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Abstract

This paper presents a federated learning system
with differential privacy for hate speech detec-
tion, tailored to low-resource languages. By
fine-tuning pre-trained language models, AL-
BERT emerged as the most effective option
for balancing performance and privacy. Ex-
periments demonstrated that federated learning
with differential privacy performs adequately
in low-resource settings, though datasets with
fewer than 20 sentences per client struggled
due to excessive noise. Balanced datasets and
augmenting hateful data with non-hateful ex-
amples proved critical for improving model
utility. These findings offer a scalable and
privacy-conscious framework for integrating
hate speech detection into social media plat-
forms and browsers, safeguarding user privacy
while addressing online harm.

1 Introduction

Protecting personal data while enabling effective
machine learning is a critical challenge, especially
in low-resource languages where data scarcity com-
pounds the difficulty of detecting hate speech. Tra-
ditional models primarily focus on high-resource
languages, leaving underrepresented languages un-
supported. Federated learning (FL) with differen-
tial privacy (DP) offers a solution by enabling col-
laborative model training without sharing sensitive
data. However, the trade-off between privacy and
performance in low-resource settings remains a sig-
nificant concern. This paper investigates the use of
privacy-preserving FL for hate speech detection in
low-resource languages, specifically Afrikaans and
Russian, which are considered low-resource with
regard to labeled hate speech resources, addressing
three research questions:

• (RQ1) Can privacy-preserving methods effec-
tively support federated hate speech detection
models in low-resource languages?

• (RQ2) What is the trade-off between privacy
and model accuracy in this context?

• (RQ3) How minimal can low-resource data
be while still ensuring user privacy?

The main contribution of this work is the adapta-
tion of differential privacy within a federated learn-
ing framework for hate speech detection in a low-
resource environment, and the understanding of the
challenges imposed by such systems.

2 Related Work

Hate speech detection has primarily focused on
high-resource languages like English. Efforts to ad-
dress low-resource languages include Ranasinghe
and Zampieri (2021), who applied transfer learn-
ing to fine-tune transformer models for Arabic,
Bengali, and Hindi, showing that pre-trained BERT-
based models, like ALBERT, work well in these con-
texts. Fine-tuning pre-trained models remains a
dominant approach, with studies like Geet d’Sa
et al. (2020) and Wullach et al. (2021) demonstrat-
ing its effectiveness. However, BERT fine-tuning
can be unstable, particularly with small datasets, as
noted by Mosbach et al. (2021).

Privacy concerns, driven by regulations like the
EU’s GDPR (of the European Union, 2016), have
led to federated learning adoption for decentralized
data processing. While early work like Zampieri
et al. (2024) showed FL’s promise, vulnerabili-
ties in shared model weights have been identified,
as seen in Geiping et al. (2020). Differential pri-
vacy, introduced by Dwork (2006), mitigates such
risks by adding noise to gradients, ensuring privacy
while enabling collaborative learning. Both global
(Wei et al., 2020) and local (Truex et al., 2020) DP
methods in federated learning have shown effective-
ness and limitations, as reviewed by Ouadrhiri and
Abdelhadi (2022). While recent approaches, such
as Ye et al. (2024), leverage FL for few-shot hate
speech detection in low-resource languages, this
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paper adapts DP to further enhance model security
and evaluate its impact on performance.

3 Methods

Dataset. For our experiments, we used hate speech
data from two low-resource languages: Afrikaans
and Russian. The Afrikaans dataset includes state-
ments targeting black people and LGBTQ+ in-
dividuals, while the Russian dataset focuses on
hate speech directed at war-affected groups and
LGBTQ+ individuals. The datasets were created by
native speakers between June 2023 and March 2024
as part of the Respond2Hate research project (Ye
et al., 2024). Hate speech examples were inspired
by anonymized content from social media and news
outlets and were carefully adapted to ensure pri-
vacy and cultural relevance. The merged dataset
consisted of 1,543 sentences, with 865 (56%) la-
beled as hateful and 678 (44%) as non-hateful.

Of the 1,543 sentences, 309 were randomly se-
lected as a test set, and the rest were used for
fine-tuning. Each client in the federated system
received a distinct set of sentences, ensuring non-
overlapping data.

