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Abstract
Summarizing movie screenplays presents a
unique set of challenges compared to stan-
dard document summarization. Screenplays
are not only lengthy, but also feature a com-
plex interplay of characters, dialogues, and
scenes, with numerous direct and subtle re-
lationships and contextual nuances that are
difficult for machine learning models to ac-
curately capture and comprehend. Recent at-
tempts at screenplay summarization focus on
fine-tuning transformer-based pre-trained mod-
els, but these models often fall short in cap-
turing long-term dependencies and latent rela-
tionships, and frequently encounter the "lost
in the middle" issue. To address these chal-
lenges, we introduce DiscoGraMS, a novel re-
source that represents movie scripts as a movie
character-aware discourse graph (CaD Graph).
This approach is well-suited for various down-
stream tasks, such as summarization, question-
answering, and salience detection. The model
aims to preserve all salient information, offer-
ing a more comprehensive and faithful rep-
resentation of the screenplay’s content. We
further explore a baseline method that com-
bines the CaD Graph with the corresponding
movie script through a late fusion of graph
and text modalities, and we present very ini-
tial promising results. We have made our code1

and dataset2 publicly available.

1 Introduction

Text summarization has been extensively studied
within the NLP community (Nallapati et al., 2016,
2017; Zheng and Lapata, 2019; Urlana et al., 2024).
Recently, large language models (LLMs) have
demonstrated human-level performance in this area
(Liu et al., 2023; Zhang et al., 2024). However,
summarizing long documents remains a challenge
for even the most advanced LLMs, as their ef-
fectiveness can be influenced by the location of

1https://github.com/Maitreya152/DiscoGraMS
2https://huggingface.co/datasets/Maitreya152/CaD_Graphs

Figure 1: Example of a graph constructed from a movie
script.
salient information within the text (Liu et al., 2024).
For language models to effectively utilize infor-
mation within very long input documents, their
performance should exhibit minimal sensitivity to
the positional placement of relevant information
within the input (Liu et al., 2024). Movie script
or screenplay summarization (Papalampidi et al.,
2020; Saxena and Keller, 2024) is a relatively hard
task compared to standard document summariza-
tion due multitude of reasons. Movie scripts are
typically very long documents characterized by in-
tricate narratives, numerous subplots, and substan-
tial dialogue, which pose significant challenges for
summarizing the content without losing the core
elements of the story. Many of the movie scripts
have non-linear flow of events such as flashbacks,
flash-forwards, and parallel plot lines, making the
summary to retain the coherence and original flow.

To address this, we present DiscoGraMS,
an innovative resource that represents movie
scripts as a character-aware discourse graph
(CaD Graph). This graph captures the core
essence of the movie plot by modeling latent
relationships among key elements, including
characters, the scenes they participate in, and
the dialogues they deliver, thereby highlighting
all possible semantically important aspects of
the narrative. The CaD Graph captures intricate
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nuances and the interplay between characters and
scene sequences, effectively addressing challenges
like flashbacks and sudden plot twists that are
difficult to capture using only textual content. The
main contributions of this work are as follows: 1)
We introduce, for the first time to our knowledge,
a movie character-aware discourse graph (CaD
Graph) specifically designed for movie script
summarization. 2) We propose a late modality
fusion model that combines both CaD Graphs
and textual content for improved movie script
summarization. 3) We perform an ablation study
to demonstrate the effectiveness of CaD Graphs in
enhancing summarization.

2 Related Work

Since the origin of modern graph theory in 1736
with Euler’s proof the Seven Bridges of Königsberg
problem i.e. traversing a city crossing 7 bridges
exactly once (Harary, 1960), graph representations
have been used to model data in diverse fields like
chemistry, biology and computer science. Linguis-
tic data has also been represented as graph struc-
tures like dependency representations (Tesnière,
1959) and successfully deployed in NLP appli-
cations. The idea of representing entire texts as
graphs was proposed in seminal work by Mihalcea
and Tarau (2004). They created graphs comprising
of nodes which keywords connected to other words
located within a window of 2 to 10 words. This
approach was extremely effective for the task of
extractive summarization. More recently, Wang
et al. (2022) show the efficacy of this technique
for abstractive summarization of scientific articles.
Here, entities in the text served as nodes (with co-
referential entity clusters represented as a single
node) connected to one another via labelled edges
depicting relationships (like hyponymy) between
nodes. (Kounelis et al., 2021) proposed a movie
recommendation system using character graph em-
beddings to model relationships for movie simi-
larity while (Papalampidi et al., 2021) propose a
model for summarizing movie videos by construct-
ing a sparse graph using only the turning point
scenes from videos. In contrast, our CaD Graph
method integrates scene, dialogue, and character
interactions and focuses on summarizing movie
text scripts, which presents a distinct set of chal-
lenges due to the long-form nature of screenplay
texts. Prior work has explored character-based

