExT-QA Consistency Score

Acc STotal
cons SÂ=A∗

cons S Â̸=A∗
cons

Llava-ov 0.5b 0.572 0.903 0.918 0.884
Llava-ov 7b 0.794 0.924 0.935 0.881
Llava-video 7b 0.832 0.924 0.936 0.878

Table 1: Evaluation of VLMs understanding of the ini-
tial responses.

the microsoft/Phi-3.5-mini-instruct (Abdin et al.,
2024) LLM model. We implemented greedy search
decoding by selecting the highest-probability token
at each step in a fully deterministic manner. To
this end, we set the temperature to 0 and disabled
sampling-based parameters such as top-k and top-
p.

5.3 Result and Analysis

5.3.1 Q1: Understanding of the Initial
Responses

In this experiment, we investigate understanding
exhibited by VLMs in the initial responses. To
conduct this, we calculate STotal

cons which is the aver-
age Scons over 8,564 question-video pairs in the test
data of the NExT-QA benchmark using state-of-the-
art VLMs. Additionally, we analyze the differences
in Scons between cases where the initial response
Â was correct (Â = A∗) and those where Â was
incorrect (Â ̸= A∗), where A∗ denotes the gold
answer in Acands. The results are summarized in
Table 1.

All VLMs show scores above 0.9 for STotal
cons , indi-

cating that the models provided a high consistent re-
sponses. Furthermore, each model showed a higher
SÂ=A∗

cons score when generating correct answers,

while exhibiting a lower SÂ ̸=A∗
cons when VLMs fail

to generate correct answers. These results sug-
gest that when VLMs generate initial responses
based on uncertain understanding of the video con-
tent, VLMs generate inconsistent response to fine-
grained verification questions. This behavior be-
comes more pronounced as model size increases.
SÂ ̸=A∗

cons score shows the largest gap of 0.057 in the
7B model, indicating that as the size and perfor-
mance of VLMs increase, the consistency between
the fine-grained verification answer and the initial
response decreases when generating incorrect an-
swers.
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Model STotal
cons S−

cons
Llava-ov 0.5b 0.903 0.241
Llava-ov 7b 0.924 0.425
Llava-video 7b 0.924 0.437

Table 2: Comparison of VLMs overall consistency score
STotal

cons and negative consistency score S−
cons.

5.3.2 Q2: Evaluation of understanding to
unselected options

In this experiment, we generate additional fine-
grained questions based on randomly selected op-
tions different from Â to investigate whether the
VLM can generate negative responses for the op-
tions excluding Â. Specifically, the VLMs under-
standing about the original question is considered
higher when it generates more "No" responses for
the fine-grained questions that conflict with its ini-
tial response. To quantify this, the negative consis-
tency score S−

cons is defined as:

S−
cons =

1

k

k∑

i=1

(1− ai).

As shown in Table 2, S−
cons is significantly lower

than the STotal
cons across all VLMs. A low S−

cons indi-
cates that VLMs fail to demonstrate a clear under-
standing of why unchosen options were excluded.
In other words, the results suggest that VLMs do
not accurately understand the video content well
enough to make a clear and justified choice among
the options. In particular, for the 0.5b model, S−

cons
was 0.662 lower than the corresponding Scons. For
the 7b models, the differences were 0.499 and
0.487. These results indicate that scaling the model
size leads to increased consistency score in its re-
sponses, reflecting enhanced certainty in its com-
prehension and decision-making processes.

5.3.3 Q3: Evaluation of Fine-Grained
Question Responses

For the final experiment, we generated fine-grained
questions for all options, covering both the gold
answer and the other options and evaluated the ac-
curacy AccTotal. We also measured separately the
accuracy on questions for the gold answers (Acc+)
and the accuracy on questions for other options
(Acc−). The results, compared to those of the orig-
inal questions in NExT-QA, are summarized in
Table 3.

The 0.5b and 7b models showed a 0.253 dif-
ference in Acc+, but a significantly larger perfor-

Model NExT-QA Fine-grained QA

Acc Acc+ Acc− AccTotal

Llava-ov 0.5b 0.572 0.895 0.242 0.373
Llava-ov 7b 0.794 0.916 0.435 0.529
Llava-video 7b 0.832 0.921 0.444 0.537

Table 3: Evaluation of VLMs performance on fine-
grained questions for all options.

mance gap of 0.201 in Acc−, demonstrating su-
perior performance by the larger model. Despite
this improvement, the 7B model still exhibits in-
sufficient performance. These results highlight that
video comprehension is not only about accurately
identifying the correct answer but also about under-
standing objects or actions that are irrelevant or un-
suitable for the VideoQA task. Furthermore, even
though Llava models with 7B parameters achieve
around 80% performance on the NExT-QA dataset,
they exhibit low performance in Acc−. The re-
sults also suggest that relying solely on accuracy
in multiple-choice VideoQA is not sufficient to
evaluate the understanding of VLMs, emphasizing
the need for further advancements to address the
current limitations of VLMs.