Models. Multiple BERT-based models were
used for various experiments conducted in this
work. They are: BERT Base uncased,
BERT Large uncased (Devlin et al., 2019),
HateBERT (Caselli et al., 2021), ALBERT Base,
ALBERT Large, ALBERT XLarge, ALBERT
XXLarge (Lan et al., 2020), BERT Base
Multilingual uncased (Devlin et al., 2019),
XLM-RoBERTa Base, XLM-RoBERTa Large (Con-
neau et al., 2020), and DistilBERT Base
Multilingual cased (Sanh et al., 2020) More
information on the selected models can be seen in
Appendix A.

Federated Learning and Differential Privacy
Implementation. Federated learning was imple-
mented using the Flower framework (Beutel et al.,
2020), which facilitates communication and ag-
gregation between the server and clients. Flower
was selected for its support of manual client train-
ing steps. Differential privacy was implemented
using Opacus (Yousefpour et al., 2021), a Py-
Torch (Paszke et al., 2019) library that enables
DP by adding noise to model gradients. Opacus
automatically calculates the noise scale σ based
on pϵ, δq-DP and the L2 norm clipping threshold
C. PyTorch was used for model fine-tuning, and
pre-trained models were sourced from Hugging-

Face (Wolf et al., 2020).

4 Experiments and Results

4.1 Experimental Setup

The ALBERT Base model from Hugging Face was
selected for fine-tuning due to its strong perfor-
mance, as explored in the Model Comparison exper-
iment described below, and seen in Table 1, and ef-
ficient fine-tuning times. Privacy parameters were
set to ϵ “ 5 and δ “ 10´5, with a clipping thresh-
old C of 0.5, clipping 1% of the highest gradient
values.

The training setup involved one server and eight
clients, each receiving 50 balanced sentences (25
hateful, 25 non-hateful). Fine-tuning used a batch
size of 1, cross-entropy loss, and the Adam op-
timizer with a learning rate of 10´4 to maintain
stability with DP. Baseline experiments included
versions without DP ("No DP") and without fine-
tuning ("No FT"). For "No DP," the learning rate
was reduced to 2ˆ10´5 to prevent divergence. All
experiments ran for 10 FL rounds.

The weighted F1-score, which is calculated sep-
arately for each class, and returned as the weighted
sum, was used as the primary evaluation metric due
to slight dataset imbalance. Each experiment was
run five times, with metrics averaged across clients
to minimize variability and account for fine-tuning
instabilities. The following experiments were con-
ducted:

Model Comparison. This experiment evaluated
the performance of various models fine-tuned with
FL and DP for low-resource hate speech detection.
Several pre-trained models were tested, but BERT
Large uncased and XLM-RoBERTa Large were
excluded due to communication timeouts in FL,
likely caused by their large number of parameters.
The Flower framework could not handle the com-
putational overhead for these models. No other
hyperparameter modifications were made.

Level of Privacy Comparison. The privacy-
utility trade-off was tested by fine-tuning the model
with various values of ϵ, δ, and clipping threshold
C. ϵ values tested ranged from 100 (weak privacy)
to 0.1 (strong privacy), with corresponding C val-
ues chosen to clip gradients at various percentages:
C “ 100 (no clipping), C “ 0.5 (1%), C “ 0.1
(10%), C “ 0.05 (25%), and C “ 0.01 (50%).
These C values were selected based on observed
gradient ranges after initial training rounds. The
default δ “ 10´5 was used, and ALBERT Base and
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BERT Base Multilingual models were compared,
keeping all other hyperparameters unchanged.

Additionally, different δ values (10´3, 10´5,
10´7) were tested on ALBERT Base with ϵ “ 5
to assess their impact on the privacy-utility trade-
off. For each δ value, various C values were also
tested, with all other hyperparameters kept at their
defaults.

Dataset Size Comparison. This test evaluated
how the model responded to FL with DP fine-
tuning using varying dataset sizes per client. Each
client fine-tuned the model with datasets starting at
10 sentences (5 hateful, 5 non-hateful), increasing
in increments of 10 up to 130 sentences (65 hateful,
65 non-hateful). All other hyperparameters were
kept at their default values and the ALBERT Base
model was used.

