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Abstract

This paper investigates whether large language
models (LLMs) utilize numerical attributes en-
coded in a low-dimensional subspace of the
embedding space when answering questions
involving numeric comparisons, e.g., Was Cris-
tiano born before Messi?. We first identified,
using partial least squares regression, these sub-
spaces, which effectively encode the numerical
attributes associated with the entities in compar-
ison prompts. Further, we demonstrate causal-
ity, by intervening in these subspaces to manip-
ulate hidden states, thereby altering the LLM’s
comparison outcomes. Experiments conducted
on three different LLMs showed that our results
hold across different numerical attributes, indi-
cating that LLMs utilize the linearly encoded
information for numerical reasoning.

1 Introduction

Language models (LMs) store large amounts of
world knowledge in their parameters (Petroni et al.,
2019; Jiang et al., 2020; Roberts et al., 2020; Heinz-
erling and Inui, 2021; Kassner et al., 2021). While
prior work has evaluated parametric knowledge
mainly via behavioral benchmarks, more recent
work has analyzed how knowledge is represented in
activation space, for example, localizing relational
knowledge to specific layers and token representa-
tions (Meng et al., 2022; Geva et al., 2023; Merullo
et al., 2024) or identifying subspaces that encode
numeric properties such as an entity’s birth year
(Heinzerling and Inui, 2024). However, analysis
of LM-internal knowledge representation has been
limited to simple factual recall, e.g., for queries like
“When was Cristiano born?” (Answer: 1985) or
“When was Messi born?” (Answer: 1987). If and
how the mechanisms responsible for simple factual
recall also participate in more complex queries, e.g.,
“Is Cristiano older than Messi?”, is not understood
so far. A possible mechanism by which an LLM
answers this query is a multi-step process consist-
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Figure 1: Summary of our approach. We extract con-
textualized numeric attribute activations and then train
k-components PLS model on the activations to predict
their values and then use the first component of the PLS
model to do an intervention at the last token of the sec-
ond entity in the logical comparison.

ing of first recalling the respective birth years of
the two entities, comparing the two years, and then
selecting a corresponding answer.

Herein, we focus on LLM’s ability of arithmetic
operations (Dehaene, 2011). The LLM’s ability to
handle numbers has been discussed after the ad-
vent of pre-trained language models (Spithourakis
and Riedel, 2018; Wallace et al., 2019). With mod-
ern LLMs such as the LLaMA family (Touvron
et al., 2023), Heinzerling and Inui (2024) shows
that LLMs map numerical attributes such as (Cris-
tiano, born-in, 1985) and (Messi, born-in, 1987) to
low-dimensional (Linear) subspaces and prove that
those subspaces are used during knowledge extrac-
tion. However, it is not clear whether the LLMs
use those subspaces to solve logical reasoning such
as the relation (Cristiano, born-before, Messi).

In this study, we tackle the research question:
do LLMs leverage the linear subspace of entity-
numerical attributes when solving numerical
reasoning tasks? We investigate whether the lin-
ear subspace is indeed used in the logical reasoning
tasks. We first show the LLMs’ capability to solve

550



Experiment Question Response

Extraction
Birth year of Albert Einstein? 1879
What is Isaac Newton’s year
of death?

1727

Latitude of Cairo? 30.04° N

Reasoning
Einstein born before Newton? No
Einstein died before Newton? No
Is Cairo’s latitude higher than
Jerusalem’s?

Yes

Table 1: Samples from Extracting Information and Com-
parisons Experiments

the numerical reasoning tasks from the viewpoint
of behavioral observation: testing the performance
of the reasoning task with in-context learning (§3).
We then examine the representations of LLMs (§4).
We identify the linear subspace corresponding to
the numerical attributes with partial least-squares
(PLS (Wold et al., 2001)) and intervene in the rep-
resentation to test whether the model utilizes the
linearly represented information (see Figure 1).

