
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 321–341

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Preserving Multilingual Quality While Tuning Query Encoder on English
Only

Oleg Vasilyev, Randy Sawaya, John Bohannon
Primer Technologies Inc.
San Francisco, California

oleg,randy.sawaya,john@primer.ai

Abstract

A query encoder of a dual passage retrieval
system can be tuned for specific types of
queries or domains, while the precomputed and
stored documents representations are kept in-
tact. Switching from one query encoder to an-
other when needed is easily feasible, unlike
overhauling the embeddings of a whole knowl-
edge base. In this work we raise a question:
Can the generic, original qualities of the en-
coder be preserved or at least left not too de-
graded when it is tuned on a narrow domain?
We conducted experiments on a high quality
multilingual embedding model: Tuning it on
a single English-only dataset, we observe that
the tuning not only preserves the multilingual
qualities, but even improves them. The embed-
ding qualities on distinctly different data are
also improved or at least preserved. Drawing
on our observations, we suggest a more gen-
eral hypothesis: Tuning with intentionally low
learning rate can preserve or improve a sys-
tem’s properties acquired in training, but not
specifically targeted by tuning. We call this
adiabatic tuning and provide tentative explana-
tions.

1 Introduction

Advances in neural NLP methods have resulted
in high quality dense vector text representations
(Reimers and Gurevych, 2019; Cer et al., 2018;
Conneau et al., 2017). Such representations are
often used at the initial stages of an information
retrieval system, selecting the most relevant docu-
ments, ranked relative to the query (Xiong et al.,
2020; Zhan et al., 2020, 2021; Ren et al., 2021b).
A dual encoder is successfully used to train the
representations (Karpukhin et al., 2020; Ren et al.,
2021a; Qu et al., 2021; Hofstätter et al., 2021; Ni
et al., 2022; Dong et al., 2022). A dual encoder
dense passage retrieval system is efficient for two
main reasons: (1) it allows using the simple in-
ner product of query and document representations,

and (2) it allows modifying the query representa-
tion for a task or domain, while keeping the stored
and precomputed (query-invariant) document rep-
resentations intact.

If the representation was pretrained in a multilin-
gual setting, tuning on English-only samples may
be expected to degrade the multilingual qualities
and there may not be enough cross-lingual sam-
ples for tuning on a specific domain or types of
queries. A multilingual query generator may be
employed to overcome a shortage of cross-lingual
data (Ren et al., 2022; Zhuang et al., 2023), but, in
this work, we follow an arguably simpler strategy.
In order to understand the effect of English-only
tuning on multilingual qualities of a representation,
and to assess a possible degradation, we consider
a simple setup: A state of the art multilingual em-
bedding model is taken as the starting point, and
fine-tuned by English only samples as the query
representation part of a dual encoder.

We assume that our observations of the degra-
dation or preservation of the multilingual qualities
may be generalized to other pretrained system qual-
ities that are not directly targeted in tuning. In order
to obtain preliminary confirmation of this hypoth-
esis, we also observe the effect of tuning on the
embedding quality for queries and text chunks of
very different styles, the likes of which could be
present in the training of the original encoder, but
certainly not targeted in tuning.

Our contribution:
1. We show that fine-tuning a query encoder on

an English-only dataset may not only preserve
multilingual qualities of query-document em-
beddings matching, but even improve them.

2. We hypothesize that a tuning regime with in-
tentionally low learning rate (far below of
what is necessary to avoid overfitting) pre-
serves or improves the properties acquired in
the training, but not targeted by tuning. We
call this adiabatic tuning and suggest support-
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ing observations and conjectural explanations.
3. We add a dataset with graded difficulty, based

on ARXIV titles and abstracts.
Although high-resource languages can be used for
cross-lingual transfer (Lin et al., 2019), our setting
does not have such a goal: the tuning is set to im-
prove the query part of a dual encoder on a certain
dataset, with no driving mechanism for preserving
or improving the other qualities of the system.

Our starting point is one of the best (for its lean
size) multilingual embedding models which differs
from starting with a multilingual language model
and then aligning the generated embeddings for
different languages (Wang et al., 2022).

2 Setup

2.1 Models

In what follows, we use a state-of-the-art multilin-
gual model intfloat/multilingual-e5-small1 (Wang
et al., 2024b) which will be referred to here as
E5. For most of the evaluations, we also consider
results using sentence-transformers/paraphrase-
multilingual-MiniLM-L12-v22 (Reimers and
Gurevych, 2019), referred to as L12. Finally, we
confirm some observations with monolingual
intfloat/e5-small-v23 (Wang et al., 2024a), referred
to as E5e. All these models provide embeddings
of a practical small size of 384.

2.2 Datasets

We use MSMARCO (Nguyen et al., 2018) Triplets4

for tuning and evaluation. For evaluating the qual-
ities not targeted by tuning, we use the ARXIV
dataset with negatives5, which we made from arxiv
(version 173)67, and the test subset of the XNLI
multilingual dataset8 (Conneau et al., 2018). We
also use HOTPOTQA9 (Yang et al., 2018) and
SQUAD10 (Rajpurkar et al., 2018, 2016) for con-

1https://huggingface.co/intfloat/multilingual-e5-small
2https://huggingface.co/sentence-

transformers/paraphrase-multilingual-MiniLM-L12-v2
3https://huggingface.co/intfloat/e5-small-v2
4https://huggingface.co/datasets/sentence-

transformers/embedding-training-data/blob/main/msmarco-
triplets.jsonl.gz

5https://huggingface.co/datasets/primer-ai/arxiv-
negatives

6https://huggingface.co/datasets/arxiv-
community/arxiv_dataset

7https://www.kaggle.com/datasets/Cornell-
University/arxiv

8https://huggingface.co/datasets/facebook/xnli
9https://hotpotqa.github.io/

10https://huggingface.co/datasets/rajpurkar/squad_v2

firming some observations (Appendices C, D).
Our test subset of MSMARCO contains 357642

evaluation triplets, made of 7000 samples - all the
positives and negatives are used (Appendix A).

Of ARXIV we use titles and abstracts. We made
two flavors of evaluation arxiv triplets: (1) arxiv-
title where a title plays role of the query (anchor),
and the corresponding abstract is a positive pas-
sage, and (2) arxiv-first where the first sentence
of abstract is used as the query, and the rest of it
is used as a positive (Appendix B). We also use
narrow versions of arxiv-first in Appendix K.

2.3 Tuning and evaluations
Unless otherwise specified, we freeze the text en-
coder and proceed to fine-tune only the query en-
coder (fully or partially unfrozen) by contrastive
learning on MSMARCO (or on narrow ARXIV
subsets, Appendix K) with a learning rate of 5e-8,
batch size of 14 and the triple margin loss with
margin 0.1. Other details are in Appendix E. In
our experiments we considered different settings
of freezing, batch size, learning rate, the margin
of triplet loss, the stopping criterion, weight decay,
scheduling versions and optimizers.

In most of our evaluations, we compare the simi-
larity (or distance) between the anchor (query) and
the positive vs the negative. If the positive does
not turn out to be closer than the negative to the
anchor, we count this as an error. We thus charac-
terize performance of the encoder on a query by
the number of errors divided by the total number
of positive-negative pairs. We call this positive-
negative discrepancy (PND). The measure is easy
to interpret, and its range (from 0 to 1) is the same
and equally fair for any amounts of positives and
negatives, as long as they exist in a selection for
a query. On multiple queries we take an averaged
PND. We confirm some results also using mean
reciprocal rank (MRR), mean average precision
(MAP) and precision at top 1 (P@1). The improve-
ment of performance is measured as relative change
of a measure M (PND or MRR or other):

I = s
M̃ −M

M
(1)

where M is for the original encoder, and M̃ is for
the encoder after the tuning. The sign s = −1 for
PND, because it decreases when improved, and
s = 1 for the other measures.