graphs in narratives. (Agarwal et al., 2013) in-
troduced SINNET, a system for extracting social
interaction networks from text. (Srivastava et al.,
2016) focused on inferring interpersonal relation-
ships in narrative summaries, while (Elson et al.,
2010) developed methods for extracting social net-
works from literary fiction. (Zhao et al., 2020)
propose DualEnc to bridge the structural gap in
data-to-text generation by integrating graph and se-
quential representations. Our work builds on these
approaches by constructing a CaD Graph to en-
hance screenplay summarization. There have been
no significant efforts to employ graphs for movie
script summarization. Only recently, (Saxena and
Keller, 2024) adapted TextRank (Zheng and Lapata,
2019), a sentence centrality-based graph approach,
for movie scripts. However, this approach was
outperformed by the simpler Longformer Encoder-
Decoder (LED) model (Beltagy et al., 2020) by
large margin.

3 Dataset

We use the MovieSum (Saxena and Keller, 2024)
dataset, a comprehensive resource for movie sum-
marization, containing 2,200 movie screenplays
along with metadata and plot summaries, includ-
ing movies up to 2023. The plot summaries are
sourced from IMDb and Wikipedia, ensuring a di-
verse range of writing styles and perspectives. The
summaries were generated through a combination
of automatic extraction and manual curation by
trained annotators. The scripts are in XML format,
preserving key elements such as scene descriptions,
dialogues, and character names for efficient analy-
sis. The dataset is split into training (1,800 movies),
validation (200 movies), and test (200 movies) sets,
with average screenplay lengths of 29k words and
summaries of 717 words. The summaries, sourced
from IMDb and Wikipedia, blend automatic extrac-
tion and manual curation. Analysis reveals a high
level of abstractiveness in the summaries, indicated
by novel 3-grams and 4-grams not found in the
original scripts.

% Novel n-grams in Summary
1-grams 2-grams 3-grams 4-grams

31.69 68.88 93.12 98.6

Table 1: Percentage of novel n-grams in summary. (Sax-
ena and Keller, 2024)
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Figure 2: Architecture Diagram for the proposed model LGAT.

4 Methodology

In this section, we describe the process of con-
structing the character-aware discourse graph (CaD
Graph) from movie scripts. We then present a base-
line method that leverages both the CaD Graph
and the textual content of the scripts, using a late
modality fusion approach to generate movie script
summaries.

4.1 Graph Construction and Encoding:

The first step involves constructing a graph repre-
sentation of the movie script. In this representation,
nodes are created for key elements, which are
scenes, characters, and their dialogues.
The constructed graph can be described as a
heterogeneous graph G = (V,E), where V is the
set of nodes, and E is the set of edges. There
are three types of nodes, scenes (Vs), dialogues
(Vd), and characters (Vc). The edges represent
different relationships, Ess ⊆ Vs × Vs: Edges
between consecutive scenes, Esd ⊆ Vs × Vd:
Edges between scenes and dialogues occurring
in those scenes, Esc ⊆ Vs × Vc: Edges between
scenes and characters appearing in those scenes,
Ecd ⊆ Vc×Vd: Edges between characters and
dialogues spoken by those characters. Formally,
the graph construction is written as follows:

