
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages 247–252

April 30 - May 1, 2025 ©2025 Association for Computational Linguistics

Tighter Clusters, Safer Code? Improving Vulnerability Detection with
Enhanced Contrastive Loss

Pranav Kapparad1 Biju R Mohan1

1National Institute of Technology Karnataka, Surathkal, India
pranavkapparad.211ai026@nitk.edu.in

biju@nitk.edu.in

Abstract

Distinguishing vulnerable code from non-
vulnerable code is challenging due to high inter-
class similarity. Supervised contrastive learn-
ing (SCL) improves embedding separation but
struggles with intra-class clustering, especially
when variations within the same class are sub-
tle. We propose CLUSTER-ENHANCED SU-
PERVISED CONTRASTIVE LOSS (CESCL), an
extension of SCL with a distance-based regular-
ization term that tightens intra-class clustering
while maintaining inter-class separation. Eval-
uating on CodeBERT and GraphCodeBERT
with Binary Cross Entropy (BCE), BCE + SCL,
and BCE + CESCL, our method improves F1
score by 1.76% on CodeBERT and 4.1% on
GraphCodeBERT, demonstrating its effective-
ness in code vulnerability detection and broader
applicability to high-similarity classification
tasks.

1 Introduction

Code vulnerability detection is a cornerstone of
software security, particularly as the world under-
goes rapid digitization. In domains like finance,
healthcare, and government, software vulnerabili-
ties exploited by malicious actors could have catas-
trophic consequences. The ability to detect such
weaknesses efficiently is essential for safeguard-
ing the trust that underpins modern technological
systems. Beyond protecting sensitive data, robust
vulnerability detection forms the backbone of a re-
silient digital society, ensuring confidence in the
software solutions we rely on daily.

Recent years have witnessed a paradigm shift
in this field with the rise of deep learning mod-
els, which have revolutionized how vulnerabilities
are identified. These models far outperform tradi-
tional approaches such as static analysis tools and
manual code reviews, which are labor-intensive,
error-prone, and unable to keep pace with the accel-
erating rate of software development. Leveraging

neural networks has enabled researchers to auto-
mate vulnerability detection, improving scalabil-
ity and accuracy by identifying subtle patterns in
code that signal potential flaws. Most deep learn-
ing models rely on loss functions such as binary
cross-entropy to learn from labeled datasets of vul-
nerable and non-vulnerable code. However, despite
these advancements, the field remains fraught with
challenges.

One of the most significant bottlenecks in ex-
isting models is the high semantic and structural
similarity between vulnerable and non-vulnerable
code samples. This similarity often causes em-
beddings of the two classes to overlap in high-
dimensional space, resulting in increased false pos-
itives and false negatives, thereby undermining the
reliability of the models. To better quantify this
challenge, we conducted a focused analysis of the
embedding space. Using a simple, yet effective
method, we computed the average cosine similarity
between embeddings of samples with opposite la-
bels across both code and general text datasets. The
results, as seen in the figure below 1, revealed that
code datasets exhibit significantly higher similarity
across labels than general text data, underscoring
the unique difficulty of separating vulnerable from
non-vulnerable code. This inherent overlap in the
embedding space presents a key challenge in ensur-
ing accurate and reliable vulnerability detection.

Contrastive learning has emerged as a promising
technique to address this challenge. By structur-
ing the embedding space to maximize separation
between samples with opposite labels and encour-
aging tighter clustering of samples within the same
class, contrastive learning reduces overlap and en-
hances the discriminative power of embeddings.
This is particularly critical in the context of code
vulnerability detection, where subtle differences
between classes demand a highly optimized em-
bedding space.

However, existing contrastive learning methods,

247

such as Supervised Contrastive Loss (SCL), ex-
hibit limitations in this domain. While SCL ef-
fectively prioritizes inter-class separation, it often
fails to enforce sufficient intra-class cohesion. This
can result in loosely clustered embeddings within
each class, increasing the likelihood of misclassi-
fications. Consequently, SCL struggles to handle
the high similarity between vulnerable and non-
vulnerable samples, limiting its effectiveness in
real-world applications.

