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Abstract

The rapid advancement of Large Language
Models (LLMs) has led to the development
of benchmarks that consider temporal dynam-
ics, however, there remains a gap in under-
standing how well these models can generalize
across temporal contexts due to the inherent
dynamic nature of language and information.
This paper introduces the concept of temporal
generalization in LLMs, including bias in past
and future generalizations. Then we introduce
FreshBench, a new evaluation framework that
employs fresh text and event prediction for as-
sessing LLMs’ temporal adaptability, ensuring
the evaluation process free from data leakage
and subjective bias. The experiment shows
significant temporal biases and a decline in per-
formance over time. Our findings reveal that
powerful models, while initially superior, tend
to decline more rapidly in future generalization.
Additionally, powerful open-source models
demonstrate better long-term adaptability com-
pared to their closed-source counterparts. Our
code is available at https://github.com/
FreedomIntelligence/FreshBench

1 Introduction

Proprietary large language models (LLMs) Ope-
nAI (2023); GoogleAI (2023); Anthropic (2023);
Anil et al. (2023) has been paralleled by efforts
in the open-source community to democratize
LLMs. Meanwhile, the rapid advancement of
LLM democratization Touvron et al. (2023) empha-
sizes the necessity for dynamic and robust bench-
marks that accurately reflect their evolving capa-
bilities. Traditional benchmarks, broadly classi-
fied into knowledge-based assessments and open-
dialogue evaluations, each present unique chal-
lenges. Knowledge-based assessments, exempli-
fied by MMLU Hendrycks et al. (2021) and C-
Eval Huang et al. (2023), are prone to data ma-
nipulation, raising concerns about their real-world

∗Benyou is the corresponding author.

applicability and the risk of data leakage Wei
et al. (2023); Golchin and Surdeanu (2024). Open-
dialogue evaluations like MT-Bench Zheng et al.
(2023) and Alpaca-Eval Li et al. (2023a), rely on
subjective human or model-based judgments, mak-
ing their outcomes susceptible to the influence of
dialogue structure, and thereby, potentially com-
promising assessment validity.

Given the limitations of traditional methods,
researchers are increasingly developing new ap-
proaches to evaluate models in diverse and dy-
namic contexts. For instance, recent efforts have
introduced methods that assess models’ abilities
to handle temporal evolution, contextual under-
standing, and real-time information updates Fatemi
et al. (2024); Kasai et al. (2024); Vu et al. (2023);
Chen et al. (2021); Zhang and Choi (2021); Liška
et al. (2022). While methods like RealTimeQA and
FreshQA focus on continuously updating knowl-
edge for real-time processing Kasai et al. (2024);
Vu et al. (2023), others like LatestEval Li et al.
(2023b) emphasize recent text-based comprehen-
sion. In contrast, our work shifts the focus to evalu-
ating models’ world understanding through predic-
tion, using a fact-based approach that minimizes
bias and ensures objectivity in assessment. This
method enhances robustness against data contam-
ination and focuses on the model’s capacity for
accurate, real-world event prediction.

We believe that the evaluation of LLMs should
be conducted in scenarios that are resistant to hack-
ing manipulation, with results that are objective
and free from evaluator biases Chen et al. (2024).
Additionally, time as a dynamic dimension, can
also ensure robust and relevant evaluations. This
paper explores an alternative way to evaluate large
language models, i.e., on temporal generaliza-
tion where time is considered as an important as-
pect. This approach significantly reduces the issue
of data contamination by limiting access to future
content. Moreover, a retrospective perspective on
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time could be beneficial for temporal bias analysis
for LLMs.

To achieve this goal, we design two scenarios.
The first is to have the model generate text based on
recent data such as arXiv papers, news articles, new
books, and Wikipedia content. An excellent model
should be able to generalize these new texts with
high language likelihood without data leakage. The
second scenario focuses on future event prediction.
An excellent model should be able to understand
the current context, integrate world knowledge, and
effectively generalize to future scenarios. In these
two scenarios, temporal generalization evaluation
has two main advantages: eliminating the possibil-
ity of data leakage through temporal boundaries
and enabling objective evaluation results without
relying on subjective interpretations.

Our analysis indicates that using validation loss
of new text to evaluate models is mostly effec-
tive. However, we observe that while performance
on language likelihood is a strong indicator of a
model’s linguistic capabilities, it does not always
align with specific abilities measured by existing
benchmarks, which may represent discrete knowl-
edge or other capacities that are important but not
directly related to language modeling.

Our contributions are as follows: 1) We de-
fine and quantify temporal generalization and bias,
establishing a basis for understanding and assess-
ing the capabilities of LLMs over time. 2) We
proposed a benchmark Freshbench to test the capa-
bilities of LLMs in predicting future events. This
benchmark is dynamically updated to reflect the
latest data, ensuring that our evaluations remain rel-
evant and accurate in the face of rapidly evolving
data environments. It experimentally assesses the
performance of existing LLMs across various time-
frames, providing insights into their historical and
ongoing performance stability and adaptability.

2 Conceptualization of Temporal
Generalization

In this section, we will first conceptualize Tem-
poral Generalization, then Temporal Biases and
Temporal Degeneration in Sec. 2.1. We will dis-
cuss ways to measure /textitTemporal Biases and
Degeneration in 2.2.

2.1 Temporal Generalization

LLMs face the ongoing challenge of remaining
applicable as new text evolves. Consequently, it

is crucial for these models to not only understand
and generate text based on seen (e.g., past) data
but also to anticipate and adapt to future data. This
inspires temporal generalization as below.

Figure 1: Schematic figure of temporal generalization.
In general, prior to the cutoff time, an LLM might ex-
hibit a Nostalgia bias that is skewed toward past dates
(i.e., aligning better with historical data) or a Neophilia
bias that is skewed toward future dates ( favoring more
recent information). However, after the cutoff time, the
model’s understanding of future trends declines, leading
to temporal degeneration.

Definition 2.1. Temporal Generalization refers
to the LLMs’ ability to align with the contexts of
the past, present, and future.

This requires the models to integrate and apply
knowledge from historical and current data to adapt
to the evolution of language and emerging trends.
Temporal generalization highlights the challenge
of designing models that remain effective and ac-
curate over time, without the need for frequent
re-training as new data is introduced. LLMs must
maintain a delicate balance between leveraging his-
torical data to understand long-standing language
patterns and adapting to new expressions, terminol-
ogy, and topics as they emerge.

2.1.1 For Models: Define Past, Present and
Future

Figure 2: Schematic Diagram of 3 Periods of Models

To distinguish the past and the future, we define
the cutoff time as the release date of the model. For
instance, if an LLM is released in January 2024,
then all events or information before January 2024
are considered part of the past, while everything
after January 2024 is considered the future. Al-
though the data after the cutoff time is not strictly
future data, this approach ensures no data leakage
for the model. As is shown in Figure 2, the pe-
riod near the cutoff time can be referred to as the
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present. We evaluate the model’s prediction accu-
racy across these time periods, denoted as accpast,
accfuture, and accpresent, respectively.

2.1.2 Define Temporal Bias and Temporal
Degeneration

With the three time periods defined, we can de-
fine Temporal Bias and Temporal Degeneration for
models.

Definition 2.2. Temporal Bias In this paper, we
define temporal bias as the preferences of LLMs
over time. 1

There exist two biases, namely Nostalgia Bias
and Neophilia Bias, which reflect two contrasting
tendencies in how these models might predict or
generate text about the past, present, or future. A
visual representation of these biases is provided in
Fig. 1, where the trends associated with Nostalgia
and Neophilia biases are plotted over time.

Nostalgia Bias refers to the over-reliance on
historical data when generating text. This bias
causes models to reflect perspectives, styles, or in-
formation prevalent in past training data, leading
to outputs that may not account for recent devel-
opments. Essentially, Nostalgia Bias can make a
model seem ‘stuck in the past’, limiting its ability
to accurately represent the present or predict the
future.