The experimental results on the three numerical
properties (the birth/death year of a person and the
latitude of location) and on three LLMs (LLama3
8B (Dubey et al., 2024), Mistral 7B (Jiang et al.,
2023), and Qwen2.5 7B (Team, 2024) all instruc-
tion based models) demonstrate that LLMs lever-
age the numerical information represented in the
linear subspace for the reasoning tasks.

2 Outline of Experiments

This section outlines our methodology to investi-
gate the process of LLMs to solve the numerical
reasoning.

2.1 Model and Dataset

In this work, we focus on the three numerical prop-
erties: the birth years of person entities, the death
years of person entities, and the latitudes of loca-
tion entities. Table 1 exemplifies the questions and
expected responses for both tasks. For the knowl-
edge extraction task, we create the question-answer
pairs by extracting 5,000 entities alongside their
numerical attributes from Wikidata (Vrandečić and
Krötzsch, 2014). After filtering out entities that the
LLM does not know (§3.1), we created the 5,000
questions about numerical reasoning that include
two entities each. For all experiments, we used
Llama3-8B-instruction following model (Dubey
et al., 2024) as the LLM and later validate our find-
ing on two additional models (see § 4.3).

2.2 Design of Experiments
We conducted the experiments in two phases to
investigate the LLM’s ability to utilize the linear
subspace for numerical reasoning.

Data Pre-processing (§3): We began by evaluat-
ing the LLM’s ability to handle both knowledge ex-
traction and numerical reasoning tasks by inputting
questions and evaluating its response. To focus the
subsequent experiments on entities for which the
LLM has reliable numerical knowledge, we filtered
out any entities that the LLM could not answer
correctly during this initial behavioral experiment.

Internal Representation Experiments (§4): In
the second phase, we examined the inner work-
ings of the LLM when solving the knowledge ex-
traction (§4.1) and the numerical reasoning (§B.1).
Here, we focus on analyzing the hidden state of
each entity representation at a particular layer for
knowledge extraction. For the case of numerical
reasoning, we investigated the activations of the
last token’s representation. We denote the hid-
den state of the i-th input at the l-th layer as h(l)i .
To investigate whether knowledge of numerical
attributes is stored in low-dimensional subspaces,
we applied PLS (Wold et al., 2001) for each rep-
resentation (Heinzerling and Inui, 2024). Partial
Least Squares (PLS) offers an alternative to Princi-
pal Component Analysis (PCA) for dimensionality
reduction, especially when predicting one set of
variables from another. PLS seeks to maximize
the covariance between the input matrix X and the
response matrix Y by projecting both onto a latent
space. Through PLS, we identified components
that represent the linear structure of each numeri-
cal attribute, allowing us to analyze how the LLM
might utilize these subspaces for reasoning. To
further test this, we intervened in the hidden state
h
(l)
i by incorporating the 1st PLS component v, as

follows:
h
(l)
i ← h

(l)
i + α

v

∥v∥ , (1)

where α is a hyperparameter derived from the first
PLS component, and ||v|| is the Euclidian norm
(L2-norm) of the vector v. Intuitively, this interven-
tion edits the numerical attribute captured by the
LLM. For instance, if the numerical information
(Cristiano, born-in, 1985) is shifted to (Cristiano,
born-in, 2020), an LLM that genuinely relies on
a linear subspace for reasoning would adjust its
interpretation accordingly, reflecting the change in
its responses (Figure 1).
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3 Data Pre-processing

The purpose of this experiment is to assess whether
the LLM possesses knowledge of the numerical at-
tributes of the entities prepared for this study, and to
evaluate its capability to perform numerical reason-
ing tasks. Additionally, by conducting behavioral
experiments focused on information extractions,
we aim to filter out entities for which LLM lacks
sufficient knowledge, therefore creating a refined
dataset to be used in the subsequent numerical rea-
soning tasks. For both tasks, extraction and reason-
ing, we prepared ten distinct prompts. The prompts
that demonstrated the best performance in prelimi-
nary tests were selected for further investigation of
the internal representations (§4). Appendix 4 lists
the complete list of prompts in the experiments.