G = (Vs ∪ Vd ∪ Vc, Ess ∪ Esd ∪ Esc ∪ Ecd)
Scene Nodes: Vs = {si | si is a scene}
Each scene node si has an associated embed-
ding e(si) representing the scene description
text, derived from the sentence embedding
model (SE) (Reimers and Gurevych, 2019):
e(si) = SE(Scene Description(si)) The scenes
list is ordered according to the order in which the
scenes occur in the movie.
Dialogue Nodes: Vd = {dj | dj is a dialogue}
Each dialogue node dj has an associated em-
bedding e(dj), representing the dialogue text:
e(dj) = SE(Dialogue Text(dj))
Character Nodes: Vc = {ck | ck is a character}
The characters are initialised with zero embedding
whose dimension matches with the embedding
dimension of the sentence encoder.
Edges: The edges between the scenes
and other entities are defined as follows:
the scene-to-scene edges are given by
Ess = ((si, si+1) | si, si+1 ∈ Vs) the
scene-to-dialogue edges are defined as Esd =
((si, dj) | dj ∈ Vd, si ∈ Vs, dj occurs in scene si)
the scene-to-character edges are defined as Esc =
((si, ck) | ck ∈ Vc, si ∈ Vs, ck occurs in scene si)
and finally, the character-to-dialogue
edges are given by Ecd =
((ck, dj) | ck ∈ Vc, dj ∈ Vd, dj is spoken by ck).
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A movie’s CaD Graph consists of intricate
connections that represent the three-way relation-
ships between scenes, characters, and dialogues,
as illustrated in Figure 1. Adding sequential
links between scenes helps the model capture the
movie’s overall flow. The connections from scenes
to characters and dialogues to characters enable
the model to differentiate between characters and
understand their roles. We hypothesize that this
structure also helps the model infer a character’s
significance within the movie, making our graphs,
DiscoGraMS, character-aware.

4.2 The Proposed Model LGAT
We propose a novel late fusion-based model, LGAT,
which integrates the CaD Graph and the textual
content of movie scripts through a Graph Neural
Network (GNN) using graph attention with convo-
lutions and a Longformer Encoder-Decoder (LED)
(Beltagy et al., 2020) text encoder, as illustrated
in Fig 2. This combination generates the script’s
encoding, followed by a decoder that produces the
summary. A detailed explanation of the model’s in-
ternals is provided in Appendix Sec A due to space
limitations.

5 Results

We select the models LongT5 (Guo et al., 2022),
PEGASUS-X (Phang et al., 2023), and the Long-
former Encoder-Decoder (LED) model (Beltagy
et al., 2020), (See Table 2) as the baselines (in-
spiration for baselines are drawm from (Saxena
and Keller, 2024)) to compare with our proposed
model.

Model R-1 ↑ R-2 ↑ R-L ↑ BSp ↑ BSr ↑ BSf1 ↑
Baseline Models

Pegasus-X 16K 42.42 8.16 40.63 58.81 56.06 54.36
LongT5 16K 41.49 8.39 39.78 56.09 55.60 55.68
Longformer (LED) 16K 44.85 9.83 43.12 59.11 58.43 58.73

Proposed Model

LGAT (Ours) 49.25 13.12 34.61 80.68 82.36 81.51

Table 2: Comparison of Baseline Models and Proposed
LGAT Model on the test set. The results of the baselines
are referred to from (Saxena and Keller, 2024). Best
scores are bold. Second Best scores are underlined. ↑
Indicates higher values are better.

The proposed model has the following configu-
ration: LongFormer Encoder (LE) 4K + GATConv
(LGAT), Where LE (Beltagy et al., 2020), is the
longformer encoder. We use 4K context window

for LED only compared to 16K used in MovieSum
(Saxena and Keller, 2024) due to limited compute
resources (Appendix C) availability, The results for
this experiment can be obtained in Table 2.

As presented in Table 2, our proposed model,
LGAT, significantly outperforms all baseline mod-
els on both ROUGE and BERT score metrics. This
improvement can be attributed to the cues and pat-
terns provided by the CaD Graph, which capture
the overall essence of the movie plot. However,
we observe that for the ROUGE-L metric, LGAT
does not surpass the LED baseline, likely due to
the smaller context window used in our encoder
(4K vs. 16K).

5.1 Ablation Studies

The LE architecture, along with GATConv, has
proven to be suited for processing long sequences.
Following this, we run ablation studies on LGAT
to prove the effectiveness of our proposed architec-
ture of combining GATConv and LE. Specifically,
we train both the encoders decoupled and test them
on the test set. We compare the results against the
full model (LGAT) to prove the effectiveness of
the individual parts of the architecture, and hence
show how they individually contribute towards the
final result. To further strengthen our hypothesis
regarding the importance of incorporating charac-
ter information in the graph, we perform an addi-
tional ablation study. Specifically, we remove all
character-related nodes and edges from the graph
and evaluate the performance of the model in this
modified setup. This ablation isolates the impact
of character awareness in the graph structure and
provides insight into the contribution of character-
related information to the model’s effectiveness.
The results for this ablation study can be found in
Table 3. We observe that GNN-based CAD graph
encoding is very useful andcontributing more than
LED-based textual encoder. Moreover, it is proved
that character-awareness has a positive impact to-
wards the performance of the model.

