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Abstract

Large Language Models (LLMs) have great
success in natural language processing tasks
such as response generation. However, their
use in tabular data has been limited due to their
inferior performance compared to traditional
machine learning models (TMLs) such as XG-
Boost. We find that the pre-trained knowledge
of LLMs enables them to interpret new vari-
ables that appear in a test without additional
training, a capability central to the concept of
Out-of-Variable (OOV). From the findings, we
propose a Language-Based-Classifier (LBC), a
classifier that maximizes the benefits of LLMs
to outperform TMLs on OOV tasks. LBC em-
ploys three key methodological strategies: 1)
Categorical changes to adjust data to better fit
the model’s understanding, 2) Advanced order
and indicator to enhance data representation to
the model, and 3) Using verbalizer to map logit
scores to classes during inference to generate
model predictions. These strategies, combined
with the pre-trained knowledge of LBC, em-
phasize the model’s ability to effectively han-
dle OOV tasks. We empirically and theoreti-
cally validate the superiority of LBC. LBC is
the first study to apply an LLM-based model
to OOV tasks. The source code is at https:
//github.com/MLAI-Yonsei/LBC.git.

1 Introduction

LLMs have recently been applied to tabular
data (Radford et al., 2018; Brown et al., 2020;
Wang and Komatsuzaki, 2021; Devlin et al., 2018).
Language-Interfaced-Fine-Tuning (LIFT) (Dinh
et al., 2022) demonstrated that LLMs achieve rea-
sonable performance on tabular data tasks while
maintaining LLM’s original structure. However,
the pre-trained knowledge of LLMs holds even
more potential: their ability to interpret Out-of-
Variable (OOV), which refers to variables that were
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Figure 1: (a) Illustration of OOV task. The variables
that were not present in the training data appear in the
test data. (b) Key components of LBC to increase perfor-
mance in OOV tasks. Categorical change refines data to
make it easier for LBC to interpret. The advanced order
and indicator method enhances the prompts that feed
into LBC. The verbalizer aggregates the probabilities
for a particular class scattered throughout the logit score
and maps them to a specific class.

not seen during training but appear in the test data.
So, we propose a new model called a Language-
Based-Classifier (LBC) to solve the OOV tasks.
Figure 1 outlines the structure of an LBC.

OOV tasks are an important problem and are the
subject of several ongoing studies (Guo et al., 2024;
Tzeng et al., 2015; Dreher et al., 2023). However,
studies applying LLM to tabular data do not handle
tabular data in an OOV setting. In real-world set-
tings, a variety of constraints often hinder model
training, emphasizing the importance of OOV tasks.
For example, in healthcare, privacy and regulatory
barriers prevent data sharing between hospitals. A
model trained on Hospital A’s data may encounter
new, unseen variables when applied to Hospital B’s
data, leading to OOV situations. We argue that
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LBC has strengths in handling OOV tasks, and our
rationale is as follows. Converting tabular data to
natural language prompts is intuitive, flexible, and
easy. This transformation significantly simplifies
the handling of OOVs, allowing us to seamlessly
handle variables that might not have been discov-
ered during training, overcoming a common limi-
tation of TMLs. Furthermore, LBC leverages the
pre-trained knowledge built into LLMs. Unlike
TMLs, which struggle with data points or scenar-
ios not present in the training set, LLMs leverage
their inherent knowledge. We verified that LBC
uses OOVs to increase the probability of the cor-
rect answer class based on pre-trained knowledge.
These advantages are highlighted by the follow-
ing three methodologies of LBC. First, Categor-
ical Change involves converting numerical types
to categorical types like ’high’ and ’low’ because
these variables align better with the LBC, espe-
cially in OOV scenarios. Second, Advanced Order
and Indicators optimize the sequence of variables
to generate more effective prompts and introduce
indicators to further boost performance. Third, the
Verbalizer focuses on mapping LLM’s logit scores
to the desired class scores rather than relying on
inconsistent output text, improving classification
performance. We use the LOw-Rank Adaptation
(LoRA) (Hu et al., 2021) to fine-tune the classifier.
We theoretically prove that our model approximates
an arbitrary classifier with LoRA fine-tuning.

To the best of our knowledge, LBC is the first
study to apply an LLM-based classifier to solve
the OOV tasks, and we validate LBC’s superiority
empirically and theoretically.

2 Related Works

2.1 Tabular Data Analysis with LLMs

LLMs now extend to analyzing tabular data.
LIFT (Dinh et al., 2022) converts tabular data
into natural language prompts for use in LLM and
performs similarly to traditional models like XG-
Boost (Chen and Guestrin, 2016). LBC adds three
methodologies to a similar foundation as LIFT, op-
timized to address OOV tasks. Models like TP-
BERTa (Yan et al., 2024) and TabPFN (Hollmann
et al., 2022) follow the LM structure but either lack
the capability or are structurally struggle to contex-
tualize OOVs. On the other hand, LBC excels at
handling OOV tasks and consistently outperforms
existing models. LBC’s performance in tabular
data classification has been validated through theo-

retical analysis and statistical tests.