To overcome these limitations, we propose a
novel loss function, Cluster Enhanced Supervised
Contrastive Loss (CESCL). CESCL builds on the
foundation of SCL by introducing additional regu-
larization techniques aimed at simultaneously min-
imizing intra-class separation and penalizing high
cosine similarity between embeddings of vulnera-
ble and non-vulnerable code snippets. This dual
objective ensures tighter clustering within the same
class while amplifying the dissimilarity between
different classes, resulting in a well-structured em-
bedding space optimized for classification.

CESCL achieves this by incorporating penalties
for misaligned embeddings and emphasizing the
structural and semantic nuances that distinguish
vulnerable from non-vulnerable code. By fostering
tighter intra-class cohesion and greater inter-class
separation, CESCL reduces embedding overlap,
enabling models to better generalize across diverse
and unseen code patterns. This results in lower
false positive and false negative rates, addressing
key reliability concerns in existing systems.

In summary, this research introduces CESCL as
a targeted solution to the embedding challenges
in code vulnerability detection. By addressing the
shortcomings of existing loss functions, CESCL
provides a more robust and generalizable embed-
ding space, significantly improving classification
accuracy. Our work also highlights the unique chal-
lenges of this domain through a quantitative anal-
ysis of embedding similarity, offering a new per-
spective on the limitations of current approaches.

As software vulnerabilities continue to rise
alongside the pace of digitization, the need for re-
liable and efficient detection methods has become
more urgent than ever. CESCL represents a step
forward in building secure and trustworthy soft-
ware systems, offering a foundation for future ad-
vancements in vulnerability detection. By bridging
the gap between the limitations of SCL and the
demands of real-world applications, this research
provides both a theoretical and practical contribu-

tion to the field, paving the way for more secure
digital ecosystems.

0 0.2 0.4 0.6 0.8 1

Datasets
0.98

0.83

Similarity Score

Figure 1: Cosine Similarity Between Opposite Labels.
Text Data (Positive vs. Negative) is represented in blue,
while Code Data (Vulnerable vs. Non-Vulnerable) is
represented in red.

2 Related Work

Code vulnerability detection using deep learning
has gained quite some attention in recent years,
with various methods developed to address the chal-
lenges posed by detecting vulnerabilities within
code (Grieco et al. (2016); Lin et al. (2017)). Early
approaches Li et al. (2018), make use Long Bi
Short-Term Memory (Bi-LSTM) networks to an-
alyze code based on sequences of API calls, ex-
hibiting the efficacy of deep learning models in
capturing common patterns associated with vulner-
bale code. SySeVR Li et al. (2021), built upon
this approach by developing a deep learning frame-
work for detecting vulnerabilities through sequence
modeling of vulnerable function calls. While these
methods provide useful insights, they often struggle
with capturing the broader structural and semantic
complexities of code, restricting their performance
on more sophisticated code samples.

More recently, transformer-based models, which
make use of attention mechanism, like CodeBERT
Feng et al. (2020) and GraphCodeBERT Guo et al.
(2020) have brought about major advancements.
CodeBert is a pretrained model tailor made for
both programming and natural languages, captur-
ing both syntactic and semantic features from a
large corpus of code. It has been adopted widely
for vulnerability detection because of its ability
to handle tasks like code summarization, genera-
tion, and classification. GraphCodeBERT extends
CodeBert by incorporating data flow information
within the model’s architecture. This approach en-
hances the model’s understanding of dependencies
and control structures, allowing it to detect vulner-
abilities that rely on intricate code flows, an area
where traditional transformer models tend to disap-
point. Such advancements highlight the potential

248

of transformer based models in advancing the field
of code vulnerability detection.