Model ↑ R-1 R-2 R-L BSf1

LE 16.16 1.63 13.20 71.95
GATConv 43.60 8.91 28.70 79.07
LGAT (Without Characters) 45.99 10.78 30.61 80.31
LGAT (Full) 49.25 13.12 34.61 81.51

Table 3: Results of Ablation Studies in comparison to
our full model. Best Scores are bold. Second Best
Scores are underlined. ↑ Indicates Higher The Better
for all scores.
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6 Discussion

Our experiments on abstractive summarization of
movie screenplays (i.e., the process of generating a
plot summary given a screenplay) show that repre-
senting screenplays as graphs consisting of scenes,
dialogues, and characters holds a lot of promise for
movie summarization. To show how our character-
aware graphs capture the roles of different charac-
ters in the graph and represent them, we plot the ex-
tracted node embeddings from our model in Figure
3. First, the node embeddings of all the nodes in the
graph are extracted by passing the required movie
graph over the GNN part of the final trained model.
Next, the acquired node embeddings are filtered
so that they only contain the node embeddings of
the movie characters, and other node embeddings
such as those of scenes and dialogues are discarded.
Once the character node embeddings are extracted,
they are analyzed using Principal Component Anal-
ysis (PCA) to reduce their dimensionality while
preserving essential variance. We employ PCA
to project the high-dimensional embeddings into
a three-dimensional space, allowing for better vi-
sualization and interpretability. The transformed
embeddings are then clustered using the K-Means
algorithm, which groups characters into distinct
clusters based on their learned representations.

To further illustrate the relationships and roles
of different characters, we visualize the clusters in
a three-dimensional scatter plot, where each point
represents a character, and the color corresponds
to the assigned cluster through K-Means clustering.
This visualization enables us to observe meaningful
patterns in the character representations. Charac-
ters who frequently interact or share similar narra-
tive functions often appear closer together, whereas
those with distinct roles are more clearly separated.
The clustering also helps to reveal latent group-
ings, such as protagonists, antagonists, and sup-
porting characters, as also depicted in Figure 3.
This demonstrates how our approach successfully
captures narrative structures through graph-based
representation learning.

The effectiveness of our method in clustering
and analyzing character embeddings suggests that
our GNN-based approach learns informative rep-
resentations that reflect underlying narrative and
character dynamics.

Figure 3: Character Embeddings from the Movie: A
Nightmare on Elm Street 3: Dream Warriors. Sections
are annotated with the class of characters that is a ma-
jority within them.

7 Conclusion

Our approach outperforms quantitative results (ex-
cept R-L) reported in prior work on movie summa-
rization using the same dataset (Saxena and Keller,
2024). We attribute the better performance of our
system to the presence of richer graphs, and encod-
ing schemes. Specifically, we attribute the phenom-
enal improvement in BERT Score to the introduc-
tion of an attention layer to combine the encodings
of the chunks as discussed in Section A.1 and the
novel CaD Graph which enables the model to eas-
ily retain salient information which is validated by
the high BERT Scores. We suspect that the low
scores obtained in R-L are mainly due to the lower
context size model (LED 4K) due to a restriction
on the available compute resources. The model’s
(LED) low performance in isolation validates our
believes. Our results indicate that knowledge-based
representations of the text and plot structure help
deep learning algorithms.

We expect our approach to have implications
for other NLP problems like Question-Answering,
Genre Identification, and Saliency Detection. (Xu
et al., 2024) propose a system to represent narrative
text consisting of passages as nodes connected by
edges encoding cognitive relations between them.
In addition to mainstream engineering applications,
our graph representations can be deployed in sci-
entific studies of inferencing processes in narrative
comprehension by humans.