2.2 Out-of-Variable

Machine learning (ML) models often face the chal-
lenge of adapting to new environments with addi-
tional, unobserved variables (Ganin and Lempitsky,
2015). MomentLearn (Guo et al., 2023) was pro-
posed to address this by using a predictor trained
in a source environment and an additional objec-
tive matrix for partial derivatives for OOV tasks.
However, its application in real-world scenarios is
limited. The LBC method overcomes these limita-
tions by leveraging the extensive prior knowledge
of LLMs and methodologies for OOV tasks. Unlike
MomentLearn, which is restricted to simple models
such as linear or polynomial structures, LBC’s use
of LLMs allows for application to more complex
models. This enhances its ability to discover in-
tricate relationships between variables and offers
greater generalization. Moreover, MomentLearn’s
reliance on an additional matrix, which must be
trained with In-Variables, becomes less stable as
the ratio of OOVs increases. In contrast, LBC only
requires the training of a single predictor and has
demonstrated robustness across varying OOV ra-
tios, making it a more efficient and reliable solution
for OOV challenges.

2.3 Verbalizer

Verbalizer is a mechanism for mapping the var-
ious output forms from an LLM to specific
classes (Schick and Schütze, 2020; Schick and
Schütze, 2021; Hu et al., 2022). Verbalizer con-
tributes to reducing subjective bias in LLM by
using a knowledge base to leverage diverse and
comprehensive label words. It is also said that the
noise of label words in classification can also be
improved with a verbalizer. We argue that even
in tabular data classification, we need a particular
way to map the output of an LLM to the output of a
classifier and that we should apply a verbalizer to it.
The process by which LBC leverages the verbalizer
to map LLM output to classifier output is shown in
the verbalizer part of Figure 2.

2.4 Low-Rank Adaption

LoRA (Hu et al., 2021) has emerged as an innova-
tion in adapting pre-trained models to specific tasks
without extensive retraining of the entire model.
LoRA introduces an approach to fine-tuning large
pre-trained models. Instead of updating the whole
parameter set, LoRA modifies a small subset of
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the model’s weights through a low-rank matrix.
This method allows pre-trained models to adapt ef-
ficiently while maintaining their original structure
and strengths. We theoretically validate the strong
classification performance of LBC fine-tuned with
LoRA, backed by the proven generalization ability
of LoRA (Zeng and Lee, 2023).

3 Preliminary

3.1 Basic Dataset Conversion

This section describes the process of convert-
ing tabular data into text for input to LBC.
Since our model relies on a frozen pre-trained
LLM, converting tabular data into prompts
is a crucial step. Let an instance of tabu-
lar data with K features be represented as
[[V1 : x1] , [V2 : x2] , . . . , [VK : xK ] , [class : y]],
where Vk is the kth variable name and xk is the
kth variable value. We need a method for the LLM
to clearly distinguish between the variables in
this dataset as inputs and the class as the output.
This involves creating a conversion technique
that clearly marks the end of the prompt and the
beginning of the response while ensuring that the
answer isn’t overly lengthy. Therefore, we format
the conversion as follows: “prompt: V1 is x1, V2 is
x2, . . . , VK is xK . What is the class? label: y@@@“.

In this setup, the ’prompt’ is the input to LLM,
and the ’label’ is the label for the data instance.

3.2 The Order of the Variables

During the process in which tabular data is con-
verted to a prompt, one instance of tabular data
converts to several different types of prompts based
on the order of the variables. The total number
of prompts that can be generated by changing the
order of the variables is K!. Every prompt is a
transformation of a single instance of tabular data,
but the order of the variables gives it a different
form, which causes LBC to interpret it differently.
Therefore, the order of the variables is a factor that
directly affects LBC’s performance.

3.3 Fine-tuning LLM

Feeding the converted prompts into LBC yields
a vector of vocabulary size, which is a logit for
each word in the vocabulary. We use this logit to
fine-tune the LLM. Let Logit be the logit vector
for a single input prompt. During fine-tuning, J
obtained from the model is used to compute the loss
against the true labels. Let Label be the one-hot

encoded vector of the true label for the input. The
loss is calculated using a loss function J defined as
follows:

J(Logit,Label) = CE(Logit,Label)

where CE is cross-entropy with a logit loss function.
After calculating the loss, the model’s parameters
are updated using an optimizer through gradient
descent. The update rule in gradient descent can be
described as follows:

θ ← θ − η∇θJ

Where θ is the model’s parameters, η is the learn-
ing rate, and ∇θJ is the gradient of the loss with
respect to the model parameters.

3.4 LLM-based Tabular Prediction
TMLs face significant challenges when processing
textual data within feature sets. Text preprocessing
inevitably leads to semantic information loss. De-
spite applying specialized techniques such as one-
hot encoding or text vectorization methods (e.g.,
TF-IDF, Word2Vec, etc.), TMLs remain vulnerable
to noise due to their lack of linguistic comprehen-
sion. Furthermore, the high dimensionality of text
embeddings often impedes efficient learning, and
attempts to mitigate this through dimensionality
reduction techniques risk further information loss.

In contrast, LLMs offer a promising alterna-
tive for handling textual and numerical data in
ML tasks. LLMs demonstrate superior capability
in comprehending semantic content and discern-
ing inter-feature relationships, which is beneficial
when critical information is presented textually.

The previous approaches to LLM-based tabular
data classification tasks (Dinh et al., 2022) rely on
directly comparing the output text generated by the
model with class texts such as ’no’ or ’yes.’ If the
prediction is an exact match, it is classified with the
corresponding class text. Conversely, if the output
text differs, the model’s prediction is marked as
’None’ and automatically classified as incorrect.
To address this limitation, we utilize the logit score
to map directly to a specific class rather than using
the model’s output texts. For this mapping process,
we utilize the probability values of the synonyms
of the logit score’s class text.

