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Abstract

Large language models (LLMs) have recently
revolutionized natural language processing.
These models, however, often suffer from insta-
bility or lack of coherence, that is the ability of
the models to generate semantically equivalent
outputs when receiving diverse yet semantically
equivalent input variations. In this work, we an-
alyze the behavior of multiple LLMs, including
Mixtral-8x7B, Llama2-70b, Smaug-72b, and
Phi-3, when dealing with multiple lexical vari-
ations of the same info-seeking questions. Our
results suggest that various LLMs struggle to
consistently answer diverse equivalent queries.
To address this issue, we show how redundant
information encoded as a prompt can increase
the coherence of these models. In addition,
we introduce a Retrieval-Augmented Genera-
tion (RAG) technique that supplements LLMs
with the top-k most similar questions from
a question retrieval engine. This knowledge-
augmentation leads to 4-8 percentage point im-
provement in end-to-end performance in fac-
tual question answering tasks. These findings
underscore the need to enhance LLM stability
and coherence through semantic awareness.

1 Introduction

LLMs have revolutionized the majority of Natural
Language Processing tasks in the last years, includ-
ing Question Answering (QA) (Li et al., 2024),
chatbot (Achiam et al., 2023), coding (Nam et al.,
2024; Ugare et al., 2024), and summarization (Jin
et al., 2024) to name a few.

One of their main limitations is the stability of
their output when slightly changing the input. This
is reported in several previous works (Hu et al.,
2024), especially in the prompt engineering re-
search (Chen et al., 2024a; Cain, 2024). Although
these works clearly point out the problem, under-
standing its causes is rather challenging, as the
stability of the model, in addition to the fine-tuning

step, also depends on pre-training. The latter in-
volves the usage of a huge amount of data, which
is typically different in different LLMs, e.g., using
different training techniques, and parameters. This
has forced researchers to study the stability of mod-
els using a black-box approach: trying different
prompts, mostly guided by human cognitive con-
siderations, and observing the impact on the single
output or overall performance.

In this work, we analyze the coherence of mul-
tiple LLMs, including Mixtral-8x7B (Jiang et al.,
2024), Llama2-70b (Touvron et al., 2023), Phi3-
mini (3.8B) (Abdin et al., 2024), Smaug-72b (Pal
et al., 2024), in multiple factual QA tasks. Specifi-
cally, we show that large models fail to provide the
same or similar answers for semantically equivalent
questions as input. We conjecture that the instabil-
ity, or lack of coherence, is a symptom of the model
not being able to fully understand a request, i.e.,
accessing its parametric knowledge necessary for
generating a correct answer.

We show that redundant information encoded
in the prompt, as multiple equivalent variations
of the same question, can increase the accuracy
of the model and its coherence, thus mitigating
the understanding issue. Intuitively, LLMs can
exploit different semantic patterns from the equiva-
lent questions to better connect the user’s request
with their parametric knowledge.

We exploit this finding to design a principled
approach to improve LLM coherence and accu-
racy, leading to greater stability through Retrieval
Augmented Generation (RAG) (Gao et al., 2023;
Chen et al., 2024b). In short, we built (i) an in-
dex of 38M of questions, and (ii) a dense retrieval
engine, which, given a target question, retrieves
semantically equivalent (or similar) queries. Given
a question asked to a general LLM, our system
first, retrieves k similar questions and then provides
them to the LLM along with the original request.
In this work, we refer to this approach as question-
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RAG (q-RAG). Our results show that all analyzed
LLMs significantly benefit from our approach, with
an improvement in both accuracy and coherence,
measured as the semantic similarity of answers for
equivalent questions.

2 Related Work

Several LLMs of diverse size, ranging from a few
to hundreds of billion parameters, pre-trained on
web-scale corpora, have been recently introduced,
e.g.: GPT family (Achiam et al., 2023; Brown
et al., 2020; Radford et al., 2018), Llama (Touvron
et al., 2023), Mixtral (Jiang et al., 2024), Smaug
(Pal et al., 2024), Falcon (Almazrouei et al., 2023),
or Phi3-mini (Abdin et al., 2024). These models
can be successfully applied to various NLP tasks,
e.g., Question Answering (Li et al., 2024), chat-
bot (Achiam et al., 2023), coding (Nam et al., 2024;
Ugare et al., 2024), and summarization (Jin et al.,
2024), achieving high accuracy. However, their
parametric knowledge shows some limitations, e.g.,
Basmov et al. (2024) showed that LLMs, applied
to Machine Reading tasks, may easily fail when
the input context is not aligned with the internal
knowledge. Similar mechanisms produces lack of
coherence of their results. For instance, Zheng et al.
(2023) showed that LLMs are vulnerable to op-
tion position changes in multiple-choice QA tasks.
Raina et al. (2024) pointed out LLM weaknesses
with respect to adversarial attacks, e.g., when at-
tempting to manipulate the output. Finally, Chatter-
jee et al. (2024) introduced a measure to quantify
the sensitivity of an answer for a given prompt.

Our analysis of coherence is different from pre-
vious work as it is based on observing LLM output
when semantically equivalent questions are used
in their input. Moreover, we provide a principle
approaches to mitigate this issue.

Ella Rabinovich (2023) used equivalent ques-
tions in LLMs for a different purpose: they intro-
duced PopQA-TP, a meticulously curated dataset of
118K high-quality paraphrased questions. PopQA-
TP expands the original PopQA (Mallen et al.,
2022), creating paraphrasing of each of the 14K
initial questions. PopQA-TP can be used for bench-
marking LLMs’ ability of maintaining semantic
consistency across variations of the same question.
However, the authors used PopQA-TP for design-
ing an automatic evaluation model. This predicts
the LLM’s likelihood of answering a question cor-
rectly, using semantic consistency metrics, i.e., co-

sine similarity between answer embeddings, with
other predictors, such as question subject popular-
ity and answer certainty.

