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Abstract

Knowledge editing has become a promising
approach for efficiently and precisely updat-
ing knowledge embedded in large language
models (LLMs). In this work, we focus on
Same-Subject Editing, which involves mod-
ifying multiple attributes of a single entity to
ensure comprehensive and consistent updates
to entity-centric knowledge. Through prelimi-
nary observation, we identify a significant chal-
lenge: Current state-of-the-art editing methods
struggle when tasked with editing multiple re-
lated knowledge pieces for the same subject.
To address the lack of relevant editing data for
identical subjects in traditional benchmarks, we
introduce the S2RKE (Same-subject Related
Knowledge Editing) benchmark. Our exten-
sive experiments reveal that only mainstream
locate-then-edit methods, such as ROME and
MEMIT, exhibit "related knowledge perturba-
tion," where subsequent edits interfere with
earlier ones. Further analysis reveals that these
methods over-rely on subject information, ne-
glecting other critical factors, resulting in re-
duced editing effectiveness.

1 Introduction

The dynamic nature of real-world knowledge ne-
cessitates efficient methods for updating specific
facts in large language models (LLMs) (Achiam
et al., 2023; Touvron et al., 2023) without com-
promising their overall performance. Knowledge
editing(a.k.a., model editing) (Yao et al., 2023) has
emerged as a promising solution to address this
challenge, enabling targeted updates to model pa-
rameters without requiring full retraining. Among
existing methods, locate-then-edit methods, such
as ROME (Meng et al., 2022a) and MEMIT (Meng
et al., 2022b), have shown effectiveness in making
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Figure 1: Comparison of performance on Different and
Same-Subject Editing. (a) Editing individual knowl-
edge pieces for distinct subjects, "James" and "Messi,"
results in excellent performance. (b) Editing two related
knowledge pieces for the same subject, "James," leads
to poor performance.

precise modifications to Transformer layer param-
eters (Vaswani, 2017). However, their broader ap-
plicability across diverse editing scenarios remains
insufficiently explored.

In particular, Same-Subject Editing, modifying
multiple attributes of a single entity, plays a criti-
cal role in ensuring comprehensive and consistent
updates to entity-centric knowledge. As shown in
Figure 1, an entity like "James" may require simul-
taneous edits to attributes such as "isCitizenOf,"
"playsFor," and others. This process refines the en-
tity’s representation by resolving attribute conflicts
and synchronizing interdependent facts. Despite its
significance, same-subject editing has largely been
overlooked in existing research.

Through preliminary observations, we identify
an unusual failure: Some top-performing editing
methods struggle to edit multiple related knowl-
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Figure 2: The results of sequential-editing by three different schemes on GPT-J using MEMIT, comparing five
evaluation metrics. The values of Score(S), Efficacy Success(ES) and Paraphrase Success(PS) always decreased
with the subject density, but Neighborhood Success(NS) and Perplexity(PPL) remained unchanged.

edge pieces for the same subject. As illustrated in
Figure 1, model editors perform well when editing
individual knowledge pieces for different subjects,
such as "James" and "Messi" (Figure 1a). How-
ever, when tasked with editing two related pieces of
knowledge for the same subject, "James," these edi-
tors become significantly less effective (Figure 1b).
This observation raises two key questions:

• Is this failure a common issue across different
LLMs and editing methods?

• What causes the failure when editing multiple
related knowledge pieces about same subject?

Existing benchmarks, such as COUNTERFACT
(Meng et al., 2022a), lack sufficient examples of
same-subject editing, making it difficult to explore
the underlying mechanisms of this failure. To ad-
dress this gap, we introduce the S2RKE (Same-
subject Related Knowledge Editing) benchmark,
which associates each subject with multiple related
edits. We systematically evaluate various editing
methods on LLMs of different sizes using S2RKE,
applying both sequential-editing and batch-editing.
Surprisingly, the results show that only mainstream
locate-then-edit methods, such as MEMIT (Meng
et al., 2022b), fail to effectively update multiple
related information for the same subject. Moreover,
our in-depth analysis reveals that this failure occurs
because subsequent edits interfere with previous
ones, a phenomenon we term "related knowledge
perturbation."