4 Methodology

4.1 Categorical Change
We find that LBC has a better interpretation of cat-
egorical variables than numerical ones because it
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Figure 2: The overall process of an LBC performing an OOV task. LBC transforms tabular data into advanced
prompt (AP) utilizing strategies that are 1) Categorical change and 2) Advanced order and indicator. These APs
become input into an LLM that has been fine-tuned with a LoRA adapter to derive a logit score for the answer
token. This logit score is assessed against the label to calculate loss, and during inference, the model prediction is
generated by mapping the logit score to a class via a 3) Verbalizer.

is an LLM-based model. However, this poses a
challenge because many key variables in tabular
data are numerical. In particular, when LBC deals
with OOVs, if the value of the input is numeric,
pre-trained knowledge cannot be utilized, unlike
categorical type values where the word itself has
meaning. Therefore, we need a method to con-
vert numerical variables to categorical types so that
LBC leverages its pre-trained knowledge of impor-
tant variables or OOVs for easier interpretation,
and we find that mapping numerical variables to
categorical variables using N categories improves
the performance of LBC. The N categories are de-
termined based on the principles of N -tiles, similar
to quartiles but dividing the dataset into N equal
parts. The thresholds are the values that divide
the dataset into these N parts. For example, we
converted values below the first threshold (Q1) to
"Category 1", between Q1 and Q2 to "Category 2",
and so on, up to values above the last threshold
(QN−1), which are converted to "Category N ." A
specific example sentence of Categorical Change
is discussed in figure 2. The experimental results
in Table 8 show that Categorical Change directly
affects the performance of LBC.

4.2 The Advanced Order and Indicator

As shown in section 3.2, for a single instance of
data, different prompts are generated depending
on the order of the variables. The same problem
occurs in the OOV task, where the number of vari-
ables increases due to the addition of OOVs, re-
sulting in more variability in the prompts. This
hinders LBC’s ability to learn the relationships be-
tween tokens. Therefore, we find the format that

performs best with optimal learning and inference
among a large number of prompt formats, which
can vary depending on the order of the OOVs and
the trained variables that are not OOVs, called In-
Variables (IVs). The format of the training and test
prompts with both methods is as follows.

Training Prompt: IV Indicator + IV part + Question

Test Prompt: OOV Indicator + OOV part + IV Indicator
+ IV part + Question

By positioning the OOV part at the front of the
prompt and matching the variable order of the
IV part exactly as in training, the IV part in the
test prompt has the exact same structure as the
IV part in the training prompt. This allows LBC to
apply the relationships between variables captured
during training to the test as well. Also, since the
indicator is always fixed in the same position, it
allows LBC to distinguish between the OOV part
and the IV part in training and inference. A prompt
with both categorical change and advanced order
and indicator applied is referred to hereafter as an
advanced prompt (AP). An example of an AP can
be found in figure 2.

4.3 Generalization Ability of LBC: LoRA

According to Zeng and Lee (2023), an arbitrary
model fine-tuned with LoRA approximates the tar-
get model. We theoretically prove that, under cer-
tain assumptions, LLMs are fine-tuned with LoRA
approximate arbitrary classifiers. Theorem 1 sup-
ports the idea that LBC has a high generalization
performance in tabular data classification. The
proof of the theorem is in Appendix B
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Theorem 1 Let f(x) represents the ReLU neural
network to which LoRA be applied, with no activa-
tion function in the last layer, and f̄(x) represents
the target single-layer linear network. Let g(x) is
the logistic function (1 + e−x)−1. σ(W )i is the
i-th greatest singular value of W . W l and W are
l-th layer weight matrix of the frozen model and
the weight matrix of the target model, respectively.

E
∥∥g(f(x))− g(f̄(x))

∥∥2
2

≤ 1

16
∥E(xxT )∥F

× σ2
(
W −

∏
W l

)
min(

∑L
l=1 Rl,RE)+1

where Rl, RE are Rank(Wl), Rank(W −∏
W l), respectively. L is the number of layers

in f .

4.4 Verbalizer
Language generative models were adapted for clas-
sification tasks by utilizing verbalizers in the loss
function. During the training process, using ver-
balizers encourages the model to generate seman-
tically accurate responses rather than comparing
labels precisely at the token level. Since this ap-
proach does not fit the model to fixed token-level la-
bels, we can expect faster convergence when train-
ing generative language models for classification
problems. LBC slightly modifies the structure of
traditional LLMs in training and inference to use a
verbalizer.

Given a vector Logit = {lw1 , lw2 , . . . , lwV },
where V is the vocabulary size and lwi is the score
for the word wi in the vocabulary, LBC’s score for
a single class Ck is calculated as follows:

Score(Ck) = α1lk + α2

∑

w∈Sk

lw

Where k is the central word representing class Ck,
α1 and α2 are the hyperparameters for the central
word and synonyms, and Sk is the set of synonyms
of central word k. For example, if k = ’Yes’, then
Sk = {’yes’, ’yeah’, ’true’...}. The probability for
Ck is computed using a softmax function:

P (Ck) =
exp(Score(Ck))∑

k′∈K exp(Score(Ck′))

where K is the set of central words of all classes.
Besides, we modify the existing loss function as
follows:

J = α1CE(Logit, Lk)+α2

∑

w∈Sk

CE(Logit, Lw)

5 Experiments

5.1 Experiment Settings
We conducted experiments using reliable datasets
that have been frequently used in studies, specif-
ically selecting those that have been run multiple
times on OpenML (Vanschoren et al., 2013), Kag-
gle, or other benchmarks. Information about the
eleven datasets is in Table 7. Details on the evalua-
tion methods are in Appendix D. As baselines, we
selected five models, referred to as TMLs, which
are known for their strong performance in tabular
data classification. Details of the TMLs are in Ap-
pendix C. Additionally, to assess the performance
improvements brought by LBC’s three methodolo-
gies, we conducted direct comparisons with LIFT’s
methodology.