Retrieval Augmented Generation Keeping
LLMs’ knowledge up-to-date and covering niche
information is an open research question, as it re-
quires additional training, which is computation-
ally expensive and can cause the forgetting of ex-
isting information. Retrieval Augmented Genera-
tion (RAG), e.g., (Gao et al., 2023; Chen et al.,
2024b), aims to address the challenges above by
retrieving external knowledge from large and up-
dated sources, e.g., the Web (Lewis et al., 2021a).
RAG techniques have been shown to increase the
performance of LLMs in various tasks, including
Question Answering (Siriwardhana et al., 2023),
Answer Selection (Gabburo et al., 2022), and clini-
cal medicine (Zakka et al., 2024).

Prompt engineering Prompt engineering is the
task of crafting specific input (e.g. instructions) to
guide LLMs’ outputs, ensuring the generation of ac-
curate responses, tailored to the target application.
Prompt engineering introduce flexibility in model-
ing a task, thus reducing the need of fine-tuning
LLMs on specialized tasks (Wei et al., 2022a). Rad-
ford et al. (2019) introduced the idea of fine-tuning
with minimal task-specific modifications through
prompts, demonstrating its effectiveness in various
NLP tasks. Jiang et al. (2020) proposed language
model probing, which creates suggestions for ob-
taining specific model behaviours, improving the
understanding of its capabilities and limitations.
Similarly, Wei et al. (2022a) showed that instruc-
tions can improve zero-shot performance on QA,
reasoning, and story generation. Other studies have
demonstrated that prompt engineering can be as
effective as hundreds of training data points (Scao
and Rush, 2021).

Prompting can be used to affect other quali-
tative aspects of generation, e.g., Wallace et al.
(2021) used prompts to mitigate unwanted biases
while improving fairness. More recent prompting
approaches improve agents’ answer quality, e.g.,
Chain-of-thought prompting entails breaking down
the question and reasoning over possible solutions
before generating the answer, both in zero- (Ko-
jima et al., 2023) or few-shot settings (Wei et al.,
2023). Additionally, graph prompt methods have
been utilized (Yao et al., 2023).
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3 Question-answer coherence

We consider question-answer coherence as a proxy
to quantify the ability of a LLM of retrieving the
knowledge necessary to correctly answer a ques-
tion. Intuitively, if a model can correctly answer a
specific question, e.g., What is the capital of Italy?,
it can also answer other semantically equivalent
questions, e.g., Can you tell me what’s the capital
of Italy?, or name of the city that serves as the cap-
ital of Italy. Conversely, if a model fails to answer
a question, it will likely expected to fail equivalent
questions, since it lacks the necessary knowledge.
A different behaviour of the model indicates an un-
derlying issue since failing to answer an equivalent
question answered correctly suggests the model
cannot access and use its knowledge.

Similarly to previous work (Ella Rabinovich,
2023), we measure the model coherence with re-
spect a question, q, as the average similarity be-
tween the answers embeddings generated from a
set of questions semantically equivalent to q. We
can estimate model coherence on a set of different
questions (each associated with different equiva-
lence clusters) by averaging their coherence.

Formally, let Q be a set of open-domain well-
formed questions and let C ⊆ Q be a set (or clus-
ter) of questions such that ∀(qi, qj) ∈ C2 : qi ≡ qj ,
where ≡ indicates that two questions are seman-
tically equivalent. We used the equivalence defi-
nition introduced by Campese et al. (2023): Two
questions (qi, qj) are semantically equivalent iff
they have the same information-seeking intent and
their answers can be interchanged, more formally:
∀a : l(qi, a) ↔ l(qj , a), where l is a labeling func-
tion such that l(q, a) = 1 if the answer a is correct
for q given a certain interpretation of correctness, -1
otherwise. Given a model δ, and a set of m clusters
{Cr}mr=1, such that Cr = {q1, .., qn}, qi ≡ qj∀i, j,
the coherence is defined as

m∑

r=1


 2

mn(n− 1)

∑

(qi,qj)∈C2
r , i<j

⟨e(δ(qi)), e(δ(qj))⟩


 ,

where δ(q) is the δ-generated answer for q and e
is a text-embedding model1. The higher the value,
the higher the probability that the model answers
two semantically equivalent questions coherently.
Note that this approach is not suitable for multi-
answer, e.g.: subjective, questions, where different

1In our work, we used: https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

correct answers may have very different embed-
dings. However, this study focuses non-subjective
queries with well-defined and verifiable answers.

3.1 Question prompting
We propose a principled and generalized approach
to build a prompt specifically designed to improve
the question-answer coherence. We consider a two-
step pipeline: First, we use an external system that,
given an input query, provides k additional equiva-
lent questions with different wording. We call these
Support Questions (SQs). Then, we use a prompt
that asks the model to generate an answer for the
input query by looking at the SQs to disambiguate
or clarify the original intent.

We implemented a state-of-the-art Question
Retrieval System (QRS) following the approach
by Campese et al. (2023) to find SQs. QRS con-
sists of (i) a DataBase of questions with their cor-
rect answers and (ii) a dense retrieval model that
queries the DataBase (or index) and returns the top
k similar question/answer pairs.