For evaluating XNLI we use its pairs of sen-
tences, each sentence is given in 15 languages (Ap-
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pendix F). One sentence is used as a query, an-
other as a passage. All pairs are human-labeled
as entailment, neutral or contradiction. Hence, the
sentences of an entailment pair should be closer
to each other than the sentences of any neutral or
contradiction pair. Whenever this does not happen,
we count this as an error for PND. In Appendix G
we made sure that the amount of errors the original
encoder makes on our datasets is large enough to
consider how tuning would affect them.

3 Observations

3.1 Tuning partially frozen query model

In Table 1 we show results of tuning the dual
encoder, with the text encoder frozen and query
model free or partially frozen. Here and through-
out the paper we use the easiest version of ARXIV
(see Appendix H on performance at other levels).
Freezing the embedding block appears to be the
best option for preserving the multilingual quali-
ties, and henceforth it is used unless specified oth-
erwise. In Table 2 we confirm the improvement on
six other datasets (Appendices A, C, D), and show
some other measures.

The multilingual qualities are not only preserved,
but even mostly improved, especially on cosine sim-
ilarity. The PND improvement is shown for each
language pair separately in Figure 1. The results
for the L12 model are similar (Appendix J). In Ap-
pendix K we also also confirm our observations
with E5 tuned on specific categories of ARXIV.

Figure 1: Improvement of E5 on XNLI assessed by
cosine. Query is on axis Y ; text is on X .

3.2 Learning rate and adiabatic tuning

Increasing the tuning learning rate delivers more
gains on MSMARCO, while eventually reducing
gains on XNLI and even ARXIV. Improvement of
PND on MSMARCO and ARXIV is shown in Fig-
ure 2(b); the number of language pairs improved

Figure 2: Evaluations on (a) XNLI and (b) the English-
only datasets (MSMARCO and ARXIV) of the E5 query
encoder tuned with a frozen embedding block, batch
size 14, margin 0.1 using different learning rates. Values
that did not pass the two-tailed test are shown with open
markers.

and degraded is in Figure 2(a). Appendix L con-
tains the corresponding plots (Figure 11) for the
fully tuned E5 dual encoder, and for the L12 and
E5e models. It is interesting that the E5e model,
not even being multilingual, still improves more
than it degrades its rudimentary multilingual qual-
ities. The effects of other tuning parameters are
described in Appendix M. For example, the square-
root batch size scaling rule works better than linear.

If we consider XNLI and ARXIV as indicators
of how well a model keeps the learned skills while
improving on narrow goals (e.g. MSMARCO),
then our observation suggests there may be a slow
tuning regime, at which the model preserves or
even improves the existing skills which are at least
a little related to the new goal. We call this adi-
abatic tuning, in analogy to the slow process in
quantum mechanics (a system starting in an eigen-
state is kept in the same evolving eigenstate). For
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msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
frozen c% d% c% d% c% d% c+/- d+/- c+/- d+/-
- 7.47 8.46 5.19 5.19 1.75 5.52 222/0 215/2 194/4 147/23
emb.base 7.32 8.82 4.85 5.41 3.51 7.73 222/0 217/1 201/2 159/21
emb 7.30 8.82 4.90 5.39 3.51 7.73 222/0 217/1 201/2 158/20
emb, B0a 7.30 8.76 4.77 5.34 3.26 7.73 222/0 217/1 200/2 159/21
emb, B0a,i 7.48 9.00 5.05 5.36 3.26 7.73 223/0 219/0 199/2 156/25
emb, B0a,i,od 7.31 8.82 4.77 5.19 3.51 7.73 222/0 217/1 200/2 158/21
emb, B0 7.35 8.78 4.77 5.44 3.51 7.73 222/0 217/1 200/2 159/19
emb, B0-5 7.87 9.39 5.79 6.07 3.26 7.51 219/0 213/3 200/5 157/25
emb, B0-10 1.45 2.57 0.89 1.21 0.00 0.44 123/0 112/0 21/0 25/10

Table 1: Evaluations of the E5 query model tuned on MSMARCO as described in Section 2.3. The rows are
in the order of increased freezing (at tuning): from no freezing (top row) to freezing everything up to the last
transformer block B11. The emb.base model has only the first three layers of the embedding block frozen (tokens,
positions, token-types). The emb model has the full embedding block frozen. For the other notation: B0 is the full
first transformer block; B0-5 are the first 6 blocks; the extensions a, i, od (for B0) denote the layers attention,
intermediate and output.dense of the block. The columns c% and d% show the PND improvement (in percents)
relative to the original model, accessed by cosine (c) or distance (d), grayed if not significant (Appendix I). The
columns c+/- and d+/- show count of language pairs with PND significantly improved (+) or worsened (−).

PND MRR MAP P@1
Dataset c% d% c% d% c% d% c% d%
MSMARCO 65 negatives 2.41 3.78 0.48 0.55 1.03 1.15 1.92 2.02
SQUAD 1.02 1.12 0.17 0.2 0.17 0.19 0.31 0.33
SQUAD min 5 0.85 1.13 0.16 0.24 0.18 0.26 0.32 0.44
HotpotQA easy 2.52 3.47 0.25 0.34 0.09 0.08 0.16 0.12
HotpotQA medium 2.53 3.57 0.33 0.49 0.07 0.09 0.11 0.13
HotpotQA hard 2.43 3.70 0.30 0.50 0.07 0.11 0.12 0.15

Table 2: Improvements for E5 tuned with frozen embedding block and learning rate 5e-8.

E5 the learning rates between 2e-8 and 6e-8 may
be considered as the best.

Our tentative explanation of adiabatic tuning is
as follows: At low learning rates of tuning, the
system (the encoder weights) remains in the ’min-
imum’ region found at pretraining. This ’mini-
mum’ region is probably a wide well with uneven
ground; the pretraining happened to terminate at
some point inside the well. During tuning, the
pretraining weight-space of twin encoder becomes
just another surface in a family of surfaces, because
of the added dimensions (the difference between
the weights of the two encoders). We assume that
due to continuity, the ’minimum’ region, even if
being reshaped, remains a well as the query en-
coder weights drift away from the weights of the
text encoder. Within this well, improvements of all
qualities related to the former, pretraining loss, may
be still correlated. But if, at high learning rate, the
model is strongly modified at some iteration (i.e.

by backpropagation on a particular batch), then it
may move away from the well.

3.3 Extending adiabatic tuning range

From evaluation results in Figure 2 we may con-
sider the learning rate below 7e-8 (but above 1e-8)
as safely suitable for adiabatic tuning. But we know
this only because we evaluated the tuned models
on the out-of-tuning domains ARXIV and XNLI.

Is there any way to know the upper bound-
ary without having extensive data for evaluation?
Could there be an empirical recommendation not
to exceed certain learning rate? Can we increase
the adiabatic tuning range of learning rate?

In attempting to answer these questions, we have
considered the largest changes in the layers at dif-
ferent learning rates. One suspect layer, by simple
crude measures, is output.dense.weight. In Ap-
pendix M.3 in Tables 14 and 15 we show the most
changing layers and the blocks to which they be-
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Figure 3: Evaluations of the E5 query encoder tuned
with a frozen embedding block and all layers ‘out-
put.dense.weight’, with batch size 14, margin 0.1 using
different learning rates on (a) XNLI and (b) the English-
only datasets (MSMARCO and ARXIV). Values that
did not pass the two-tailed test are shown with open
markers.

long. Our motivation here is based on a simple
and crude criteria; more detailed research and un-
derstanding may reveal better ways to extend the
adiabatic tuning regime.

The gains from the tuning by freezing the layer
output.dense.weight (in each transformer block) are
shown in Figure 3. In comparison to the default tun-
ing (Figure 2) we can see that the adiabatic regime
indeed extends from a learning rate of about 6e-8
(as was in Figure 2) to about 1.3e-7. Thus, freezing
of output.dense.weight did help to somewhat ex-
tend the adiabatic tuning regime. However, this did
not improve the gains, and further increase of the
learning rate results in worse deterioration for the
version with frozen output.dense.weight layer, as
can be seen for XNLI starting from the rate 1.4e-7.

