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Abstract

Large Language Models (LLMs) have signif-
icantly advanced natural language processing,
but content repetition in open-source LLMs
remains a critical challenge that adversely af-
fects user experience. The repetition penalty
parameter (RPP) aims to mitigate this issue by
preventing repeated content generation, but ex-
cessive use of RPP can compromise the overall
quality. In this paper, we propose Repetition-
Aware Performance (RAP), a novel evaluation
metric that quantifies and integrates repetition
penalty into the assessment of model perfor-
mance, enabling tuning of RPP. We evaluate
our approach using twelve open-source LLMs,
ranging from 2 billion to 70 billion parame-
ters, tested on question answering and machine
translation tasks across three datasets with vary-
ing prompting techniques. Experimental re-
sults show that RAP effectively tunes RPP,
helping to identify a trade-off value that sig-
nificantly reduces repetition while minimizing
performance loss. The code and the dataset
of generated text can be accessed at https:
//github.com/inflaton/rap.

1 Introduction

The rapid advancement of Large Language Mod-
els (LLMs) has transformed natural language pro-
cessing, enabling remarkable text generation and
comprehension capabilities. However, open-source
LLMs often generate repetitive content, leading to
extensive empty lines or recurring sentences, which
undermines text quality and fluency. This is par-
ticularly problematic in tasks requiring coherent
and contextually relevant responses, such as con-
versational chatbots. To address this, the repetition
penalty parameter (RPP) is employed during the
sampling process to reduce redundant outputs by
penalizing previously seen tokens (Keskar et al.,
2019). While effective, excessive application of
RPP can result in incomplete or fragmented re-
sponses, ultimately diminishing user satisfaction.

Figure 1: Best performance (F1 for WebQSP, BERT-F1
for MS MARCO) when tuning RPP using original eval-
uation metrics (Original) and our proposed repetition-
aware performance metric (RAP). RAP helps find RPP
values that minimally reduce performance while signif-
icantly lowering repetition ratio (RR). Result is from
Llama-3-8B (RAG-Generic Prompt).

This paper explores the relationship between
RPP and its effect on generated text. While param-
eters like temperature and top-k sampling are op-
timized using methods like random or grid search,
these fail for tuning RPP since traditional met-
rics, such as precision and BLEU scores (Pap-
ineni et al., 2002), overlook repetition. To address
this, we propose a metric called Repetition-Aware
Performance (RAP), which quantifies repetition
and penalizes it in the model’s performance eval-
uation, allowing for the tuning of RPP. Figure 1
illustrates tuning RPP for Llama-3-8B using the
original evaluation metrics (Original) and our pro-
posed metric. For the WebQSP dataset (Yih et al.,
2016), repetition ratio (RR) is reduced by 93.1%
but the performance only drops by 3.7%. For the
MS MARCO dataset (Huang et al., 2024), RR
drops by 73.9% with only 3.7% of performance
drop. Tuning RPP using RAP can significantly re-
duce the RR with minimal performance loss. More
examples can be found in Appendix (A.4).
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To compute RAP, we introduce an efficient
algorithm called ReDA– Repetition Detection
Algorithm–designed to identify all repeating pat-
terns, including non-word character (NWC) and
text repetitions, along with their corresponding rep-
etition lengths. Additionally, we define the repeti-
tion ratio (RR), which measures the proportion of
repeated content relative to the total text length. RR
is applied to penalize the model’s performance us-
ing a cubic penalty formula, as detailed in Section
3. Figure 2 illustrates computing RAP with a run-
ning example. Although the accuracy is 100%, the
content contains many repeated elements, resulting
in a low RAP score of 24.63%.

We conduct experiments on three datasets en-
compassing question answering (including knowl-
edge base question answering–KBQA– and open-
ended QA) and machine translation tasks. We eval-
uate twelve open-source LLMs ranging from 2 to
70 billion parameters. We also examine the effect
of repetition suppression for different prompting
strategies including Retrieval-Augmented Gener-
ation (RAG) (Lewis et al., 2020) and non-RAG,
combining with generic prompt and chat template.

Our study reveals that increasing RPP typically
reduces repetition but often results in performance
degradation, highlighting the importance of tuning
RPP. The effects of RPP differ across various mod-
els, datasets, and prompting techniques. Addition-
ally, we find that using chat templates is effective
in reducing repetition for QA task. Our experimen-
tal results demonstrate that RAP can effectively
tune RPP, helping to identify a trade-off value that
significantly reduces repetition while minimizing
performance loss. These findings offer insights
into optimizing RPP for performance and repeti-
tion suppression in open-source LLMs.

This paper presents three key contributions.
First, we propose RAP, a novel evaluation metric
based on the repetition ratio that quantifies and inte-
grates repetition issues into model performance, en-
abling the tuning of hyperparameters such as RPP.
We also develop an efficient Repetition Detection
Algorithm (ReDA) algorithm for detecting both
NWC and text repetition, addressing the key chal-
lenge in open-source LLMs. Second, we conduct
comprehensive experiments on twelve open-source
LLMs ranging from 2 to 70 billion parameters,
across two tasks–QA and MT–using three datasets
and multiple prompting techniques, including RAG
and non-RAG methods, with the use of Generic
Prompt and Chat Template. These experiments

provide valuable insights into reducing repetition
while maintaining performance and demonstrate
the effectiveness of tuning RPP using RAP. Third,
we publish all source code and data generated dur-
ing these experiments at GitHub1, which includes a
significant amount of text produced by open-source
LLMs. This dataset is a valuable resource for future
research in developing advanced repetition detec-
tion methods, assessing LLM capabilities in entity
extraction, and evaluating performance in question
answering and machine translation tasks.