3.1 Knowledge Extraction

To assess the LLM’s knowledge extraction of en-
tity numerical attributes, we conducted a zero-shot
question-answering task, in which we asked direct
questions about numerical attributes for various en-
tities. The results summarized in the top half of
Table 2, demonstrate that the LLM correctly an-
swered at least 67% of the prepared questions with
the best-performing prompt for each task.

3.2 Numerical Reasoning

For the numerical reasoning task, we created 5,000
question samples using a pair of unique entities,
selected after filtering out those that the LLM could
not answer correctly in §3.1. Each question was
designed to prompt the model to perform numerical
reasoning, with binary (Yes/No) answers indicating
correctness. The results, shown in the bottom half
of Table 2, reveal varying levels of accuracy across
different prompts. The LLM achieved around 75%
for birth/death year prediction, but only 56% for
latitude-related questions, suggesting differences
in task difficulty.

4 Internal Representation Experiments

This experiment aims to train a PLS model to iden-
tify low-dimensional linear subspaces within the
activation space, which could potentially be effi-
cient in predicting numerical attributes for various
entities. We then demonstrated the causal relation-
ship within these subspaces by implementing tar-
geted interventions which shows that indeed there
is a causal effect between the identified linear sub-
spaces and the logical comparison answers by the

Prompts

Task 1 2 3 4 5 6 7 8 9 10

BP 66.0 70.0 67.4 66.2 72.3 67.6 66.9 66.6 68.2 71.3
DP 63.4 65.5 61.5 61.5 67.0 65.0 63.3 60.1 61.7 66.1
LP 47.6 72.0 69.0 70.0 69.0 68.5 61.5 69.0 69.0 66.6

BC 57.0 56.6 75.6 67.0 62.5 50.0 74.5 57.0 71.7 62.1
DC 53.5 50.3 74.8 58.7 50.5 50.2 50.3 61.8 50.1 56.6
LC 53.0 56.0 50.0 37.8 55.0 51.2 55.0 50.0 50.0 50.2

Table 2: Experiments 1 and 2’s Results for three tasks,
and 10 different prompts for each. The accuracy of exact
matching is reported, except for the Latitude task, where
we relaxed the predicted and ground truth to be rounded
to the integer part. BP: Birth Prediction, DP: Death Pre-
diction, LP: Latitude Prediction, BC: Birth Comparison,
DC: Death Comparison, LC: Latitude Comparison

model. We validate our hypothesis by running three
models on three numerical attributes.

We also fitted another PLS model to evaluate
Yes/No comparison reasoning related to these nu-
merical attributes (see appendix B.1).

4.1 Prediction of numerical attributes with
PLS

The training procedure consists of the following
steps: (1) we first filter out the entities that the
model predicted their comparison incorrectly (Sec-
tion 3.2). (2) We feed a context vector that contains
the comparison prompt (e.g., Was Cristiano born
prior to Messi?) (3) We extract the hidden states
of the last token of each entity from the LLM’s
hidden states at a particular layer. (4) These hidden
states are then used to train a PLS model with a 5
component to predict the corresponding numerical
attribute of each entity based on their correspond-
ing model representation (activations). Figure 2
depicts the results achieved by five components
PLS model, measured by the coefficient of deter-
mination R2. The goodness of fit exceeds 0.8 for
all measured properties, indicating that the infor-
mation encoded in these attributes can be extracted
with low-dimensional (linear) subspaces.