Another way of trying to stay longer in the orig-
inal ’minimum’ region during tuning could be by

reducing the inertia of the optimizer. We present
a simple attempt in Appendix M.8, but the results
are mixed.

4 Conclusion

We considered tuning the query part of a dual en-
coder starting from a high quality multilingual em-
bedding model, and using English-only samples
in the tuning. We found that multilingual quali-
ties are quite stable in many scenarios of the tun-
ing, and can be not only preserved but improved.
We explain this by speculating that most of the
transformer, except the embedding block, depends
weakly on multiple languages. We think of this as a
particular case of a general pattern: tuning a certain
model quality, if done carefully enough (adiabatic
tuning), can also retain or even improve the related
(but not targeted by tuning) qualities. This allows
a resource-light adjustment of multilingual embed-
dings for a specific query type or domain, even a
narrow domain (Appendix K).

Limitations

Our considerations here are limited to starting
with a single high quality multilingual embedding
model, and tuning it (on English-only samples) as
a query encoder. While this setup is good for our
understanding and convenient for adjusting an ex-
isting model, it would be natural to follow this up
by considering a pre-trained multilingual dual en-
coder which is already asymmetric from the start.

For our illustration we used the state of the art
multilingual model intfloat/multilingual-e5-small,
and also, for comparison, repeated the same obser-
vations for the sentence-transformers/paraphrase-
multilingual-MiniLM-L12-v2 model. We also re-
peated some of observations on monolingual model
intfloat/e5-small-v2 - the tuning improved its rudi-
mentary multilingual properties as well. Still, to
gain a better understanding of the observed behav-
iors, it would be interesting to investigate more
multilingual models.

We considered tuning the query encoder on
English-only samples, and found that such tuning
can “pull up” the quality of other languages too.
Choosing another language for tuning would be in-
teresting both for understanding and as a practical
scenario.

We used MSMARCO triplets for tuning; we also
verified some observations for models tuned on
ARXIV-based subsets limited to a category (math,
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physics or cs, Appendix K). For evaluation we used
a set aside part of MSMARCO triplets, and ARXIV
in two variations, and XNLI. The motivation was
that the MSMARCO evaluation part must show im-
provement (after tuning), ARXIV must verify the
robustness of the improvement on a very different
kind of texts (jargon-heavy), and XNLI must reveal
the effect of the English-only driven improvement
on multilingual qualities. We also confirmed the
tuning gains on SQUAD and HotpotQA (both of
which are quite different from MSMARCO). That
said, the evaluations can be extended to even more
datasets.

More research could be helpful in understanding
and identifying the range of adiabatic tuning.
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A Usage of MSMARCO Triplets

The MSMARCO dataset consists of 499184 sam-
ples, with each sample being a tuple given as (query,
positives, negatives). The “positives” are the cor-
rect answers to the query, and the “negatives” are
semantically similar, but incorrect answers. For
most samples, there is only one positive, but many
negatives. For our tuning we simply select the very
first positive and the very first negative. Thus, each
sample gives one triplet (anchor, positive, negative)
for contrastive learning, where the query is taken
as an anchor.

We keep the first 487983 samples (or 34856
batches if each batch is 14 triplets) for tuning, leav-
ing the next 4200 samples (300 batches) for val-
idation, and the last 7000 samples for evaluation.
During evaluation we create all possible triplets
from the 7000 samples, using all positives and neg-
atives; this makes 357642 evaluation triplets.

Almost half of MSMARCO samples have the
maximal number of negatives (65), and for eval-
uation shown in Table 2 we use a more difficult
version ’MSMARCO 65 negatives’, with all sam-
ples with less than 65 negatives filtered out.

B ARXIV Dataset for Triplets

B.1 Dataset arxiv-negatives

Of ARXIV we use titles and abstracts. In order
to have a representative subset of a manageable
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size for our evaluations, we select all samples that
have at least one category with a maximum size
of 10K samples. For example, the arxiv category
bayes-an is the smallest (size 16) in our snapshot
(version 173), meaning that there were only 16
arxiv preprints in this category.

We made two flavors of evaluation arxiv triplets
from this arxiv subset. In the first version, the an-
chor is the title, the positive is the corresponding
abstract, and the negative is another random ab-
stract. In the second version the anchor is the first
sentence of the ’positive’ abstract, the positive is
the rest of the abstract, and the negative is a simi-
lar piece (first sentence excluded) of the ’negative’
abstract.

We make use of triplets created from arxiv be-
cause this provides our evaluation with a very dif-
ferent kind of text (compared to MSMARCO), and
thus allows us to judge the robustness of the im-
provement. For convenience and reproducibility
of creating triplets of different levels of difficulty,
we made a dataset arxiv-negatives11. The dataset
consists of 253140 samples, each sample is a tuple
of two elements:

1. An ARXIV paper metadata, including its Id,
title and abstract and categories.

2. List of 21 Ids of other ARXIV papers. The
first 20 Ids are the papers that are ’closest’ to
the above paper, and sorted from the most to
the least similar; the last 21st Id is an Id of a
randomly selected paper (not coinciding with
Id of the above paper).

Thus, we have 21 versions of picking up negatives
for triplets, from the most difficult to the easiest
(the last one, of the random selection).

For example, to create triplets of difficulty 14,
for each paper given by the first tuple element, we
pick up a paper corresponding to 14th Id given in
the second tuple element. From the first paper we
can create query and positive, and from the second
paper, negative. Through this work we used two
flavors:

1. ‘Title’: The title of the first paper acts as the
query and its abstract as the positive; the neg-
ative is then the abstract of the second paper.

2. ‘First’: The query is the first sentence of the
abstract of the first paper; the positive is the
rest of the abstract; the negative is the abstract
of the second paper, with its first sentence

11https://huggingface.co/datasets/primer-ai/arxiv-
negatives

deleted.

B.2 How is it created?

The above dataset is created from the mir-
ror of arxiv (version 173) arxiv-metadata-oai-
snapshot.jsonl through the following steps:

1. Identified all arxiv categories with a maximum
size of 10K papers (i.e. arxiv preprints).

2. Selected all papers that have at least one of the
categories identified above. This is the subset
of arxiv to deal with: manageably small, yet
diverse.

3. For each paper: (1) Sort its categories by size,
from smaller to larger. (2) Find all other pa-
pers that have the closest match by the cate-
gories (the closest match is the longest con-
secutive list of matched categories, starting
from the first one). (3) Of the found papers,
select 20 closest by Jensen-Shannon distance
between the paragraphs, and sort them by the
distance. If there were less than 20 papers,
fill to 20 by the last one. (4) Add randomly
selected paper as 21st.

Of the total 253140 samples, in 213156 samples
(84.2%) all the first 20 negatives are different
(which means that not less than 20 papers happen
to have the same closest match by categories).

C SQUAD

For using the SQUAD dataset, we identified (for
each query) the given paragraph sentences contain-
ing an answer to the query as positives, and the rest
of the sentences as negatives. We left samples hav-
ing at least 1 positive and 1 negative. On average
there is 1.3 positives and 4.2 negatives per a query.
For the evaluation shown in Table 2 we combined
train, validation and test subsets. The results are
given also for a version called ‘SQUAD min 5’,
in which we have filtered out queries that had less
than 5 candidate sentences.

D HotpotQA

For using HotpotQA, we combined its train and
dev subsets. For each query (‘question’) both train
and dev subsets contain on average 9.95 passages,
of which 2 are always positives. For the evalua-
tion shown in Table 2 we filtered out queries that
had less than 10 passages, and split the dataset into
‘easy’, ‘medium’ and ‘hard’ subsets accordingly to
the HotpotQA labels of the difficulty of the sam-
ples.
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E Tuning

Unless specified otherwise, we tune a dual encoder
by contrastive learning in the following simple
regime:

1. The text encoder is fully frozen; the frozen
parts of the query encoder are specified.

2. The batch size is 14, the learning rate is 5e-8
and the contrastive learning margin is 0.1. The
loss is defined by the triple margin loss.