Furthermore, we find that locate-then-edit meth-
ods exhibiting "related knowledge perturbation"
update the weight matrix of the MLP module by
calculating key-value pairs. Specifically, the key is
derived from the input of the subject’s last token
in the MLP module’s down-sampling layer. Our
experiments conclude that the perturbation arises
from an over-reliance on subject information dur-
ing editing. When multiple related pieces of knowl-
edge share the same subject, the calculated keys
remain highly similar. As a result, subsequent edits

interfere with earlier ones, diminishing the overall
effectiveness of the editing process.

In essence, our main contributions are as follows:
(1) We propose the S2RKE benchmark for Same-
Subject Editing and highlight the issue of "related
knowledge perturbation." (2) We demonstrate that
locate-then-edit methods fail to update multiple
related facts for the same subject due to an over-
reliance on subject-specific information.

2 Preliminary

2.1 Knowledge Editing in LLM
Autoregressive, decoder-only large language mod-
els (LLMs) process a token sequence x =
[x1, . . . , xT ] ∈ X , with each xi ∈ V drawn
from a vocabulary V , and predict the probabil-
ity distribution y ∈ Y ⊂ R|V | for the next to-
ken. In the Transformer architecture, each token
xi is embedded into hidden states h

(l)
i , starting

from h
(0)
i = emb(xi) + pos(i). The final output

y = decode(h(L)T ) is derived from the last hidden
state. At each layer l, h(l)i is updated via global at-
tention a

(l)
i and local MLP contributions m(l)

i , with
each token attending only to preceding tokens.

h
(l)
i = h
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In many previous studies, knowledge has been
represented as triples (s, r, o), where s, r, and o de-
note subject, relation, and object respectively (e.g.,
James (s), playsFor (r), and Lakers (o)) (Meng
et al., 2022a; Li et al., 2024a). Researchers de-
signed natural language templates tailored to each
relation type and combined these templates with
subject terms to generate question-based or cloze-
style prompts. Knowledge editing is formally de-
fined as follows: the edited fact set is e = (s, r, o),
and the edited model is M∗ = F (M, e), where
F is the editing methods that updates the original
model M .
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Figure 3: The results of differences in sequential-editing results in two scenarios on three LLMs by six editing
methods. Score Difference (SD) represents the difference in editing performance between the two experimental
schemes when editing the same amount of knowledge under the same method.

2.2 Same-Subject Editing

In a broader sense, knowledge editing should allow
for querying and modifying a wide range of facts
within language models by combining different
subjects (s) and relations (r) as prompts.Existing
work typically focuses on modifying individual
facts expressed as (s, r, o) → (s, r, o∗), where each
subject (s) is associated with a specific relation
(r). However, traditional editing often isolates the
editing process to a single relation. This leads to the
discontinuation of further knowledge edits for the
same subject and a shift towards editing knowledge
for a new subject. It risks overlooking potential
perturbations in knowledge when editing multiple
related facts for the same subject.

We introduce the concept of Same-Subject Edit-
ing, where multiple relations are edited simulta-
neously for a single subject. Instead of focus-
ing solely on the traditional (s, r, o) format, we
extend the editing process to structured prompts
such as (s,R,O), where R = {ri}Ni=1 repre-
sents a set of relations and O = {oi}Ni=1 rep-
resents their corresponding objects. For exam-
ple, {("James", "playsFor", "Lakers"), ("James",
"isCitizenOf", "USA")}. We formally define the
edited fact set as e = (s, ri, oi)

N
i=1 and define the

edited model as M∗ = F (M, e), where F is the
editing function that updates the original model M .
It ensures that knowledge updates remain consis-
tent across all related attributes of the same subject.

3 Pilot Observation

In this section, we conduct a pilot observation to
reveal potential issues with same-subject editing.

Evaluation Setup. We focus on using MEMIT
(Meng et al., 2022b) to edit GPT-J (Wang and Ko-
matsuzaki, 2021), since their excellent performance
in editing multiple pieces of knowledge. To ana-
lyze the impact of editing density—defined here as

the average number of related edits per subject in
the editing sequence—we divide our experimental
schemes into three categories:

a) High-Density: Edit n pieces of knowledge in
total, with each subject edited for 3 related
pieces of knowledge.

b) Medium-Density: Edit n pieces of knowledge
in total, with each subject edited for 2 related
pieces of knowledge.

c) Low-Density: Edit n pieces of knowledge in
total, with each subject edited for 1 related
pieces of knowledge.