Neophilia Bias implies a model’s overemphasis
on novelty and future trends, potentially at the ex-
pense of established information. This bias could
result in predictions that are overly speculative and
not well-grounded in historical data or current re-
alities. Though less common due to LLM training
on historical datasets, Neophilia Bias could be per-
ceived from prompt structuring or interpretation
of outputs that prioritize futuristic concepts over
historical accuracy.

Definition 2.3. Temporal Degeneration refers to
the decline in a model’s performance in the future,
that is, after it is released.

In conclusion, the illustration for the above con-
cepts is in Figure 1.

1Temporal bias are multifaceted in previous literature. For
instance, can refer to the assumption of an incorrect sequence
of events that misleads our reasoning about causality Dorsey
(2021) or user preferences over time in point-of-interest rec-
ommendations Rahmani et al. (2022). Recently, biases have
raised more challenges in pre-trained language models Yoga-
rajan et al. (2023), particularly focusing on under-represented
societies. Sarkar and Vafa (2024) examines lookahead bias
in pre-trained language models, providing insights into how
these biases affect model performance.

2.2 Assessing Temporal Generalization
Based on definition in Sec. 2.1, we turn to assess
temporal generalization through the lens of 1) I:
compression intelligence in Sec. 2.2.1 and II): fu-
ture event prediction in Sec. 2.2.2.

2.2.1 Case I: Compression Intelligence
In the assessment of compression intelligence, met-
rics such as perplexity (PPL) and bits per character
(BPC) offer insights into model performance. We
refine our focus to BPC for a more normalized com-
parison. Unlike traditional BPC which is specific
to character-level language models, our adapted
Bits Per Character (BPC) metric offers a com-
parison between models by normalizing the log
likelihood based on character count, irrespective of
the tokenization method, allowing for a more equi-
table assessment of model performance across
different languages and tokenization schemes, the
BPC is calculated as follows:

BPC(T )=
−∑N

i=1 log p(wi|w1, . . . , wi−1)

len-utf-8(T )
(1)

Here, T represents the text being analyzed, N
is the number of tokens in T (which may vary de-
pending on the tokenizer), and len-utf-8(T ) is the
length of T when encoded in UTF-8, measured
in characters. The tokens wi correspond to seg-
ments of text which may vary depending on the
tokenizer used. This variance is due to different
tokenization methods splitting the text into tokens
at different granularities, ranging from subword
units to characters. In this paper, we investigate the
compression intelligence proposed in Huang et al.
(2024) in a temporal manner,

2.2.2 Case II: Future Event Prediction
LLMs could perform future event prediction, as
seen in Bonde (2022) which employed GPT-3 in
a few-shot setting to tackle binary questions from
the Metaculus platform. Further, Zou et al. (2022)
enriched the discourse by introducing a compre-
hensive dataset that includes forecasting questions
alongside a news corpus. This approach enhances
model training by incorporating varied and rele-
vant data contexts. Moreover, Halawi et al. (2024)
showcased how integrating news content can sig-
nificantly improve the accuracy of predictions in
real-time scenarios.

Building on this foundation, our research seeks
to explore the temporal generalization capabilities
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of LLMs: how well they adapt and remain accu-
rate as new data emerges and contexts evolve?
As an example of using LLMs to predict politi-
cal outcomes, we gather new factual data about
future events, such as "What will President
Biden’s approval rating be as of 7 June
2024, according to FiveThirtyEight?". To
ensure objectivity in our predictions, answers are
typically formatted as ranges within a prediction
market scenario. For instance, President Biden’s
approval rating might be categorized into intervals
such as lower than 34%, at least 34.0%, but
less than 36.0%, at least 36.0%, but less
than 38.0%, up to 46.0% or higher.

However, since collecting actual future data is
impossible, we adopt a retrospective study ap-
proach. We use data available after the event’s
question was posed and before the prediction mar-
ket’s closure, treating this as "future" data for
model evaluation. This ongoing, online evaluation
objectively assesses the model’s predictive capa-
bility. We define prediction accuracy, denoted by
Acc, as follows:

Acc =
Ncorrect

Ntotal
(2)

where Ncorrect is the number of correct predic-
tions among Ntotal future prediction questions. See.
Sec. 4.1 for the collected future prediction question
set over time. This metric evaluates the effective-
ness of LLMs in predicting future events. This
approach also allows continuous evaluation with
the latest data, ensuring the assessment reflects
the model’s current capabilities and the evolving
information landscape.

3 Temporal Generalization through the
Lens of Compression Intelligence

This section discusses how various models han-
dle data from different periods, showcasing their
performance stability or volatility.
Key Findings

• In general, while the ranking of models varied
slightly between datasets, the performance of
individual models remained relatively stable
over time within each dataset type, as can be
seen in Figure 3 and 4. Here we made a dis-
covery regarding the distinct characteristics
of the Wikipedia and BBC datasets at 3.1.2.

• Another interesting observation was made in
the arXiv dataset shown in Figure 5, where

a sharp decrease in BPC occurred around
March 2024. This timing coincides with the
peak in ChatGPT usage, as reported by Ex-
ploding Topics2, which saw over 1.8 billion
visits in that month. In essence, it appears
that humans may be adapting their writing to
more closely resemble LLM outputs, rather
than LLMs significantly enhancing their abil-
ity to model human language.

3.1 Temporal Bias

3.1.1 Protocol for Quantitative Measurement
Data sources Our system aggregates data from
various platforms, including Yahoo for financial
news, BBC for political insights, Reddit for discus-
sions, Wikipedia for encyclopedic updates, arXiv
for academic research, GitHub for software trends,
and Quora for diverse questions and answers. Uti-
lizing a Python-based crawling framework, it’s de-
signed for adaptability and efficient data collec-
tion, with Playwright addressing navigation and
specific site challenges. We also did some basic
data pre-processing, due to space limitation, details
in Appendix F. An overview of the data volume
and the average entry length from a single crawl is
provided in Appendix G. Experiment settings are
listed in Appendix A.

3.1.2 Observation of Temporal Bias in
Compression Intelligence

To comprehensively explore the temporal gener-
alization capabilities of models, we plot the BPC
curve over time.

In text data before release, a negative slope in-
dicates the presence of Neophilia Bias. Conversely,
a positive slope would suggest that the model’s
performance is decreasing, which shows Nostalgia
Bias.

ArXiv BPC has a huge decline after GPT is
widely used, as mentioned in Key Findings. Mod-
els show stronger Nostalgia Bias when evaluated
with BBC text than Wiki text. From the BPC charts,
it’s not easy to spot differences between models.
However, our calculations in Appendix I reveal
variations in how well each model can adapt spe-
cific text over time.

Difference of Text Feature An insightful re-
viewer helped us found the reason of the different
patterns of Wiki an BBC text. New Wiki texts with

2https://explodingtopics.com/blog/
chatgpt-users
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Figure 3: BPC on Wiki text Figure 4: BPC on BBC news text Figure 5: BPC on arXiv text

recent temporal markers do not necessarily imply
that the content is new in a temporal context. For
instance, in 2017-01, there was a Wiki article ti-
tled "History of India". However, the information
within it was not new and could potentially have
been sourced from other materials. Conversely,
BBC texts are news articles and are highly time-
sensitive.

To quantify the difference, we uniformly
sampled approximately 500 data pieces from both
the Wiki and BBC datasets (taking into account
that news may also cover historical events) and
asked gpt-4o to classify the content. The results
are as follows:

• Wiki: Historical: 97.83%, Others 3 :2.17%.

• BBC: Recent: 91.86%, Historical: 8.14%.

So, it is reasonable that Wiki text has a flat curve
in BPC.

Claim the Value of Wiki Dataset Since the
Wikipedia dataset is continuously updated, it is not
easily subject to direct contamination. Although a
substantial portion of Wiki pertains to old informa-
tion, this content still represents valuable knowl-
edge that we need. An ideal model should consis-
tently perform well on such knowledge. (If a model
shows a decline in performance on Wikipedia, it is
likely that the model is overfitting.)