3. There are 1000 batches per epoch, i.e. 14000
samples per epoch.

4. Stopping occurs after 10 consecutive non-
improvement epochs. The improvement is
measured on the validation subset after each
epoch. The model is considered to be im-
proved if (on the validation subset) both the
loss and the count of errors have decreased.

5. The AdamW optimizer is used.
Changing this default regime is considered in Ap-
pendixes L, M.

F XNLI

The XNLI dataset consists of pairs of sentences
which are human-labeled as entailment, neutral or
contradiction. The test subset (which we use) con-
tains 1670 pairs for each of these labels and each
sentence is presented in 15 languages: [’ar’, ’bg’,
’de’, ’el’, ’en’, ’es’, ’fr’, ’hi’, ’ru’, ’sw’, ’th’, ’tr’,
’ur’, ’vi’, ’zh’]. We use 225 versions of the pairs,
because each sentence of the pair can be in any
of the 15 languages. At evaluation the first sen-
tence serves as the query (the embedding is taken
by the query model), and the second one as the text.
We expect that the sentences of an entailment pair
should be closer to each other than the sentences
of any neutral pair, or of any contradiction pair.
Whenever this does not happen, we count this as
an error.

G Performance of Untuned Query
Encoder

To establish a baseline before any fine-tuning, and
to ensure our evaluation is not too easy, we measure
the errors of the original E5 model on the data
described in Section 2.3 and show the results in
Table 3. We also measure the errors of L12 and of
E5e - a more recent monolingual (English) model.

The count of errors on the triplets (MSMARCO,
ARXIV) is straightforward: it is an error when a
positive is not closer than a negative to the anchor
of the triplet. On XNLI we sum up the error count

data Evaluation E5 L12 E5e

M
M

N tot 357642
PND (cos) 4.7% 15.1% 4.6%
PND (dist) 4.8% 15.4% 4.5%

A
R

X
-F N tot 253140

PND (cos) 1.6% 4.9% 3.1%
PND (dist) 1.6% 6.7% 3.5%

A
R

X
-T N tot 253140

PND (cos) 0.2% 1.4% 0.2%
PND (dist) 0.2% 1.7% 0.2%

X
N

L
I

N total 2788900
PND e-n (cos) 10.8% 10.2% 15.9%
PND e-c (cos) 10.0% 7.2% 15.3%
PND e-n (dist) 10.5% 10.1% 15.9%
PND e-c (dist) 9.6% 7.8% 15.4%

Table 3: The count of errors for the original untuned
models E5, L12 and E5e, on the datasets noted in the
first column: MM - MSMARCO test 7000 samples
(357642 triplets, see Section 2.2 and Appendix A); ARX-
F - arxiv-first, the arxiv subset with the abstract’s first
sentence as an anchor; ARX-T - arxiv-title, the arxiv sub-
set with the title as an anchor; XNLI - XNLI test subset
providing 1670x1670=2788900 comparisons of entail-
ment pairs vs neutral pairs (and the same amount of
entailment pairs vs contradiction pairs). For XNLI the
errors are averaged over 225 (15x15) language-language
versions, and shown as percent of Ntotal. The evalua-
tion is done using cosine similarity or euclidean distance
similarity (cos or dist in second column).

over all language-language pairs and divide the sum
by the number (255=15x15) of such pairs. This av-
eraged error is shown as a percentage of the total
(2788900) comparisons; each comparison here is
either a comparison of an entailment-labeled sam-
ple with a neutral-labeled sample (entail-neutral in
the table) or a comparison of an entailment-labeled
sample with a contradiction-labeled sample (entail-
contr in the table). An error was counted whenever
the sentences of an entailment sample happened
to be farther from each other than the sentences
of a neutral (or contradiction) sample. Separately
for each pair of languages PND is shown in Fig-
ures 4, 5 for cosine similarity measure. The dis-
tance measure gives results visually almost undis-
tinguishable.

The amount of errors in Table 3 and in Fig-
ures 4, 5 is reasonable enough to consider how
tuning would affect them. The smallest counts are
the counts of positive-negative discrepancies of E5
and E5e on ARX-T (apparently, a title makes an
easier ’query’ than the first sentence of an abstract).
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Figure 4: PND of embedding models on XNLI entailment-neutral comparisons assessed by cosine.

Figure 5: PND of embedding models on XNLI entailment-contradiction comparisons assessed by cosine.

These counts are 309 and 420 for the cosine similar-
ity (the row ARX-T PND (cos)), and 453 and 580
for the distance similarity (the row ARX-T PND
(dist)).

Notice that L12 has far worse PND on English
data (MSMARCO and ARXIV). The English-only
model E5e, as expected, performs worse than
multilingual models E5 and L12 on multilingual
XNLI, but its PND is still far below 50%, because
there is much similarity between some of the lan-
guages.

H Gains on ARXIV for Different Levels
of Difficulty

Throughout the paper we used the easiest version
of triplets in the arxiv-negatives dataset, the ver-
sion that uses randomly selected negatives. Here in
Figure 6 we show, for comparison, the fraction of
the errors which occur in the original untuned E5
embeddings using the other levels of difficulty, and
also the corresponding improvements (by Equa-

tion 1) after tuning the query encoder on the MS-
MARCO with frozen embedding block and our
default settings (Section 2.3). The statistical signifi-
cance of the improvements in Figure 6 is estimated
as explained in Appendix I.

The difficulty of intentionally close negatives
is much harder, but Figure 6 still shows that per-
formance on ARXIV was mostly improved. We
used the easiest triplets version for our evaluations
throughout the paper because it more distinctly in-
dicated the trends in the improvements.

I Significance Test

In Table 1, Figure 2 and through the paper we use
two-proportion Z-test, pooled for H0 : p1 = p2.
We are comparing the number of errors original n0

and improved n1, having the total N (the totals can
be seen in Table 3); a total is the same for original
and improved version. We deem the difference to
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Figure 6: Errors and improvements on arxiv-negatives
dataset of different level of difficulty. The “easiest”
dataset is a random selection of negatives from the same
data used through this work in evaluations. In (a), we
show the fraction of errors done by the original E5
model (for comparison, see Table 3). In (b), we show
the improvement after tuning the query encoder on MS-
MARCO, with ‘default’ settings, i.e. learning rate 5e-8,
batch size 14, margin 0.1 and frozen embedding block.
Values that did not pass the two-tailed test (Appendix I)
are shown with open markers.

be significant if |Z| > Zc where

Z =
p1 − p0√

1
2P (1− P )N

(2)

with p0 = n0/N , p1 = n1/N and P = 1
2(n0 +

n1)/N . We used Zc = 1.96, which is a critical
value corresponding to probability 0.975.

Notice that in our examples the values N are
typically very large. And the improvements we
report, according to Equation 1, are relative, not
absolute values.

J Encoder L12 with Frozen Layers

Table 4 shows results of tuning with freezing some
of L12 layers. It is similar to the Table 1 for E5.
And, similar to E5, freezing everything except the
embedding, resulted in negligible changes of the
query encoder (not shown in the table).

The changes in cross-lingual qualities corre-
sponding to the third row (emb, frozen embedding
block) of Table 4 are shown in comparison with
E5 and E5e embeddings in Figures 7 and 8. Note

that E5e is not a multilingual embedding model.
Having a worse start as a multilingual embedding
model, E5e also gets much weaker improvements
of its multilingual qualities; it is consistent with our
understanding of adiabatic tunings (Section 3.2).

K Narrow-Domain Query Encoder

So far we observed that tuning the query encoder on
data of a certain style (MSMARCO dataset) could
preserve (or even improve) the encoder qualities
which are not targeted by the tuning task, espe-
cially if we tune with a frozen embedding layer
and low learning rate. Here we provide observa-
tions using more specialized datasets, based on
arxiv-first (arxiv-first is described in Section 2.2
and Appendix B):

1. ARXIV-math: uses only documents with
at least one category which has the prefix
"math."

2. ARXIV-physics: As above, but with
"physics." as the prefix

3. ARXIV-cs: As above, but with "cs." as the
prefix

E5 tuned on these narrow datasets using our ‘de-
fault’ regime (Section 2.3) with frozen embedding
block mostly improves the PND (positive-negatives
discrepancy fraction) as shown in Table 5. The
improvements of these narrow-tuned encoders on
individual language pairs, assessed by cosine, are
shown in Figures 9 and 10.