Based on the above schemes, we select qualified
data from COUNTERFACT (Meng et al., 2022a)
and conduct experiments using both sequential-
editing and batch-editing (See Appendix A.2 for
comparison of sequential- and batch-editing). The
editing performance is comprehensively evaluated
across four dimensions: efficacy, generalization,
specificity, and overall performance (See Ap-
pendix C.3 for detailed metric descriptions).

Result & Analysis. Figure 2 and Figure 8a show
the experimental results of employing MEMIT to
edit GPT-J through sequential-editing and batch-
editing, respectively. It is evident that when editing
the same number of knowledge, the denser the sub-
ject distribution, the worse the editing performance,
while the impact on the model’s downstream per-
formance remains similar. However, the scarcity
of sufficiently dense same-subject instances in ex-
isting editing datasets limits the scope of experi-
mental verification. We will further investigate this
phenomenon in subsequent sections.

4 Related Knowledge Perturbation

Furthermore, we construct a benchmark and evalu-
ate the performance of editing methods when edit-
ing related knowledge for the same subject.
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Item S2RKE COUNTERFACT
Records 22064 21919
Subjects 4503 20391
Relations 43 32
Maximum records per subject 13 4
Minimum records per subject 3 1
Average records per subject 4.9 1.1

Table 1: Comparison of different benchmarks.

4.1 S2RKE Benchmark

We introduce the S2RKE (Same-subject Related
Knowledge Editing) benchmark, specifically de-
signed to facilitate the editing of multiple related
pieces of knowledge for each subject. It covers six
categories of subjects, comprising of 4,503 subjects
and 43 relationships, with each subject having an
average of 4.9 related knowledge items. See Ap-
pendix B for additional technical details about its
construction and Table 1 for comparison of statis-
tics between S2RKE and COUNTERFACT.

4.2 Failure of Editing Methods

Editing Methods. We evaluate six widely-used
editing methods: ROME (Meng et al., 2022a),
MEMIT (Meng et al., 2022b), PMET (Li et al.,
2024a), FT (Zhu et al., 2021), MEND (Mitchell
et al., 2022a), and KN (Dai et al., 2022).
Selected LLMs. Experiments are conducted on
three LLMs with different parameter sizes: GPT-
2 XL (1.5B) (Radford et al., 2019), GPT-J (6B)
(Wang and Komatsuzaki, 2021), and LLaMA-2
(7B) (Touvron et al., 2023).

We design two experimental schemes to assess
how editing related knowledge impacts perfor-
mance: Same-Subject, where all edited knowledge
shares the same subject, Different-Subject, where
each edit involves a different subject. Experimental
data are selected from the S2RKE benchmark.

Our pilot observation indicates that while knowl-
edge correlation impacts editing effectiveness, it
has little effect on overall model performance. So
we focus on the Score(S) metric and introduce the
Score Difference (SD) metric, defined as SD =
Score(same-subject) – Score(different-subject), to
quantify performance degradation when editing re-
lated knowledge for the same subject. To ensure
reliability, each test was repeated 30 times with dif-
ferent editing instances. See Appendix C for more
details.

Result & Analysis. Figure 3 and Figure 8b
show the results of sequential-editing and batch-
editing on three LLMs using six methods, respec-

Figure 4: The results of sequential-editing on GPT-2 XL
and GPT-J using mainstream locate-then-edit methods.
The bars represent the Score (S) of two strategies, and
the line represents the Score Difference (SD) between
the two strategies.

tively. The line in each figure represents the Score
Difference (SD). The results show that locate-then-
edit methods (e.g., ROME, MEMIT, PMET) suffer
significant performance degradation under Same-
Subject editing, as reflected by a substantial neg-
ative Score Difference (SD). In contrast, methods
with generally lower editing effectiveness show
minimal sensitivity to the relatedness of the edited
knowledge. These findings confirm that knowledge
correlation markedly impairs the editing perfor-
mance of certain methods.

4.3 Analysis of Failures

We further examine how the sequence of knowl-
edge edits affects locate-then-edit methods by iso-
lating the interference of sequential updates. For
this purpose, we devised two experimental settings:
Homogeneous-Editing, where the first and last ed-
its target the same subject, and Heterogeneous-
Editing, in which they target different subject. Ex-
periments were performed using ROME, MEMIT,
and PMET across three LLMs, with each configu-
ration repeated 30 times on different instances from
the S2RKE benchmark to ensure robust results.