3.2 Temporal Degeneration

3.2.1 Protocol for Quantitative Measurement
Definition 3.1. Temporal Bias Index (TBI) For
each model in a certain period, we record BPCi

at n time points, forming n data points (i, BPCi),
where i = 1, . . . , n. Here the time interval be-
tween BPCi and BPCi+1 is set as two month.
We then fit a linear model:

BPCi = a ∗ i+ b (3)
3"Others" refers to content not associated with specific

historical events, focusing instead on general, educational,
and ever-relevant information.

then Temporal Bias Index (TBI) is defined as
the coefficient a. TBI is crucial for understand-
ing the direction and rate of change in model
performance over time.

To quantify model temporal generalization, we
computed the BPC for various models on the Wiki
and BBC datasets and evaluated their performance
using this index. Specifically, We established a
base BPC using data from the six months prior
to each model’s release. After that, we measured
the changes in BPC at 3, 6, 9 and 12 months post-
release relative to the base BPC; and assessed the
overall trend in model performance using TBI. The
specific results are detailed in Appendix H.

3.2.2 Observation
Temporal generation pattern is mostly deter-
mined by the nature of data Models perform sta-
bly on Wikipedia but show more variation on BBC.
This reveals their ability to handle well-structured
and formal text like Wiki and insufficient adaptabil-
ity to dynamic text like BBC text. The overall BPC
for BBC texts shows an increasing trend, indicating
gradual performance degeneration.

Individual models show considerable differ-
ences in performance on new data; for instance,
Yi, and Baichuan2 series adapt relatively well to
new texts, while Phi-1.5 and OPT series exhibit
poorer generalization (see Appendix I). These find-
ings indicate that in dynamic environments, differ-
ent models have significantly varying adaptation
capabilities.

Model performance positively correlates with
performance decay. (see Tab. 1). There is a pos-
itive correlation between model attributes (such
as model size and release date) and performance
decay. A positive BPC slope indicates an increase
in BPC over time, reflecting performance degener-
ation.

In the Wiki dataset, larger models deteriorate
faster (correlation coefficient of 0.504), suggest-
ing a trade-off between capability and flexibility.
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Table 1: Correlation between Model Attributes and Their TBI on Wiki and BBC text

Corre Model Release MMLU Human- Social- STEM MMLU GSM8 Ar20c Hella- Trust- Wino- Long-
lation Size Date ities Sciences Other wasg fulQA grande bench

Wiki 0.504 0.267 0.599 0.500 0.594 0.393 0.528 0.473 0.380 0.581 0.200 0.632 0.404
BBC -0.044 0.313 0.384 0.317 0.311 0.186 0.153 0.188 -0.071 0.248 0.485 0.204 0.549

In more dynamic environments (such as the BBC
dataset), the impact of model size on performance
decay is smaller. Additionally, newer models show
higher correlations, meaning that despite their ad-
vanced capabilities, they may deteriorate faster.
These results emphasize the importance of design-
ing models that can maintain robustness over time
and across various data environments. As machine
learning applications grow in complexity and scale,
temporal generalization will become increasingly
critical.

4 Temporal Generalization through the
Lens of Future Event Prediction

Advantages of Future Event Prediction over
Compression Intelligence Compression Intelli-
gence is limited by its inapplicability to closed-
source models, where key indicators like logits or
losses are inaccessible. This exclusion narrows
comparative analysis and hinders a comprehensive
understanding of the language technology land-
scape. Additionally, language likelihood can be
biased by models finely tuned to specific formats
or domains, skewing overall evaluation and pre-
senting a distorted view of a model’s general per-
formance.

This motivated us to research temporal gener-
alization and bias from the perspective of future
prediction. In this section, we investigate temporal
generalization (in Sec. 4.1) and biases (Sec. 4.2)
through the Lens of Future Event Prediction.

Key Findings

• Models prefer older knowledge, with non-
uniform knowledge distribution skewed to-
wards the past. This poses a risk as users
expect up-to-date knowledge close to the
model’s release date.

• Within model series such as Claude,Gemini,
and GPT, newer versions are becoming more
powerful but also experience more rapid per-
formance decline. Miniature models signif-
icantly underperform compared to their full
-sized counterparts in temporal tasks.

• Newer models generally exhibit stronger per-
formance. Closed-source models tend to per-
form slightly better at the beginning, yet open-
source models demonstrate superior general-
ization capabilities.

4.1 Temporal Biases
4.1.1 Protocol for Quantitative Measurement:

a Hypothesis Testing Method
We discussed generally what is past, present, and
future for a model in Sec 2.1.1. Now, let’s clarify
the context of the prediction problem. For each
prediction task, there is an initiation time (when
the question is posed) and a close time (when the
answer is revealed). If a question’s closure time
precedes the model’s release date (for instance,
by more than three months), then that question
is considered part of the past for that model. The
present refers to questions whose close time is near
the release time of the model, capturing the period
around when the model was launched.

To investigate the two mentioned temporal bi-
ases in Sec. 2.1.2, we propose two hypothesis test-
ings as follows. These tests help practitioners make
informed decisions despite the randomness inher-
ent in the question datasets.

Hypothesis Testing 1. Neophilia Bias:

T1 : H0 : E[accpast] = E[accpresent],

H1 : E[accpast] < E[accpresent]
(4)

This hypothesis tests if there is a significant
increase in model accuracy for current questions
compared to past questions, suggesting a bias to-
wards newer content. The p-value p̂ quantifies the
strength of evidence against the null hypothesis.

Hypothesis Testing 2. Nostalgia Bias:

T2 : H ′
0 : E[accpast] = E[accpresent],

H ′
1 : E[accpast] > E[accpresent]

(5)

Conversely, this hypothesis tests if there is a sig-
nificant increase in model accuracy for past ques-
tions, indicating a preference for older or historical
content. The p-value p̂′ quantifies the strength of
evidence against the null hypothesis.
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P-Value Computation The p-values for assess-
ing the shifts in accuracy are computed using the
standard normal cumulative distribution function
Φ as follows:

p̂ = 1− Φ


 acc1 − acc2√

acc1(1−acc1)
n1

+
acc2(1−acc2)

n2


 , (6)

acc1 and acc1 could be either accpast or
accpresent, which is based on which Hypothesis
Testing is used. Note that the two Hypothesis Test-
ings are symmetrical.

Detailed experiment settings are listed in Ap-
pendix D.

4.1.2 Observation

Models tend to be stronger in earlier periods
before release, with performance gradually de-
clining over time. Using the -20 to 0 months
period as an anchor, if we assign the three periods
to represent the near past (20 to 40 months before
release), the middle past (40 to 60 months before
release), and the distant past (60 to 80 months be-
fore release), we observe that the further back in
time we go, the more pronounced the Nostalgia
Bias becomes, and it is also more significant. This
suggests that the models gradually degrade during
the pre-release period, rather than experiencing a
rapid decline around the cutoff period.

Nostalgia Bias is prevalent.As shown in Tab. 2,
among the biases, Nostalgia is the most common,
followed by periods where neither bias is signifi-
cant (shown as -), with Neophilia Bias being the
least frequent. Phi-1.5 and Baichuan2-13B series
show Nostalgia Bias in all three periods before
release. Mistral-7B-v0.1 show Neophilia Bias in
20 to 40 months before release but show more sig-
nificant Nostalgia in another two periods, which
we attribute to random fluctuations rather than a
consistent trend.

This observation reveals that models generally
favor older knowledge and prefer information from
more distant past periods. The distribution of
knowledge is not uniform, nor does it tend to be
closer to the present. This poses a potential risk
in our utilization of these models because there is
an expectation that the knowledge utilized should
be as up-to-date as possible, ideally close to the
model’s release date.

4.2 Temporal Degeneration
4.2.1 Protocol
We discussed generally Temporal Degeneration in
2.1.2, here we need to define specifically.

Definition 4.1. Temporal Degeneration The ca-
pability of future event prediction might be de-
graded over time due to the larger generalization
gap brought by time.

To qualitatively measure Temporal Degenera-
tion, we propose a hypothesis testing like 4.1.1.