6 Conclusion

This paper explores how visual language models
understand VideoQA tasks and generate appropri-
ate responses. However, evaluating whether these
models truly understand both video and language
inputs remains a challenging task. To address the
challenge of evaluating VLMs comprehension, we
propose VURCA, a framework to assess the align-
ment between the initial responses and VLMs un-
derstanding. VURCA achieves this by generat-
ing verification questions and comparing the sub-
sequent responses with its initial answers. Addi-
tionally, we introduce FgNeXT-QA, a benchmark
dataset designed for fine-grained VideoQA tasks,
which offers more fine-grained assessment scenar-
ios. Our experimental results indicate that despite
their impressive performance in QA tasks, VLMs
often fail to adequately understand video content
and the corresponding questions. These results pro-
vide valuable insights for the development of ad-
vanced evaluation frameworks, the design of more
robust model architectures, and the refinement of
training methodologies. Future research should
aim to enhance the reasoning capabilities of VLMs
through improved pre-training strategies that inte-
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grate a more comprehensive understanding of video
content and question semantics.

7 Limitation

While our proposed framework and dataset exten-
sion provide valuable insights into fine-grained
VideoQA evaluation, several limitations remain.
The generation of verification questions in FgNExT-
QA relies on large language models (LLMs), which
may introduce noise or bias in the reformulated bi-
nary questions. This could potentially affect the
reliability and objectivity of the evaluation pro-
cess. Therefore, we guided the model through few-
shot examples to generate questions that can be
answered with a simple "yes" or "no" which signif-
icantly reduced errors. However, since the model
also tended to generate questions starting with The
Five Ws (what, where, who, when, why, how),
we excluded those from our final set. A detailed
discussion of these inherited issues is provided in
Appendix B.

Moreover, our research specifically focuses on
the VideoQA task, which is important but may limit
its applicability to broader multimodal or general
video understanding research. Therefore, as a next
step, we plan to expand our work to tackle more
challenging benchmarks such as VideoMME and
explore tasks like description generation and open-
ended question answering.
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A Prompt Example

This section introduces the prompts used for VLMs
and LLMs. Table 4 shows the prompts used in
VideoQA. By providing a simple task description
along with the video, video question, and answer
options, the VLMs generate the system output,
which is the final answer. In this paper, NExT-
QA data was used, where there are a total of five
options, A to E. The final answer is to select one of
them. Table 5 presents the prompt for fine-grained
question generation. It begins with a simple task
instruction, followed by a few-shot example to pro-
duce the desired context as output. The few-shot
example consists of a question, an answer, and
five atomic questions. After the few-shot exam-
ple, the target question and answer are provided
to the LLMs, which then generate the correspond-
ing atomic questions. Table 6 shows the prompt
for generating verification responses using atomic
questions as input. Similar to Table 4, this prompt
excludes the answer options and instead focuses
solely on inputting the atomic question to guide the
output generation.

B FgNExT-QA statistics

We generated five atomic questions for each of the
8.56k question-video pairs in NExT-QA, with 5
answer options per pair, resulting in 21.41k atomic
questions. Due to the characteristics of the LLM,
we excluded potential questions that could be gen-
erated starting with The Five Ws (what, where,
who, when, why, how). These excluded questions
accounted for approximately 0.78% of the total.
After this filtering process, 21.24k questions were
retained for the experiments.

C Qualitative Example from FgNExT-QA

In this section, we perform a qualitative analysis
based on actual output examples. Figure 3 illus-
trates a case where the VLM correctly identified the
answer. For the fine-grained questions, the VLM
responded with "Yes" to all questions generated for
the correct option, while it generated responses in-
cluding "No" for fine-grained questions generated
for other options. In contrast, Figure 4 shows a case
where the VLM generated a response different from
the target. In this case, the VLM demonstrated a
slightly higher proportion of "Yes" responses for
the answer it generated. This suggests that the
model tends to provide answers consistent with
its earlier response, even in fine-grained questions.

The similar distribution of responses across diverse
questions indicates a lack of understanding and
confidence in its answers.