Result & Analysis. Figure 4 shows the
sequential-editing results on GPT-2 XL and GPT-
J, while Figures 7 and 8c provide additional re-
sults. Under the Homogeneous-Editing setting,
the initial edit’s score is much lower than in the
Heterogeneous-Editing condition. This clearly in-
dicates that later edits interfere with earlier ones.
We call this effect "related knowledge perturba-
tion," which exposes a key limitation of current
locate-then-edit approaches when processing multi-
ple sequential updates. These findings highlight the
need for better strategies in managing sequential
knowledge updates. The next section will analysis
the causes of related knowledge perturbation.
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Figure 5: Illustration of related knowledge perturbation
in same-subject editing.

5 Perturbation Analysis

5.1 Causes of Perturbation

Our experiments show that only mainstream locate-
then-edit methods (e.g., ROME and MEMIT) ex-
hibit related knowledge perturbation. These meth-
ods all employ causal tracing to identify that factual
knowledge is primarily stored in the early MLP
layers of LLMs. Based on the hypothesis that "the
MLP modules in Transformer layers can be viewed
as linear key-value associative memory," (Geva
et al., 2020) they solve for Wk = v, where W

represents the downsampling component W (l)
proj of

MLP, and the key-value pair (k, v) corresponds to
a factual triplet t = (s, r, o), as shown in Figure 5.
Here, k represents the subject s, while v encodes
the attributes of s, including r and o. To update t
to t∗ = (s, r, o∗), they compute a new key k∗ and
value v∗ via an update ∆W .

However, k∗ is only derived from the input of
the subject’s last token in the MLP module’s down-
sampling layer:

k∗ =
1

N

N∑

i=1

K(xi ⊕ p), (3)

where K is the output of the first MLP layer in trans-
former block, xi represents the randomly sampled
prefixes, and ⊕ denotes the string concatenation
operator.

Therefore, we speculate that "related knowledge
perturbation" stems from an over-reliance on sub-
ject information. When editing multiple pieces of
knowledge for the same subject s, the key value
k∗ remains constant, causing later edits to interfere

Figure 6: The relationship between the cosine similar-
ity of keys and the Efficacy Success (ES) of the first
knowledge editing using MEMIT to edit GPT-J, under
sequential-editing and batch-editing.

with earlier ones and reducing performance.

5.2 Experiment Validation

To verify the above speculation, we used MEMIT
to edit two pieces of knowledge on GPT-J through
sequential-editing and batch-editing, designing
two experimental schemes: Same-Subject and
Different-Subject. We then examine the relation-
ship between the cosine similarity of the two keys
and the Efficacy Success of editing the first piece of
knowledge. Cosine similarity was chosen because
it measures how similar the two keys are in vector
space, helping us understand how closely related
the two knowledge pieces are.

Result & Analysis Figure 6 shows the relation-
ship between key similarity and the first knowledge
editing Efficacy Success. The results indicate that
when two pieces of knowledge related to the same
subject are edited, the CS of the key approaches
1. Meanwhile, the ES of editing the first piece of
knowledge is significantly lower compared to the
case where the two edited pieces of edited knowl-
edge are related to different subjects. This supports
our hypothesis that since the key calculation only
focuses on subject information, subsequent edits
for the same subject interfere with earlier ones,
leading to "related knowledge perturbation".

6 Conclusion

In this paper, we identify a key limitation of main-
stream locate-then-edit methods, called "related
knowledge perturbation", which occurs when edit-
ing multiple related pieces of knowledge for the
same subject. Using the S2RKE benchmark, we
show through experiments that over-reliance on
subject information leads to interference between
subsequent edits, highlighting the challenges in
same-subject editing.
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7 Limitation

We acknowledge several limitations in our work.
First, while this paper provides an initial explo-
ration into the complex correlations between knowl-
edge and identifies the phenomenon of related
knowledge perturbation, it does not propose a com-
prehensive solution to address this issue. This omis-
sion leaves room for future research to develop
effective mitigation strategies.

Additionally, due to computational resource con-
straints, our experiments did not extend to larger
language models, such as Llama2-13b. Future in-
vestigations could benefit from testing our findings
on such models to further validate the effectiveness
and generalizability of the observed phenomena.
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A Related Works

A.1 Knowledge Editing

Model editing has gained significant attention for
its ability to efficiently update LLMs. Existing ap-
proaches can be categorized into four types: Fine-
tuning mainly applies layer-wise adjustments to
incorporate new knowledge into LLMs (Zhu et al.,
2021). Meta Learning trains hypernetworks to act
as editors, predicting parameter updates to inject
new knowledge (De Cao et al., 2021; Mitchell et al.,
2022a). Memory-based enhances LLMs with ex-
ternal memory or additional parameters, allowing
new knowledge to be added without altering LLMs
(Mitchell et al., 2022b; Huang et al., 2023).