Hypothesis Testing 3. Temporal Degeneration

T3 : H0 : E[accfuture] = E[accpresent],

H1 : E[accfuture] < E[accpresent]
(7)

Similar to Sec 4.1.1, accfuture represents the
model accuracy on questions proposed after the
model’s release. This hypothesis assesses whether
there is a significant decline in model accuracy,
indicating a degeneration over time. The hypothet-
ical p-value is similar to that of Eq. 6.

4.2.2 Observation
Earlier models perform worse, while newer ad-
vanced models perform better in future pre-
dictions. As the latest scores in Table 3 show,
earlier models, show a significant performance
decline across multiple time periods. For exam-
ple, LLaMA-7B’s accuracy dropped from 0.11 in
March 2023 to 0.08 by March 2024, with no im-
provement in later evaluation periods. In contrast,
newer models exhibit much stronger future predic-
tion capabilities.

Close-source models perform well initially
but struggle with temporal generalization, while
open-source models show better stability. As is
shown in Appendix C, in both pre- and post-release
scenarios, proprietary models such as GPT-4 and
Claude-3.5 slightly outperform their open-source
counterparts. However, when predicting outcomes
for events known only post-release, all models ex-
hibited substantial declines in performance.

Our analysis highlights models with less than
31% decline in post-release accuracy in bold,
illustrating relatively stable performance. Con-
versely, models that experienced declines greater
than 39% are marked by underline, indicating sub-
stantial performance degeneration. Notably, mod-
els such as Command R+, Mixtral-8x22B-Instruct-
v0.1, DeepSeek-V2-Chat, and LLaMA-3.1-405B-
Instruct demonstrate slower declines in accuracy
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Table 2: Comparison of Model Performance in Different Pre-Release Periods (Compared to 0-20 months before
Release), uses asterisks to denote significance levels:† (p < 0.05), ††(p < 0.01), and ††† (p < 0.001),→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ refers to
Neophilia Bias,←←←←←←←←←←←←←←←←←←←←←←←←←←← refers to Nostalgia Bias.

Models 20-40 Months
Before Release

40-60 Months
Before Release

60-80 Months
Before Release

OPT-13B −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††

OPT-2.7B −−−−−−−−−−−−−−−−−−−−−−−−−−− →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ † −−−−−−−−−−−−−−−−−−−−−−−−−−−
LLaMA-7B −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††

Pythia-12B →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ †† ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Falcon-rw-1B −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−
Baichuan-7B-Chat −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← †

LLaMA-2-13B −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

LLaMA-2-7B ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← † −−−−−−−−−−−−−−−−−−−−−−−−−−−
LLaMA-2-7B-Chat −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Zhongjing-Base −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

InternLM-Chat-7B ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−
Baichuan2-7B-Chat ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−
Mistral-7B-v0.1 →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ † ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Phi-1.5 ←←←←←←←←←←←←←←←←←←←←←←←←←←← † ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Baichuan2-13B-Base ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Baichuan2-13B-Chat ←←←←←←←←←←←←←←←←←←←←←←←←←←← † ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Colossal-LLaMA-2-7B-Base ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← †

Qwen-14B-Chat ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Qwen-7B −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−
Skywork-13B-Base −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−
Zephyr-7B-beta ←←←←←←←←←←←←←←←←←←←←←←←←←←← † ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Yi-6B −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−
Yi-6B-Chat ←←←←←←←←←←←←←←←←←←←←←←←←←←← † ←←←←←←←←←←←←←←←←←←←←←←←←←←← † ←←←←←←←←←←←←←←←←←←←←←←←←←←← †

Qwen-1.8B −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††

RWKV-v5-Eagle-7B −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−
Phi-2 ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← †

Command R+ ←←←←←←←←←←←←←←←←←←←←←←←←←←← †† ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Mixtral-8x22B-Instruct-v0.1 −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

Phi-3-mini-4k-instruct −−−−−−−−−−−−−−−−−−−−−−−−−−− ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††

Qwen1.5-110B-Chat ←←←←←←←←←←←←←←←←←←←←←←←←←←← † ←←←←←←←←←←←←←←←←←←←←←←←←←←← ††† ←←←←←←←←←←←←←←←←←←←←←←←←←←← †††

post-release. Conversely, models like Claude-3.5-
Sonnet-20240620, GPT-4-231106, and GPT-4o
show rapid declines in performance,

The case studies of model iterations within the
Claude series and the GPT models illustrate the
dynamics of model evolution and generalization
capabilities over time. Notably, the Claude-3-opus-
20240229 model shows the least decline, indicat-
ing a potentially better tuning for broader applica-
tions or general datasets. This contrasts with the
more significant declines seen in Claude-3-sonnet-
20240229 and Claude-3.5-Sonnet-20240620, sug-
gesting that these iterations may have undergone
specific architectural tweaks, utilized different
training data scopes, or implemented optimization
strategies that did not generalize as effectively.

Similarly, the progression from GPT-3.5-turbo-
230613 to GPT-4-231106 shows an increasing
trend in both pre-release accuracy and the mag-
nitude of decline post-release, with the GPT-

4-231106 model experiencing the largest drop
(39.39%). This trend could indicate a push towards
optimizing these models for higher initial accuracy,
possibly at the expense of their ability to generalize
effectively over time.

Miniature versions of models show significant
declines in temporal performance. The data re-
veals that miniature versions of models underper-
form compared to their full-sized counterparts in
temporal tasks. For instance, Gemini.pro had an
accuracy of 0.37 in March 2024, but this dropped
sharply to 0.17 by July 2024, indicating a signifi-
cant loss in precision for temporal tasks. Similarly,
the mini version of GPT-4 showed considerably
lower performance across multiple time periods,
particularly in April 2024, where its accuracy was
just 0.21, around 0.1 lower than the full-sized GPT-
4 in the same period. This illustrates that while
mini models improve inference efficiency, they ex-
hibit poor generalization over time, with perfor-
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Table 3: Accuracy performance of various models across different periods. The presence of asterisks (*) denotes
statistically significant decreases in performance during specific periods (p < 0.05 for *, p < 0.01 for **, and p <
0.001 for ***), benchmarked against their accuracy before release. Grey cells indicate the models have not been
released in this period and represent the average scores of the models prior to their release.

Model 23/1
-23/2

23/3
-23/4

23/5
-23/6

23/7
-23/8

23/9
-23/10

23/11
-23/12

24/1
-24/2

24/3
-24/4

24/5
-24/6

24/7
-24/8

Baichuan-13B-Chat 0.52 0.26** 0.20** 0.36** 0.32** 0.33** 0.20** 0.23** 0.17**
GPT-3.5-turbo-230613 0.49 0.29** 0.37* 0.45 0.44 0.37* 0.29** 0.28** 0.26**
GPT-4-230613 0.6 0.39** 0.43* 0.41** 0.38** 0.48 0.40** 0.35** 0.36**
Llama-2-13B 0.52 0.43 0.48 0.36** 0.39* 0.40* 0.28** 0.34**
Llama-2-7B 0.27 0.26 0.27 0.22 0.26 0.33 0.18** 0.24
LLaMA2-7B-Chat 0.45 0.30* 0.46 0.35** 0.37 0.38 0.27** 0.28**
Baichuan2-13B-Base 0.49 0.30** 0.46 0.42* 0.28** 0.39* 0.27** 0.27**
Baichuan2-13B-Chat 0.5 0.33** 0.43 0.41* 0.26** 0.29** 0.29** 0.33**
Baichuan2-7B-Base 0.42 0.26** 0.30* 0.24** 0.33 0.33* 0.25** 0.22**
Baichuan2-7B-Chat 0.37 0.35 0.43 0.31 0.37 0.40 0.23** 0.27*
Colossal-LLaMA-2-7B-Base 0.42 0.43 0.37 0.28* 0.33* 0.25** 0.26**
Mistral-7B-v0.1 0.44 0.41 0.35* 0.28* 0.34* 0.25** 0.24**
Phi-1.5 0.41 0.38 0.38 0.30 0.26** 0.32* 0.27**
Qwen-14B-Chat 0.39 0.25** 0.24** 0.33 0.27** 0.28** 0.19**
Zephyr-7B-beta 0.4 0.32 0.32* 0.28* 0.28** 0.31* 0.19**
Yi-6B 0.29 0.27 0.16** 0.22 0.33 0.21* 0.21*
Gemini 0.43 0.20** 0.37 0.24** 0.21** 0.17**
Qwen-1.8B 0.35 0.22** 0.37 0.29 0.20** 0.20**
GPT-4-231106 0.66 0.45** 0.39** 0.36** 0.47** 0.43**
Phi-2 0.31 0.23* 0.22 0.29 0.18** 0.15**
Claude-3-opus-20240229 0.53 0.52 0.37** 0.47 0.36**
Claude-3-sonnet-20240229 0.23 0.24 0.13** 0.10** 0.07**
Command R+ 0.54 0.37** 0.43* 0.33**
DeepSeek-V2-Chat 0.58 0.49** 0.46** 0.35**
Mixtral-8x22B-Instruct-v0.1 0.56 0.39** 0.43** 0.35**
Phi-3-mini-4k-Instruct 0.38 0.26** 0.24** 0.26**
Qwen1.5-110B-Chat 0.56 0.40** 0.45* 0.36**
Claude-3.5-Sonnet-20240620 0.63 0.48** 0.23**
Gemini-1.5-Pro 0.5 0.47 0.35**
Gemini-1.5-flash 0.39 0.23** 0.22*
Qwen2-72B-Instruct 0.6 0.45** 0.40**
LLaMA-3.1-405B-Instruct 0.5 0.41
GPT-4o 0.62 0.39**
GPT-4o-mini-2024-07-18 0.48 0.28**