4.2 Intervention using PLS Components
Vector

While the previous experiments with the PLS
model establish correlation, they do not demon-
strate causality. For this purpose, we perform in-
terventions at a particular token within a desig-
nated model layer, chosen based on the correla-
tion strength identified in predicting numerical at-
tributes from each task (Section 4.1). We fix the
first entity and intervene at the last token of the
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(c) Latitude Attribute

Figure 2: The R2 score of predicting entity’s numerical attributes, using a 5-Component PLS model.
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(c) Latitude Attribute

Figure 3: The effect of the intervention—specifically, the ratio of flipped answers after performing intervention—was
analyzed within the identified model subspace of each layer and compared to the effects observed in a randomly
selected direction sampled from a normal distribution.

second entity. This token’s hidden state is then
updated by a scaled version of the first component
direction from the PLS model to the original hidden
state h

(l)
i as illustrated in equation (1).

In Figure 3 we compare the effect of our inter-
vention per layer against a random vector from the
normal distribution. It is measured by the Effect of
Intervention metric (EI) (equation 2), f and f ′ are
the clean and patched models.

EI =
1

N

N∑

i=1

I [f(xi) ̸= f ′(xi)] (2)

The results clearly demonstrate the superiority of
our intervention method, particularly evident in
Subfigures a and b. In subfigure c, related to the
Latitude numeric attribute, the gap between our
method and the baseline narrows, suggesting that
the direction may not be significant for this at-
tribute. This could reflect the mode’s nearly ran-
dom response in the behavior experiment (Sec-
tion 3.2). Additionally, the intervention’s effect
is notable only in the first ≈ 50% of the model
layers, after which it diminishes to zero, aligned
with prior research on inference time theory. We
also tested the generalization of our approach on
unseen samples, as shown in appendix, Figure 9
and additional models (see § 4.3).

0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Go
od

ne
ss

 o
f f

it 
(R

2 
Sc

or
e)

Train R2
Test R2

Figure 4: R2 score of predicting entity’s birth years
attributes, using a 5-Component PLS model trained on
Mistral 7B Instruct activations.
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Figure 5: R2 score of predicting entity’s birth years
attributes, using a 5-Component PLS model trained on
Qwen2.5 7B Instruct activations.
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Figure 6: The effect of the intervention(i.e. the ratio of
the flipped answers) in the identified subspace in each
layer of the Mistral 7B Instruct model, compared to a
random direction from a normal distribution.
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Figure 7: The effect of the intervention(i.e., the ratio of
the flipped answer) in the identified subspace in each
layer of the Qwen2.5 7B instruct model, compared to a
random direction from a normal distribution.

4.3 Experiments on Additional Models

To further validate our hypothesis generalization,
we run the same experiments on two additional
language models for the birth property. Those ad-
ditional models are Mistral-7B-intruct (Jiang et al.,
2023) and Qwen2.5-7B-Instruct (Team, 2024).

PLS models trained on models’ activation have
crossed an R2 score of 0.8 suggesting that the infor-
mation encoded in those models’ activations can be
extracted using low-dimensional (linear) subspaces
(see Figure 4 and Figure 5).

The Effect of Intervention (EI) results shown in
Figures 6 and 7 of the Mistral 7B Instruct and
Qwen-2.5 7B Instruct models, respectively, demon-
strate the same behavior seen in the previous ex-
periments. For the EI of Mistral, we can see that
the peak was around the 11th layer and then contin-
ued to decrease until it finally disappeared around
the 16 layer (Figure 6). When compared to other
models, Qwen2.5 has shown two clear differences.
First, we can observe two peaks for the EI with
almost the same value of the EI, early around the
third layer and later one around layer 12, while
other models have shown only one peak. Second,

Task Model Prompts

1 2 3 4 5 6 7 8 9 10

BP
Mistral 7B 72.65 72.63 74.68 75.36 73.64 75.44 73.86 74.81 72.90 73.56
Qwen2.5 7B 40.82 34.68 33.95 34.59 33.95 36.72 36.96 32.61 39.07 34.32

BC
Mistral 7B 53.60 64.84 64.02 53.10 61.88 57.66 53.00 67.06 64.68 50.00
Qwen2.5 7B 29.20 58.10 38.88 26.22 49.76 40.54 6.20 3.84 9.16 6.98

Table 3: Exact Matching Accuracy of Mistral 7B and
Qwen2.5 7B Models on Birth Date Numerical property
extraction and Comparison Tasks Across Prompt Vari-
ations. All models are instruction-based models. BP:
Birth Prediction and BC: Birth Comparison tasks are
evaluated.

unlike other models, Qwen2.5 7B kept bouncing
around almost the same EI values and suddenly
become None at around layer 16 (Figure 7). One
reason that might explain the difference between
Qwen2.5 7B and other models, is that Qwen2.5
7B uses only 28 layers, while other models in the
experiments are formed of 32 layers.