L Learning Rate

In Figure 2 we have shown how the improvements
of the E5 model depend on the learning rate. Here
in Figure 11 we compare similar data for L12 and
E5e as well as a particular instance of E5 when
both the query and text encoder are subject to tun-
ing (as two independent encoders, with the same
starting point) with the embedding block frozen in
both encoders. The data confirm that while higher
learning rates are not yet overtuning and still give
higher gains on the test subset (of MSMARCO), it
is the lower learning rates that better preserve and
even improve those pretrained qualities which are
not the goal of tuning.

M Tuning Regime

M.1 Learning rate and batch size
M.1.1 Scaling rule
The learning rate is usually set with considera-
tion to the batch size; it can be proportional to
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msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
frozen c% d% c% d% c% d% c+/- d+/- c+/- d+/-
- 6.60 6.93 2.65 -7.86 14.46 -0.12 206/15 57/35 201/15 15/189
emb.base 7.28 8.04 2.46 -9.17 12.38 -1.03 200/15 47/47 206/15 20/142
emb 7.28 8.04 2.51 -9.17 12.4 -1.03 200/15 47/47 206/15 20/143
emb, B0a 7.26 8.03 2.29 -9.22 12.52 -0.96 201/15 46/46 206/15 20/142
emb, B0a,i 7.03 7.75 2.44 -8.6 12.46 -0.63 203/15 51/41 206/15 20/133
emb, B0a,i,od 9.04 10.15 1.80 -17.54 12.49 -8.58 195/19 30/116 207/15 19/167
emb, B0 8.92 9.98 1.78 -16.73 12.88 -8.07 195/16 33/102 209/15 20/163
emb, B0-5 8.54 9.68 2.71 -19.01 12.35 -12.17 209/15 28/129 209/15 19/172
emb, B0-10 0.11 0.15 0.10 -0.12 0.25 -0.02 0/0 0/0 0/0 0/0

Table 4: Evaluations of the L12 query model tuned on MSMARCO as described in Section 2.3. The notations are
as in Table 1.

Figure 7: Improvement of E5, L12 and E5e on XNLI entailment-neutral comparisons assessed by cosine.

Figure 8: Improvement of E5, L12 and E5e on XNLI entailment-contradiction comparisons assessed by cosine.

the batch size (linear scaling rule), or proportional
to square root of the batch size (square root scaling
rule) (Krizhevsky, 2014; Goyal et al., 2018; Hoffer
et al., 2018). We show the evaluation results for
these scaling rules in Tables 6 and 7. While there
is no essential wins in scaling batch size and learn-
ing rate up or down, the square root rule seems

more reasonable in keeping the evaluation results
approximately the same while increasing the batch
size.

Regardless of the overall behavior of scaling the
batch size and learning rate together, we have to
verify that our default batch size 14 is a good fit
for our default learning rate 5e-8. For this reason,
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msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
model c% d% c% d% c% d% c+/- d+/- c+/- d+/-

E5-math 0.04 0.45 54.71 52.85 50.38 53.64 218/0 209/0 177/0 133/0
E5-physics 0.16 0.57 19.05 18.64 21.8 20.97 162/0 102/0 31/0 2/0

E5-cs 0.18 0.55 23.32 23.63 25.56 26.49 205/0 136/0 51/0 8/8

Table 5: Evaluations of the E5 query encoder tuned on ARXIV-math, ARXIV-physics or ARXIV-cs with a frozen
embedding block, batch size 14, margin 0.1 and learning rate 5e-8. When evaluated on ARXIV (columns arxiv-first
and arxiv-title) the samples with category of the model (the first column) are excluded from the evaluation data.

Figure 9: Improvement of narrow-tuned encoders on XNLI entailment-neutral comparisons assessed by cosine.

Figure 10: Improvement of narrow-tuned encoders on XNLI entailment-contradiction comparisons assessed by
cosine.

batch learning msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
size rate c% d% c% d% c% d% c+/- d+/- c+/- d+/-

7 2.5e-8 6.62 7.67 4.48 5.06 3.26 6.18 221/0 216/0 201/2 160/13
14 5.0e-8 7.30 8.82 4.90 5.39 3.51 7.73 222/0 217/1 201/2 158/20
28 1.0e-7 8.36 10.31 5.71 6.75 3.26 7.95 222/0 218/3 177/20 128/58
56 2.0e-7 8.32 10.54 5.39 6.75 2.76 7.51 222/0 217/3 193/14 141/42
112 4.0e-7 8.46 10.36 5.24 6.00 3.26 8.39 221/0 216/3 197/8 147/35

Table 6: Evaluations of the E5 query encoder tuned with a frozen embedding block, margin 0.1 and 14000 samples
per epoch. Linear scaling rule of learning rate with batch size. Values that did not pass the two-tailed test are shown
in gray.
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Figure 11: Improvement of various models and tuning configurations on the English-only datasets (MSMARCO and
ARXIV) in the left column and XNLI in the right column. Values that did not pass the two-tailed test (Appendix I)
are shown with open markers. (a) Evaluations of the E5-full dual encoder after both encoders were tuned with
a frozen embedding block, batch size 14 and margin 0.1. (b) Evaluations of the L12 query encoder tuned with a
frozen embedding block, batch size 14 and margin 0.1. (c) Evaluations of the E5e query encoder tuned with a
frozen embedding block, batch size 14 and margin 0.1.

batch learning msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
size rate c% d% c% d% c% d% c+/- d+/- c+/- d+/-

7 3.54e-8 6.80 7.84 4.43 4.76 2.26 6.18 221/0 216/0 192/2 148/17
14 5.00e-8 7.30 8.82 4.90 5.39 3.51 7.73 222/0 217/1 201/2 158/20
28 7.07e-8 7.16 9.10 4.70 5.57 4.01 7.95 222/0 217/1 192/4 140/32
56 1.00e-7 7.32 8.56 4.70 5.16 3.01 6.40 221/0 217/0 204/2 169/13
112 1.41e-7 7.25 8.55 5.24 4.91 4.01 7.51 222/0 217/0 202/2 166/16

Table 7: Evaluations of the E5 query encoder tuned with a frozen embedding block, margin 0.1 and 14000 samples
per epoch. Square root scaling rule of learning rate with batch size. Values that did not pass the two-tailed test are
shown in gray.

a simple change of batch size, without altering
learning rate, is considered in Appendix M.1.2; the
tables 8 and 9 show that our ‘default’ batch size is
reasonable. The corresponding data for L12 are in
Appendix M.1.3.

M.1.2 Encoder E5 and the batch size

In Table 8 we show results for batch sizes 7, 14, 28,
56 and 112, while keeping the number of samples
per epoch the same (14000). The row with batch 14
here coincides with the values for learning rate 5e-8
in Figure 2, and with the row for the frozen embed-
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batch msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
size c% d% c% d% c% d% c+/- d+/- c+/- d+/-

7 6.85 7.57 4.55 4.78 3.01 6.62 221/0 217/0 198/2 163/13
14 7.30 8.82 4.90 5.39 3.51 7.73 222/0 217/1 201/2 158/20
28 7.45 9.47 5.14 5.46 4.01 8.39 222/0 219/1 196/6 145/27
56 6.51 7.33 4.16 4.48 2.51 5.74 221/0 217/0 202/1 168/6

112 4.63 4.78 2.55 2.50 2.51 2.21 212/0 203/0 196/0 155/1

Table 8: Evaluations of the E5 query encoder tuned with a frozen embedding block, learning rate 5e-8, margin 0.1
and different batch sizes (first column); 14000 samples per epoch. Values that did not pass the two-tailed test are
shown in gray.

batch msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
size c% d% c% d% c% d% c+/- d+/- c+/- d+/-

7 6.76 7.99 4.38 5.06 3.26 6.18 221/0 216/0 177/7 119/31
14 7.30 8.82 4.90 5.39 3.51 7.73 222/0 217/1 201/2 158/20
28 8.50 10.18 5.71 6.45 2.76 8.17 222/0 218/3 197/9 147/36
56 7.42 9.12 4.55 4.81 3.76 8.17 223/0 220/0 200/2 160/21
112 9.50 11.84 -0.82 -4.05 -15.54 -14.13 175/35 146/65 91/117 32/175

Table 9: Evaluations of the E5 query encoder tuned with a frozen embedding block, learning rate 5e-8, margin 0.1
and different batch sizes (first column); 1000 batches per epoch. Values that did not pass the two-tailed test are
shown in gray.

ding block in Table 1. The results for all batch sizes
are similar. Tuning with the higher batch size of
112 is a bit ‘safer’ for languages, not degrading any
language pair when evaluated by cosine measure,
and degrading only one language pair (for entail-
ment vs. contradiction) when evaluated by distance
measure. This comes at the price of lower gains on
MSMARCO and ARXIV.