2 Related Work

Text repetition in generative models. The repeti-
tion problem has been a long-standing concern in
generative models (Holtzman et al., 2019; Welleck
et al., 2020). Fu et al. (2020) show that excessive
word repetition occurs when transformer models
predict the same subsequent word with high prob-
ability. Factors contributing to this issue include
self-reinforcing behavior (Xu et al., 2022) and a
concept known as Distribution Collapse, which
results in decreased output diversity over time (Em-
rullah Ildiz et al., 2024). Various strategies intro-
duce variation in the generated text by considering
a subset of the most probable tokens at each step,
namely: greedy (Klein et al., 2017), top-k (Fan
et al., 2018), temperature (Ficler and Goldberg,
2017; Caccia et al., 2020), and nucleus sampling
(Holtzman et al., 2019). Additionally, managing
training data and applying techniques like length
penalties and rebalanced encoding have been sug-
gested to alleviate this issue (Wu et al., 2016; Klein
et al., 2017; Fu et al., 2020). Moreover, models
like CTRL (Keskar et al., 2019) use control codes,
including the repetition penalty parameter (RPP),
to guide generation and reduce unwanted repeti-
tions; however, determining the optimal RPP value
remains challenging, as excessive settings can de-
grade output quality. This paper explores the im-
pact of RPP on repetition and task performance,
introducing RAP as a metric to optimize RPP for
better model outcomes.
LLMs for Question Answering. Advancements
in LLMs have greatly improved QA tasks perfor-
mance. Radford et al. (2019) show the transfer
learning ability of GPT-2 and GPT-3 (Brown et al.,
2020), which adapts to new QA tasks with min-
imal examples. RAG is widely adopted for QA
tasks (Lazaridou et al., 2022; Muludi et al., 2024),

1https://github.com/inflaton/rap
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Figure 2: Overall Methodology: RAP integrates the repetition penalty in the evaluation score. In the example, the
generated text contains non-word characters (NWC) repetition and text repetition. After penalization, the accuracy
is reduced from 100% to 24.63%. ReDA stands for Repetition Detection Algorithm.

providing information that aids in generating an-
swers (Alawwad et al., 2024). The synergy be-
tween LLMs and knowledge graphs (Pan et al.,
2024) has led to increased adoption in LLMs for
KBQA tasks (Zhang et al., 2022). Another method
uses LLMs to convert questions into logical forms,
which are executed to get answers (Chen et al.,
2021; Li et al., 2023; Xiong et al., 2024; Wang and
Qin, 2024). Others augment LLMs with relevant
facts retrieved from a KG (Baek et al., 2023; Jiang
et al., 2023). In this paper, we use QA tasks to
study the impact of RPP on repetition and the per-
formance of open-source LLMs across two tasks,
using both RAG and non-RAG strategies.
LLMs for Machine Translation (MT). Large
Language Models (LLMs) have made significant
strides in machine translation (Zhang et al., 2023;
Moslem et al., 2023). Models such as BERT (De-
vlin et al., 2018), GPT-3 (Brown et al., 2020), and
T5 (Raffel et al., 2020) have demonstrated excep-
tional performance in zero-shot and few-shot trans-
lation scenarios (Liu, 2020). A recent compre-
hensive study evaluated LLMs across zero-shot,
few-shot, and fine-tuned paradigms, highlighting
trade-offs between model size, translation accuracy,
and processing speed (Huang and Wang, 2025). In
this paper, we build on their fine-tuned open-source
LLMs and curated dataset to investigate the impact
of RPP on repetition and overall performance.

3 The Proposed Method

The core concept of RAP is to incorporate a penalty
for the model’s performance based on the degree
of repetition in the generated response. To achieve
this, we propose an efficient algorithm, ReDA, for
detecting and quantifying repetition in text. We
introduce the notion of the repetition ratio (RR),

which measures the proportion of repeated content.
Additionally, we define repetition-aware perfor-
mance (RAP), a metric that integrates repetition
penalties into standard performance evaluations,
enabling tuning of the repetition penalty parameter.
Given a text sequence generated by an LLM, we
first detect non-word characters (NWC) repetition,
that includes white spaces and non-alphanumeric
characters such as punctuation and symbols. A se-
quence has NWC repetition if it contains at least k
consecutive identical NWC. After carefully check-
ing the outputs of various LLMs, we choose k = 5
to ignore cases where NWC are used for formatting
the output. We then remove these repeated NWC
and detect text repetition.

3.1 Definitions

Repetition in LLM-generated content can occur not
only in sequences of words separated by spaces but
also within a single, super-long “word” that con-
tains no spaces. Both of these issues are equally
important. Therefore, we extend the definition of
text repetition from Fu et al. (2020) to cover not
only the repetition of word sequences but also the
repetition of characters within no-space content.
We denote an LLM’s generated sequence as S =
[w1, w2, · · · , w|S|] where wi is the ith character in
S and |S| is the length of the sequence in terms of
characters. We denote Sp:q = [wp, wp+1, · · · , wq],
where 1 ≤ p < q ≤ |S|, as a continuous subse-
quence of S.

Definition 1 (Equal Subsequences)
Subsequences Sa:b and Sc:d are said to be
equal if b − a = d − c and wa+i = wc+i, for
∀i ∈ [0, b− a].

Definition 2 (Repeated Subsequence) Given a
sequence S = [w1, w2, · · · , w|S|], a subsequence
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Sp:q, 1 ≤ p < q ≤ |S|+p−1
2 is a repeated subse-

quence if it equals to its consecutive subsequence,
Sq+1:2q−p+1.

Definition 3 (Maximal Repeated Subsequence)
A subsequence Sp:q is said to be a maximal re-
peated subsequence if ∄c, d such that Sc:d is a
repeated subsequence, where c ≤ p < q ≤ d and
d− c > q − p.

A maximal repeated subsequence (MRS) in a
sequence refers to the longest subsequence that oc-
curs repeatedly without interruption, representing
the largest repeating unit. There may be multiple
MRSes within a text, each representing a distinct
repeated pattern. The repetition length of an MRS
is defined as the length of the repeated content,
excluding the first occurrence of the pattern. The
repetition length of the entire sequence is calcu-
lated as the sum of the repetition lengths of all the
MRSes within the sequence.

Definition 4 (Text Repetition Detection Problem)
Given a sequence S, identify all maximal repeated
subsequences (MRSes) within S and determine
their corresponding repetition lengths.