The Devign dataset Zhou et al. (2019) has been
crucial in evaluating and benchmarking vulnerabil-
ity detection models. Devign contains over 21,000
labeled C/C++ code snippets drawn from open-
source projects, with each snippet classified as vul-
nerable or non-vulnerable. The dataset presents
unique challenges due to the incorporation of a
wide variety of vulnerabilities. The dataset also
constitutes complex vulnerabilities making it hard
for models to effectively generalise across samples.
Devign also provides a rich structural context, in-
cluding abstract syntax trees (ASTs) and control
flow graphs (CFGs), which has proven useful for
models designed to capture graph-based relation-
ships in code, as demonstrated in Zhou et al. (2019)
original work making use of graph neural networks.

Supervised Contrastive Learning (SCL), intro-
duced by Khosla et al. (2020), is an emerging and
powerful technique that focuses class separation by
leveraging both positive and negative samples, mak-
ing it immensely suitable for tasks where closely
related samples are to be differentiated. In vul-
nerability detection, where samples of vulnerable
and non vulnerable can appear notoriously similar,
SCL has shown potential Du et al. (2022) by pro-
moting embedding spaces that separate vulnerable
and non-vulnerable samples.

Various regularization techniques have been ap-
plied to these losses to improve robustness in high-
similarity domains such as the one tackled in this
paper. For instance, Botev et al. (2022) explored
regularizing for invariance to data augmentation,
improving the ability of models to handle difficult
samples.

In summary, this study builds on the strengths
of transformer models like CodeBert and Graph-
CodeBERT, evaluates performance on the Devign
dataset, and explores advanced contrastive learning
techniques to enhance code vulnerability detection.
By combining supervised contrastive learning with
regularization strategies, we aim to improve the
model’s capability in embedding separation, thus
enhancing overall classification performance.

3 Methodology

To ameliorate the effectiveness of code vulnera-
bility detection, this study builds a classification
model on top of the both CodeBERT and Graph-
CodeBERT models, with additional dropout and

batch normalization layers. These layers reduce
overfitting and ensure stable training by normaliz-
ing activations, contributing to more reliable model
performance. The central novelty in this approach
is the novel loss function, which integrates super-
vised contrastive learning with a distance-based
regularization term to improve embedding separa-
tion between classes.

3.1 Dataset

For this research work, we make use of the Devign
dataset, a benchmark dataset for code vulnerability
detection in C/C++ programs. The Devign dataset
constitutes over 21,000 code snippets, each labeled
as either vulnerable or non-vulnerable, collected
from real-world open-source projects, FFmpeg and
qemu. Each code snippet is annotated with several
features, including abstract syntax tree (AST) rep-
resentations, control flow graphs (CFGs), and data
flow information, which capture both structural and
semantic information essential for identifying vul-
nerabilities. For this work, only the code function
is made use of since the focus is on the embedding
separation.

3.2 Model Architecture

The architecture begins with a pre-trained model,
either CodeBERT or GraphCodeBERT, which is
fine-tuned on domain-specific code datasets to gen-
erate meaningful code embeddings. On top of these
embeddings, a classifier head consisting of fully
connected layers is added. The classifier head takes
as input a tensor of size 768 (the embedding output
of CodeBERT or GraphCodeBERT), followed by a
128-dimensional layer, and finally an output layer
of size 1. Dropout layers are interleaved within
the classifier to reduce overfitting by randomly de-
activating neurons during training, and batch nor-
malization layers are employed to stabilize and
accelerate the training process by standardizing
layer inputs. The model output provides a binary
classification, predicting whether a code snippet is
vulnerable.

3.3 Loss Function Design

The novel contribution of this work is a custom loss
function, cluster enhanced supervised contrastive
loss (CESCL), that enhances embedding separa-
tion. This function combines the supervised con-
trastive loss (SCL loss) with a distance-based reg-
ularization term, which encourages tighter cluster-
ing within each class. The components of this loss

249

function are as follows:

cl ass Uni onFi nd:
 def
__i ni t __(si ze) :
 sel f . par ent =
l i s t (r ange(si ze))
 sel f . r ank = [0]
* s i ze

SOURCE CODE

CODE
REPRESENTATION

+

SCL Loss Regular ization

MODEL

PREDICTION

MODEL
PREDICTION

Figure 2: The framework of the proposed method.