5.2 OOV Setting
To experiment with the performance of LBC on
OOV tasks, it is essential to create scenarios where
variables that do not exist in training appear in test-
ing. However, we faced a problem because no ex-
isting tabular datasets fulfill this requirement. We
randomly deleted 50% of the variable columns in
the original tabular dataset. As a result, variables
that are deleted become OOV, not learned by the
model during training, and emerge as new variables
in the test. This allows for the assessment of LBC’s
ability to interpret OOVs. We compare the perfor-
mance of TMLs and LBC with the data generated
by this method.

5.3 Avoiding Bias
When fine-tuning LBC, if prompts consistently end
with the same token, such as a question mark, the
model may focus more on that token than on the
actual variables when predicting class labels. This
issue is particularly pronounced in datasets with
class imbalance. To mitigate this, inserting random
words at the end of the sentence helps reduce bias
towards specific tokens. An example of the use of
random words is shown in figure 2.

6 Results

6.1 Performance in OOV tasks
Table 1 presents the accuracy, F1, and AUC scores
of TMLs and LBCs on eight binary classification
datasets after conducting 50% OOV conversion. In
the average rows for the evaluation metrics, LBC
consistently outperforms the five TMLs in binary
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Table 1: LBC vs. TMLs in binary classification prob-
lems with 50% randomly selected OOV situations. The
models are trained with 50% IVs, and LBCs add 50%
OOVs in the test prompts. LBC outperforms the TMLs
on evaluation scores.

Accuracy DT KNN LogReg SVM XGBoost LBC - GPTJ LBC - Llama3
Blood 72.67 69.33 75.33 75.33 74.67 76.00±0.00 76.00±0.38
Breast Cancer 93.86 93.86 92.98 92.98 92.98 94.15±1.01 94.44±0.50
Creditcard 76.81 73.91 72.46 77.54 76.09 83.81±0.42 80.84±0.54
German 71.00 71.50 77.50 71.50 70.50 78.50±0.86 77.16±1.15
ILPD 70.94 60.68 72.65 70.94 64.86 75.05±0.84 72.07±0.49
Loan 69.11 66.67 69.92 69.11 59.35 80.59±1.22 81.25±0.00
Salary 85.00 83.00 83.00 81.50 83.00 84.00±0.86 84.67±0.28
Steel Plate 80.21 79.69 73.78 78.15 81.23 81.83±1.62 81.91±1.47
Avg. 77.53 74.83 77.18 75.01 76.38 81.74±0.85 80.98±0.60

F1 DT KNN LogReg SVM XGBoost LBC - GPTJ LBC - Llama3
Blood 0.68 0.73 0.68 0.63 0.73 0.67±0.00 0.67±0.00
Breast Cancer 0.94 0.94 0.93 0.93 0.93 0.93±0.00 0.93±0.00
Creditcard 0.67 0.59 0.62 0.62 0.67 0.87±0.02 0.81±0.01
German 0.73 0.77 0.77 0.73 0.78 0.71±0.01 0.78±0.01
ILPD 0.76 0.71 0.73 0.74 0.75 0.75±0.00 0.75±0.00
Loan 0.70 0.70 0.71 0.70 0.69 0.76±0.01 0.78±0.01
Salary 0.55 0.55 0.55 0.5 0.59 0.52±0.01 0.52±0.01
Steel Plate 0.8 0.79 0.72 0.79 0.81 0.80±0.01 0.80±0.01
Avg. 0.72 0.71 0.70 0.68 0.74 0.75±0.00 0.76±0.01

AUC DT KNN LogReg SVM XGBoost LBC - GPTJ LBC - Llama3
Blood 0.67 0.61 0.67 0.68 0.68 0.67±0.00 0.67±0.00
Breast Cancer 0.97 0.98 0.98 0.99 0.99 0.99±0.00 0.99±0.00
Creditcard 0.79 0.8 0.83 0.84 0.80 0.92±0.02 0.85±0.01
German 0.67 0.69 0.80 0.67 0.69 0.79±0.01 0.78±0.01
ILPD 0.71 0.57 0.68 0.71 0.71 0.75±0.01 0.75±0.00
Loan 0.56 0.57 0.63 0.51 0.53 0.79±0.01 0.77±0.01
Salary 0.84 0.85 0.86 0.87 0.86 0.88±0.01 0.88±0.01
Steel Plate 0.87 0.89 0.89 0.89 0.89 0.90±0.00 0.89±0.00
Avg. 0.76 0.73 0.78 0.78 0.78 0.84±0.00 0.82±0.00

Table 2: LBC vs. TMLs in multiclass classification
problems with 50% randomly selected OOV situations.
LBC also outperforms the TMLs on evaluation scores
in multiclass classification.