Our DataBase consists of 38M question/answer
pairs, including (i) 6M pairs from various public
sources (WikiHow, Quora pairs, Natural Questions)
and (ii) additional 32M pairs from Probably-Asked-
Questions (Lewis et al., 2021b) (PAQ). PAQ is a
large-scale collection of questions and answers au-
tomatically generated and designed to train gen-
erative QA models. Note that the 6M pairs from
annotated resources are the same used by Campese
et al. (2023), consisting of a mixture of annotated
and generated pairs. The same authors estimated
that the correctness of the answer with respect to
the associated question is 93%. Differently, PAQ
consists of automatically generated pairs without
human annotations. The authors of the resource es-
timated a question/answer pair correctness of 83%.
In order to increase the quality of the database and
to reduce noise due to wrong answers, we ran the
Answer Selector model from Di Liello et al. (2023).
The model takes a question/answer pair as input
and produces a score representing the likelihood
of the answer being correct. We ran the selector
model on all original 64M pairs from PAQ and
selected only the 50% pairs with highest selector
score. Our manual annotation of 200 QA pairs
randomly sampled from selected PAQ pairs shows
accuracy of 96

The second key component of the QRS pipeline
is the dense retrieval model that queries the
DataBase and selects the most similar questions.
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Figure 1: End-to-end QA pipeline. First, a question retrieval component finds similar questions from a pre-computed
DataBase of question/answer pairs. Then, an LLM generates the answer while consuming the retrieved content.

We started from MiniLM-12L-v22, a bi-encoder of
33M learnable parameters. We continuously pre-
trained the public checkpoint on a corpus of 900
million sentence pairs for semantic text similarity
publicly available (Reimers and Gurevych, 2019),
and we fine-tuned the resulting model on a dataset
for question ranking task Campese et al. (2023)
(Other training details are in Appendix B). This
architecture allows us to efficiently return the k
most similar stored questions (and their associated
answers) based on similarity scores.

We fed the retrieved k SQs together with the orig-
inal question into an LLM to generate an answer.
We consider a prompt that emphasizes the task of
answering the input query while considering the
retrieved question/answer pairs as possible sources
of information. The prompt may vary model by
model, thus we ran an initial evaluation to find an
optimal prompt for each model. The final prompt
is shown in Appendix A.

The complete pipeline that includes question re-
trieval and answer generation steps is depicted in
Figure 1. In the remainder of this article, we refer
this strategy as question prompting. Note that the
retrieval system used to collect SQs can be easily
replaced by different solutions, e.g., paraphrasing
models or other LLMs. However, given the cost of
running LLMs, we focused on a simple QRS for
cost/efficiency reasons. Alternative solutions are
further analyzed and assessed in Section 4.4.

4 Experiments

We ran various experiments to evaluate the contri-
bution of question prompting when applied to vari-
ous popular LLMs, including Mixtral-8x7B (56B
parameters), Llama2-70b (70B), Phi3-mini (3.8B),

2https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2

and Smaug-72b (72B). First, we evaluated the per-
formance of the technique on two benchmarks for
question equivalence. Then, we extended these
findings to general QA tasks, showing the contribu-
tion of question prompting compared to classical
RAG approaches. Next, we analyzed alternative
LLM-based approaches to find SQs and to build the
question prompt. Finally, we quantified the coher-
ence of LLMs based on the definition provided by
Ella Rabinovich (2023). In all experiments, we set
the Temperature value to 0.001. We used 8xV100
32GB and Amazon Bedrock to run LLMs.

4.1 Datasets and metrics

We ran our experiments on multiple benchmarks,
including:

Question Ranking (QR) - (Campese et al.,
2023) is a dataset used to train question similar-
ity/ranking models. It consists of 15,000 open do-
main queries. Each query is associated with 30
similar questions. The binary label for each query-
question pair indicates whether the two are seman-
tically equivalent or not, according to the definition
described in Section 3. We considered test queries
for which at least 5 equivalent questions exist (pos-
itive binary label). A query with the associated 5
questions defines a single cluster. For each cluster,
we used the initial question as test query and the as-
sociated 5 questions as SQs. Overall, we extracted
762 clusters from the test split to be used in our
experiments.

PopQA-TP - (Ella Rabinovich, 2023) is a large-
scale open-domain resource consisting of 118k
entity-centric QA pairs divided into 14k clusters of
semantically equivalent variations. Different from
QR, PopQA-TP consists of larger clusters. In this
work, we considered clusters of dimension 10 or
above. In all experiments involving this resource,
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we considered 5 out of 10 questions from a clus-
ter as SQs and the remaining 5 questions as test.
Overall, we extracted 5518 clusters.

Open domain QA - To evaluate question
prompting end-to-end, we sampled questions from
multiple public open-domain QA datasets, includ-
ing (i) Natural Questions (Kwiatkowski et al.,
2019): questions from real Google users with as-
sociated answers from Wikipedia, (ii) Quora Ques-
tion Pairs (Wang et al., 2020): user queries sampled
from the homonym website, (iii) PAQ: generated
questions, and (iv) TriviaQA (Joshi et al., 2017):
a set of challenging questions authored by trivia
enthusiasts.

Annotation - In all experiments involving QR
and other open domain QA datasets, we used Ama-
zon Mechanical Turk to evaluate the answers pro-
duced by LLMs with different prompts and con-
figurations. For each question and LLM-generated
answer pair, the annotators were tasked to indicate
whether the answer was correct for the input ques-
tion. We consider an answer to be correct if con-
tains the exact information to answer the question.
Annotators were asked to verify the information by
using a search engine to compensate for any gaps in
their knowledge and to provide a factual judgment.
In addition, annotators were asked if the answers
were natural or not. A natural answer is direct (i.e.
it’s not answering a similar question), precise (e.g.
no additional unsolicited information), and fluent
(e.g. no repetitions). In all evaluations, annotators
were precluded from accessing SQs. Annotation
guidelines and a deeper description of the annota-
tion process are reported in Appendix C.