Supervised Contrastive Loss (SCL): This loss
maximizes agreement and similarity between em-
beddings of samples within the same class while
pushing apart embeddings of different classes apart.
Specifically, feature vectors are normalized, and a
contrastive logits matrix is computed by dividing
the dot product of normalized feature vectors by
a temperature scaling factor.The novel contribu-
tion of this work is a custom loss function, clus-
ter enhanced supervised contrastive loss (CESCL),
that enhances embedding separation. This func-
tion combines the supervised contrastive loss (SCL
loss) with a distance-based regularization term,
which encourages tighter clustering within each
class. The formula (Khosla et al., 2020) is as below

LSCL = − 1

N

N∑

i=1

1

|P (i)|
∑

p∈P (i)

log
exp

(zi·zp
τ

)
∑

a∈A(i) exp
(
zi·za

τ

)

(1)

where:

• N is the batch size,

• P (i) represents the set of positive samples for
anchor i,

• A(i) represents the set of all samples in the
batch excluding i,

• zi and zp are the normalized feature vectors of
the anchor and positive samples, respectively,

• τ is the temperature scaling factor, which
helps control the distribution of the similar-
ity scores.

While SCL effectively separates different
classes, it does not explicitly enforce compactness
within the same class, leading to loosely clustered
embeddings. This is particularly problematic in

high-similarity domains like vulnerability detec-
tion, where even minor variations can mislead clas-
sification.

Distance-Based Regularization Term: To fur-
ther improve intra-class clustering, a regulariza-
tion term is added that penalizes large distances be-
tween embeddings within the same class. This reg-
ularization term calculates the pairwise Euclidean
distances between embeddings of the same class,
averaging them over all possible pairs, and is scaled
by a regularization factor.

The formula for the regularisation is as below

Lreg =
1

n(n− 1)

n∑

i=1

n∑

j=1
j ̸=i

1[L(i)=L(j)]∥zi − zj∥2 (2)

where:

• n is the total number of samples,

• 1[L(i)=L(j)] is an indicator function, equal to
1 if samples i and j belong to the same class,
and 0 otherwise,

• zi and zj are the feature vectors of samples i
and j.

Cluster Enhanced Supervised Contrastive Loss
is a combination of Supervised Contrastive Loss
and the Distance Based Regularization Term (2). It
is as below

LCluster-Enhanced SCL = LSCL + λreg · Lreg (3)

where λreg is a hyperparameter that scales the
contribution of the regularization term.

3.4 Training
The model is trained using the combined loss func-
tion, which integrates the Binary Cross Entropy
(BCE) loss with the Cluster-Enhanced Supervised
Contrastive Loss. Specifically, the final loss is com-
puted as:

Lfinal = LBCE + α · LCluster-Enhanced SCL, (4)

where α is a balancing hyperparameter. The
Cluster-Enhanced Supervised Contrastive Loss is
defined as:

LCluster-Enhanced SCL = LSCL + λreg · Lreg (5)

where λreg is a hyperparameter that scales the
contribution of the regularization term.

In our experiments, we set λreg = 0.5 and α =
0.2 based on preliminary grid search evaluations.

250

4 Results and Analysis

In this study, three models were trained to assess
the impact of different loss functions on code vul-
nerability detection. Each model uses the same
architecture, a classifier built on top of a pre-
trained CodeBERT or GraphCodeBERT model
with dropout and batch normalization. The only
difference between models being the loss function
utilized during training:

• Model 1: Binary Cross Entropy (BCE) loss
only.

• Model 2: BCE combined with Supervised
Contrastive Loss (SCL).

• Model 3: BCE combined with Clus-
ter Enhanced Supervised Contrastive Loss
(CESCL).

To evaluate performance, F1 scores were calcu-
lated on the test set for each model. These scores
provide a comparison between each model’s preci-
sion and recall, informing how well the different
loss functions contribute to the model’s accuracy
and embedding separation.