mance rapidly declining in long-term prediction
tasks.

5 Conclusion and Community Call to
Action

We rigorously define and quantify temporal gen-
eralization and bias within LLMs, uncovering sig-
nificant challenges in predicting and adapting to
future contexts. Our experiments reveal that LLMs
often struggle with temporal biases, affecting relia-
bility in dynamic scenarios requiring accurate fore-
casting. The evaluation framework and datasets
we introduce allow for an in-depth assessment of
model performance over time. The findings high-
light shortcomings in existing benchmarks related
to temporal shifts and underscore the urgent need

for improvements in LLM training and updating
processes to enhance adaptability and mitigate bi-
ases.

Specifically, we urge the community to take note
of this phenomenon: models tend to better compre-
hend earlier events. Cheng et al. (2024) suggests
that models are most familiar with knowledge up to
the year 2020. However, our findings indicate that
the understanding of world events (even in cases
where models can remember) lingers around 2015,
with a trend towards even earlier years (beyond the
time range of our test data). This observation is
contrary to our initial hypothesis that models may
overfit current events, which is significantly more
concerning. It suggests that caution is needed, es-
pecially for those hoping to use model judgments
directly.
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Future Work

Moving forward, it is crucial to refine LLM devel-
opment and evaluation techniques to better han-
dle evolving informational environments, ensuring
their continued relevance and utility in various ap-
plications.

Looking ahead, we suggest future work includes
several ambitious goals aimed at enhancing the
versatility and depth of our evaluation framework.
Key among these objectives are:

• Exploring mitigation strategies, through we
conducted preliminary investigations into
prompt engineering strategies that could
potentially mitigate temporal performance
degradation, see Abstract B.

• Integrating a wider array of models, par-
ticularly focusing on those based on the
Transformer architecture, such as Griffin and
Mamba models.

• Expanding the number of checkpoints ac-
cessed for a more comprehensive temporal
analysis of model performance.

• Delving into the relationship between token-
level loss metrics and overall scores, which
could offer more granular insights into model
capabilities.

• Developing methodologies to assess the ob-
solescence of benchmarks and models, poten-
tially offering a dynamic approach to evaluat-
ing the relevance and efficiency of language
models over time.

These initiatives represent our commitment to ad-
vancing the state of the art in language model evalu-
ation, ensuring that our tools remain at the forefront
of technological progress and innovation.

Limitations

While we strive to collect textual data from a va-
riety of sources such as news articles, scientific
papers, and forum discussions, the proportion and
diversity of the texts may still fall short of fully
reflecting the diversity and complexity of language.
Also, the English-centric nature of the questions
and answers limits the benchmark’s applicability
to non-English speaking regions and global events.
Moreover, such evaluations on text loss require
access to the model’s logits, which is challenging
for closed-source models or models accessed via
APIs.

Potential Risks

Bias and Fairness Risks: When used to make pre-
dictions about future events, language models can
inadvertently perpetuate or amplify biases present
in their training data. This could lead to biased
forecasts that reflect and potentially exacerbate ex-
isting societal prejudices. Such biased outputs may
result in models that are unfair or discriminatory,
which could harm individuals or groups and dam-
age the reputation of the organizations involved.

Ethics Statement

We fully acknowledge the need to adhere to ethical
standards in handling and generating textual data.
Hence, we commit to:

• We utilize various datasets in our experiments,
including publicly available sources like news
articles and academic papers, which do not
contain personally identifiable information or
offensive content. However, some datasets
created or used during our study contain sen-
sitive information or are bound by specific
usage agreements that prevent public sharing.
Therefore, these datasets are utilized strictly
within our experiments and are not released
as part of our open-source materials, adhering
to ethical guidelines and agreements.

• Responsibility for Content Generated by
Open-Source Models: We recognize that
content generated by our system or through
the use of open-source models involved in
the evaluation might reflect or amplify biases.
While efforts are made to minimize these bi-
ases and improve the fairness of the content,
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we cannot take responsibility for the gener-
ated content. We encourage users and devel-
opers to critically engage with these models
and remain vigilant of their outputs.

• Addressing Data Leak Issues: Our system
aims to tackle data leak issues by dynamically
generating benchmarks and ensuring models
generalize to new or future texts. We commit
to continuously monitoring and updating our
evaluation methods to avoid potential data
leakage, ensuring the validity and reliability
of our assessment results.

• Transparency: We are committed to main-
taining the highest level of transparency in
our work, including our evaluation methods,
data sources used, and assessment outcomes.
We encourage open critique and suggestions
for improvement of our methodology, aiming
to foster knowledge sharing and technological
advancement.

We believe that through this approach, we can
offer a valuable resource to the research and devel-
opment community, while fostering deep reflection
and discussion on ethical issues in the artificial in-
telligence field.

Licence

Good Judgment Inc.
For personal use of its services and content, a lim-
ited, revocable, non-exclusive license is granted.
Without explicit written permission from Good
Judgment Inc., this license restricts the collec-
tion, aggregation, copying, duplication, display,
or derivative use of its content.

arXiv
The arXiv dataset is licensed under the Creative
Commons Zero (CC0 1.0) license. This means
it is in the public domain, and users can freely
use, modify, and distribute the data without any
restrictions.

Wikipedia
Wikipedia content is licensed under the Creative
Commons Attribution-ShareAlike (CC BY-SA) li-
cense. This allows users to share and adapt the
content as long as appropriate credit is given, and
any derived works are distributed under the same
license.

Other text will not be released.
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Adam Liška, Tomáš Kočiský, Elena Gribovskaya, Tay-
fun Terzi, Eren Sezener, Devang Agrawal, Cyprien
de Masson d’Autume, Tim Scholtes, Manzil Zaheer,
Susannah Young, Ellen Gilsenan-McMahon, Sophia
Austin, Phil Blunsom, and Angeliki Lazaridou. 2022.
Streamingqa: A benchmark for adaptation to new
knowledge over time in question answering models.

OpenAI. 2023. Gpt-4 technical report.

Van Pham and Scott Cunningham. 2024. Can base
chatgpt be used for forecasting without additional
optimization?

Hossein A. Rahmani, Mohammadmehdi Naghiaei, Ali
Tourani, and Yashar Deldjoo. 2022. Exploring the
impact of temporal bias in point-of-interest recom-
mendation. arXiv preprint arXiv:2207.11609.

Yoan Russac, Christina Katsimerou, Dennis Bohle,
Olivier Cappé, Aurélien Garivier, and Wouter M
Koolen. 2021. A/b/n testing with control in the pres-
ence of subpopulations. In Advances in Neural In-
formation Processing Systems, volume 34, pages
25100–25110. Curran Associates, Inc.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale.