Among all types, Locate-then-Edit has gained
significant traction for its ability to modify specific
knowledge within LLMs. Methods like KN(Dai
et al., 2022) and ROME(Meng et al., 2022a) locate
and update factual knowledge by targeting neurons
or multi-layer perceptrons (MLPs) that store such
information. MEMIT(Meng et al., 2022b) extends
ROME by distributing updates across multiple in-
termediate MLP sublayers, enabling large-scale
knowledge editing. Additionally, PMET(Li et al.,
2024a) combines information from both multi-head
Self-attention (MHSA) and MLP modules during
optimization, producing more accurate MLP out-
puts for final edits.

While model editing has shown great promise,
some researches have identified issues such as
model collapse(Yang et al., 2024a; Gu et al., 2024)

and knowledge conflicts(Li et al., 2024b). This pa-
per focuses on how the correlation between knowl-
edge impacts the performance of model editing,
particularly in the context of multiple knowledge
edits.

A.2 Sequantial-editing vs. Batch-editing

Sequential-editing and batch-editing are two strate-
gies commonly used to update large amounts of
knowledge in LLMs(Yao et al., 2023). Specifically,
sequential-editing refers to making multiple edits
one after another, where the model should ideally
retain previous changes as new edits are introduced.
In contrast, batch-editing involves editing multiple
pieces of knowledge in a model at once. Notably,
these two strategies can be combined to create a
more flexible knowledge editing approach.

For the purposes of this study, we evaluate these
strategies independently: In sequential-editing, the
batch size is set to 1, and in batch-editing, the num-
ber of consecutive edits is set to 1, ensuring clear
comparisons and facilitate experimental evaluation.

B Details of S2RKE Benchmark

B.1 Data Construction

In this paper, S2RKE (Same-subject Related
Knowledge Editing) benchmark is built on the
YAGO3.0.3, which combines Wikipedia, Word-
Net, GeoNames and other data sources, and was
released in 2022. The construction process is de-
tailed below, covering four key aspects:

Triple filtering. Based on YAGO’s top-level
classification, we categorize the entities to be edited
into six groups: Person, Building, Organization,
Abstraction, Artifact and GeoEntity. From these
categories, we screen out 43 relationships. Unlike
COUNTERFACT, S2RKE innovatively includes
both literal- and data-type relationships, enabling
broader coverage of relationship types. Finally,
We then select entities with the most relationship
instances from each category and generated correct
triplets (s, r, o).

Requested rewrite. To evaluate model effi-
cacy, we select the relation r from the triplet
(s, r, o) and generate a counterfactual triplet
(s, r, o∗). We create natural language templates
P (r) for each relation r, using ChatGPT-4o to
generate templates based on examples from the
PARAREL (Elazar et al., 2021) dataset. After gen-
erating multiple templates, we manually select the
three most suitable ones to ensure test diversity and

369

https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632


Categories Subjects Relations Edits(all) Edits(Avg)
Person 592 29 5706 9.6
Organization 874 7 2897 3.3
Building 679 6 3419 4.6
Artifact 857 6 3632 4.2
Abstraction 734 8 2203 3.0
GeoEntity 912 12 4207 5.0
All 4503 43 22064 4.9

Table 2: Data statistics of the S2RKE benchmark.

Figure 7: The results of sequential-editing on LLaMA-
2 7B using mainstream locate-then-edit methods. The
bars represent the Score (S) of two strategies, and the
line represents the Score Difference (SD) between the
two strategies.

template consistency.
Paraphrase prompts. To evaluate the gen-

eralization of model editing methods, we use
the moonshot-v1 for generating longer text, com-
bined with the description of the edited entity and
a simplified prompt template for each relation.
This process produce semantically equivalent but
more complex sentences PP , designed to test the
model’s ability to handle diverse expressions.

Neighborhood prompts. In order to evalu-
ate the specificity of the model editing methods,
we identify related triples (s∗, r∗, o) for the ob-
ject o of the original triplet (s, r, o), using the
YAGO database. These neighborhood triplets are
converted into natural language PN using simple
templatesP (r∗), specifically constructed for each
relation r∗.