Accuracy DT KNN LogReg XGBoost LBC - GPTJ LBC - Llama3
CMC 46.10 43.39 48.15 45.42 49.71±0.78 51.75±1.36

Restaurant 79.50 83.50 80.50 84.50 81.16±0.57 85.33±0.57
OGB 50.00 51.50 55.00 56.50 56.73±1.44 62.51±0.79
Avg. 58.53 59.46 61.22 62.14 62.53±0.93 66.53±0.91

F1 DT KNN LogReg XGBoost LBC - GPTJ LBC - Llama3
CMC 0.47 0.40 0.47 0.45 0.50±0.01 0.51±0.01

Restaurant 0.79 0.85 0.75 0.85 0.82±0.01 0.86±0.01
OGB 0.34 0.51 0.54 0.56 0.54±0.01 0.57±0.02
Avg. 0.53 0.59 0.59 0.62 0.62±0.01 0.64±0.01

classification problems. Building on these results,
we extended our experiments to multiclass classifi-
cation tasks, as shown in Table 2. LBCs continue
to outperform TMLs, with LBC-LLaMA3 demon-
strating strong performance in multiclass scenarios.

Table 3 provides the statistical test results on the
Accuracy scores from Table 1 and Table 2. For
each dataset, a T-test was conducted between the
model with the highest performance among LBCs
and the best-performing TML. The null hypoth-
esis, H0 : AccuracyLBC-best = AccuracyTML-best,
was rejected for seven out of eleven datasets, with
a p-value less than 0.05 used as the criterion for
rejection. This provides empirical evidence that
LBC effectively utilizes pre-trained knowledge to
make accurate interpretations in OOV situations.
Further analysis of this capability is discussed in

Figure 3: Graph of accuracy changing over OOV ratio
(%): We observed the accuracy change of TMLs and
LBCs by increasing the OOV ratio from 0, 30, 50, and
70 (%) for two datasets. Comparing the accuracy re-
duction of TMLs and LBCs, the reduction of LBCs is
smaller compared to TMLs. It demonstrates that LBCs
interpret OOVs, unlike TMLs.

Figure 4: LIFT vs LBC in 50% randomly selected OOV
situation. Both LLMs have a performance improve-
ment when LBC’s methodologies are applied rather
than LIFT.

Section 6.3.
Figure 4 shows how much LBC’s methodolo-

gies improve the performance of LLM on the OOV
task. There is a significant difference in perfor-
mance between using LBC and using LIFT, which
does not incorporate LBC’s three methodologies.
This demonstrates that, in addition to the advan-
tage of LLM’s pre-trained knowledge in interpret-
ing OOVs, LBC’s methodologies have a clear and
positive impact on performance.

To validate the ability of LBC to perform well
on OOV tasks, we conduct experiments on two
datasets with different OOV ratios. In each dataset,
we vary the OOV ratio to 0%, 30%, 50%, and 70%
and observe the model’s accuracy change. Figure 3
shows that for TMLs, the performance decreases
significantly as the OOV ratio increases. In con-
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Table 3: Accuracy evaluation of the proposed models.
We perform five repeated experiments on the model
with the highest performance among the TML and LBC
methods and conduct a t-test. The two columns on
the left represent the mean accuracy of the repeated
experiments. The p-values less than 0.05 are highlighted
in bold and marked with an asterisk (*). For seven of the
eleven datasets, it is valid that LBC outperforms TML.

Datasets LBC-Best TML-Best T-stats P-value
Blood 76.00 75.55 1.71 0.12
Breast Cancer 94.44 93.27 2.94 0.01*
Creditcard 83.81 77.37 6.24 0.00*
German 78.50 76.66 3.20 0.03*
ILPD 75.05 72.19 3.43 0.02*
Loan 81.25 70.27 18.72 0.00*
Salary 84.67 84.83 -0.90 0.39
Steel Plate 81.91 80.51 1.89 0.09
CMC 51.75 47.88 6.11 0.00*
OGB 62.51 57.16 3.03 0.03*
Restaurant 85.33 84.66 0.60 0.57

trast, LBC shows no decrease in accuracy as the
OOV ratio increases, or the decrease is small com-
pared to TMLs. These findings suggest that LBC
can effectively utilize the pre-trained knowledge of
LLMs to outperform traditional ML methods even
as the percentage of OOVs increases.

Figure 5: Observing how LBC applies its pre-trained
knowledge to prompts about OOVs, thereby revealing
biases in its pre-trained knowledge. Intuitively, LBC
has a bias toward making its predictions closer to the
correct answer. However, it is not responsive to special
variable names that do not have a word meaning.

6.2 Two Rules for Effective Categorical
Change

To refine the methodology for effective categorical
change, we experiment with varying the number of

Table 4: Effect of the number of categories and label
types on LBC accuracy. Over-segmentation (high N)
reduces data per category, negatively impacting model
learning. The highest performance is observed at N=5,
but results may depend on data characteristics. Seman-
tic labels (e.g., ’low,’ ’medium,’ ’high’) consistently
outperform numeric-based labels (e.g., ’level 1,’ ’level
2’) by enhancing model generalization and adaptability,
particularly in OOV contexts.