Table 9 shows what happens if the number of
batches per epoch (1000) is kept the same, rather
than the number of samples. In this setting the
larger batch size of 112 leads to a less frequent vali-
dation (by MSMARCO validation subset) at tuning
and, effectively, to later and less reasonable stop-
ping. This results in higher gains on MSMARCO
test subset, but in far worse results on ARXIV and
XNLI.

M.1.3 Encoder L12 and the batch size

The dependency of tuning L12 using different
batch size is shown in Table 10 (number of sam-
ples per epoch is 14000) and in Table 11 (number
of batches per epoch is 1000). Observations are
somewhat similar to E5 (Appendix M.1.2), except
that generally L12 does not perform as well as E5
and a batch size of 7 turns out to be bad for L12.

M.2 Weight decay
A weight decay may restrict increase of model
weights, but it does not improve the evaluation
results. We show some representative results in
Tables 12 and 13. While restricting gains on the
tuning goal, weight decay does not help to pre-
serve the other qualities: the results on XNLI and
ARXIV are no better than without weight decay. If
there is any recipe for further improving the gains
both on the tuning goal and on the related qualities,
it has to be a less crude interference into the tuning.

Since weight decay may be more effective at
higher learning rates, the parameters for Table 12
are chosen at higher rate and batch size, compared
to our ’default’ choice, which is used in Table 13.
The learning rates and batch sizes of these tables re-
late by square root scaling rule (see Section M.1.1).

M.3 Candidate layers for freezing
In Section 3.3 we showed how the adiabatic
tuning range gets extended when the layer out-
put.dense.weight is frozen (in all blocks). The
reason for suspecting that this layer is the most
responsible for breaking out of the original ‘mini-
mum’ region, is that its maximal weight becomes
the highest among all the layers as the learning rate
gets closer to the end of the adiabatic range: see Ta-
ble 14. The maximal relative change of the weights
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batch msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
size c% d% c% d% c% d% c+/- d+/- c+/- d+/-

7 8.74 9.89 1.59 -16.43 9.59 -9.76 195/18 33/106 205/16 18/168
14 7.28 8.04 2.28 -9.23 12.4 -1.03 200/15 47/47 206/15 20/143
28 5.02 5.49 1.98 -4.05 8.37 1.27 199/15 36/27 196/15 7/77
56 5.05 5.35 1.73 -4.3 8.66 0.63 197/15 35/28 195/15 6/89
112 4.68 5.01 1.69 -3.64 7.47 0.77 193/15 25/25 188/15 4/86

Table 10: Evaluations of the L12 query encoder tuned with a frozen embedding block, learning rate 5e-8, margin
0.1 and different batch sizes (first column); 14000 samples per epoch. Values that did not pass the two-tailed test are
shown in gray.

batch msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
size c% d% c% d% c% d% c+/- d+/- c+/- d+/-

7 6.47 8.48 -1.79 -24.53 -1.1 -25.33 12/198 3/212 147/52 9/208
14 7.28 8.04 2.28 -9.23 12.4 -1.03 200/15 47/47 206/15 20/143
28 9.54 10.78 1.11 -20.67 9.16 -13.06 172/29 18/175 201/16 16/185
56 9.51 10.86 1.04 -21.01 8.37 -13.63 173/28 18/175 201/16 17/181
112 9.44 10.88 1.06 -20.86 8.18 -13.77 174/28 21/174 200/17 15/188

Table 11: Evaluations of the L12 query encoder tuned with a frozen embedding block, learning rate 5e-8, margin
0.1 and different batch sizes (first column); 1000 batches per epoch. Values that did not pass the two-tailed test are
shown in gray.

weight msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
decay c% d% c% d% c% d% c+/- d+/- c+/- d+/-
100 2.77 1.88 -2.47 -1.06 4.01 1.32 84/104 80/99 90/96 71/92
50 5.39 5.00 0.49 2.12 3.26 2.43 120/51 121/41 140/51 133/46
10 7.08 8.36 3.54 5.11 4.26 6.62 222/0 217/0 201/3 160/18
5 7.88 9.84 4.97 5.87 3.01 7.95 222/0 216/2 189/15 144/36
1 7.26 8.70 4.72 5.11 3.01 7.06 222/0 218/0 202/2 164/16

0.5 7.28 8.78 4.87 5.24 3.01 7.06 221/0 218/0 202/2 163/18
0.1 7.32 8.56 4.70 5.16 3.01 6.40 221/0 217/0 204/2 169/13

0.05 7.32 8.56 4.70 5.16 3.01 6.40 221/0 217/0 204/2 169/13

Table 12: Evaluations of the E5 query encoder tuned with a frozen embedding block, learning rate 1e-7, batch size
56, margin 0.1 and a range of weight decay (first column). Values that did not pass the two-tailed test are shown in
gray.

weight msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
decay c% d% c% d% c% d% c+/- d+/- c+/- d+/-

5 6.53 7.26 3.81 4.50 3.51 5.96 222/0 216/0 197/2 150/14
1 7.26 8.73 4.77 5.39 3.76 7.95 222/0 219/0 201/2 160/20

0.5 7.30 8.82 4.90 5.39 3.51 7.73 222/0 217/1 201/2 158/20
0.1 7.30 8.82 4.90 5.39 3.51 7.73 222/0 217/1 201/2 158/20

Table 13: Evaluations of the E5 query encoder tuned with a frozen embedding block, learning rate 5e-8, batch size
14, margin 0.1 and a range of weight decay (first column). Values that did not pass the two-tailed test are shown in
gray.

is also achieved by the layer output.dense.weight:
see Table 15.

It is a crude adjustment, and freezing this layer
in all blocks is probably overkill, but this did help
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us in extending the adiabatic range (Section 3.3).

rate layer

1e-8
1.intermediate.dense.bias
3.intermediate.dense.bias

2e-8
5.intermediate.dense.weight
3.attention.output.LayerNorm.weight

3e-8
5.intermediate.dense.weight
1.attention.output.LayerNorm.weight

4e-8
5.intermediate.dense.weight
3.attention.output.LayerNorm.weight

5e-8
3.output.dense.weight
2.output.dense.weight

6e-8
3.output.dense.weight
2.output.dense.weight

7e-8
3.output.dense.weight
2.output.dense.weight

8e-8
1.output.dense.weight
3.output.dense.weight

9e-8
1.output.dense.weight
4.output.dense.weight

1e-7
1.output.dense.weight
5.output.dense.weight

Table 14: The ’most changed’ two layers at each learn-
ing rate. The ’change’ is defined as the maximal weight
of the layer if it was changed by the tuning. The prefix
’encoder.layer’ is removed from the layer names here.

M.4 Margin of triple loss

When using the triplet loss for contrastive learn-
ing, the margin is an important parameter that can
significantly affect model training. In Figure 12
we show the dependency of the evaluation results
on the margin during its tuning. We consider our
default tuning parameters (Section 2.3), but change
the margin. The results are not unexpected: a mar-
gin up to 0.15 is reasonable, and at higher margins
the disturbance on cross-lingual, and, eventually,
on English data evaluation becomes too strong.