Dataset Composition Comparison. This ex-
periment tested how different data compositions
affected model performance. Three compositions
were tested: an "unchanged" composition with the
natural imbalance of 56% hateful and 44% non-
hateful sentences, a "balanced" composition with
50% hateful and 50% non-hateful sentences, and
a "hate-only" composition with only hateful sen-
tences. The "hate-only" composition was tested to
simulate a federated system where users report only
hateful sentences, and the data is not augmented
with negative samples. All other hyperparameters
were kept at their default values and the ALBERT
Base model was used.

4.2 Results and Analysis

Model
No Diff. Priv. Diff. Priv.
ACC F1 ACC F1

BERT Base 0.762 0.762 0.511 (-0.251) 0.395 (-0.367)

HateBERT 0.770 0.770 0.532 (-0.238) 0.415 (-0.355)

ALBERT Base 0.728 0.725 0.602 (-0.126) 0.542 (-0.183)

ALBERT Large 0.710 0.707 0.513 (-0.197) 0.385 (-0.322)

ALBERT XLarge 0.668 0.663 0.510 (-0.158) 0.353 (-0.310)

ALBERT XXLarge 0.714 0.710 0.587 (-0.127) 0.551 (-0.159)

BERT Base Multilingual 0.819 0.819 0.490 (-0.329) 0.403 (-0.416)

XLM-RoBERTa Base 0.847 0.847 0.489 (-0.358) 0.327 (-0.520)

DistilBERT Base 0.807 0.807 0.524 (-0.283) 0.405 (-0.402)

Table 1: Model comparison between different models
fine-tuned by using FL with and without DP. The utility
loss between the private and the non-private fine-tuning
is shown in red.

Model Comparison. Table 1 shows the results
of the model comparison, with best scores marked
in bold and utility loss with DP highlighted in red.
Multilingual models (BERT Base Multilingual
and XLM-RoBERTa Base) performed best in accu-
racy and F1-score without DP, even in low-resource

Figure 1: Accuracy and F1-score comparison of differ-
ent values of ϵ for δ “ 10´5.

settings, as they were pre-trained on data contain-
ing the low-resource languages used. However,
these models suffered the greatest utility loss with
DP.

In contrast, ALBERT models maintained high
utility under DP, with ALBERT Base and ALBERT
XXLarge showing the lowest utility loss. Their
fewer layers (12) compared to the other two ALBERT
models (24 layers) likely contributed to this per-
formance. Notably, model size did not signifi-
cantly affect the privacy-utility trade-off, as ALBERT
XXLarge exhibited the lowest utility loss, while
XLM-RoBERTa Base showed the highest.

Level of Privacy Comparison. Two experi-
ments assessed the impact of privacy levels on
model performance. The first experiment evaluated
different ϵ values with δ “ 10´5 (Figure 1). As
ϵ decreased, indicating stronger privacy, accuracy
and F1-scores degraded compared to non-private
fine-tuning (No DP). For ϵ “ 100 and ϵ “ 50,
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Figure 2: Accuracy and F1-score comparison of BERT
(blue) and ALBERT (red) at the same level of privacy
(ϵ “ 5, δ “ 10´5).

utility loss was moderate but represented weak pri-
vacy. Real-world applications typically use ϵ ă 10,
where performance steeply declined, especially
with gradient clipping (C “ 0.5). At ϵ ď 1, accu-
racy fell below non-fine-tuned (No FT) levels, and
results became noisier. Higher clipping thresholds
did not consistently improve scores, particularly
at lower ϵ. Similar experiments for δ “ 10´3 and
δ “ 10´7 are shown in Appendix B.

The second experiment evaluated the impact of
privacy on fine-tuning ALBERT and BERT for ϵ “ 5
and δ “ 10´5 (Figure 2). Additional compar-
isons for other ϵ values are in Appendix C. With-
out privacy, BERT outperformed ALBERT, but the
opposite was true for models without fine-tuning.
Both models exhibited similar trends under privacy
constraints, hovering near non-fine-tuned levels,
with ALBERT achieving higher accuracy and F1-
scores than BERT. Notably, BERT showed greater
fine-tuning instability, with 29% of runs (51/175)
failing to improve after the first FL round, com-
pared to 11% (19/175) for ALBERT.