Differently, PopQA-TP evaluation is automatic.
The dataset contains, for each question, a list of
entity-based reference answers so an exact match
can easily be applied to verify the generated an-
swer’s correctness.

4.2 Question equivalence benchmarks
Given QR and PopQA-TP clusters, we evaluated
the accuracy of multiple LLMs, including Mixtral-
8x7B, Llama2-70b, Phi3-mini, and Smaug-72b, to
generate the answers with and without question
prompting. For each cluster, we used 5 questions
as SQs directly (no actual retrieval) in our prompt.
The remaining questions, i.e. 1 per cluster in the
case of QR and 5 for PopQA-TP, are used as test
questions. Results on PopQA-TP are then aver-
aged over the 5 input questions. This simplifica-
tion allows us to observe the contribution of ques-

tion prompting in a clean setting with semantically
equivalent SQs manually annotated, without the
complexities and noise of a full RAG setting. QR
and PopQA-TP results are shown in Table 1.

Results on both datasets suggest that all mod-
els generally benefit from question prompt as their
accuracy tend to increase. Note that, in the case
of QR, the improvement holds whether consider-
ing naturalness or not as part of correctness. Un-
like other models, we observed a drop in accu-
racy for Smaug-72b on QR. We conjecture that
this behavior is strictly correlated to the model
training. Smaug-72b specifically targets perfor-
mance improvement on datasets, e.g. ARC (Clark
et al., 2018) and HellaSwag (Zellers et al., 2019),
designed for understanding tasks and considered
difficult for most existing LLMs. Thus, adding
other redundant information may not necessarily
help. However, the same model improves +4.52%
on PopQA-TP. We hypothesize this may depend
on various aspects. First, the two datasets require
completely different type of answers. PopQA-TP
answers are entity-like and the model is asked to
not generate a long text, which may differ from
original training of the model. Second, QR is an
older resource and Smaug may have been trained
on some of those questions. Third, PopQA-TP
is much more challenging than QR (see models’
accuracy) and the dataset complexity may have a
key role for question prompt contribution. See Ap-
pendix D for some examples of questions from QR
where Smaug fails when using question prompt.

Note that the added information consists of man-
ually curated semantically equivalent questions
only, without any new knowledge.

4.3 Coherence evaluation
We measured the coherence of the models, as de-
scribed in Section 3, on PopQA-TP when answer-
ing 5 different equivalent questions from the same
cluster (while using the remaining 5 as SQs in our
prompt). Note that the same procedure cannot be
applied to QR as the latter has a single query per
cluster available as test. Results are showed on
Table 1. To emphasize, although LLama2 is the
model with highest coherence, it is not the one
with highest accuracy. This findings imply that
coherence is a property of the model and it is not
necessarily related to its performance. Intuitively,
a coherent model should know how to answer all
or none of the questions of the same cluster. By
definition, a model that always provide the same
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Model
QR: Correct QR: C. & Natural PopQA-TP: EM PopQA-TP: Coher.

Base Q. prompt Base Q. prompt Base Q. prompt Base Q. prompt
Mixtral-8x7B 78.48 81.10 40.29 46.95 16.72 20.3 53.21 81.21
Llama2-70b 77.69 84.38 54.20 62.73 15.69 17.37 81.36 84.51
Phi3-mini 68.76 71.78 54.46 58.53 5.01 5.14 43.46 61.71
Smaug-72b 83.59 72.31 68.77 57.21 13.89 18.41 54.51 75.97

Table 1: Models accuracy while using simple questions or question prompts on QR and PopQA-TP. In the case of
QR, human labels are used defining answers to be correct and or natural. PopQA-TP evaluation is based on exact
match applied on entity-answers from the original resource. The coherence on PopQA-TP is also displayed.
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Figure 2: Number of correct answers per PopQA-TP
cluster.

wrong answer is, intuitively, very coherent.
In order to understand the relation between ac-

curacy and coherence, and based on the alternative
intuition of the coherence above, we evaluated the
following. For each PopQA-TP cluster of 5 test
questions, we counted how many times a model
generates a correct answer. 2 or 3 correct answers
in a cluster of 5 equivalent questions may indicate
lower coherence, whereas 0 or 5 indicates high-
est level of coherence, where the model knows the
answer for all equivalent questions or it can’t an-
swer any. Note that this additional coherence mea-
sure has some blind-spots compared to the original
embedding-based metric as it does not contemplate
that two wrong answers can be semantically very
distant (i.e. low coherence).

Figure 2 shows how many questions in each clus-
ter are correctly answered. The plots show that
question prompting moves the distribution away
from the less coherent region (2-3 correct answers

per cluster) to a more coherent section, consist-
ing of more 0 and 5 correct answers per cluster.
Notably, a shift towards 5/5 correct answers is ex-
pected as question prompt improves the accuracy,
and thus the probability of increasing the number
of correct answers per cluster. However, question
prompt increased the amount of clusters with 0
correct answers for 3 out of 4 models. The only
exception is Llama2 which, according to Table 1,
is the model with highest semantic coherence.

This evidence suggests how question prompt is
effectively improving the coherence of the model
beyond mere accuracy.