The corresponding data for L12 are given in Fig-
ure 13. It shows that a margin of 0.1 works best for
L12. The results for margin 0.1 are distinctly better.
Altogether, L12 appears to be more sensitive (com-
pared to E5) to the tuning parameters if the goal
is to preserve performance on multilingual XNLI
data and on out-of-domain ARXIV data. Arguably,
the margin value of approximately 0.1 is the best
both for L12 and E5.

rate layer

1e-8
5.attention.output.dense.bias
11.output.dense.bias

2e-8
5.attention.output.dense.bias
11.output.dense.bias

3e-8
5.attention.output.dense.bias
11.output.dense.bias

4e-8
5.attention.output.dense.bias
11.output.dense.bias

5e-8
11.output.dense.weight
11.output.dense.bias

6e-8
11.output.dense.weight
11.output.dense.bias

7e-8
11.output.dense.weight
11.output.dense.bias

8e-8
11.output.dense.weight
11.output.dense.bias

9e-8
11.output.dense.weight
11.output.dense.bias

1e-7
11.output.dense.weight
11.output.dense.bias

Table 15: The ’most changed’ two layers at each learn-
ing rate. The ’change’ is defined as (Wt −Wo)/(Wt +
Wo), where Wt is the maximal weight of the layer in
the tuned query encoder, and Wo is the maximal weight
of the layer in the original (untuned) encoder. The prefix
’encoder.layer’ is removed from the layer names here.

M.5 Stopping criterion

In Table 16 we show how the improvement depends
on the stopping criterion. The stoppings after 5 or
10 non-improvement epochs give similar results.
Stopping after 15 non-improvement epochs contin-
ues the trend of increased gain on English data, but
with a deterioration on a few language pairs.

M.6 Execution time

There is no essential difference between the ex-
ecution times for E5 and L12. The tuning time
depends on how soon stopping happened. At the
settings of interest (Section 2.3, 3.1, 3.2), the tun-
ing on an A100 GPU takes about one hour. For
example, tuning 10 times at the default settings
(Section 2.3, Appendix E) for rates between 1e-8
and 1e-7 takes 9 hours. At higher rates, stopping
occurs earlier; tuning 10 times for rates between
1.1e-7 to 2e-7 takes less than 5 hours. Table 1
(with freezing different parts of the encoder) was
obtained in 6 hours.

Evaluation of an encoder on all datasets we
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idle epochs msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
to stop c% d% c% d% c% d% c+/- d+/- c+/- d+/-

5 6.50 7.60 4.18 4.40 2.26 6.62 222/0 217/0 208/1 174/5
10 7.38 8.95 4.87 4.81 3.26 7.73 222/0 218/0 201/2 163/17
15 8.93 10.98 5.81 6.10 2.51 7.73 222/0 217/3 191/17 140/51

Table 16: Evaluations of the E5 query encoder tuned with a frozen embedding block, learning rate 5e-8, batch size
14 and triplet loss margin 0.1, stopped after different number of idle epochs (first column). The epoch is idle if no
improvement is made. Values that did not pass the two-tailed test are shown in gray.

Figure 12: Evaluations of the E5 query encoder tuned
with a frozen embedding block, learning rate 5e-8, batch
size 14 using different triplet loss margins on (a) XNLI
and (b) the English-only datasets (MSMARCO and
ARXIV). Values that did not pass the two-tailed test
are shown with open markers.

used (MSMARCO, ARXIV-first, ARXIV-title and
XNLI) takes about 1.2-1.3 hours.

M.7 Effects of learning rate scheduler and
weight decay

Using the fine-tuned E5 model with the frozen
embedding block, tuned using a batch size of 14,
and a margin of 0.1, we randomly vary the batch
size, learning rate scheduler and weight decay in

Figure 13: Evaluations of the L12 query encoder tuned
with a frozen embedding block, learning rate 5e-8, batch
size 14 using different triplet loss margins on (a) XNLI
and (b) the English-only datasets (MSMARCO and
ARXIV). Values that did not pass the two-tailed test
are shown with open markers.

order to assess their impact on the model’s final
performance. In Table 17 we present the change in
performance across these different configurations
for a learning rate of 5×10−8, which is our ‘default’
learning rate (Section 2.3). In Table 18 we do the
same for a learning rate of 10−7. Table 19 lists the
different schedulers we considered. Values in blue
indicate the top improvements whereas values in
red indicate the worse degradation.
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msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
B Sch D c% d% c% d% c% d% c+/- d+/- c+/- d+/-

10
0 Q - 1.83 2.80 0.99 1.23 -0.26 0.96 200/1 172/3 69/71 43/110

E0.98 10−6 -0.41 -1.07 -0.29 -0.83 -0.26 -0.96 0/63 0/39 0/20 1/8

64

- - 1.58 2.28 0.78 1.07 0.78 1.20 178/1 156/3 72/50 48/87

Q - 0.05 0.19 -0.34 -0.59 -0.26 0.00 0/0 0/0 0/0 0/1

E0.98 10−6 0.13 0.17 -0.23 -0.32 -0.26 0.00 0/0 0/0 0/0 0/1

E0.95 10−6 -0.75 -1.47 -0.62 -0.78 -0.52 -0.48 0/67 0/48 0/66 1/42

E0.95 10−5 -0.75 -1.47 -0.62 -0.78 -0.52 -0.48 0/67 0/48 0/66 1/42

- 10−4 1.58 2.28 0.78 1.07 0.78 1.20 178/1 156/3 72/50 48/87

L 10−4 0.30 0.55 -0.31 -0.11 -0.78 -0.48 0/0 0/0 0/4 0/9

32

Q 10−4 0.12 -0.17 -0.29 -0.43 0.26 0.00 0/0 0/0 0/0 0/0

L 10−4 -0.05 -0.21 -0.18 -0.19 0.78 0.00 0/0 0/0 0/0 0/0

E0.98 10−4 0.27 0.46 -0.21 -0.16 0.52 0.24 26/0 39/0 0/0 0/0

16

L - 0.00 -0.15 -0.10 -0.56 0.78 0.24 0/0 0/0 4/0 10/0

E0.95 - -0.70 -1.21 -0.65 -0.78 0.26 -0.96 0/53 0/32 7/6 20/0

E0.95 10−4 -0.70 -1.21 -0.65 -0.78 0.26 -0.96 0/53 0/32 7/6 20/0

8

Q 10−6 -0.81 -1.39 -0.57 -1.15 -1.30 -2.39 0/167 0/123 0/121 2/81
E0.95 10−6 -2.98 -4.31 -2.34 -2.73 -2.60 -6.22 0/220 0/208 2/187 15/128

- 10−5 -0.81 -1.43 -0.78 -1.18 -1.30 -2.87 0/165 0/126 0/115 3/68

Q 10−4 -0.81 -1.39 -0.57 -1.15 -1.30 -2.39 0/167 0/123 0/121 2/81

E0.95 10−4 -2.98 -4.31 -2.34 -2.73 -2.60 -6.22 0/220 0/208 2/187 15/128

Table 17: Percentage improvement over the fine-tuned E5 model with a frozen embedding block and tuned using a
batch size of 14, learning rate 5e-8 and a margin of 0.1. The blue colors indicate the top improvements whereas
the red colors indicate the worse degradation. Three parameters are randomly varied: the batch size (denoted
as “B”), the learning rate scheduler (denoted as “Sch”) and the weight decay (denoted as “D”). The learning
rate schedulers are defined in Table 19 with an initial learning rate of 5e-8. c% and d% refer to measuring the
similarity of the text pairs using either the cosine similarity or the euclidean distance, respectively. For XNLI,
(+) indicates the number of language pairs that were improved while (−) indicates those that have worsened
out of a total of 225 language pairs. Note that only the statistically significant (determined by a Z-test) language
pairs are retained and hence not all the improved/worsened counts sum to 225. Additionally, (ent-neutr) refers
to entailment-entailment similarities compared with entailment-neutral similarities whereas (ent-contr) refers to
comparisons against entailment-contradiction similarities.