Varying δ values for a fixed ϵ value offered no
relevant insights. These results are in Appendix D.

Dataset Size Comparison. Figure 3 shows the
results of the dataset size comparison, with accu-
racy (blue) and F1-scores (red). As a baseline, we
evaluated on the test set by using a model fine-

Figure 3: Accuracy (blue, above), and F1-score (red,
below), for models fine-tuned with FL clients with dif-
ferent sizes of datasets.

tuned without DP and a model without fine-tuning.
The x-axis represents the number of sentences per
client during FL.

The model fine-tuned without DP outperforms
the one fine-tuned with it, as expected due to the
noise introduced by DP. When fine-tuning with
very small datasets (10–20 sentences per client),
the model performs slightly worse than the non-
fine-tuned baseline. This occurs because the noise
added by DP is not proportional to the dataset size,
leading to parameter updates dominated by noise
rather than data.

In this experiment, model performance peaks at
30 sentences per client, achieving an accuracy of
0.64 and an F1-score of 0.63. A similar peak is ob-
served in the non-private fine-tuning version. Fig-
ure 4 highlights the difference in accuracy and F1-
scores between models fine-tuned with and without
DP. A logarithmic interpolation was applied, yield-
ing the best fit with R2 “ 0.683 for accuracy and
R2 “ 0.701 for F1-score, compared to other in-
terpolation methods. The results indicate that as
the dataset size increases, the performance of the
private model approaches that of the non-private
model. However, this trend is not linear and sta-
bilizes eventually, demonstrating that while larger
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Figure 4: Accuracy (blue) and F1-score (red) difference
between models fine-tuned with and without differential
privacy, at different dataset sizes.

datasets mitigate the effects of DP noise, they can-
not fully eliminate its impact.

Dataset Composition Comparison. Table 2
presents accuracy and F1-scores for different
dataset compositions. Results are provided for
models evaluated without fine-tuning (No Fine-
Tun.) and fine-tuned with (Diff. Priv.) or with-
out differential privacy (No Diff. Priv.). The best
metric in each category is highlighted in bold, with
utility loss and gain compared to DP fine-tuning
marked in red and green, respectively.

The table reveals minimal differences in accu-
racy between the unchanged and balanced dataset
compositions. While the balanced dataset yields
higher F1-scores without DP, this advantage disap-
pears under DP fine-tuning. The unchanged dataset
composition delivers the best scores and privacy-
utility trade-off when fine-tuning with DP, which
could point out that having a slight imbalance to-
wards hateful sentences might be advantageous.

As expected, fine-tuning exclusively on hateful
sentences, regardless of DP, performs worse in both
accuracy and F1-scores than skipping fine-tuning
altogether.

Data Comp.
Accuracy

Diff. Priv. No Fine-Tun. No Diff. Priv.
Unchanged 0.608 0.561 (-0.047) 0.721 (0.113)

Balanced 0.604 0.561 (-0.043) 0.742 (0.138)

Hate-Only 0.553 0.561 (0.008) 0.553 (0.000)

F1-Score
Diff. Priv. No Fine-Tun. No Diff. Priv.

Unchanged 0.565 0.429 (-0.136) 0.719 (0.154)

Balanced 0.558 0.429 (-0.129) 0.741 (0.183)

Hate-Only 0.406 0.429 (0.023) 0.396 (-0.010)

Table 2: Dataset composition comparison.

5 Discussion

This paper investigates federated learning with dif-
ferential privacy for hate speech detection in low-
resource environments. Results show that this ap-
proach is feasible for fine-tuning models, even with
limited data, but models react differently to added
noise. ALBERT models (Base and XXLarge) per-
formed the best due to parameter sharing, which
might have mitigated the noise. Deeper and mul-
tilingual models experienced greater utility loss,
though further research is needed to confirm these
findings.

Achieving strong privacy guarantees remains
challenging. At ϵ ď 1, performance dropped below
the non-fine-tuned baseline, highlighting the diffi-
culty of selecting optimal ϵ values, which depend
on the model, dataset, and parameter interactions.