5 Conclusion

In this research, we empirically demonstrate that
the model answers numerical reasoning questions,
such as "Was Cristiano born before Messi?" using
a two-step process. First, it extracts numerical at-
tributes for each entity from a linear subspace. The
second step involves utilizing these linear direc-
tions to answer the logical question. Specifically,
subspaces are identified through PLS regression,
where directions in low-dimensional subspaces of
the activation space encode numerical property in-
formation. We illustrate this approach using three
numerical attributes: Birth, Death, and Latitude
across three LLMs. The reasoning step is validated
using causal interventions along the direction of the
first component of the PLS model, where these in-
terventions successfully alter the model’s answers.

6 Ethical Statement

Our work adheres to the ACL Code of Ethics and
maintains a high standard of ethical research prac-
tice. We ensure that our methodology, data usage,
and model development follow responsible AI prin-
ciples, and that there are no ethical violations in
our study. Our research does not involve the use
of sensitive or private data, nor does it contribute
to any potential harm or bias propagation. We re-
main committed to transparency, fairness, and the
responsible application of large language models
in line with ACL’s ethical guidelines.
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7 Limitations

This work has several limitations we plan to address
in future work:

• Error Analysis: While the experimental re-
sults demonstrate the model’s ability to map
numerical properties to low-dimensional sub-
spaces and use them for reasoning tasks, we
have not conducted a thorough error analy-
sis to understand the model’s types of mis-
takes. Identifying patterns in erroneous out-
puts could guide improvements in both model
design and training.

• Limited Scope of Numerical Attributes: Our
experiments are restricted to three types of
numerical attributes: birth year, death year,
and geographic latitude. It remains unclear
whether our findings extend to a broader range
of numerical properties, such as financial data,
time intervals, or other continuous variables.
We plan to investigate this in future work.

• Intervention Hyperparameter Sensitivity: The
success of the intervention experiments relies
heavily on the choice of the scaling factor α
applied during the intervention. We have not
explored the full sensitivity of the model’s
performance to this hyperparameter, which
could introduce biases or instability in real-
world applications.
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A Background

Generative-Transformer Language Models.
Transformer models, particularly in generative con-
texts, have revolutionized natural language pro-
cessing tasks due to their self-attention mech-
anisms. These models map an input se-
quence x1, x2, . . . , xn to a corresponding sequence
y1, y2, . . . , ym using multi-layer perceptron, and
multi-head self-attention layers, which compute at-
tention scores based on the query-key-value system.
Mathematically, for a given layer l, the attention
output Al is computed as:

Al = softmax
(
QKT

√
dk

)
V (3)

where Q, K, and V are the query, key, and value
matrices, and dk is the dimension of the keys. By
stacking multiple layers of these attention mecha-
nisms and multi layer percptron, transformers ef-
ficiently capture long-range dependencies in text.
The autoregressive nature of generative transform-
ers allows them to generate coherent text sequences
by predicting the next token based on previous to-
kens.

Representation Analysis of Transformer Lan-
guage Models. Representation analysis of trans-
formers has revealed important insights into how
these models store and manipulate information
across layers. Research has shown that transformer
language models develop complex, hierarchical
representations that can be understood by analyzing
the attention patterns and hidden states at different
layers (Niu et al., 2024). For example, studies have
found that early layers capture syntactic structures,
while deeper layers capture more semantic infor-
mation (Hernandez et al., 2023). Recent work also
uses probing techniques to analyze how specific
linguistic features are represented, contributing to
a growing understanding of model interpretability
(Vulić et al., 2020).