Across these parameters, on average, the batch
size appears to have the most significant impact,
generally leading to poorer performance as the
batch size is decreased. Within each batch size
group, we see that using an exponential learning
rate scheduler (E0.95 or E0.98) is generally worse
than using any of the other schedulers or no sched-
uler at all. A specific exception exists when using a
batch size of 100 where the exponential scheduler
outperforms the quadratic one when the learning
rate is set to 10−7. Across all the configurations
considered, the most impact seems to be the one
shown in the first row of Table 17, where we see

good improvement over MSMARCO and ARXIV-
first while simultaneously showing improvement
over XNLI ent-neutr.

M.8 Varying the optimizer and learning rate

Table 20 shows the effects of choosing a different
optimizer with a small and large learning rate. In
addition to Adamax, we tried Adadelta and Stochas-
tic Gradient Descent (SGD), both of which did not
change the model weights in a significant enough
way to affect the overall performance and hence,
are not presented. For higher learning rates, SGD
without momentum did elicit a change as shown
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msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
B Sch D c% d% c% d% c% d% c+/- d+/- c+/- d+/-

10
0 Q - -1.12 -1.17 -0.82 -0.14 -0.52 -1.71 0/138 3/117 15/65 61/40

E0.98 10−6 -0.31 -0.18 -0.39 -0.05 -0.52 -1.22 0/0 0/0 0/11 0/7

64

- - -1.20 -1.05 -0.79 -0.11 -0.26 -0.73 0/57 5/34 1/80 9/47

Q - -0.72 -0.89 -0.66 -0.14 -0.26 -1.71 0/65 4/43 1/62 21/33

E0.98 10−6 -0.96 -1.13 -0.66 -0.49 -0.52 -1.22 0/80 6/56 3/65 29/35

E0.95 10−6 -1.78 -2.36 -0.97 -1.35 0.78 -1.46 1/160 9/131 22/103 73/68

E0.95 10−5 -1.78 -2.36 -0.97 -1.35 0.78 -1.46 1/160 9/131 22/103 73/68

- 10−4 -1.20 -1.05 -0.79 -0.11 -0.26 -0.73 0/57 5/34 1/80 9/47

L 10−4 -0.76 -0.80 -0.58 -0.16 -0.26 -1.46 0/61 3/32 0/58 14/32

32

Q 10−4 -2.12 -3.35 -1.47 -1.60 0.00 -2.68 2/190 8/162 41/107 93/69

L 10−4 -2.05 -3.36 -1.45 -1.33 0.00 -2.68 2/189 8/158 41/102 94/68

E0.98 10−4 -2.12 -3.54 -1.42 -1.84 0.00 -2.68 2/192 8/163 41/110 93/71

16

L - -0.02 0.13 -0.58 -0.65 -1.04 -1.22 0/0 0/0 11/0 43/0

E0.95 - -2.52 -3.32 -1.32 -1.38 -0.26 -2.20 3/186 8/164 49/86 101/55

E0.95 10−4 -2.52 -3.32 -1.32 -1.38 -0.26 -2.20 3/186 8/164 49/86 101/55

8

Q 10−6 -2.05 -3.29 -1.11 -1.38 -0.26 -3.66 0/212 3/182 21/140 70/105

E0.95 10−6 -2.44 -3.81 -1.55 -1.78 -0.52 -3.41 0/213 4/182 24/135 76/97

- 10−5 -2.03 -3.19 -0.74 -1.57 -0.26 -3.41 0/209 3/182 20/139 71/103

Q 10−4 -2.05 -3.29 -1.11 -1.38 -0.26 -3.66 0/212 3/182 21/140 70/105

E0.95 10−4 -2.44 -3.81 -1.55 -1.78 -0.52 -3.41 0/213 4/182 24/135 76/97

Table 18: Percentage improvement over the fine-tuned E5 model with a frozen embedding block and tuned using a
batch size of 14, learning rate 10−7 and a margin of 0.1. The blue colors indicate the top improvements whereas
the red colors indicate the worse degradation. Three parameters are randomly varied: the batch size (denoted
as “B”), the learning rate scheduler (denoted as “Sch”) and the weight decay (denoted as “D”). The learning
rate schedulers are defined in Table 19 with an initial learning rate of 10−7. c% and d% refer to measuring the
similarity of the text pairs using either the cosine similarity or the euclidean distance, respectively. For XNLI,
(+) indicates the number of language pairs that were improved while (−) indicates those that have worsened
out of a total of 225 language pairs. Note that only the statistically significant (determined by a Z-test) language
pairs are retained and hence not all the improved/worsened counts sum to 225. Additionally, (ent-neutr) refers
to entailment-entailment similarities compared with entailment-neutral similarities whereas (ent-contr) refers to
comparisons against entailment-contradiction similarities.

Scheduler Definition
L α(t) = α0

(
1− t

T

)

Q α(t) = α0

(
1−

(
t
T

)2)

E0.95 α(t) = 0.95tα0

E0.98 α(t) = 0.98tα0

Table 19: The definitions of the various learning rate
schedulers used in Table 18 where t is the current train-
ing step, T , the total number of training steps and α0,
the initial learning rate.

in Fig. 14, but the trend in performance is similar
to what is presented in Fig. 2 with higher resolu-
tion near the transition point between improved
and degraded multilingual performance. At around
9 × 10−7, we see a sharp increase in the number
of degraded language pairs while the model main-
tains constant improvement on MSMARCO. With
a high enough learning rate, it seems that the gra-
dients are able to overcome a barrier in the loss
landscape that confined the weights to a region in
which multilingual characteristics were preserved.

From the table, the default version of Adamax
(Adamax with momentum) has a nearly negligible
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msmarco arxiv-first arxiv-title xnli ent-neutr xnli ent-contr
O M LR c% d% c% d% c% d% c+/- d+/- c+/- d+/-

AdamW Yes 2e-8 6.50 7.62 4.63 4.60 2.76 5.96 222/0 218/0 208/1 171/5

AdamW Yes 1e-7 9.26 11.38 6.06 6.45 3.51 9.49 222/0 214/3 188/18 132/63

A
da

m
ax

Yes 2e-8 0.81 1.14 0.62 0.63 0.75 -0.22 0/0 0/0 1/0 1/0

No 2e-8 6.40 7.50 4.25 4.63 3.01 6.40 224/0 220/0 214/1 178/4

Yes 1e-7 6.67 7.65 4.67 4.68 3.51 6.40 222/0 217/0 205/2 171/7

No 1e-7 6.46 7.60 4.67 5.06 3.51 6.40 222/0 217/0 198/2 157/12

Table 20: Percentage improvement over the untuned E5 model. O, M and LR represent the choice of optimizer,
whether or not momentum was used and the learning rate, respectively. All the models here are tuned with a
batch size of 14, margin 0.1, and a frozen embedding block. Adamax with no momentum corresponds to choosing
β1 = β2 = 0 for the optimizer parameters.

Figure 14: Evaluations on (a) XNLI and (b) the English-
only datasets (MSMARCO and ARXIV) of the E5 query
encoder tuned with a frozen embedding block, batch
size 14, margin 0.1 using different learning rates. Here
we tune using SGD without momentum. Values that
did not pass the two-tailed test are shown with open
markers.

effect on the model when used with a small learn-
ing rate, suggesting that this particular configura-
tion for the optimizer forces the model weights to

change very slowly. When momentum is switched
off, the model weights change enough to improve
the overall performance in both English and other
languages. Continuing down to the bottom row,
if we turn up the learning rate to a higher value,
the model weights begin to change more signif-
icantly which brings about less improvement in
the model’s multilingual capacity (still an improve-
ment nonetheless), but maintains the same improve-
ment on English. Overall, going from the first row
to the last row (for Adamax), we transition from
a point in model weight space where performance
on all languages can be enhanced or preserved to
a point which is better suited for the English-only
task defined in tuning.
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