Definition 5 (Repetition Ratio – RR) The repeti-
tion ratio (RR) of a sequence S is defined as the
proportion of repeated content relative to the length
of the sequence:

RR(S) =
R(S)

|S| (1)

where R(S) is the repetition length of the entire
sequence S.

In Figure 2, the repeated content includes
NWC repetition (repeated dots), and text repeti-
tion (“United States Dollar”). The RR computed
using Equation 1 is 0.373, i.e., about 37% of the
text is repeated content.
Repetition Penalty Parameter (RPP). RPP is ap-
plied during token sampling to address repetition
in generated text (Keskar et al., 2019). Specifi-
cally, the probability of predicting the ith token is
computed as:

pi =
exp(xi/(T · I(i ∈ g)))∑
j exp(xj/T · I(j ∈ g)))

(2)

where I(c) = θ if c is True else 1, T is the temper-
ature value, g is the list of generated tokens, and
θ is the RPP (Keskar et al., 2019). RPP adjusts

the probabilities of previously generated tokens,
penalizing them to reduce their likelihood of being
selected again. The extent of this adjustment is gov-
erned by the RPP value: higher RPP values impose
stronger penalties, effectively suppressing repeti-
tive outputs. However, this comes with a trade-off,
as overly penalizing tokens can potentially impact
the coherence and fluency of the generated text.
We now present the repetition detection algorithm
and RAP (repetition-aware performance), which
facilitate tuning RPP to achieve an optimal balance.

3.2 Repetition Detection Algorithm (ReDA)
ReDA adopts regular expressions to detect both
NWC and text repetitions. ReDA can detect repeti-
tions within single no-space content, an issue often
overlooked (Fu et al., 2020). The regular expres-
sion for detecting NWC repetition is as follows:

[\s\W ]{5, } (3)

which matches any sequence of 5 or more consec-
utive characters where each character is either a
whitespace or a NWC. The regular expression for
identifying text repetition is:

(?P < r > .{5}.∗?)(? : [\s\W ] ∗ (?P = r)+
(4)

which matches a sequence of at least 5 alphanu-
meric (captured in the group r), followed by one or
more repetitions of the same sequence, potentially
separated by whitespace or non-word characters.
ReDA first detects and records all NWC repetitions,
removes them, and then identifies text repetitions.
For text repetition, it identifies all MRSes and their
frequencies. Finally, ReDA returns the repetition
lengths of NWC and text repetition. ReDA is de-
tailed in Algorithm 1.

3.3 Repetition-Aware Performance (RAP)
After measuring the repeated length of each LLM
response, we compute the RR for the entire dataset
based on Equation 1:

RRD =

∑
S∈D R(S)∑
S∈D |S| (5)

where RRD is the repetition ratio for the entire
dataset D, and each S ∈ D is a sequence (LLM
response) in D. The RAP score of the entire dataset
is computed as follows:

RAP = P × F (RR) (6)
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Algorithm 1 Repetition Detection (ReDA)
1: Input: Gtext ▷ Input text
2: Output: RLNWC , RLtext, RLtotal ▷ Repetition length

of NWC, text, and total, respectively
3: PNWC = re.compile(r"([\s\W]{5,})") ▷ Regex

pattern for detecting NWC repetition
4: Ptext = re.compile(r"(?P<r>.{5}.*?)
5: (?:[\s\W]*(?P=r)+") ▷ Regex

pattern for detecting text repetition
6: ▷ STEP 1. Detecting NWC repetition
7: G′

text = PNWC .sub("\t ", Gtext) ▷ Remove NWC
repetition

8: RLNWC = len(Gtext) - len(G′
text) ▷ Compute NWC

repetition
9: ▷ STEP 2. Detecting text repetition

10: RLtext = 0
11: matches = Ptext.finditer(G′

text)
12: for each match in matches do
13: (start, end) = match.span()
14: RLtext += end - start - len(match.group(1)) ▷

Aggregate text repetition lengths
15: end for
16: RLtotal = RLNWC + RLtext

17: return RLNWC , RLtext, RLtotal

where P can be any evaluation metric such as F1,
BERT-F1, or COMET, and F (RR) is the penalty
function that calculates the penalty volume based
on RR. Unless otherwise specified, the results in
this paper are generated using cubic penalty func-
tion, i.e., F (RR) = (1−RR)3. If no repetition is
found in the generated text, RAP = P ; otherwise,
RAP < P , meaning the performance is penalized
for having repetition. RAP enables tuning RPP to
achieve the balance between model performance
and repetition, allowing for high performance while
minimizing repetitive content.

4 Experiments

4.1 Experimental settings

Datasets. We conduct the experiments using three
datasets including WebQSP (Yih et al., 2016) and
MS MARCO (Bajaj et al., 2016; Huang et al., 2024)
for question answering (QA), and MAC (Huang
and Wang, 2025) for Chinese-English machine
translation (MT). The datasets contain 1,008, 500,
and 1,133 testing questions, respectively. To per-
form RAG on WebQSP, we crawled relevant arti-
cles from Wikipedia, and retrieve 8 most relevant
document chunks when answering each question
for RAG prompting. We also adopt Gemini-1.0-
Pro to evaluate for the knowledge base question
answering task (KBQA) where the ground-truth
answers contains lists of entities instead of natu-
ral language text. More details of the dataset and

LLM-based KBQA evaluation are presented in the
Appendix (A.1).

Open-Source LLMs. This study evaluates a
diverse set of open-source large language models
(LLMs) for question answering (QA) and machine
translation (MT) tasks. For QA, we assess nine
models: Llama-2 (7B, 13B, 70B), Llama-3 (8B,
70B), Gemma-1.1 (2B, 7B), Phi-3-mini (3.8B), and
Mistral-7B. For MT, we evaluate three models: Phi-
3.5-mini (3.8B), Mistral-7B, and Llama-3.1-70B.