4.4 End-to-end evaluation
The previous experiment showed how state-of-the-
art LLMs are not robust to question reformulation,
highlighting a possible understanding issue. How-
ever, the experiment relied on a curated benchmark
with manually annotated SQs, which are not avail-
able in practical end-to-end QA use cases. In the
following, we show how a RAG framework to re-
trieve SQs, introduced in Section 3.1, can mitigate
the issue and improve the overall accuracy in end-
to-end QA tasks.

We sampled 500 test queries from each Open
Domain QA dataset reported in Section 4.1, for a
total of 2000 queries. Given the complexity of the
annotation process and the number of experiments
to evaluate question prompting, we narrowed our
assessment by considering the Mixtral model only.
We consider the following configurations:

Base prompt - We directly asked the model to
answer the input question without providing any
additional information through a standard prompt
for QA tasks.

Question prompt - We asked the model to answer
the input question while observing top-k similar
questions (SQs) retrieved by our auxiliary ques-
tion search approach (QRS).
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1. . . 5 additional questions or question/answer pairs from
our proposed question prompting, or 1 to 5 wikipedia
paragraphs retrieved through BM25. Right: we consider
unnatural answers as incorrect.

Q/A prompt - We extend the Question prompt-
ing by exposing the answers associated with the
top-k similar questions. Note that, as described
in Section 3.1, QRS stores and retrieves pre-
computed question/answer pairs. Thus, SQs can
be paired with their answers in the prompt.

Paragraphs - We consider a classical RAG ap-
proach where we retrieve top-k paragraphs from
a document index and include these paragraphs
in the input. We used an index of Wikipedia para-
graphs (Lin et al., 2021) queried through a DPR
model3.

All prompts used are reported in Appendix A. Fig-
ure 3 shows the accuracy of these configurations
while increasing the value of k, i.e. the total amount
of retrieved items (questions, q/a pairs, or para-
graphs), from 1 to 5.

The plots highlight multiple key aspects. First,
all RAG or prompt-based techniques improve over
the trivial baseline where the model is asked to
produce an answer given the simple question, with-
out additional information. Second, the question
prompting shows better improvement in accuracy
compared to classical paragraph-based RAG. The
gap between the two configurations increases when
we require answers to be natural.

Note that SQs and paragraphs bring different
types of knowledge and information. On the one
hand, SQs used in question prompting are designed
to be equivalent to the input query. QRS is ex-
plicitly trained to maximize the similarity between
input query and retrieved questions. On the other

3https://huggingface.co/facebook/dpr-ctx_
encoder-multiset-base

hand, paragraphs are retrieved through classical
document retrieval techniques designed to fulfill
the input information-seeking request. In other
words, SQs are designed to shuffle already avail-
able information to make it more appealing for
the model, whereas paragraphs are meant to com-
pensate for the lack of LLM knowledge. These
considerations, in conjunction, suggest that LLMs
may fail to understand the input query, and SQs
may trigger mechanisms to retrieve and leverage
the correct parametric knowledge.

Next, we observed that using question/answer
pairs in our prompt further improves the correct-
ness. This approach combines the advantages of
question prompting and classical RAG-like meth-
ods. By incorporating SQs we help the model to
understand the request and by adding actionable
answers (sentences), we ingest information to com-
pensate lack of parametric knowledge.

4.5 QRS and RAG performance

Previous results showed that question prompting
improves over simple paragraph-based RAG. We
further investigated to understand whether the im-
provement depends on the type of prompt itself or
on the accuracy/recall of the information in the in-
put. Table 2 shows the accuracy of the base systems
(retrieval only, no generation involved) used to re-
trieve information for the LLM: QRS, i.e. the sys-
tem used to build the question prompting, and RAG
based on Wikipedia paragraphs retrieved through
DPR. In the case of QRS, we evaluated the pre-
computed answer associated with the most similar
question retrieved. We used the same 2000 test
queries used in the previous experiment.

Metric QRS RAG
Correct 56.9 56.2
Correct & Natural 37.4 31.7

Table 2: Top-1 retrieved performance, QRS vs RAG.

In terms of mere correctness, QRS and RAG
show similar standalone performance. We ob-
served that QRS provides answers that are con-
sidered more natural compared to RAG (+5.7%).
However, it is worth noticing that this is expected
and it depends on the annotation guidelines and
our definition of naturalness. Paragraphs typically
contain more information and they don’t answer
a query directly, thus increasing the probability of
being considered not natural. To this end, although
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No SQs QRS Q Gen. CoT
Corr. 73.5 79.3 78.0 75.3
Corr. & N. 52.5 62.3 58.8 58.5

Table 3: Question Prompt performance with different
methods to generate Support Queries. The DataBase
approach (QRS) achieves better performance compared
to other LLM-based SQs generation.

we report Correct & Natural accuracy for complete-
ness, we focus on correctness only.

This result suggests that question prompting
does not lead to better performance because the
base system used to retrieve the information (QRS
vs RAG) is more accurate.

4.6 Question generation

In previous experiments, we considered an exter-
nal QRS system to provide SQs to be consumed in
our prompt technique. However, question prompt-
ing is agnostic to the black-box support system
that provides questions. We analyzed alternative
approaches based on LLMs to generate questions.
Specifically, we considered the following configu-
rations:

No SQs - We run the LLM without SQs. We used
a simple QA prompt.

QRS - Our approach queries a pre-computed DB
of questions through question search models to
find SQs.

Q Generation - we generate the answer in two
steps. First, we ask the LLM to generate SQs
with a simple prompt. Then, we use generated
SQs in our question prompt, replacing QRS out-
put, to generate an answer.