B.2 Data Summary

Data standardization. Firstly, we standardize
the description of each edited to ensure clear dis-
tinctions between them. Additionally, we handle
relations involving literal- and date-type appropri-
ately, with literal-type storing integers and date-
type limited to years. Special characters in object

values are also replaced or removed to ensure con-
sistency and operability of the data format.

Data statistics. The S2RKE benchmark con-
tains 6 categories of edited entity, with a total of
3704 subjects and 43 specific relationships, spread
across 3 categories of relationship. On average,
each entity contains 4.9 edited knowledge entries,
with Person entities having the highest number of
edits. See Table 2 for statistics of S2RKE.

Data format. In summary, each record in the
S2RKE benchmark D consists of a subject s and
its multiple related requested rewrite. r, o, o∗, P (r).
For each rewrite, the benchmark also includes
one paraphrase promptPP and two neighborhood
prompts PN . See Figure for a sample record in
SMRKE, complete with three related edits for the
same subject.

C Detailed Experimental Setup

C.1 Editing Methods

In this paper, we use six editing methods:
FT (Zhu et al., 2021) applies an ℓ∞ norm con-

straint on the fine-tuning loss, limiting the differ-
ence between the original and edited model’s pa-
rameters to reduce side effects.

MEND (Mitchell et al., 2022a) uses a collec-
tion of small hypernetworks to learn a rank-one
decomposition of the gradient obtained by standard
fine-tuning, enabling tractable edits in LLMs.

KN (Dai et al., 2022) select neurons associated
with knowledge expression via gradient-based at-
tributions, then modify MLP layer at the rows cor-
responding to those neurons by adding scaled em-
bedding vectors.

ROME (Meng et al., 2022a) uses causal tracing
to localize the knowledge storage at a specific MLP
layer in a transformer, and then updates knowledge
by altering the weight matrix with rank-one update.

MEMIT (Meng et al., 2022b) extends ROME
by distributing updates across multiple MLP layers,
enabling large-scale edits.

PMET (Li et al., 2024a) enhances MEMIT by
integrating information from both the multi-head
self-attention (MHSA) and MLP modules during
the optimization process.

It is worth noting that ROME and KN can only
sequential-editing. All experiments are conducted
using the EasyEdit (Wang et al., 2023), ensuring
standardized and reproducible evaluations.
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ID Relation Domain Range
1 <hasPages> rdfs:domain owl:Thing rdfs:range xsd:nonNegativeInteger
2 <isCitizenOf> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_country_108544813>
3 <diedOnDate> rdfs:domain <wordnet_person_100007846> rdfs:range xsd:date
4 <hasGender> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_sex_105006698>
5 <wasBornOnDate> rdfs:domain <wordnet_person_100007846> rdfs:range xsd:date
6 <hasDuration> rdfs:domain owl:Thing rdfs:range <s>
7 <hasWeight> rdfs:domain <wordnet_physical_entity_100001930> rdfs:range <kg>
8 <hasHeight> rdfs:domain <wordnet_physical_entity_100001930> rdfs:range <m>
9 <hasLength> rdfs:domain <yagoGeoEntity> rdfs:range <km>
10 <hasWonPrize> rdfs:domain <yagoLegalActorGeo> rdfs:range <wordnet_award_106696483>
11 <owns> rdfs:domain <yagoLegalActorGeo> rdfs:range owl:Thing
12 <created> rdfs:domain <yagoLegalActor> rdfs:range owl:Thing
13 <participatedIn> rdfs:domain <yagoLegalActorGeo> rdfs:range owl:Thing
14 <isAffiliatedTo> rdfs:domain <yagoLegalActor> rdfs:range <wordnet_organization_108008335>
15 <hasAcademicAdvisor> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_person_100007846>
16 <graduatedFrom> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_university_108286569>
17 <hasChild> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_person_100007846>
18 <edited> rdfs:domain <wordnet_editor_110044879> rdfs:range owl:Thing
19 <directed> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_movie_106613686>
20 <wroteMusicFor> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_movie_106613686>
21 <playsFor> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_organization_108008335>
22 <isPoliticianOf> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_organization_108008335>
23 <isLeaderOf> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_organization_108008335>
24 <influences> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_person_100007846>
25 <isMarriedTo> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_person_100007846>
26 <worksAt> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_organization_108008335>
27 <isInterestedIn> rdfs:domain <wordnet_person_100007846> rdfs:range owl:Thing
28 <livesIn> rdfs:domain <yagoLegalActorGeo> rdfs:range <wordnet_location_100021767>
29 <isKnownFor> rdfs:domain <wordnet_person_100007846> rdfs:range owl:Thing
30 <actedIn> rdfs:domain <wordnet_location_100021767> rdfs:range <wordnet_movie_106613686>
31 <hasArea> rdfs:domain <wordnet_location_100021767> rdfs:range xsd:km2
32 <hasCurrency> rdfs:domain <wordnet_location_100021767> rdfs:range <wordnet_currency_108524613>
33 <dealsWith> rdfs:domain <wordnet_person_100007846> rdfs:range <wordnet_country_108544813>
34 <hasOfficialLanguage> rdfs:domain <wordnet_location_100021767> rdfs:range <wordnet_language_106282651>
35 <hasCapital> rdfs:domain <wordnet_location_100027167> rdfs:range <wordnet_city_108524735>
36 <wasCreatedOnDate> rdfs:domain owl:Thing rdfs:range xsd:date
37 <isLocatedIn> rdfs:domain <yagoPermanentlyLocatedEntity> rdfs:range <yagoGeoEntity>
38 <hasLongitude> rdfs:domain <yagoGeoEntity> rdfs:range <degrees>
39 <happenedOnDate> rdfs:domain <wordnet_event_100029378> rdfs:range xsd:date
40 <happenedIn> rdfs:domain <wordnet_event_100029378> rdfs:range <yagoGeoEntity>
41 <hasLatitude> rdfs:domain <yagoGeoEntity> rdfs:range <degrees>
42 <wasBornIn> rdfs:domain <wordnet_person_100007846> rdfs:range <yagoGeoEntity>
43 <diedIn> rdfs:domain <wordnet_person_100007846> rdfs:range <yagoGeoEntity>