Table 1 provides an overview of these models,
including their respective companies, model names,
Hugging Face identifiers, and the tasks they were
evaluated on. This selection spans a broad range
of model sizes and architectures, representing the
state of the art in open-source LLM development.
These models are widely used in commercial appli-
cations under their respective licenses.

The diversity of this selection enables a robust
comparison across model families and sizes, offer-
ing insights into the relative strengths of different
open-source LLMs in QA and MT tasks.

Automating QA and MT Tasks with LLMs.
We developed a Python script specifically designed
to evaluate the performance of LLMs on QA and
MT tasks. The script leveraged the open-source
HuggingFace Transformers library (Wolf et al.,
2020) and was executed across all models and
datasets. For QA tasks, an RPP range of 1.0 to
1.3 was applied, while for MT tasks, an RPP range
of 1.0 to 1.1 was used, both with increments of
0.02. To ensure consistency and reproducibility
across experiments, the temperature was set to 0
and top_p was fixed at 0.95.

Prompt Templates: To investigate LLMs’ be-
haviors under different prompting strategies, we
implemented three QA prompt templates: (1) RAG
- Generic Prompt (RAG-GP): a uniform basic tem-
plate for all models; (2) RAG - Chat Template
(RAG-CT): LangChain’s default template tailored
to each LLM’s chat format, maintaining the same
core content; and (3) Non-RAG: simulates a single-
turn conversation in the LLM’s chat format. For
MT, we used two templates: (1) MT - Generic
Prompt (MT-GP): a basic template applied uni-
formly, and (2) MT - Chat Template (MT-CT):
a template designed for each LLM’s chat format.
Prompt templates are shown in the Appendix (A.6).

Evaluation Metrics: For WebQSP, we use pre-
cision, recall, and F1 scores. For MS MARCO,
we employ BERTScore (Zhang et al., 2019), us-
ing deberta-xlarge-mnli model to ensure optimal
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Table 1: Overview of Large Language Models and Their Specifications by Task

Company Model Name Hugging Face Model ID Task

Meta

Llama-2-7B meta-llama/Llama-2-7b-chat QA
Llama-2-13B meta-llama/Llama-2-13b-chat QA
Llama-2-70B meta-llama/Llama-2-70b-chat QA
Llama-3-8B meta-llama/Meta-Llama-3-8B-Instruct QA
Llama-3-70B meta-llama/Meta-Llama-3-70B-Instruct QA
Llama-3.1-70B shenzhi-wang/Llama3.1-70B-Chinese-Chat MT

Microsoft
Phi-3-mini microsoft/Phi-3-mini-128k-instruct QA
Phi-3.5-mini microsoft/Phi-3.5-mini-instruct MT

Google
Gemma-1.1-2B google/gemma-1.1-2b-it QA
Gemma-1.1-7B google/gemma-1.1-7b-it QA

Mistral AI
Mistral-7B-v0.2 mistralai/Mistral-7B-Instruct-v0.2 QA
Mistral-7B-v0.3 shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat MT

performance, as it provides the highest correlation
with human evaluations. Results are reported as
the average F1 score across the entire dataset, re-
ferred to as BERT-F1. For MAC, we employ the
Crosslingual Optimized Metric for Evaluation of
Translation (COMET), a neural-based evaluation
metric that leverages contextual embeddings from
pretrained language models to assess translation
quality (Rei et al., 2022). COMET has demon-
strated strong correlation with human judgments,
making it a reliable metric for translation evalua-
tion. For repetition evaluation, we report the repe-
tition ratio (Equation 5). We also report the RAP
scores, applied on the corresponding evaluation
metrics (Section 3.3).

4.2 Impact of RPP on Repetition and
Performance

Figures 3 illustrates the impact of RPP on the rep-
etition and performance of different open-source
LLMs on the three datasets, using different prompt-
ing strategies. The results show that increasing
RPP generally reduces repetition across strategies
and datasets but often leads to a decline in perfor-
mance. The trending and severity vary by model;
for instance, while Phi-3-mini’s performance on
MS MARCO-RAG-GP dropped significantly with
RPP above 1.14, Llama-3-8B showed improved
performance with higher RPP values under the
same conditions. Therefore, selecting an optimal
RPP value is crucial to balance repetition reduction
with minimal impact on performance.

The datasets also show different behaviors. We-
bQSP generally exhibits higher repetition levels

(e.g., at RPP = 1.0) than MS MARCO, especially
with the RAG-GP strategy. This indicates that the
nature of the dataset and task also influence repeti-
tion tendencies. In MAC dataset, despite a smaller
RPP range tested, repetition still decreases as RPP
increases. For both QA datasets, the Chat Template
strategy consistently reduces repetition, showing
lower RR values than the Generic Prompt approach.
This suggests that the Chat Template effectively
minimizes repetition in QA tasks. However, it sur-
prisingly does not offer the same benefit for MT
task, where increasing RPP effectively reduces rep-
etition.

Table 2: Comparison of model performance across dif-
ferent datasets, LLMs, and prompting strategies.

Dataset LLM RAG-GP RAG-CT Non-RAG

WebQSP

Gemma-1.1-2B 0.397 0.361 0.175
Phi-3-mini 0.527 0.575 0.595
Gemma-1.1-7B 0.109 0.302 0.291
Mistral-7B-v0.2 0.609 0.604 0.648
Llama-2-7B 0.589 0.590 0.548
Llama-3-8B 0.572 0.558 0.668
Llama-2-13B 0.595 0.588 0.627
Llama-2-70B 0.577 0.596 0.657
Llama-3-70B 0.517 0.537 0.710

MS
MARCO

Gemma-1.1-2B 0.272 0.277 0.250
Phi-3-mini 0.263 0.261 0.246
Gemma-1.1-7B 0.149 0.276 0.249
Mistral-7B-v0.2 0.256 0.256 0.239
Llama-2-7B 0.266 0.257 0.243
Llama-3-8B 0.252 0.265 0.239
Llama-2-13B 0.265 0.258 0.246
Llama-2-70B 0.270 0.258 0.248
Llama-3-70B 0.275 0.264 0.238

MAC

LLM MT-GP MT-CT

Phi-3.5-mini 0.707 0.702
Mistral-7B-v0.3 0.726 0.728
Llama3.1-70B 0.743 0.750
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Figure 3: Illustrating the impact of RPP on RR and performance across models, datasets, and prompting strategies.