Chain-of-Thoughts - Inspired by CoT frame-
work (Wei et al., 2022b; Kojima et al., 2024), we
combine the two generation steps into a single
pass. The prompt asks the model to virtually gen-
erate SQs and consume them to build an answer
in a single step. We hypothesized that the model
does not need explicit SQs if it can generate and
include them as part of its reasoning.

Similarly to previous experiments, we used Mixtral-
8x7B. We evaluated these strategies on 500 queries
randomly sampled from NQ, Quora, PAQ, and Triv-
iaQA. For all SQs-based configurations, we used
k=5. Results are shown in Table 3.

Input: How old was jacquline wilson when
her first book got published?
Generated: What was the age of Jacqueline
Wilson when she experienced the publication
of her initial book?
Retrieved: How old was jacqulien wilson
when she wrote her first book?
Input: is it dangerous to eat expired yogurt?
Generated: Is consuming out-of-date yogurt
hazardous to one’s health?
Retrieved: How long after the expiration date
is yogurt safe?
Input: How do you calculate dimensions?
Generated: What is the method for determin-
ing dimensions?
Retrieved: how do you work out a volume of
a shape?

Table 4: Examples of generated and retrieved SQs.

Results show that the QRS approach achieves
better performance compared to other LLM-based
SQs generation techniques. To better understand
this finding, we manually evaluated the seman-
tic similarity of input queries with respect to 100
SQs generated by the LLM and 100 SQs retrieved
through QRS. We estimated that 95% and 92% of
generated and retrieved questions are semantically
equivalent. Furthermore, we observed that gener-
ated questions mainly add some words or replace
some words with synonyms. Differently, retrieved
questions may expose additional facets relevant to
answering the input query. See Table 4 for a few
selected examples.

In the 1st and 2nd examples reported, retrieved
questions may force the model to gather and con-
sume more actionable information from its para-
metric knowledge. The retrieved question How
long after the expiration date is yogurt safe? may
help the model gather more detailed information
compared to a simple is it dangerous Yes/No. We
conjecture that retrieved SQs help the model to acti-
vate the parametric retrieval of relevant information
that can be used directly or indirectly.

Note that there may be some room for improve-
ment in SQs generation approach as we may use
different specialized prompts, e.g. by asking the
model to generate similar questions. However, be-
yond simple accuracy, QRS is much more efficient
as, in our setting, it only requires at runtime (i)
question embedding generation through a 33M pa-
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rameters model, and (ii) querying a dense index of
38M 384-dimensional embeddings, which can be
done in a few milliseconds with proper hardware.
This is a more efficient solution than running a 56B
parameters LLM (Mixtral-8x7B).

5 Conclusions

In this paper, we showed that popular LLMs have
poor coherence when answering multiple lexical
variations of the same questions. To mitigate the
issue, we introduced a prompting technique that
uses semantically equivalent questions, retrieved
through a query retrieval framework, to improve
the coherence the models. Multiple experiments
on various benchmarks suggest that our approach
improves both the coherence of the models and
their accuracy.

Our work highlights the limitations of popular
LLMs and sets foundations for future research on
coherence improvement.

6 Limitations

Although multiple experiments described in this
paper provide a strong indication of LLMs under-
standing ability and the benefits of Support Ques-
tions (SQs), results may be directional and there
may be some limitations that need to be addressed
in future work.

First, our analysis includes four different large
language models (LLMs), and our results suggest
that some of them may be more robust to question
reformulation due to their high coherence. We con-
sidered models with up to 72 billion parameters, but
our work lacks evidence for larger models such as
Gemini or GPT-4. Second, LLM performance can
be further boosted by playing with prompts. For
instance, we observed that our question retrieval
approach provided better SQs compared to LLM-
based question generation. We conjectured that
generated questions are too similar to each other
and retrieved SQs may force the model to find addi-
tional information from its parametric knowledge
that may indirectly help the main task. This ev-
idence may indicate that other prompts that ask
to generate relevant but not equivalent SQs may
be beneficial in the end-to-end task. Then, this
work mainly observes and emphasizes the coher-
ence issue, providing a quick yet reliable solution.
However, deeper analyses to understand the rea-
sons behind the lack of coherence are needed. Fi-
nally, our work is based on a zero-shot setting. We

hypothesize that models’ coherence can be opti-
mized through specialized fine-tuning approaches,
limiting the contribution of question prompting.
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A List of prompts used

Simple QA prompt with no external information
(no RAG, no SQs) Below is an instruction that de-
scribes a task. Write a response that appropriately
completes the request.
[INST]
Instruction: You are a powerful Question Answer-
ing System. You should answer the question with-
out external context.
If you don’t know the answer, don’t try to answer;
just say "I don’t know" and avoid adding further
context.
QUESTION: {question}
[/INST]

QA prompt that uses retrieved paragraphs Be-
low is an instruction that describes a task. Write a
response that appropriately completes the request.
[INST]
Instruction: You are a powerful Question Answer-
ing System. You should answer the question based
on the provided context.
The context consists of N documents that are rele-
vant to the input question.
If you don’t know the answer, don’t try to answer;
just say "I don’t know" and avoid adding further
context.
Here is context to help:
{paragraphs}
QUESTION: {question}
[/INST]

QA prompt that uses SQs (retrieved or gener-
ated) Below is an instruction that describes a task.
Write a response that appropriately completes the
request.
[INST]
Instruction:
You are an AI Assistant acting as a Frequently
Asked Questions (FAQ) system able to answer
questions.
You should answer the question based on the pro-
vided context.