N Label type LBC-GPTJ Accuracy Description

4 simple 73.01
(level 1, level 2,
level 3, level 4)

4 semantic 78.92
(low, medium, high,
extreme)

5 simple 71.98 (level 1 to level 5)

5 semantic 80.97
(very low, low,
medium, high,
very high)

6 simple 72.23 (level 1 to level 6)

6 semantic 75.83

(very low, low, be-
low average, above
average, high, very
high)

7 simple 71.72 (level 1 to level 7)
8 simple 65.98 (level 1 to level 8)

categories and classify category descriptions into
two types: simple numerical-based labels and se-
mantic labels. For the dataset, we use the Steel
Plate dataset, which contains the most numerical
variables, making it the most suitable for applying
categorical changes. We identify two key rules for
effective categorical change. The first rule is main-
taining an appropriate number of categories. As
shown in Table 4, when the number of categories
(N) becomes too large, the data assigned to each cat-
egory decreases, negatively affecting model learn-
ing. The model achieves the highest performance at
N=5, although this may depend on the characteris-
tics of the dataset. The second rule is that semantic
labels (e.g., ’low,’ ’medium,’ ’high’) consistently
outperform numerical labels (e.g., ’level 1,’ ’level
2’). Meaningful words help the model better un-
derstand and generalize category characteristics.
The above two rules significantly reduce the heuris-
tic dependency of categorical changes and provide
simple guidelines for effective categorical changes.

6.3 LBC’s Ability to utilize Pre-Trained
Knowledge

In this section, we specifically investigate how LBC
uses their pre-trained knowledge to interpret OOVs
in the OOV tasks. We conducted an experiment
to observe the pre-trained bias for variables using
an LBC that was trained in the structure of data
without any information about the variables. For
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Table 5: The performance of LBC w/o OOV. Comparing
performance w/o and w/ OOVs shows that LBC effec-
tively utilizes OOVs to improve performance.

Metric Xgboost LBC w/o OOV LBC w/ OOV
Accuracy 76.09 74.63 ± 0.90 83.81 ± 0.42

F1 0.67 0.72 ± 0.01 0.87 ± 0.02
AUC 0.80 0.81 ± 0.00 0.92 ± 0.02

datasets with a "Yes" or "No" answer, the structure
of the data is as follows:

Prompt = string(Start of sentence)+
string(’Variable name’ is [Variable value])+
string(Question###)

Answer = Yes@@@ or No@@@

In the training process, the prompt structure is uti-
lized as it is, with experimental adjustments made
to balance the likelihood of the trained LBC pre-
dicting ’Yes’ or ’No.’ During testing, we replace
the names and values of various variables in the
’variable name’ and ’variable value’ placeholders
within the prompts to evaluate the pre-trained bi-
ases of LBC towards those variables.

Figure 5 presents the outcomes for several vari-
ables of high importance in this experiment. It
is evident that LBC leverages pre-trained knowl-
edge to approximate the probabilities for variables
not learned during training closer to the correct an-
swers. Notably, the interpretation that the graph
for "income" shows a high risk of issuing a credit
card to an individual with an income of "0" matches
with the actual distribution in the Creditcard dataset.
However, for the unique variables in the table
dataset, such as "Direct.B", which does not have the
meaning of a common word, LBC shows almost
balanced results and tends to make predictions with-
out any clear bias. This shows that LBC maintains
a neutral approach to uninterpretable variables and
an even probability distribution without any par-
ticular tendency. These results support the high
performance of LBC in handling OOV tasks.

Additionally, we experiment with the same con-
ditions as TMLs without providing the LBC with
any information about OOVs. Using the Creditcard
dataset with the same settings as table 1, we feed
the LBC with test prompts without OOV informa-
tion and measure its performance. The results in ta-
ble 5 show that the LBC’s performance on prompts
without OOV information was significantly lower
than when with the information, highlighting the
fact that the LBC gets information from OOVs.

Figure 6: Frequeny of P (ŷ = y) for the two prompt
generation methods. We repeated the prompt generation
100 times for each of the two randomly selected exam-
ples from the Creditcard dataset in two ways: random
order (RO) and advanced order (AO). The horizontal
axis represents the model’s probability for the correct
class y, and the vertical axis shows frequency. The AO
method provides more consistent and accurate results
than RO. The red vertical line indicates the prediction
boundary, where the differences between the two meth-
ods lead to varied predictions.

Figure 7: The changes in scores according to the ratio of
IVs in the test prompt that maintains the same order as
the IVs in the training prompt. Both the training and test
prompts consist of only the IVs used in table 1. As the
ratio of the same IV order increases between the training
and test prompts, all scores improve. This demonstrates
the importance of applying the same order of IVs in the
test prompt as in the training prompt.

6.4 Importance of Advanced Prompt

In this section, we investigate how Advanced
Prompts, such as "Consider the order of vari-
ables" or "Add an indicator," used to generate test
prompts, affect LBC’s probability output and per-
formance.