4.3 Optimizing the Trade-Off Between
Performance and Repetition

This section demonstrates the use of RAP in tuning
RPP by comparing model performance and repe-

tition when using conventional metrics (Original
Performance) versus RAP. Figure 4 shows the rela-
tionship between RPP, performance, and repetition
for Phi-3-mini on WebQSP and MS MARCO, and
Phi-3.5-mini on MAC. Blue lines represent original
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Figure 4: Illustrating original performance, repetition-aware performance (RAP), and repetition ratio (RR) while
varying RPP. Results are shown for Phi-3-mini in QA (Subplots (a) to (f)) and Phi-3.5-mini in machine translation
(Subplots (g) and (h)). The blue shaded region highlights the RPP for optimal original performance, while the
orange region indicates the RPP for the best RAP; overlapping regions are marked in brown to show alignment.

performance (F1 for WebQSP, BERT-F1 for MS
MARCO, and COMET for MAC), orange lines
show RAP scores, and green lines (right y-axis)
indicate RR percentages. The blue shaded area
marks the RPP with the best performance based
on conventional metrics, the orange marks the best
RAP, and brown indicates overlap between the two.

In most cases (except Figure 4c), the optimal
RPP differs when tuning for original performance
versus RAP. For instance, in Figure 4e, tuning with
BERT-F1 gives the best RPP at 1.0 with a perfor-
mance of 0.264, but the repetition ratio is high
at 6.07%. With RAP, the best RPP shifts to 1.1,
where performance drops by 1.1% (drop 0.003),
but the repetition ratio significantly decreases by
98.8% (drop 6%). This demonstrates that tuning
RPP with RAP helps balance performance with
reduced repetition. Another example with different
visualization is illustrated in Figure 1. These results
highlight the importance of tuning RPP to balance
performance and repetition reduction, which can
be achieved using RAP. The optimal RPP varies by
task, dataset, and prompting strategy.

4.4 Comparing the RAP-Tuned Performance
of All Models

Table 2 shows the performance of the open-source
LLMs after tuning RPP using RAP. On WebQSP,
Mistral-7B leads for both RAG-GP and RAG-CT,

scoring 0.609 and 0.604, respectively. However,
Llama-3-70B outperforms all models in the Non-
RAG prompt with a high F1 score of 0.710. For
MS MARCO, Gemma-1.1-2B excels in both RAG-
CT and Non-RAG, with scores of 0.277 and 0.250,
while Llama-3-70B takes the top spot in RAG-GP
with 0.275. In the MT task (MAC), Llama3.1-70B
dominates both the generic prompt and chat tem-
plate categories, scoring 0.743 and 0.750. These re-
sults show that larger models like Llama-3-70B and
Mistral-7B consistently achieve top performance
across datasets and prompting strategies. How-
ever, mid-sized models like Gemma-1.1-2B per-
form competitively on specific tasks, such as MS
MARCO, highlighting that model choice should be
task-dependent and not solely based on model size.

4.5 How Severe can Repetition be?

In our experiments, the length of text repeated can
account for up to 97.85% of the overall text output,
while the proportion of responses with repetition
across the entire dataset can reach 41.27%. Fig-
ure 5 shows the top-3 highest and lowest RR for
MS MARCO. Colored squares above each point
indicate the percentage of repeated responses, with
blue, yellow, and red squares marking values below
10%, between 10-20%, and above 20%, respec-
tively. Notably, while Gemma-1-1.7B (RAG-GP)
has only 3.8% of responses with repetition, the
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Figure 5: Severity of repetition. Colored squares above
indicate the percentage of repetitive responses. X-label
contains model, prompting method, and tuned RPP.

repeated text case is very severe as it makes up
91.53% of the overall answer length. In contrast,
30% of Llama-3-70B (RAG-CT)’s responses con-
tains repetition, but the repeated text only consti-
tutes 1.29% of the overall length. The length of
repeated content can also be substantial. For in-
stance, Llama-2-13B generated repeated content
that averaged around 4,000 characters.

4.6 Ablation Study: the Effects of Different
Penalty Functions

Figure 6: Gains across different penalty functions. Cu-
bic penalty obtains the best gains across three datasets.

We now present an ablation study to evaluate the
impact of different formulas for the penalty func-
tion F (RR) on RAP (Equation 6). We consider
five options including Linear, Quadratic, Cubic,
Logarithmic, and Exponential where the penalty
are 1−RR, (1−RR)2, (1−RR)3, log2(2−RR),
and e−RR, respectively. We compare the Gain
achieved with each repetition penalty formula. For
a model, Gain is defined as the difference between
the reduction in repetition and the performance
drop when tuning RPP using original performance

versus RAP. It reflects how much repetition de-
creases (i.e., gain) relative to the performance loss
when tuning RPP with RAP. The higher Gain,
the better. Figure 6 shows the Gain scores for
each formula across the three datasets. The Gain
for a dataset is calculated by averaging the Gain
values from all models and prompting strategies.
The results show that the Cubic penalty consis-
tently achieves the highest gains across all datasets
(32.7% for WebQSP, 28.0% for MS MARCO, and
48.5% for MAC), offering the best balance between
reducing repetition and maintaining performance.
These findings recommend the Cubic penalty for
the RAP metric, as it performs well across diverse
datasets and tasks.

5 Conclusion

This research tackles the challenge of reducing re-
peated content generation while preserving overall
performance in open-source LLMs. We propose
the repetition-aware performance metric, RAP,
which quantifies and integrates repetition penalty
into model evaluation. Conventional metrics of-
ten overlook repetition, making it difficult to tune
the repetition penalty parameter (RPP). In contrast,
RAP enables effective tuning of RPP and can be
easily applied to other repetition methods as well.