The context consists of N questions similar and
related to the input question (frequently asked) and
helps you to reason and formulate the correct an-
swer to the input question.
You must respect the following rules:
[RULES]
+ If you don’t know the answer, don’t try to answer;
just say "I don’t know" and avoid adding unneces-
sary information.
+ Do not explicitly state that you are a FAQ system.
+ Do not explicitly cite the documents you use to
answer the question.
+ Do not mention what other people ask.
+ Use the context to infer missing information or to
clarify ambiguous questions.
+ Provide concise answers.
Here is context to help:
{context}
QUESTION: {question}
[/INST]

QA prompt that uses retrieved SQs and their
answers Below is an instruction that describes a
task. Write a response that appropriately completes
the request.
[INST]
Instruction:
You are an AI Assistant acting as a Frequently
Asked Questions (FAQ) system able to answer
questions.
You should answer the question based on the pro-
vided context.
The context consists of N question-answer pairs,
where the questions are similar and related to the
input question. The answer from each pair is the
correct answer for that particular question.
The question-answer pairs help you to reason and
formulate the correct answer to the input question.
You must respect the following rules:
[RULES]
+ If you don’t know the answer, don’t try to answer;
just say "I don’t know" and avoid adding unneces-
sary information.
+ Do not explicitly state that you are a FAQ system.
+ Do not explicitly cite the documents you use to
answer the question.
+ Do not mention what other people ask.
+ Use the context to infer missing information or to
clarify ambiguous questions.
+ Provide concise answers.
Here is context to help:
{context}

11751

https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472


QUESTION: {question}
[/INST]

QA prompt that used PopQA-TP dataset (no
RAG, no SQs) Below is an instruction that de-
scribes a task. Write a response that appropriately
completes the request.
[INST]
Instruction: You are a powerful Question Answer-
ing System. You should answer the question with-
out external context.
The answer must always be an entity or a list of
entities separated by a comma.
The input question is about the "prop" topic.
If you don’t know the answer, don’t try to answer;
just say "I don’t know" and avoid adding further
context.
QUESTION: {question}
[/INST]

QA prompt that used for SQs with PopQA-TP
dataset Below is an instruction that describes a
task. Write a response that appropriately completes
the request.
[INST]
Instruction:
You are an AI Assistant acting as a Frequently
Asked Questions (FAQ) system able to answer
questions.
You should answer the question based on the pro-
vided context.
The context consists of N questions similar and
related to the input question (frequently asked) and
helps you to reason and formulate the correct an-
swer to the input question.
The input question is about the "prop" topic.
You must respect the following rules:
[RULES]
+ If you don’t know the answer, don’t try to answer;
just say "I don’t know" and avoid adding unneces-
sary information.
+ Do not explicitly state that you are a FAQ system.
+ Do not explicitly cite the documents you use to
answer the question.
+ Do not mention what other people ask.
+ Use the context to infer missing information or to
clarify ambiguous questions.
+ The answer must always be an entity or a list of
entities separated by comma
Here is context to help:
{context}
QUESTION: {question}

[/INST]

Question generation Below is an instruction
that describes a task. Write a response that
appropriately completes the request.
[INST]
Instruction:
You are a powerful AI that given an input question
generates 5 similar questions.
A similar question is a question that is asking for
the same thing as the input but posed in a different
manner or using different words or in a way that is
not trivial for a language model.
You should generate 5 similar questions.
Rules:
+ Your output must be a valid JSON, just a JSON,
not other text or information is allowed.
+ The structure of the JSON must follow this:
{ "q1": "generated question 1",
"q2": "generated question 2",
"q3": "generated question 3",
"q4": "generated question 4",
"q5": "generated question 5" }
+ The questions must be different from each other
and from the input but express the same meaning
and ask for the same thing.
+ The questions must require the same answer and
the same documents to be answered.
+ Be sure that the output is valid JSON, escape
where necessary.
+ If the definition or the meaning of a word/thing is
asked in the input question, be sure the generated
questions ask for the same word/thing meaning.
Here is a couple of examples to help:
Example 1:
input question: Can lizards fly?
generated questions:
{ "q1": "Can lizards fly through the air?",
"q2": "Do lizards fly?",
"q3": "Are there lizards which can fly?",
"q4": "Are there any flying reptiles?",
"q5": "Are there any flying lizards?" }

. . . other 3 examples are showed in the prompt. . .

input question: question [/INST] generated ques-
tions:

Chain-of-Thoughts Below is an instruction
that describes a task. Write a response that
appropriately completes the request.
[INST]
Instruction: Answer the question following the
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reasoning process in Example 1 and Example 2.
If you don’t know the answer, don’t try to answer;
just say "I don’t know."
The output must be only the answer.

Example 1:
input question: At what temperature is a chicken
done?
similar questions are:
+ What temperature does a chicken have to be
done?
+ What is the temperature supposed to be in the
chicken to be done?
+ What temperature should a whole chicken be
cooked at?
+ What is the "internal temperature" of done
chicken?
+ What temperature do you cook the chicken to?
if these are similar questions, then the answer is:
All poultry should reach a safe minimum internal
temperature of 165 °F (73.9 °C) as measured with
a food thermometer.

Example 2:
input question: elegxo meaning
similar questions are:
+ What does the term elegxo signify?
+ Can you explain the meaning of elegxo?
+ What is the definition of elegxo?
+ What does elegxo mean in Greek?
+ How is elegxo used in a sentence and what does
it mean?
if these are similar questions, then the answer is:
The Ancient Greek term "elegxo" means to refute,
expose, convict, or examine.