Intervention and Activation Patching. One
technique that has gained attention in the analy-
sis of neural models, including transformers, is
activation patching. This involves replacing acti-
vations in a specific layer with those from another
input in order to study the effect of those activa-
tions on the final output. By intervening at differ-
ent points within the model, researchers can better
understand how information is processed and trans-
formed throughout the network. This method has

been useful in dissecting how specific neurons or
attention heads contribute to a model’s behavior,
allowing for targeted interventions that shed light
on model interpretability.

Linear Hypothesis in Representation. The lin-
ear hypothesis posits that the representations
formed by transformer models are linearly sepa-
rable. This means that complex patterns, such as
syntactic and semantic categories, can be distin-
guished by applying a linear transformation to the
learned embeddings (Park et al., 2023). The key
idea here is that the hidden representations of differ-
ent tasks or features align in such a way that linear
classifiers can achieve good performance with min-
imal processing, a phenomenon observed across
a range of neural architectures. Connecting this
with the previous analysis, it appears that trans-
formers structure their internal space in a way that
is amenable to linear separation of features, thus
facilitating tasks such as classification and regres-
sion.

Partial Least Squares (PLS). Partial Least
Squares (PLS) offers an alternative to Principal
Component Analysis (PCA) for dimensionality re-
duction, especially when predicting one set of vari-
ables from another. PLS seeks to maximize the
covariance between the input matrix X and the
response matrix Y by projecting both onto a la-
tent space. The key idea is to find latent variables
T = XW and U = YC that best capture this
covariance.

The predictive relationship between X and Y is
then modeled as:

Ŷ = XWPT , (4)

where Ŷ is the predicted output matrix, P are the
loadings, and the quality of this prediction can
be assessed using the coefficient of determination
R2. The R2 value measures how well the model
explains the variance in Y, where higher values
indicate a better fit between predicted and actual
outputs.

PLS is preferred over regression when predictors
(or columns of X) are not independent or when the
number of predictors exceeds the number of ob-
servations, making it suitable for high-dimensional
data. For transformers, applying PLS helps un-
cover how input embeddings influence predictions
by focusing on the shared variance between input
features and outputs (Heinzerling and Inui, 2024).
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B Related Work

After the appearing of pre-trained language models
such as ELMo (Peters et al., 2018), BERT (Devlin
et al., 2019), and GPT (Radford and Narasimhan,
2018), researchers have had interests in the numer-
ical capability of language models. (Spithourakis
and Riedel, 2018) evaluates the pre-trained lan-
guage models from viewpoints of the output capa-
bility of numerical tokens, the behavioural side of
the numeracy. (Wallace et al., 2019) focused on
the numerical knowledge stored in the embeddings,
which is the internal side of the numeracy. Zhang
et al. (2024) investigated the internal working of
the recent large language models when processing
arithmetic calculation.

Knowledge of entities such as named entity has
also been payed attention to by many researchers.
Considering the pre-trained language models as a
knowledge base (Petroni et al., 2019; Jiang et al.,
2020), behavioral (Shin et al., 2020) and inter-
nal (Meng et al., 2022; Dai et al., 2022) analysis
have been studied.

With much larger scale of language models such
as GPT3 (Brown, 2020) and LLaMA (Touvron
et al., 2023) and the technique of in-context learn-
ing, the capability of reasoning acquired by the lan-
guage models has started to be discussed. (Merullo
et al., 2024) examined the internal working of lan-
guage models when solving the reasoning task of
the entity-entity relation such as (Paris, capital-of,
France). Heinzerling and Inui (2024) provides a
deeper observation of the reasoning of the entity-
numeric relation such as (Dijkstra, born-in, 1930).
They reveal that the entity-numeric relations are
stored in the language models’ representation as
keeping their monotonic structure. Following this
work, we further dive into the numerical reasoning
that requires the extraction of the entity-numeric
knowledge and the comparison of the two numeri-
cal information such as (Bellman, born-before, Di-
jkstra).