We evaluated RAP on twelve open-source LLMs
using three datasets across QA and MT tasks, with
different prompting strategies. Results show that
higher RPP values generally reduce repetition but
can significantly impact performance. This phe-
nomenon emphasizes the need of tuning RPP. The
experiments also demonstrate the capability of us-
ing RAP for identifying the RPP value that effi-
ciently reduce repetition while minimizing perfor-
mance loss. We also highlight the severity of the
repetition issues in the generated content, calling
for greater attention from the research community
on this matter. Our experiments offer valuable
insights into managing repetition in open-source
LLMs, including a recommendation to use Chat
Templates for RAG prompting. We will release the
source code and all experimental data, offering a
large dataset of LLM-generated content for future
research on repetition issues and LLM capabilities
in QA and MT tasks.
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6 Limitations

This study has several limitations. First, while we
conducted experiments with twelve open-source
LLMs, our findings may not be generalizable to
other open-source models or newer architectures
due to variations in design and training data. This
limitation suggests that further research could ex-
plore a wider array of models to validate the appli-
cability of our findings.

Second, our current repetition detection method
focuses solely on non-word character and text rep-
etition. This may overlook other relevant forms
of repetition, such as word salad repetition, which
could further impact the quality of generated con-
tent. Addressing these additional types of repetition
in future work could lead to a more comprehensive
understanding of repetition issues in LLMs.

Third, this research examines two specific tasks:
question answering and machine translation. While
these tasks are significant, extending the study to
include other applications, such as text summariza-
tion, could provide deeper insights into LLM behav-
ior concerning text repetition across various NLP
tasks. This expansion would help in understand-
ing how different tasks may influence repetition
patterns and the overall performance of LLMs.

Finally, this work concentrates on the repetition
penalty parameter (RPP). However, other methods,
such as sampling techniques, temperature adjust-
ments, and context size modifications, can also be
used to mitigate repetition issues in generative mod-
els. While RAP can be easily applied alongside
these methods, further research evaluating RAP
across different repetition control methods would
enhance our understanding of how to manage repe-
tition issues in LLMs more effectively.
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A Appendix

A.1 Data Collection and Preprocessing
We evaluate our proposed metric, RAP, using two
tasks of question answering and machine transla-
tion. For question answering, we use WebQSP and
MS MARCO. The WebQSP dataset (Yih et al.,
2016) is a widely used benchmark for KBQA
task. We selected a subset of 1008 questions
from test data, mainly following the criteria as for
WebQSP-WD (Sorokin and Gurevych, 2018) that
to keep questions with at least one acceptable an-
swer in Wikidata. MS MARCO (Microsoft Ma-
chine Reading Comprehension) is a comprehensive
dataset for reading comprehension and question
answering, released by Microsoft2. For our experi-
ments, we used the dataset created by (Huang et al.,
2024). This dataset includes 100 queries, each with
well-formed answers across five categories: LO-
CATION, NUMERIC, PERSON, DESCRIPTION,
and ENTITY, totaling 500 queries. Each query is
accompanied by 10 passages that provide context
for the RAG-based question answering task. For
machine translation task, we use the MAC (Manu-
ally Aligned Chinese-English) dataset curated by
(Huang and Wang, 2025). This dataset comprises
sentences from six Chinese novels and their corre-
sponding English translations, spanning a diverse
range of genres, including humor, martial arts, clas-
sics, war, romance, and science fiction. It contains
a total of 5,661 entries, with 4,528 used for training
and 1,133 reserved for testing.
Preparing Context-Data for WebQSP To eval-
uate open-source LLMs using various prompting
strategies, including Retrieval-Augmented Gener-
ation (RAG), we crawled Wikipedia for relevant
documents to address WebQSP questions. We de-
veloped a Python script to prepare the context data
by retrieving up to 10 documents per query, which
were then processed through text extraction, seg-
mentation, and embedding. These document chunk
embeddings were stored locally for vector search.
For each question, we retrieved the 8 most relevant
document chunks through similarity search to form
the context for RAG prompting.

A.2 LLM-based KBQA Evaluation
In the KBQA task, answers are typically lists of

entities from the KG. For instance, the answer to
“What language is spoken in Switzerland?” is “[Ital-
ian, German, French, Romansh]”. While LLMs

2https://microsoft.github.io/msmarco/

You are evaluating a question answering task. The
ground-truth answer is a list of
answer-items.

↪→
↪→
First, extract the answer-items from the

generated answer.↪→
Then, map each generated answer-item to the

ground-truth answer-item if possible. If no
matching, use an empty list.

↪→
↪→
Output using the following format.

{"predicted_answer": [list of answer-items
extracted from the generated answer],
"mappings": {"predicted_answer_1": [matched
groundtruth answers], "predicted_answer_2":
[]}}

↪→
↪→
↪→
↪→
↪→

Question: <KBQA Question>
Ground-truth answer: <KBQA Ground-truth Answer>
Generated answer: <LLM-generated Answer>

Listing 1: Prompt template for KBQA evaluation using
Gemini Pro. The actual content will be filled in the
placeholders of Question, Ground-truth answer, and
Generated answer.

Question: what
currency is used in
panama

Ground-truth answer:
['panamanian balboa',
'united states dollar']

LLM's generated answer: In Panama, the
official currency is the Panamanian balboa
(PAB). However, the US dollar (USD) is also
widely accepted and is often used as a
secondary currency. In fact, many businesses,
including hotels, restaurants, and shops, quote
prices in US dollars. The balboa is pegged to
the US dollar at a fixed rate of 1:1, which
means that the value of the balboa is
equivalent to the value of the US dollar.