Let’s begin:
input question: question
[/INST]

B QRS training

Starting from a public checkpoint of MiniLM-v2-
12L, 33M parameters, we continuously pre-trained
it on a plethora of datasets for unsupervised Sen-
tence Text Similarity (STS) tasks, including para-
phrasing, sentence similarity, question answering,
and summarization to name a few. Some of these
datasets are MSMARCO (Nguyen et al., 2016),
Natural Questions (Kwiatkowski et al., 2019),
The Semantic Scholar Open Research Corpus (Lo

et al., 2020), PAQ (Lewis et al., 2021b), Ama-
zonQA (Gupta et al., 2019), WikiHow (Koupaee
and Wang, 2018), and many others. A comprehen-
sive list can be found on the web4. Overall, these
resources contain more than ≈ 0.9B semantically
related text pairs.

Similarly to previous work on dense retrieval
training, e.g. SentenceBERT (Reimers and
Gurevych, 2019), we consider a simple pre-training
task where the model predicts if two texts are se-
mantically equivalent or not. The model was pre-
trained with mixed precision (FP16), Symmetric
MultipleNegativesRanking loss (Henderson et al.,
2017), learning rate of 2e-5, batch size of 1536,
and max sequence length of 128 tokens.

After pre-training, the model is fine-tuned on a
labeled Question Ranking dataset (Campese et al.,
2023). Our best configuration, selected through
model selection, is based on MultipleNegatives-
Ranking and Online Contrastive losses, learning
rate of 5e-6 and batch size of 32.

C Annotation guidelines

We used Amazon Mechanical Turk (AMT) to an-
notate and verify answers from every LLM config-
urations we used in this paper. For each question
answer pair, we asked annotators: Given a question
and its associate answer generated by an AI model
(LLM), tell us if the answer is:

Correct and natural The answer is correct and
the text looks natural.
Example: [Q] How many calories in a cucum-
ber? [A] Each one-cup (104-gram) serving
contains just 16 calories, while an entire 11-
ounce (300-gram) cucumber contains only 45
calories.
The information provided in the answer is cor-
rect as it contains useful information to fill the
input information-seeking intent. Moreover,
the answer looks very natural and precise. It
does not contain repetitions or irrelevant text.

Correct but not natural The answer contains the
information asked in the question, but it is not
perfect. For instance, the answer may contain
extra text which is irrelevant.
Example: [Q] How many calories in a cu-
cumber? [A] An average pineapple (900 gr)
contains 452 calories, which is higher com-
pared to the 45 calories of a whole cucumber.

4https://www.sbert.net
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The answer is correct but it provides addi-
tional non-requested information. Apparently,
it is answering a different question but it still
contain the information requested. For this
reason, we consider this type of answer cor-
rect but not natural.

Incorrect but very natural (hallucination) The
answer is not correct but it is coherent and
looks correct.
Example: [Q]How many calories in a
cucumber? [A] A cucumber contains 150
calories per single ounce of product.
The answer is not correct as it provides wrong
information. However, it was generated in
a way that looked natural and trustful. We
believe that this type of error is even more
dangerous than providing simply incorrect
answers as the user may not notice the
issue. We asked annotators to use Google
to verify the provided information when
their knowledge and background were not
sufficient.

Incorrect The answer is not correct as it is not re-
lated at all to the question or the information
provided is wrong.
Example: [Q] How many calories in a cucum-
ber? [A] A Banana is a low-calories fruit.
The answer does not contain the requested
information. Note that this differs from
Incorrect-but-natural as the provided text is
obviously wrong for a given user. Although
there may be some subjectivity between the
two incorrect labels, we treat both cases as
negative output.

Each elementary annotation task, or Human In-
telligent Task (HIT) consists of evaluating 6 ques-
tions and their answers. The 6 pairs selected for
a single HIT include 1 control question and 5 ac-
tual question/answer pairs from our models to be
evaluated. The selection of the HITs was random,
meaning that a single HIT may contain different
questions and answers from different models and
configurations.

Control questions were designed to be simple
enough to simply filter out distracted annotators.
Some examples of control questions and their an-
swers are:

We adopted the following criteria to select an-
notators: (i) HIT approval rate to be greater then

Positive Control Questions
Q: Who was the first person to step on the
moon? A: Neil Armstrong
Q: Who wrote ’Romeo and Juliet’? A:
William Shakespeare
Negative Control Questions
Q: What is the capital of France? A: Berlin is
the capital city of France.
Q: What is the chemical symbol for helium?
A: Helium’s chemical symbol is H

Table 5: Examples of control questions

96%; (ii) minimum history of 1000 HITs previ-
ously approved for other tasks; (iii) master turkers
only. Each HIT was paid 0.50$.

D Failure cases with Smaug

Table 6 shows some examples of questions from
QR where Smaug fails to answer when using ques-
tion prompt.
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Q: Abraham was born in what year?
Answer base: Abraham Lincoln was born in
1809.
Answer prompt: I’m sorry, but as an AI text-
based model, I don’t have real-time informa-
tion or access to specific personal data like
birth dates of individuals. Abraham could re-
fer to various people throughout history with
different birth years
Q: When will the humans be probably ex-
tinct?
Answer base: It’s difficult to predict exactly
when humans might become extinct, as it de-
pends on various factors such as technolog-
ical advancements, environmental changes,
and global crises. Some experts believe our
species could face significant challenges in
the future, but it’s impossible to determine a
specific timeline for potential extinction.
Answer prompt: I dont know
Q: who best soccer player in the world?
Answer base: Lionel Messi and Cristiano
Ronaldo are often considered as two of the
best soccer players in the world due to their nu-
merous achievements and individual awards
throughout their careers. However, opinions
may vary depending on personal preferences
and specific time periods being evaluated.
Answer prompt: I dont know

Table 6: Examples Smaug failures.
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