To verify the importance of the variables’ or-
der, we experiment with repeatedly generating two
types of prompts by randomly selecting an instance
from the tabular data: One, where the order of all
variables is randomized (LBC-RO), and the other,
where the order of the IVs matches to the IV of the
training data, and only the order of the OOVs are
randomized (LBC-AO). We randomly select two
instances from the Creditcard dataset and generate
100 different prompts for each instance with the
RO and AO methods, respectively, to compare the
probability distributions generated by LBC for the
two methods. Figure 6 illustrates the performance
difference between prompts where the order of vari-

11673



Table 6: Comparison of three performance metrics be-
fore and after applying LBC’s methodology using in-
context learning to a modern black-box LLM

Accuracy Creditcard German ILPD Loan Avg.
GPT3.5 60.15 63.50 62.75 63.54 62.50

LBC-GPT3.5 69.57 67.50 63.25 66.67 66.74

F1 Creditcard German ILPD Loan Avg.
GPT3.5 0.61 0.55 0.57 0.60 0.58

LBC-GPT3.5 0.69 0.57 0.61 0.66 0.63

AUC Creditcard German ILPD Loan Avg.
GPT3.5 0.60 0.52 0.51 0.55 0.54

LBC-GPT3.5 0.69 0.57 0.54 0.59 0.60

ables is matched with the training data and those
where it is not. LBC-RO exhibits a large variance in
the probability distribution, leading to variations in
the model’s predictions for a single data instance.
In contrast, LBC-AO shows a small variance in
the probability distribution, which means that the
model makes consistent predictions.

To further investigate the benefits of matching
the order of IVs of test prompts with the training
prompts, we compose the training and test data
using only the IVs, excluding the OOVs selected
from the Steel Plate dataset used in Table 1. Then,
for the variables that make up the test prompt, we
experiment with increasing the ratio of variables in
the same order as the variable order of the training
prompt to check the scores for the three evaluation
metrics. Figure 7 illustrates the scores for the three
evaluation metrics. As the IVs ratio increases, the
performance improves on all three metrics. This
shows that LBC performs best when the test data
follows the same variable order as the training data.

6.5 LBC - Black-box LLM

Although it is possible to configure LBC using
the latest LLM, most of the latest models are black-
box, so we conduct in-context learning experiments.
In the demonstration prompts, ten positive and
negative examples are provided in equal measure
to demonstrate the model’s ability to generalize
from a balanced dataset. The model with the LBC
methodology incorporates categorical change, ad-
vanced order, and indicator methodologies. Verbal-
izer is excluded due to logits being inaccessible. Ta-
ble 6 compares the Accuracy, F1, and AUC scores
before and after applying the LBC methodology.
We use GPT-3.5 as the model, and performance
improves significantly on all datasets when we add
the LBC methodology. This demonstrates that the
LBC methodology can also be applied to black-box

LLMs to improve performance. The performance
on its own is not high because of a small number of
training examples for in-context learning compared
to fine-tuning. However, these models can also be
fine-tuned in the future to deliver even higher per-
formance.

7 Conclusion

In this work, we propose Language-Based-
Classifier (LBC) to solve OOV tasks. LBC utilizes
prompt-based inference, which allows information
about OOVs to be added to prompts in a straightfor-
ward way and enables understanding of the new in-
formation through pre-trained knowledge. Further-
more, prompt-based tabular data prediction using
LLMs holds even more potential as the reasoning
ability of LLMs continues to improve. LBC’s three
methodologies maximize the above advantages to
achieve high performance on OOV tasks. As a
result, utilizing LLMs’ pre-trained knowledge is
a key strategy for solving the OOV task, and we
plan to combine it with various statistical methods.
LBC is the first approach to apply pre-trained LLM
to OOV tasks.

8 Limitations

Based on our three methodologies, LBC demon-
strates superior performance over TML in address-
ing the OOV generalization problem, leveraging
pre-trained knowledge and the contextual under-
standing capabilities of LLMs. However, several
limitations still exist. The first limitation is the
potential presence of data that requires knowledge
not covered in pre-training. When column names
are unintelligible or involve extremely recent in-
formation not included in pre-training, LBC faces
difficulties in interpretation. The second limitation
is that LBC requires more resources than TML. In
terms of training time and GPU specifications, LBC
demands higher costs than TML to enable more
advanced reasoning. Therefore, in cases where
the information content of OOV is low or when
the problem does not involve OOV, LBC is less
suitable compared to TML.
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A Hyperparameters for Experiments

The hyperparameters for our experiments were set
as follows: Learning rate in {1e-3, 1e-4, 1e-5},
LoRA rank in {8, 16, 48, 144, 196}, Epoch in {5,
7, 10, 12}. We conduct the grid search over those
hyperparameters. Verbalizer α1 in {0.6, 0.7, 0.8,
0.9}

B Proof of Theorem 1

According to (Zeng and Lee, 2023), an arbitrary
model fine-tuned with LoRA approximates the tar-
get model. We extend this theory and theoretically
prove that, under certain assumptions, LLMs are
fine-tuned with LoRA approximate arbitrary clas-
sifiers. Theorem 1 supports the idea that LBC has
a high generalization performance in tabular data
classification.

Lemma 1 The logistic function g(x) = (1 +
e−x)−1 is Lipschitz continuous with a Lipschitz
constant of 1/4.

Proof of Lemma 1 A function f :R → R is
Lipschitz continuous if

∃K > 0, ∀x1, x2 ∈ R, |f(x1)−f(x2)| ≤ K|x1−x2|.
(1)

By substituting f with g, and considering that g
is a monotonic function, we can obtain the follow-
ing expression:

g(x1)− g(x2)

x1 − x2
≤ K.

By the mean value theorem,

g′(c) =
g(x2)− g(x1)

x2 − x1
≤ K, and

0 < g′(c) ≤ 1

4
(g′(c) = g(c)(1− g(c)) ∧ 0 < g(c) < 1)

→ K ≥ 1

4
.