Limitations

Our graphs are devoid of co-reference resolution
strategies which can take insights from the referred
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characters and add crucial information about the
movie plot. In addition to this, we were inhibited
by our lack of compute resources, due to which
we were not able to load the LED 16K model to
encode movie scripts. This lack of compute re-
sources also limited our choice of architecture_dim
which is capped at 4K. This constraint potentially
impacts the Rouge-L scores, resulting in lower per-
formance. We were unable to conduct graph ab-
lations (specifically, the removal of character and
dialogue nodes) to evaluate their individual contri-
butions to the model’s performance. In future work,
we plan to address these.

Ethics Statement

Dataset: Even though metadata and summaries
of each movie are sourced from public domains
(wikipedia, imdb), privacy and copyright consider-
ations have been respected. Care has been taken so
no sensitive or personally identifiable information
is included. The movie scripts may reflect bias to
particular genres or cultural context which may
affect the behavior of the model.

Language Models: The paper includes the
usage of pre-trained language models for the task
of generating embeddings (section 4). These
models are susceptible to biases inherent in their
training data . As a result, any summaries produced
from our model should be subject to manual review
before being released.
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A Details of the Proposed Model

The constructed CAD graph is subsequently en-
coded using a Graph Attention Network (GATConv
in PyTorch Geometric 3 ) (Veličković et al., 2018).
This encoding process helps in capturing complex
relationships and contextual information inherent
in the graph structure. The resulting graph embed-
dings provide a rich representation of not only the
interconnections among scenes, characters, and di-
alogues, but also the information contained within
the scenes, and dialogues.
The choice of a GATConv was made by keeping in
mind that not all scenes, dialogues, or characters,
are equally important and should be included in
the summary. Thus, a convolution method which
attends differently to different nodes was an ideal
choice for this.

A.1 Movie Script Encoding:
We employ the longformer encoder to generate
embeddings for the textual content of the movie
script.
First, the entire script is divided into chunks, with
each chunk sized according to the maximum input
length the encoder can process.
Each chunk is then passed through the en-
coder, producing an encoding of shape
[chunk_size, max_tokens, encoding_dim], where
encoding_dim refers to the dimensionality of the

3https://pytorch-geometric.readthedocs.io/en/
latest/generated/torch_geometric.nn.conv.GATConv.
html
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encoder.
Finally, these embeddings are transformed into a
single embedding of shape [1, architecture_dim]
via a multi-headed self-attention layer (Vaswani
et al., 2023). Here, architecture_dim is a hyper-
parameter, as described in Appendix C, it also
represents the final embedding dimension for the
movie.
We hypothesize that by applying multi-headed
self-attention, the resulting compressed embedding
will effectively capture the most relevant parts of
the movie for the purpose of summarization.

A.2 Encoding Integration:

After obtaining the encodings from both the Graph
Encoder Model and the Text Encoder Model, we
perform a concatenation of these representations
and then pass it through another multi-headed
self-attention layer. This integration facilitates
an effective combination of features and relations
derived from the graph as well as the raw text, re-
sulting in a representation that contains both struc-
tural and linguistic information. This also allows
our model to give preference to certain features
and relations in specific cases. The combined en-
codings are then passed through a feed-forward
neural network. The aim here is to collapse the
dimension of the model from 2 ∗ architecture_dim
(obtained after concatenation), back to architec-
ture_dim. While doing this, we also hypothesise
that the model prunes all the values with low im-
portance after the concatenation, and only keeps
the features and relations of high importance for
the decoding part.

A.3 Decoding

We use the standard Transformer Decoder archi-
tecture described in (Vaswani et al., 2023) as the
decoding architecture to facilitate the generation
of movie summaries from the learned embeddings.
The details of implementation of this decoder can
be found in the Appendix C.

B Results and Findings

In this section, we provide the detailed results ob-
tained during our experiments with DiscoGraMS.