B.1 Logical Comparison with PLS

In this experiment, we feed the entire context vec-
tor containing a comparison into the model and
extract the last hidden state of the last token for
each comparison sample. We train a PLS model on
these activations to predict the comparison results
(i.e. Yes or No). We aim to make sure that the
Yes/No task is predictable from model activations
using a low-dimensional (linear) subspace. Fig-

ure 8 illustrates the accuracy of the 5-components
PLS model in predicting the comparison results
giving the model activations. The model shows
near-perfect performance of the Birth and Death
tasks, while less robust on the Latitude task. This
outcome is consistent with findings from the Be-
havioral experiments in Section 3.2.
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(c) Latitude Attribute

Figure 8: The accuracy of predicting Yes/No in a comparison task of numerical attributes, using a 5-Component
PLS model.
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(a) Birth intervention
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(b) Death intervention
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(c) Latitude

Figure 9: Intervention graphs for out-of-distribution data samples on birth, death, and latitude tasks.
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Birth Death Latitude
Did {entity_x} come into the
world earlier than {entity_y}?
Answer with Yes or No.

Did {entity_x} die before {en-
tity_y}? Answer with Yes or
No.

Is {entity_x} located at a higher
latitude than {entity_y}? An-
swer Yes or No.

Is {entity_x}’s birthdate before
{entity_y}’s? Respond with Yes
or No.

Did {entity_x} pass away ear-
lier than {entity_y}? Respond
with Yes or No.

Is {entity_x} farther north than
{entity_y}? Answer Yes or No.

Was {entity_x} born prior to
{entity_y}? Output only Yes or
No.

Was {entity_x}’s death prior to
{entity_y}? Provide only Yes or
No.

Does {entity_x} have a higher
latitude value than {entity_y}?
Answer Yes or No.

Did {entity_x} enter life before
{entity_y}? Answer with Yes or
No.

Did {entity_x} pass on before
{entity_y}? Answer Yes or No.

Comparing latitudes, is {en-
tity_x} north of {entity_y}? An-
swer Yes or No.

Was {entity_x}’s birth earlier
than {entity_y}’s? Output only
Yes or No.

Did {entity_x} die first com-
pared to {entity_y}? Respond
only with Yes or No.

In terms of latitude, is {en-
tity_x} above {entity_y}? An-
swer Yes or No.

Was {entity_x} born first com-
pared to {entity_y}? Respond
with Yes or No.

Was {entity_x}’s death earlier
than {entity_y}’s? Answer with
Yes or No.

Is the latitude of {entity_x}
greater than the latitude of {en-
tity_y}? Answer Yes or No.

Is {entity_x} older than {en-
tity_y}? Reply only with True
or False.

Did {entity_x} precede {en-
tity_y} in death? Reply only
with True or False.

Geographically, is {entity_x} at
a more northern latitude than
{entity_y}? Answer Yes or No.

Did {entity_x} precede {en-
tity_y} in birth? Respond only
with True or False.

Did {entity_x} pass before {en-
tity_y}? Respond only with
True or False.

Does {entity_x} have a more
northerly latitude compared to
{entity_y}? Answer Yes or No.

Did {entity_x} arrive before
{entity_y}? Answer only with
True or False.

Did {entity_x} die earlier than
{entity_y}? Answer only with
Yes or No.

Is {entity_x} positioned at a lat-
itude north of {entity_y}? An-
swer Yes or No.

Is {entity_x} senior to {en-
tity_y}? Reply only with Cor-
rect or Incorrect.

Did {entity_x} pass away first
compared to {entity_y}? Reply
with Correct or Incorrect.

Considering only latitude, is
{entity_x} more northward than
{entity_y}? Answer Yes or No.

Table 4: Comprehensive list of prompts for our three tasks: for Birth, Death, and Latitude
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