Prompt
Generation

Gemini's output:
{"predicted_answer": ["Panamanian
balboa (PAB)", "US dollar (USD)"],
"mappings": {"Panamanian balboa
(PAB)": ['panamanian balboa'], "US
dollar (USD)": ['united states dollar']}}

Evaluator
(based on Gemini's

mappings)

Precision: 1.0 
Recall: 1.0 
F1: 1.0

Prompt

Figure 7: LLM-based KBQA evaluation workflow using
prompts for precision, recall, and F1 scores with Gemini-
1.0-Pro as evaluator.

can be asked to generate entity lists, they do not
always follow this format. Therefore, processing
LLM-generated answers to extract entity lists for
evaluation is crucial. Using Named Entity Recogni-
tion (NER) alone is not sufficient because answers
may include non-entity information and differing
entity wordings, e.g., “United States Dollar” versus
“US dollar (USD)”. To address this, we propose
an LLM-based evaluation method where an LLM
extracts and maps answer-items (entities) from the
generated answer to the ground-truth entities. Fig-
ure 7 illustrates this workflow with an example
generated by Llama-3-8B. We construct a prompt
using a predefined template (Listing 1), including
the question, ground-truth answer, LLM-generated
answer, and a request for entity extraction and map-
ping. As shown in the figure, Gemini outputs a list
of predicted answers and a mapping of predicted
answers to ground-truth answers. A predicted an-
swer can map to multiple ground-truth items or
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none (i.e., incorrect answer).
The mapping is then used to compute evaluation

metrics including Precision, Recall, and F1. The
details are as follows. Given a question, we denote
the ground-truth answer as A = [A1, A2, · · · , An]
and the list of predicted answer-items as Â =
[Â1, Â2, · · · , Âm]. The mapping is denoted as
M = {Â1 : M1, Â2 : M2, · · · , Âm : Mm} where
Mi is a list of ground-truth answer-items matched
with the corresponding predicted answer-item, i.e.,
Mi ⊆ A (i = 1, · · · ,m) and Mi is empty when
the predicted answer-item is wrong. A predicted
answer-item is called correct if it matches with
at least one of the ground-truth answer-items. We
define cG = |set(M1∪M2∪· · ·∪Mm)| as the num-
ber unique ground-truth answer-items that matched
with at least one predicted answer-item and cP
as the number of correct predicted answer-items.
The final number of correct answers is chosen as
the smallest number between cG and cP . This is
to deal with the cases where different predicted
answer-items carry the same meaning (mapped to
the same ground-truth answer-item). The precision
and recall are then computed as c

|Â| and c
|A| , respec-

tively. F1 score is computed as the harmonic mean
of precision and recall. We chose Gemini-1.0-Pro
for this evaluation task because of its strong natural
language processing capabilities and its availability
during our experiments.

A.3 Tuning RPP for All Models and Datasets

Figure 8: Top-5 model with highest RR reduction for
WebQSP dataset

We visualize the best performance when tuning
RPP using original evaluation metrics (Original)
and our proposed repetition-aware performance
metric (RAP). RAP helps find RPP values that min-

Figure 9: Top-5 model with highest RR reduction for
MS MARCO dataset

Figure 10: Tuning RPP of all models for MAC dataset

imally reduce performance while significantly low-
ering repetition ratio (RR). Results for all models
across three datasets are shown in Figure 15 (We-
bQSP, MS MARCO) and 10 (MAC). Figure 8 and
9 show the top-5 highest RR reduction after tuning
for WebQSP and MS MARCO dataset respectively.
Green color bar indicates performance and blue
color bar indicates RR. The hatched bar visualize
the magnitude of reduction after tuning.

A.4 How Severe can Repetition be for Other
Models and Datasets?

Figure 11 visualize the top-3 highest and lowest
RR for WebQSP, while Figure 13, 14, and 12 visu-
alize all models for WebQSP, MS MARCO, MAC
respectively. The leftmost three models show the
Top-3 highest RR, while the rightmost three display
the lowest. The ratio of repeated text length to text
length is also visualized. Colored squares above
each point indicate the percentage of repeated ques-
tions, with blue, yellow, and red squares marking
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Figure 11: Top-3 highest and lowest RR for WebQSP
dataset

Figure 12: Percentage of repeated responses, repeated
text length, and RR for MAC dataset

values below 10%, between 10-20%, and above
20% respectively. The x-label indicates the model,
the prompting method, and the RP of the RR.

A.5 Evaluating the Quality of Gemini’s
Evaluation

To assess the effectiveness of our LLM-based
KBQA evaluation method, we randomly selected
100 samples from the experiment results of the
Llama-3-70B Non-RAG model, as this configura-
tion achieved the best performance on WebQSP. A
human evaluator was then asked to review and pro-
vide feedback on Gemini’s evaluation of these sam-
ples (following the process described earlier). The
agreement rate between the human evaluator and
Gemini was 89.0%. While this indicates that the
method is not flawless, it demonstrates a high level
of reliability, making our LLM-based KBQA eval-
uation suitable for automatically assessing LLM
responses in KBQA tasks.

We conducted a qualitative analysis of the pro-
posed LLM-based KBQA evaluation using Gemini-
1.0-Pro (Section A.2). Table 3 presents examples of
outputs from Llama-3-70B for five WebQSP ques-
tions, along with the corresponding evaluations
from Gemini.

In the first example, Gemini correctly extracts
the answer item "Lawrence E. Roberts" and accu-
rately maps the predicted answer to the ground-
truth answer, resulting in a precise evaluation. A
similar correct evaluation occurs in the second ex-
ample.

However, Gemini occasionally fails to extract
the correct information from the generated text. In
the third question, for example, Gemini mistakenly
identifies "Elizabeth Bowes-Lyon" as part of the
predicted answer, despite the LLM response not
implying this. This error leads to a precision score
of only 0.5 for this answer, negatively affecting the
LLM’s overall performance evaluation. A similar
issue occurs in the fifth question, where Gemini ex-
tracts too many keywords from the LLM response,
yielding a very low final score, despite the fact that
the predicted answer is correct when reading the
response in context.

In summary, to further evaluate the quality of
our LLM-based KBQA evaluation method, we
randomly selected 100 samples from the Llama-
3-70B Non-RAG model’s results, as this configu-
ration performed the best on WebQSP. A human
evaluator reviewed Gemini’s assessments, and the
agreement rate was 89.0%. While not perfect, this
indicates that our LLM-based KBQA evaluation
method demonstrates a strong level of reliability
and can be effectively utilized for automatically
evaluating LLM responses in KBQA tasks.