Suproteem Sarkar and Keyon Vafa. 2024. Lookahead
bias in pretrained language models. SSRN Electronic
Journal.

Philipp Schoenegger, Indre Tuminauskaite, Peter S.
Park, Rafael Valdece Sousa Bastos, and Philip E.
Tetlock. 2024. Wisdom of the silicon crowd: Llm
ensemble prediction capabilities rival human crowd
accuracy. ArXiv.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-
ton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu,
Brian Fuller, Cynthia Gao, Vedanuj Goswami, Na-
man Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,
Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yun-
ing Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ran-
jan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan,
Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Au-
relien Rodriguez, Robert Stojnic, Sergey Edunov,
and Thomas Scialom. 2023. Llama 2: Open founda-
tion and fine-tuned chat models.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry
Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny
Zhou, Quoc Le, and Thang Luong. 2023. Freshllms:
Refreshing large language models with search engine
augmentation.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu,
Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,
Weiwei Lü, Rui Hu, Chenxia Li, Liu Yang, Xilin Luo,
Xuejie Wu, Lunan Liu, Wenjun Cheng, Peng Cheng,
Jianhao Zhang, Xiaoyu Zhang, Lei Lin, Xiaokun
Wang, Yutuan Ma, Chuanhai Dong, Yanqi Sun, Yifu
Chen, Yongyi Peng, Xiaojuan Liang, Shuicheng Yan,
Han Fang, and Yahui Zhou. 2023. Skywork: A more
open bilingual foundation model.

Vithya Yogarajan, Gillian Dobbie, Te Taka Keegan, and
Rostam J. Neuwirth. 2023. Tackling bias in pre-
trained language models: Current trends and under-
represented societies.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence?

Michael Zhang and Eunsol Choi. 2021. SituatedQA: In-
corporating extra-linguistic contexts into QA. In Pro-

7444

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.48550/ARXIV.2404.09937
https://doi.org/10.48550/ARXIV.2404.09937
http://arxiv.org/abs/2207.13332
https://github.com/tatsu-lab/alpaca_eval
http://arxiv.org/abs/2312.12343
http://arxiv.org/abs/2312.12343
http://arxiv.org/abs/2312.12343
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2205.11388
http://arxiv.org/abs/2205.11388
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2404.07396
http://arxiv.org/abs/2404.07396
http://arxiv.org/abs/2404.07396
https://arxiv.org/pdf/2207.11609v1
https://arxiv.org/pdf/2207.11609v1
https://arxiv.org/pdf/2207.11609v1
https://proceedings.neurips.cc/paper_files/paper/2021/file/d35a29602005cb55aa57a5f683c8e0c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d35a29602005cb55aa57a5f683c8e0c2-Paper.pdf
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
https://ssrn.com/abstract=4754678
https://ssrn.com/abstract=4754678
https://arxiv.org/abs/2402.19379
https://arxiv.org/abs/2402.19379
https://arxiv.org/abs/2402.19379
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2310.03214
http://arxiv.org/abs/2310.03214
http://arxiv.org/abs/2310.03214
http://arxiv.org/abs/2310.19341
http://arxiv.org/abs/2310.19341
http://arxiv.org/abs/2312.01509
http://arxiv.org/abs/2312.01509
http://arxiv.org/abs/2312.01509
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
https://doi.org/10.18653/v1/2021.emnlp-main.586
https://doi.org/10.18653/v1/2021.emnlp-main.586


ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7371–
7387, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Hao Zhou, Vamsi K Ithapu, Sathya Narayanan Ravi,
Vikas Singh, Grace Wahba, and Sterling C Johnson.
2016. Hypothesis testing in unsupervised domain
adaptation with applications in alzheimer's disease.
In Advances in Neural Information Processing Sys-
tems, volume 29. Curran Associates, Inc.

Andy Zou, Tristan Xiao, Ryan Jia, Joe Kwon, Mantas
Mazeika, Richard Li, Dawn Song, Jacob Steinhardt,
Owain Evans, and Dan Hendrycks. 2022. Forecast-
ing future world events with neural networks.

A Related Work

Given the limitations of traditional methods, re-
searchers are exploring new ways to measure
model performance more comprehensively. Re-
cently, several methods have been proposed to
evaluate models at different times and in various
contexts Fatemi et al. (2024); Kasai et al. (2024);
Vu et al. (2023). TimeQA Chen et al. (2021) eval-
uates a model’s ability to handle temporal evolu-
tion, while Situated QA Zhang and Choi (2021)
focuses on a model’s performance in specific con-
texts. StreamingQA Liška et al. (2022) introduces
the concept of continuous information flow, while
RealTimeQA Kasai et al. (2024) and FreshQA Vu
et al. (2023) emphasize real-time and up-to-date
information processing capabilities. LatestEval Li
et al. (2023b) utilizes the most recent text to con-
struct questions and answers, covering six most
frequently queried categories including explana-
tion, summary, reason, demonstrations, existence,
and possible usage.

However, it’s essential to clarify that Real-
TimeQA Kasai et al. (2024) and FreshQA Vu et al.
(2023), which continuously update topics, are in-
clined towards knowledge. For example, Real-
TimeQA Kasai et al. (2024) has such a sample in
their paper, "Which wildly popular show was re-
cently greenlit for a new season?" (Answer: Squid
Game). These methods are typically used for eval-
uating retrieval-augmented generation (rag) series
models. On the other hand, methods like LatestE-
val Li et al. (2023b), which construct questions
using the most recent information, lean towards
enhancing reading comprehension.

In contrast to these approaches, our focus is on
testing the model’s understanding of the world,
as demonstrated through prediction. Our method
of evaluation is based on facts and computation
loss. This ensures that our evaluation is resistant
to data contamination, objective, and free from
biases in question construction and judgment. This
approach allows us to examine the model’s ability
to process and predict real-world events accurately
and efficiently.

Future-knowledge Prediction Previous re-
search has focused on how to automatically
predict real-world events. For instance, Zou et al.
(2022) constructed a dataset of questions obtained
from tournament predictions as an evaluation
benchmark for automatic forecasting. However,
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this dataset may already be outdated because its
knowledge is likely already embedded within
current LLMs. Recently, studies have shown
that LLMs can match human performance in
the task of forecasting the future. For example,
Schoenegger et al. (2024) demonstrates that the
predictive performance of an ensemble of multiple
LLMs is superior to that of a single LLM, and
it even surpasses the performance of a group of
human forecasters.

Model selection and Experimental Setting We
selected a set of models due to their diversity and
significance in advancing the capabilities of NLP
systems. They are not only benchmarks of their re-
spective sizes, ranging from 1 billion to 40 billion
parameters, but also exemplify the rapid progres-
sion in NLP technology. We set the context size to
2048, then compute the sum of the negative loga-
rithms of each segment. We then divide the com-
puted sum by the length of the text under UTF-8
encoding. Throughout this experiment, approxi-
mately 300 GPU hours on NVIDIA A800 were
consumed.

B Exploring Mitigation Strategies

While our primary focus is temporal evaluation
rather than solution development, we conducted
preliminary investigations into prompt engineering
strategies that could potentially mitigate temporal
performance degradation.

B.1 Try Different Prompt to Mitigate
Motivated by observed safety constraints and re-
fusal patterns in base models and the result of Pham
and Cunningham (2024), we designed five special-
ized prompts to investigate how different framing
strategies affect temporal prediction:

• Base: Used direct incentivization ("tip of
$200") and explicit guessing encouragement
to counter safety-driven refusals.

• Dream Framework (v1): Encourages specu-
lative thinking by positioning the model as a
visionary oracle.

• Time Travel (v2): Frames predictions as his-
torical memories from a future perspective.

• Multiverse (v3): Leverages parallel universe
observations to bypass temporal constraints.

• Precise Thinking (v4): Emphasizes struc-
tured temporal reasoning chains.

• Future Recall (v5): Simulates retrospective
analysis from a future vantage point.