Table 3: Summary of domain and range properties for selected relations in S2RKE.

C.2 Selected Models

In this paper, we select three large language models
(LLMs):

GPT-2 XL (Radford et al., 2019), a 1.5 billion
parameter version of GPT-2,is a transformer-based
language model developed by OpenAI.

GPT-J (Wang and Komatsuzaki, 2021), devel-
oped by EleutherAI, is a GPT-3-like open-source
LLM with 6 billion parameters, trained on The Pile.

LLaMA2-7B (Touvron et al., 2023), a 7 billion
parameter version of LLaMA 2 from Meta AI, is a
leading open-source LLM, known for its advanced
training techniques and optimizations.

C.3 Evaluation Metrics

To comprehensively evaluate the experimental re-
sults, we evaluate editing methods across four di-
mensions:

Efficacy. We measure efficacy using the Effi-
cacy Success (ES) metric. Specifically, when triple
(s, r, o) is updated to (s, r, o∗), ES calculates the
success rate of the target edit by determining the

probability that the condition P [o∗] > P [o] is sat-
isfied.

Generalization. To evaluate generalization, we
use Paraphrase Success (PS) metric, which mea-
sures the probability that P [o∗] > P [o] when the
model is prompted with a paraphrase of the original
(s, r).

Specificity. For specificity, we adopt the Neigh-
borhood Success (NS) metric, which tests the prob-
ability that P [oc] > P [o∗] for triplet (s, r, oc),
where oc lies outside the range of the factual edits.

Overall Performance. We assess overall model
performance using Perplexity (PPL), based on
prior studies by Yang et al. (2024a,b). An increase
in perplexity generally indicates a decrease in the
model’s performance in generation tasks.

Finally, to evaluate the balance between efficacy,
generalization, and specificity, we report the har-
monic mean of ES, PS, and NS indicators as a
comprehensive score (S), providing a holistic view
of the model’s behavior across these dimensions.
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(a) The results of batch-editing on GPT-J using MEMIT, comparing five evaluation metrics of three different schemes.

(b) The results of batch-editing on three LLMs by six editing methods. Score Difference (SD) represents the difference in
editing performance between the two experimental schemes when editing the same amount of knowledge under the same
method.

(c) The results of batch-editing on three LLMs using mainstream locate-then-edit methods. The bars represent the Score (S)
of two strategies, and the line represents the Score Difference (SD) between the two strategies.
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Figure 9: Case example in S2RKE.
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