A.6 Prompt Templates

In this section, we present the various prompt tem-
plates used for different tasks and configurations
in our experiments. These templates guide the in-
teraction between the models and the provided in-
put, ensuring consistency across models and tasks.
The templates cover both question answering (QA)
and machine translation (MT) tasks, with special-
ized designs for models with and without retrieval-
augmented generation (RAG) capabilities. Each
template is structured with placeholders that dy-
namically incorporate the question, context, or in-
put data. The following listings describe the prompt
templates in detail.
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Figure 13: Percentage of repeated responses, repeated text length, and RR for WebQSP dataset

Figure 14: Percentage of repeated responses, repeated text length, and RR for MS MARCO dataset

Use the following pieces of context to answer the
question at the end. If you don't know the
answer, just say that you don't know, don't
try to make up an answer.

↪→
↪→
↪→
{context}
Question: {question}
Helpful Answer:

Listing 2: RAG - Generic Prompt template for question
answering. The placeholders {question} and {context}
will be filled with the question and the retrieved data,
respectively.

<|begin_of_text|>
<|start_header_id|>
system
<|end_header_id|>
You are a chatbot having a conversation with a

human.↪→
<|eot_id|>
<|start_header_id|>user
<|end_header_id|>
{question}
<|eot_id|>
<|start_header_id|>
Assistant
<|end_header_id|>

Listing 3: Non-RAG prompt template for question an-
swering with Llama-3 models. The placeholder {ques-
tion} will be filled with the question.
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No. Question Ground-
truth

LLM Response (Llama 3-70B) Gemini’s Evaluation

1 who is robin
roberts
father

[lawrence e.
roberts]

Robin Roberts father is Lawrence E. Roberts, a pilot
in the United States Air Force and a colonel. He
passed away in 2004.

{predicted_answer: [Lawrence E. Roberts], map-
pings: {Lawrence E. Roberts: [lawrence e.
roberts]}}

2 who does
michael oher
play for in
2010

[baltimore
ravens]

In 2010, Michael Oher played for the Baltimore
Ravens.

{predicted_answer: [Baltimore Ravens], map-
pings: {Baltimore Ravens: [baltimore ravens]}}

3 who was
queen eliza-
beth ii mom

[’queen
elizabeth
the queen
mother’]

Queen Elizabeth II’s mother was Queen Elizabeth
The Queen Mother, also known as Elizabeth Bowes-
Lyon. She was the wife of King George VI and
the mother of Queen Elizabeth II and Princess Mar-
garet.

{"predicted_answer": ["Queen Elizabeth The
Queen Mother", "Elizabeth Bowes-Lyon"],
"mappings": {"Queen Elizabeth The Queen
Mother": [’queen elizabeth the queen mother’],
"Elizabeth Bowes-Lyon": []}}

4 where was ri-
hanna born
and raised

[saint
michael
parish]

Rihanna was born in Saint Michael, Barbados, and
raised in Bridgetown, Barbados.

{predicted_answer: [Saint Michael, Bridgetown],
mappings: {Saint Michael: [saint michael parish],
Bridgetown: []}}

5 what coun-
try was king
tut s tomb
found

[egypt] King Tuts tomb, also known as KV62, was discov-
ered in Egypt. Specifically, it was found in the Val-
ley of the Kings, a necropolis in Luxor, Egypt, on
November 4, 1922, by British archaeologist Howard
Carter.

{predicted_answer: [Egypt, Valley of the Kings,
Luxor, Egypt, November 4, 1922, Howard Carter],
mappings: {Egypt: [egypt], Valley of the Kings: [],
Luxor: [], Egypt: [], November 4, 1922: [], Howard
Carter: []}}

Table 3: Showing example of using Gemini-1.0-Pro for evaluating KBQA task. In many cases, Gemini can extract
predicted answer-items and generate the mappings correctly, but sometimes it failed to extract the correct prediction,
making the evaluation inaccurate. Nevertheless, a human evaluation of 100 samples showed a high agreement
between human and Gemini of 89.0%. LLM Response is taken from Llama 3-70B, Non-RAG setting.

<|begin_of_text|>
<|start_header_id|>
system
<|end_header_id|>
You are a chatbot having a conversation with a

human.↪→
<|eot_id|>
<|start_header_id|>user
<|end_header_id|>
Use the following pieces of context to answer the

question at the end. If you don't know the
answer, just say that you don't know, don't
try to make up an answer.

↪→
↪→
↪→
{context}
Question: {question}
<|eot_id|>
<|start_header_id|>
Assistant
<|end_header_id|>

Listing 4: RAG - Chat Template for Llama-3 models.
The placeholders {question} and {context} will be filled
with the question and retrieved data, respectively.

You will be given a Chinese sentence to
translate. If it is an incomplete sentence,
or if you are unsure about the meaning,
simply copy the input text as your output. Do
not output any additional sentences, such as
explanations or reasoning.

↪→
↪→
↪→
↪→
↪→
Chinese: {input}

Listing 5: Machine Translation - Generic Prompt (MT-
GP) for all models. The placeholder {input} will be
filled with the Chinese sentence retrieved from the MAC
testing set.

<|begin_of_text|>
<|start_header_id|>
system
<|end_header_id|>
You are a helpful assistant that translates

Chinese to English.↪→
<|eot_id|>
<|start_header_id|>user
<|end_header_id|>
You will be given a Chinese sentence to

translate. If it is an incomplete sentence,
or if you are unsure about the meaning,
simply copy the input text as your output. Do
not output any additional sentences, such as
explanations or reasoning.

↪→
↪→
↪→
↪→
↪→
Chinese: {input}
<|eot_id|>
<|start_header_id|>
Assistant
<|end_header_id|>

Listing 6: Machine Translation - Chat Template (MT-
CT) for Llama-3 models. The placeholder {input} will
be filled with the Chinese sentence retrieved from the
MAC testing set.
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Figure 15: Tuning RPP of all models for WebQSP and MS MARCO dataset
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