See Figure 6, 7, 8 and 9. Specifically, dif-
ferent models respond variably to the designed
prompts. For Yi-6B, there were scarcely any dis-
cernible differences in performance across the sev-
eral prompts we employed. In contrast, for the
Qwen2.5-7B model, all modified prompts gener-
ally outperformed the base prompt in most sce-
narios. Analyzing the results from Llama3.1-
8B-Instruct, Qwen2.5-7B and Baichuan2-7B-Chat,
we found that prompts v5(Future Recall) and
v4(Precise Thinking) demonstrated relatively bet-
ter effectiveness. The specific impacts vary from
model to model, which is closely related to the
model’s instruction-following capabilities.

In addition, our exploratory analysis revealed
significant performance variations across question
categories, with the model achieving lowest accu-
racy on "Finance" (58.1%), "Business" (55.4%).
and "Economic Indicators" (62.3%) categories,
compared to stronger performance on "Foreign
Policy", (81.2%), "Security and Conflict" (79.6%)
and "Leader Entry/Exit" (83.7%) categories.

It is plausible that fine-tuning models with anal-
ysis and prediction data (especially in these weak
areas) could fully unlock their inner predictive po-
tential.

C Full Table of Decline in Prediction
Accuracy

See Table 4.

D Experimental setting

For this experiment, we sourced all questions from
Good Judgment Open using web scraping. The
data collected includes initiation and conclusion
dates, domains, questions, descriptions, and an-
swers, which were appropriately ordered for fur-
ther processing. Approximately 50 GPU hours on
NVIDIA A800 were consumed during this experi-
ment.

Up to 2024.10.1, we collected a total of 2769
questions from Good Judgment Open. The earli-
est question was proposed on 2015-09-01: "Will
Congress pass a resolution disapproving the Joint
Comprehensive Plan of Action?" The most recent
question was closed on 2024-10-01: "What will be
the 12-month percentage change in the US Con-
sumer Price Index (CPI) for September 2024?"
Question samples and most common tags are in
Appendix J.
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Figure 6: Accuracy of LlaMA3.1-8B-Instruct with dif-
ferent prompts

Figure 7: Accuracy of Qwen2.5-7B with different
prompts

Figure 8: Accuracy of Baichuan2-7B-Chat with differ-
ent prompts

Figure 9: Accuracy of Yi-6B with different prompts

E Testing Statistical Hypothesis

Due to the inherent randomness in data, directly
comparing outcomes of two experiments is insuffi-
cient to justify the superiority of one outcome over
the other. To address this issue, practitioners of-
ten resort to hypothesis testing to make convincing
decisions, like those demonstrated in Zhou et al.
(2016). A board application of hypothesis testing
lies in the A/B testing literature, which assesses
the performance of various features of a product
and performs post-experiment inferences, as intro-
duced in Russac et al. (2021).

F Details of Data Collection

The data for our system is sourced from a diverse
set of online platforms, each selected for its rel-
evance to different data types and domains. We
utilize a Python-based crawling framework, which
is detailed in our publicly available repository. This
framework is designed to be adaptable, allowing
for the inclusion of additional sources as they be-
come relevant.

The primary data sources include:

• Financial News: Crawled from Yahoo, pro-
viding up-to-date information on global finan-
cial trends.

• Political News: BBC News is used to gather
the latest political developments worldwide.

• Discussion Forums: Reddit is scraped to cap-
ture current discussions across a variety of
tofigures.

• Online Literature: Wattpad offers a rich
source of contemporary fiction and non-
fiction.

• Encyclopedia: Wikipedia’s latest changes
feed is monitored for updates across all do-
mains.

• Academic Papers: arXiv is used to access
the newest research across multiple scientific
fields.

• Code Repositories: GitHub Trending pro-
vides insights into the latest developments in
software engineering.
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Table 4: Comparison of Powerful Open-source and Closed-source LLMs

Model Pre-
release
Accuracy

First Post-
release
Accuracy

Decline Percentage
Decline

Baichuan-13B-Chat 0.52 0.23 0.29 55.77%
GPT-3.5-turbo-230613 0.49 0.33 0.16 32.65%
GPT-4-230613 0.60 0.41 0.19 31.67%
Llama-2-13B 0.52 0.45 0.07 12.50%
Llama-2-7B 0.27 0.27 0.01 1.85%
LLaMA2-7B-Chat 0.45 0.38 0.07 15.56%
Baichuan2-13B-Base 0.49 0.38 0.11 22.45%
Baichuan2-13B-Chat 0.50 0.38 0.12 24.00%
Baichuan2-7B-Base 0.42 0.28 0.14 33.33%
Baichuan2-7B-Chat 0.37 0.39 -0.02 -5.41%
Colossal-LLaMA-2-7B-Base 0.42 0.40 0.02 4.76%
Mistral-7B-v0.1 0.44 0.38 0.06 13.64%
Phi-1.5 0.41 0.38 0.03 7.32%
Qwen-14B-Chat 0.39 0.24 0.15 37.18%
Zephyr-7B-beta 0.40 0.32 0.08 20.00%
Gemini 0.43 0.29 0.14 33.72%
Yi-6B 0.29 0.22 0.07 25.86%
Qwen-1.8B 0.35 0.29 0.05 15.71%
GPT-4-231106 0.66 0.42 0.24 36.36%
Phi-2 0.31 0.23 0.08 27.42%
Command R+ 0.54 0.40 0.14 25.93%
Claude-3-opus-20240229 0.53 0.45 0.09 16.04%
Claude-3-sonnet-20240229 0.23 0.18 0.05 19.57%
DeepSeek-V2-Chat 0.58 0.47 0.10 18.10%
Mixtral-8x22B-Instruct-v0.1 0.56 0.41 0.15 26.79%
Phi-3-mini-4k-Instruct 0.38 0.25 0.13 34.21%
Qwen1.5-110B-Chat 0.56 0.43 0.14 24.11%
Claude-3.5-Sonnet-20240620 0.63 0.35 0.28 43.65%
Gemini-1.5-Pro 0.50 0.41 0.09 18.00%
Gemini-1.5-flash 0.39 0.23 0.17 42.31%
Qwen2-72B-Instruct 0.60 0.43 0.17 29.17%
LLaMA-3.1-405B-Instruct 0.50 0.41 0.09 18.00%
GPT-4o 0.62 0.39 0.23 37.10%
GPT-4o-mini-2024-07-18 0.48 0.28 0.20 41.67%

• Question and Answer Forums: Quora, fo-
cusing on popular topics such as Technology,
Mathematics, Health, and Movies.

To facilitate efficient and effective data collec-
tion, our system’s environment is configured with
a specific Python package index URL and utilizes
Playwright for web navigation and content extrac-
tion. This setup addresses potential challenges,
such as page refresh requirements on Yahoo and
hostname verification issues encountered with cer-

tain websites.

Our system employs a combination of tools and
libraries, including Requests, Playwright, and var-
ious PDF processing utilities, to collect the lat-
est textual data from the internet. This approach
enables us to dynamically update our benchmark
datasets with fresh information, ensuring that our
evaluation reflects current language use and infor-
mation trends.

Data Pre-processing For some raw content
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clean the text by removing these tags to ensure
that only the content text is analyzed.

Filtering out short texts: Extremely short texts
may not provide enough contextual information
for analysis or model training. Setting a minimum
text length threshold of 100 chars to filter out such
instances.

External Dataset For the analysis of text likeli-
hood and bias, we employed not only our own col-
lection of historical arXiv data but also sampled en-
tries from two additional datasets. We incorporated
data from the BBC News and Wikitext datasets,
which are publicly available through the Hugging
Face datasets repository. Specifically, the datasets
used were bbc_news_alltime and wikitext_alltime,
accessible via the following URLs:

• BBC News: https://huggingface.co/
datasets/RealTimeData/bbc_news_
alltime

• Wikitext: https://huggingface.co/
datasets/RealTimeData/wikitext_
alltime

Sampling from these datasets was carried out ev-
ery three months, with each instance involving the
collection of 50 entries per dataset. This structured
sampling approach was designed to ensure a con-
sistent and representative analysis of content over
time, enabling an effective assessment of textual
bias and likelihood trends.