More local data per client improved results, with
50 sentences per client showing consistent gains.
However, limited data hampers effective learning
under differential privacy. Balanced datasets are
critical, but a slight imbalance towards hateful sen-
tences helped overcome the noise added by differ-
ential privacy. Sampling non-hateful examples is
crucial for effective training. Despite challenges,
federated learning with differential privacy remains
advantageous where privacy is paramount.

Addressing the research questions:

• (RQ1) Privacy-preserving federated learning
for hate speech detection in low-resource lan-
guages is feasible, but may not meet strong
privacy standards without sufficient data.

• (RQ2) The privacy-utility trade-off is signif-
icant, with better results achievable at lower
privacy levels.

• (RQ3) For minimal data, 50 sentences per
client suffice for moderate privacy, though
more data reduces degradation and stabilizes
training.

6 Conclusion

This paper explored federated learning with dif-
ferential privacy for hate speech detection in low-
resource settings. Fine-tuning a pre-trained ALBERT
model showed improved performance at moderate
privacy levels. Key findings included the impor-
tance of nearly-balanced datasets and the impact of
differential privacy parameters (ϵ, δ, and C), with
ALBERT outperforming other BERT-based models.
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The results addressed the research questions, high-
lighting both strengths and areas for improvement.

In conclusion, despite challenges in low-
resource environments, federated learning with dif-
ferential privacy can effectively detect hate speech
while ensuring user privacy.

7 Limitations

This paper has several limitations. Training re-
quired each client to store a local model, limiting
experiments to eight clients, and the use of smaller,
BERT-based models, instead of LLMs, due to mem-
ory constraints. Future work could explore varying
client numbers and adaptive clipping thresholds,
which were untested due to fixed C values in Opa-
cus. Adaptive methods, as proposed by Andrew
et al. (2021), could improve performance. Addi-
tionally, non-BERT models like GPT or LLaMA were
not evaluated. Finally, the number of federated
learning rounds and epochs was not varied, but ex-
ploring these hyperparameters may impact model
performance.
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A Model Information

• BERT Base uncased (Devlin et al.,
2019) (110M parameters), and BERT Large
uncased (336M parameters), both trained
with monolingual English data.

• A BERT-based model trained on hate speech
data: HateBERT (Caselli et al., 2021) (110M
parameters, monolingual English).

• ALBERT Base (Lan et al., 2020) (11M parame-
ters), Large (17M parameters), XLarge (58M
parameters), and XXLarge (223M parameters),
all trained with monolingual English data.

• BERT Base Multilingual uncased (Devlin
et al., 2019) (110M parameters), pre-trained
using multilingual data from Wikipedia in 102
languages, including Afrikaans and Russian.

• XLM-RoBERTa Base (Conneau et al., 2020)
(270M parameters), and XLM-RoBERTa Large
(550M parameters), both pre-trained using
multilingual data from CommonCrawl in 100
languages, including Afrikaans and Russian.

• DistilBERT Base Multilingual
cased (Sanh et al., 2020) (134M pa-
rameters), which is a distilled version of
BERT Base Multilingual Cased, which
was pre-trained using multilingual data
from Wikipedia in 104 languages, including
Afrikaans and Russian.
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B Privacy comparison with different values of ϵ, for the model ALBERT Base.

Figure 5: Accuracy (left) and F1-score (right) comparison of different values of ϵ for δ P t10´3, 10´5, 10´7u.
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C BERT and ALBERT comparison with different levels of privacy.

Figure 6: Accuracy (left) and F1-score (right) comparison of BERT (blue) and ALBERT (red) at the different levels of
privacy (ϵ P t100, 50, 10, 5u, δ “ 10´5).
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Figure 7: Accuracy (left) and F1-score (right) comparison of BERT (blue) and ALBERT (red) at the different levels of
privacy (ϵ P t1, 0.5, 0.1u, δ “ 10´5).
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D Privacy comparison with different values of δ, for the model ALBERT Base.

Figure 8: Accuracy (left) and F1-score (right) comparison of different values of δ for ϵ P t100, 50, 10, 5u.
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Figure 9: Accuracy (left) and F1-score (right) comparison of different values of δ for ϵ P t1, 0.5, 0.1u.
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