D Inheriting Limitations from NExT-QA

Although FgNExT-QA reformulates the original
NExT-QA into binary QA format by decomposing
multiple-choice questions into individual question-
option pairs, it inherits limitations from NExT-QA,
as it is built upon the same question-answer pairs
and video contexts. For example, NExT-QA has
been shown to contain biases in its answer distribu-
tion, and some questions may rely more on textual
commonsense knowledge rather than visual evi-
dence from the video. These aspects can limit the
effectiveness of evaluating true video-text under-
standing. While converting to a binary QA format
allows for more granular evaluation of model un-
derstanding for each candidate option, the quality
of distractor options in NExT-QA still affects the
difficulty level and diagnostic power of the dataset.

As a result, although FgNExT-QA enhances
the evaluation granularity by shifting to binary
QA, its reliance on NExT-QA’s original structure
and content means that certain dataset-level lim-
itations—such as superficial distractors or a lack
of visually grounded reasoning—may still affect
the robustness and generalizability of model perfor-
mance.
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System
You are a helpful assistant.
User
<video>
{input question}
A. {option}
B. {option}
C. {option}
D. {option}
E. {option}
System
assistant:

Table 4: Examples of instructions used in the video question answering.

User
After reviewing the questions and answers, generate atomic questions
to clarify and verify your responses, ensuring that the questions can be
answered with a simple ’yes’ or ’no’.

Question:how does the girl show her excitment over the toy?
Answer:By turning it around repeatedly
Atomic Questions:
-Can it be said that the girl is excited about the toy, as shown by her turning
it around repeatedly?
-Is the girl turning the toy around repeatedly to show her excitement?
-Can the girl’s excitement be inferred from her action of turning the toy
around repeatedly?
-Is the toy the reason for the girl’s excitement, as evidenced by her turning
it around repeatedly?
-Does the girl’s action of turning the toy around repeatedly suggest she is
excited?

<Few shot examples>

Question:{input question}
Answer:{input answer}
System
Atomic Questions:

Table 5: Examples of instructions and few-shot examples used in the fine-grained question generation.

System
You are a helpful assistant.
User
<video>
{input atomic question}
System
assistant:

Table 6: Examples of instructions used in the fine-grained question answering.
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� Question : where is this place?
� Options : A. restaurant B. theatre C. farm D. kitchen E. living room
� Target : E. living room
� VLM Answer : E. living room

� Fine-grained questions andanswers:
• C. farm

• Is this place located on a farm? No.
• Can it be inferred that the location of this place is a farm? No, it cannot be inferred that the location is a farm.
• Is the farm the setting for this place? No, the setting is a toy train set.
• Does this place belong to or take place on a farm? No, the place is a cozy living room.
• Is 'farm' the correct term to describe where this place is situated? No, 'farm' is not the correct term; it should be 'home'.

• E. living room
• Is the place being referred to as a living room? Yes
• Can it be said that the location in question is a living room? Yes
• Is the place described as a living room? Yes
• Does this place have the designation of a living room? Yes
• Is 'living room' an accurate description for this location? Yes

� Video :

Figure 3: Example of a correct prediction by the VLM.

� Question : why did the woman in red sitting down lean forward in the middle?
� Options : A. stabilize her B. service staff C. for support to writeD. observe the childrenE. laughing
� Target : E. laughing
� VLM Answer : A. stabilize her

� Fine-grained questions andanswers:
• A. stabilize her

• Is the woman in red leaning forward to stabilize herself while sitting down in the middle? No, the woman in red is standing
with her arms crossed.

• Does the woman in red sit down and then lean forward for stabilization purposes? No, the woman in red stands with her arms
crossed and leans forward for stabilization purposes.

• Is the action of leaning forward by the woman in red observed for stabilization reasons? Yes, the action of leaning forward by
the woman in red is observed for stabilization reasons.

• Does the woman in red use her body position (leaning forward) to achieve stability while sitting down in the middle?Yes, the
woman in red uses her body position (leaning forward) to achieve stability while sitting down in the middle.

• Can it be inferred that the woman's leaning forward is a method of stabilizing herself while seated at this location?Yes, it can
be inferred that the woman's leaning forward is a method of stabilizing herself while seated at this location.

• E. laughing
• Is the woman in red leaning forward because she is laughing? No, the woman in red is leaning forward with her arms crossed.
• Did the woman in red sit down and then lean forward due to laughter? No, the woman in red leaned forward due to laughter

before sitting down.
• Can it be inferred that the woman's laughter caused her to lean forward while sitting down in the middle ? Yes, it can be

inferred that the woman's laughter caused her to lean forward while sitting down in the middle.
• Is laughing a reason for the woman in red to lean forward while seated in the middle? Yes, laughing is a reason for the woman

in red to lean forward while seated in the middle.
• Does the act of laughing explain why the woman in red leans forward while sitting down in the middle? No, the act of laughing

does not explain why the woman in red leans forward while sitting down in the middle.

� Video :

Figure 4: Example of an incorrect prediction by the VLM.
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