A new theorem, which is a variation of Lemma 11
of (Zeng and Lee, 2023), can be proposed using
Lemma 1 above.

Theorem 1. Let f(x) represents the ReLU
neural network to which LoRA be applied, with
no activation function in the last layer, and f̄(x)
represents the target single-layer linear network.
Let g(x) is the logistic function (1 + e−x)−1.

σ(W )i is the i-th greatest singular value of W .
W l and W are l-th layer weight matrix of the
frozen model and the weight matrix of the target
model, respectively.

E
∥∥g(f(x))− g(f̄(x))

∥∥2
2

≤ 1

16
E
∥∥(f(x)− f̄(x))

∥∥2
2

(g is 1/4 Lipschitz by Lemma 1)

≤ 1

16
∥E(xxT )∥F

× σ2
(
W −

∏
W l

)
min(

∑L
l=1 Rl,RE)+1

.

where Rl, RE are Rank(Wl), Rank(W −∏
W l), respectively. L is the number of layers

in f .

C Traditional Machine Learning Models

For Traditional Machine Learning Models, we se-
lected 5 models. For tree-based models, we chose
Decision Tree and XGBoost. Tree-based models
have strong performance in tabular data classifica-
tion. We also included K-Nearest Neighbor, Lo-
gistic Regression, and Support Vector Machine to
increase the diversity of the models.
Decision Tree (DT) A model for classification and
regression that predicts using simple decision rules.
It captures non-linear patterns and is easy to inter-
pret.
K-Nearest Neighbor (KNN) An algorithm that
predicts based on the K closest data points in clas-
sification and regression tasks.
Logistic Regression (LogReg) A model for binary
classification that estimates probabilities to deter-
mine decision boundaries.
Support Vector Machine (SVM) A classification
and regression model that finds the optimal deci-
sion boundary, using an RBF kernel in this study.
XGBoost A high-performance gradient boosting
model that iteratively improves predictions by re-
ducing errors from previous steps.

All 5 models were imported and used from scikit-
learn. We also used scikit-learn’s HalvingGrid-
SearchCV class to explore the optimal hyperparam-
eters.

D Evaluation Methods

Accuracy measures the proportion of correct pre-
dictions and is defined as Accuracy = ncorrect

nsamples
.

Here, ncorrect is the number of correct predictions,
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Figure 8: Graph of accuracy changing over OOV ratio (%): We observed the accuracy change of TMLs and LBCs
by increasing the OOV ratio from 0, 30, 50, and 70 (%) for four datasets. Comparing the accuracy reduction of
TMLs and LBCs, the reduction of LBCs is smaller compared to TMLs. It demonstrates that LBCs interpret OOVs,
unlike TMLs.

and nsamples is the total number of samples. F1
score, a harmonic mean of Precision and Recall, is
calculated as F1 score = 2× Precision×Recall

Precision+Recall , where
Precision = TP

TP+FP and Recall = TP
TP+FN .

AUC score represents the area under the ROC
curve, which plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various
threshold settings.

Table 7: Dataset Statistics

Dataset #Variable #Class #Instance
Blood (Yeh, 2008) 4 2 583
Breast Cancer (Zwitter and Soklic, 1988) 31 2 569
Creditcard (Quinlan) 15 2 690
German Credit (Hofmann, 1994) 20 2 1000+
ILPD (Ramana and Venkateswarlu, 2012) 11 2 583
Loan (Mirza, 2023) 10 2 615
Salary (Kohavi, 1996) 14 2 1000+
Steel Plate (Buscema et al., 2010) 34 2 1000+
CMC (Lim, 1997) 9 3 1000+
OGB (Kharoua, 2024a) 13 3 1000+
Restaurant (Kharoua, 2024b) 6 3 1000+

Dataset LBC-LLaMA3 w/o C.C LBC-LLaMA3
Creditcard 78.76 80.84

Loan 79.75 81.25
OGB 60.83 62.51

Steel Plate 79.69 80.91

Table 8: Compare the accuracy scores of the LBC-
LLaMA3 model with and without Categorical Change
(C.C.) across four datasets. The accuracy scores are
higher when using Categorical Change, supporting the
idea that LLMs interpret categorical variables better
than numerical ones.

E Selecting Pre-trained LLM

Our research focuses not merely on prompt tun-
ing using LLMs but on modifying the structure

itself to construct a model that demonstrates high
performance in classification. Specifically, one of
our methodologies involves a verbalizer that re-
quires direct access to the model’s loss function
and vocabulary. Therefore, we need to choose a
powerful yet completely open-source LLM. Hence,
we selected GPT-J 6B (Wang and Komatsuzaki,
2021) model and LLaMA-3 8B model. Both mod-
els exhibit strong performance in inference based
on extensive pre-trained knowledge and have the
advantage of being fully open-source. Additionally,
we further validated our approach using black-box
models such as GPT-3.5.

Figure 9: Frequeny of P (ŷ = y) for the two prompt
generation methods. We repeated the prompt generation
100 times for each of the four randomly selected exam-
ples from the Creditcard dataset in two ways: random
order (RO) and advanced order (AO). The horizontal
axis represents the model’s probability for the correct
class y, and the vertical axis shows frequency. The AO
method provides more consistent and accurate results
than RO. The red vertical line indicates the prediction
boundary, where the differences between the two meth-
ods lead to varied predictions.
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