B.1 Evaluation Metrics

To assess the performance of our proposed mod-
els in generating summaries, we employ two
widely recognized evaluation metrics: ROUGE

and BERT Scores. These metrics provide valu-
able insights into the quality and effectiveness of
the generated summaries in comparison to the ref-
erence (gold) summaries. More details about the
evaluation metrics can be found in Appendix E

C Implementation Details

We used a single NVIDIA RTX 6000 with 50 GB
VRAM to train and test our model. The VRAM
of the GPU was not enough to load models with
a higher context size than 4K. 20 Epochs on the
train set take 42 hours to complete, while testing
on all 20 epochs takes another 4 hours. The hyper-
parameters used while training are as follows:

- Number of Epochs: 20
- Learning Rate: 0.00001
- Architecture Dimension: 4096
- Sentence Encoder (SE) Dimension: 768
- Longformer Encoder (LE) Dimension: 1024
- Dropout in Attention Layer of Encoder: 0.15
- Number of heads in Encoder side Attention:

8
- Dropout in Attention of Encoding Integration:

0.15
- Number of heads in Attention of Encoding

Integration: 8
- Decoder Number of Heads: 8
- Decoder Heads: 6
- Internal Dimension of Decoder: 8192
- Max Sequence Length of the Decoder: 2284

D Example of a CaD Graphs from the
Dataset.

In this section, we provide real graphs that we ob-
tain from the dataset used. We visualise these
graphs with the help of gephi 4. Through these
examples, we aim to demonstrate our effective
character-aware graph construction method and
how it helps the model identify the salient char-
acters in the network and the roles that they play.
This can be observed by the high density of edges
around pivotal characters in the movie. Naturally
(or by design), the model will tend to give more im-
portance to these nodes and their connected nodes,
deeming them to salient.
- Example graph of the movie 8MM from 1999 can
be seen in Figure 4
- Example graph of the movie The Iron Lady from
2011 can be seen in Figure 5

4https://gephi.org/
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- Example graph of the movie Adventureland from
2009 can be seen in Figure 6

E Evaluation Metrics

E.1 ROUGE Scores

ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) Scores (Lin, 2004) are a set of met-
rics used to evaluate automatic summarization and
machine translation by comparing the overlap of
n-grams between the generated summaries and the
reference summaries. We utilize three variants of
ROUGE scores:

- ROUGE-N: This measures the overlap of n-
grams (where n can be 1, 2, or higher) between the
generated summary and the reference summaries.
Specifically, ROUGE-1 (Referred to as R-1 Later)
calculates the overlap of uni-grams, while ROUGE-
2 (Referred to as R-2 Later) evaluates the overlap
of bi-grams.

- ROUGE-L: This metric assesses the longest
common sub-sequence between the generated and
reference summaries. It captures the fluency of the
summary and provides insights into its coherence
by considering the order of the words. (This is
Referred to as R-L Later)

Higher ROUGE scores indicate better alignment
with the reference summaries.

E.2 BERT Scores

BERT Scores (Zhang* et al., 2020) leverage con-
textual embeddings derived from the BERT model
(Devlin et al., 2019) to evaluate the quality of gen-
erated summaries. Unlike traditional n-gram-based
methods, BERT scores take into account the se-
mantic similarity between the generated and refer-
ence summaries. BERT Scores are usually reported
as:

- BERT Score Precision (BSp): It focuses on the
accuracy of the generated content.

- BERT Score Recall (BSr): It emphasizes com-
pleteness in capturing relevant content.

- BERT Score F1 Score (BSf1): It combines
both metrics to provide a balanced assessment of
summary quality

By utilizing both ROUGE and BERT scores, we
can gain a well-rounded understanding of how
our proposed models perform in terms of both
surface-level text overlap and deeper semantic
alignment with gold summaries. This dual
approach allows for a more robust evaluation of

the generated summaries, ensuring that they not
only contain relevant information but also maintain
coherence and fluency.
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Figure 4: Tom being the Main Protagonist of the movie, naturally has the highest density of edges and is one of the
central figures in the graph. This is expected as most of the movie revolves around him. Additionally, a high density
can also be observed around the villains such as Dino.
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Figure 5: Margaret is the main protagonist of this movie and thus naturally has the highest concentration of edges
around her. Additionally, Denis and Carol, her husband and daughter seem to be decently dense as well as they are
the immediate family of the main protagonist and they too play an important role in the movie. Owing to the nature
of the movie, there is no clear antagonist, and thus, no other major concentration region as well.
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Figure 6: James and Em are the Main Protagonists in the movie, who have a relationship that has bloomed as their
summer jobs started at the amusement park Adventureland. Mike is not a traditional villain, but complicates the
protagonists relationship as he has an affair with Em. Thus, all three of them have high density edge connections as
they contribute to the main density of the movie.
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