On top of this, the silhouette score was calcu-
lated as a measure of embedding separation. The
silhouette score is a widely-used metric to eval-
uate clustering quality. It ranges from -1 to 1,
where a value near 1 indicates that samples are
well-separated and closely grouped within their
respective clusters, and a value near -1 suggests
significant overlap between clusters. In the context
of our study, a higher silhouette score implies that
code snippets belonging to the same class (vulner-
able or non-vulnerable) are more similar to each
other than to those in the opposing class, thereby
indicating effective embedding separation.

Table 1: Performance Comparison of Models (F1 Score)

Model F1 Score
CodeBERT 0.597
CodeBERT + SCL 0.614
CodeBERT + CESCL 0.625
GraphCodeBERT 0.594
GraphCodeBERT + SCL 0.607
GraphCodeBERT + CESCL 0.633

5 Conclusion

In this work, we introduced Cluster-Enhanced Su-
pervised Contrastive Loss (CESCL), a novel loss

Table 2: Performance Comparison of Models (Silhou-
ette Score)

Model Silhouette Score
CodeBERT 0.052
CodeBERT + SCL 0.043
CodeBERT + CESCL 0.056
GraphCodeBERT 0.046
GraphCodeBERT + SCL 0.031
GraphCodeBERT + CESCL 0.050

function designed to improve the embedding qual-
ity for code vulnerability detection. We evaluated
the performance of CESCL in combination with
both CodeBERT and GraphCodeBERT architec-
tures, comparing it with the standard Binary Cross-
Entropy (BCE) and BCE + Supervised Contrastive
Learning (SCL) models.

The experimental results, as shown in Tables 1
and 2, demonstrate that CESCL consistently out-
performs both BCE and BCE + SCL across the
models tested. Notably, CodeBERT + CESCL
achieved the highest F1 score of 0.625 among
CodeBERT models and the best Silhouette score
of 0.056, highlighting its ability to generate well-
clustered and discriminative embeddings for vulner-
ability classification. Similarly, GraphCodeBERT +
CESCL showed significant improvements, achiev-
ing a 4.1% increase in F1 score and a favorable
Silhouette score of 0.050 compared to the other
configurations.

It is worth noting that, although the incorporation
of SCL in isolation sometimes led to a reduction
in the silhouette score, the overall improvement
in F1 score indicates that the CESCL framework
effectively optimizes the embedding space for clas-
sification. This discrepancy suggests that while the
silhouette score is a useful measure of clustering
quality, it may not fully capture the nuances that
contribute to enhanced detection performance in
this context.

These results indicate that CESCL effectively
improves intra-class compactness and inter-class
separation, thereby enhancing the performance of
the model in detecting vulnerabilities in code. Fu-
ture work could explore further optimizations to
the CESCL framework and test it on additional
code-related tasks to fully realize its potential in
improving the robustness and reliability of code
classification models.

251

References
Aleksander Botev, Matthias Bauer, and Soham De.

2022. Regularising for invariance to data augmen-
tation improves supervised learning. arXiv preprint
arXiv:2203.03304.

Qianjin Du, Xiaohui Kuang, and Gang Zhao. 2022.
Code vulnerability detection via nearest neighbor
mechanism. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 6173–
6178.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal,
Sanjay Rawat, Josselin Feist, and Laurent Mounier.
2016. Toward large-scale vulnerability discovery
using machine learning. In Proceedings of the sixth
ACM conference on data and application security
and privacy, pages 85–96.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu,
and Zhaoxuan Chen. 2021. Sysevr: A framework for
using deep learning to detect software vulnerabili-
ties. IEEE Transactions on Dependable and Secure
Computing, 19(4):2244–2258.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018.
Vuldeepecker: A deep learning-based system for vul-
nerability detection. In Proceedings 2018 Network
and Distributed System Security Symposium, NDSS
2018. Internet Society.

Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, and
Yang Xiang. 2017. Poster: Vulnerability discovery
with function representation learning from unlabeled
projects. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications secu-
rity, pages 2539–2541.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du,
and Yang Liu. 2019. Devign: Effective vulnerability
identification by learning comprehensive program
semantics via graph neural networks. Advances in
neural information processing systems, 32.

252