G Data Overview of One Crawl

Tab. 9 presented below offers a comprehensive
overview of the diverse sources and categories of
texts that were analyzed in one data crawl. Classi-
fied into distinct groups such as Academic STEM,
Academic Non-STEM, Internet QA, and Internet
articles, the table delineates the number of texts ex-
tracted from each source along with their average
length. This includes detailed counts from different
academic archives like arXiv, various categories
from Internet question and answer platforms like
Reddit and Quora, and articles from well-known
online platforms including Wiki and BBC.

H Detailed results of BPC generalization
on Wiki and BBC dataset

See Table 6.

Table 5: Most common tags of the Gjo questions

Topic Count

Business 648
Non-US Politics 453
Security and Conflict 446
Society 425
US Politics 363
Technology 359
Finance 299
Elections and Referenda 288
Economic Indicators 273
Foreign Policy 271
US Policy 247
Health 245
Leader Entry/Exit 219
Economic Policy 160
Sports 148
Entertainment 148
Environment 80
Open 16

I TBI of Models across the arXiv, BBC,
and Wiki datasets

See Table 8.

J Gjo data samples and most common
tags of the Gjo questions

Gjo data samples see Table 5 and Gjo questions
see Table 10.

K Analysis of Language Likelihood
Values and Benchmark Correlation
Across Text and Model Groups

From Fig. 12 we can conclude that the scale of
models being observed does not significantly al-
ter outcomes, suggesting that performance correla-
tions across benchmarks are generally consistent
regardless of model size.

L Correlation with Existing Benchmarks

The Selected Existing Benchmarks We ex-
plored the correlation between BPC and existing
benchmarks, particularly focusing on how specific
content types, such as GSM, influence model per-
formance. The selected benchmarks encompass
common sense reasoning, depth and breadth of
knowledge across diverse subjects, truthfulness,
natural language understanding, and mathematical
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Table 6: Percentage Change in BPC Following Release, measured by BBC news data from 2020 to 2024.3. Dash
("-") symbols in the table indicate missing data points due to the later release dates of some models, which means
there is no available data for those specific time intervals.

Model Base
BPC

BPC
Change at
3 months

(%)

BPC
Change at
6 months

(%)

BPC
Change at
9 months

(%)

BPC
Change at
12 months

(%)

mean

OPT-13B 0.450 2.273 -2.087 1.265 0.839 0.572
OPT-2.7B 0.475 1.970 -2.228 1.192 1.143 0.519
LLaMA-7B 0.450 1.270 0.177 -7.776 3.266 -0.766
Pythia-12B 0.480 -0.233 -3.888 -2.612 -1.012 -1.936
Falcon-rw-1B 0.510 0.459 -7.814 1.201 -1.474 -1.907
Baichuan-13B-Chat 0.467 -3.645 -1.078 0.413 - -1.436
LLaMA-2-13B 0.416 -6.928 3.502 1.683 - -0.581
LLaMA-2-7B 0.434 -7.314 3.092 1.279 - -0.981
LLaMA-2-7B-Chat 0.505 -8.308 2.695 0.664 - -1.650
Zhongjing-Base 0.465 -8.488 2.662 -1.290 - -2.372
InternLM-Chat-7B 0.515 -2.476 -1.344 0.236 - -1.195
Baichuan2-7B-Base 0.451 -3.059 0.595 -4.649 - -2.371
Baichuan2-7B-Chat 0.517 -3.571 -0.038 -5.315 - -2.975
Mistral-7B-v0.1 0.398 1.110 5.347 -0.661 - 1.932
Phi-1.5 0.602 -1.772 1.131 -1.837 - -0.826
Baichuan2-13B-Base 0.439 -2.943 0.882 -4.390 - -2.150
Baichuan2-13B-Chat 0.495 -3.541 -0.995 0.232 - -1.435
Colossal-LLaMA-2-7B-Base 0.618 2.825 3.715 - - 3.270
Qwen-14B-Chat 0.445 2.682 4.847 - - 3.764
Qwen-7B 0.441 1.892 3.689 - - 2.791
Qwen-7B-Chat 0.466 1.809 3.606 - - 2.708
Skywork-13B-Base 0.429 7.163 3.261 - - 5.212
ChatGLM3-6B 0.832 5.567 1.684 - - 3.626
Zephyr-7B-beta 0.435 7.340 3.928 - - 5.634
Yi-6B 0.427 6.478 3.144 - - 4.811
Yi-6B-Chat 0.446 3.030 -2.798 - - 0.116
Qwen-1.8B 0.520 1.899 -2.082 - - -0.091
Qwen-1.8B-Chat 0.599 1.635 -2.033 - - -0.199
RWKV-v5-Eagle-7B 0.440 4.956 2.278 - - 3.617
TinyLLaMA-1.1B-Chat-v0.6 0.513 2.539 -3.678 - - -0.569
Phi-2 0.487 1.882 - - - 1.882

reasoning, ensuring a well-rounded assessment of
the model’s performance.

Base vs. Chat Models Tab. 12 shows the com-
parative analysis of base and tuned models. Our
findings suggest that: 1) Base models exhibit a
stronger correlation with established benchmarks,
implying that these models, in their fundamental
form, possess a robust capacity for modeling lan-
guage. This observation advocates for conducting
initial evaluations using base models to capture
their intrinsic language modeling capabilities. 2)
The exploration of tuned models reveals potential
deeper patterns in model tuning, suggesting that
specific tuning strategies may unlock further en-
hancements in model performance across different
tasks and domains.

Correlation alone Text Length Tab. 13 is about
a long text understanding benchmark Longbench.

For chat models in this task, the correlation be-

tween BPC and scores is logical—higher proba-
bilities of generating the text correlate with higher
scores, and this correlation strengthens with longer
text lengths. This suggests a consistent alignment
between the model’s language likelihood in long
text and its scoring, reinforcing the chat model’s
robustness in handling extensive text inputs.

However, an inverse trend is observed with base
models, where a familiar text paradoxically results
in lower scores on related comprehension tasks.
This indicates that fine-tuning may alter the base
models’ understanding of the texts, perhaps shift-
ing their processing in ways that do not favor tradi-
tional comprehension metrics.

This indicates scenarios where a model scores
high on language likelihood due to its text-
generation skills but may not perform equally well
on tasks that require deep semantic understand-
ing or critical thinking. Thus, relying solely on
language likelihood as an indicator of overall per-
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Table 7: Percentage Change in Language Likelihood Following Release, measured by wiki data from 2020 to
2024.3. Dash ("-") symbols in the table indicate missing data points due to the later release dates of some models,
which means there is no available data for those specific time intervals.

Model Base
BPC

BPC
Change at
3 months

(%)

BPC
Change at
6 months

(%)

BPC
Change at
9 months

(%)

BPC
Change at
12 months

(%)

mean

OPT-13B 0.075 -0.623 0.105 -0.413 -0.818 -0.437
OPT-2.7B 0.082 -0.658 0.024 -0.528 -0.915 -0.519
LLaMA-7B 0.052 0.214 -0.425 0.379 -0.067 0.025
Pythia-12B 0.071 -0.578 -0.933 -0.859 -0.903 -0.818
Falcon-rw-1B 0.083 -1.272 -1.113 -1.131 -1.207 -1.181
Baichuan-13B-Chat 0.058 0.019 0.124 -0.125 - 0.006
LLaMA-2-13B 0.041 1.700 1.446 1.796 - 1.647
LLaMA-2-7B 0.050 0.774 0.349 0.517 - 0.547
LLaMA-2-7B-Chat 0.060 0.132 -0.186 -0.093 - -0.049
Zhongjing-Base 0.050 0.756 0.269 0.569 - 0.531
InternLM-Chat-7B 0.080 -0.482 -0.301 -0.250 - -0.344
Baichuan2-7B-Base 0.059 0.523 0.157 0.185 - 0.289
Baichuan2-7B-Chat 0.068 0.343 -0.035 -0.073 - 0.078
Mistral-7B-v0.1 0.053 0.381 -0.028 0.018 - 0.124
Phi-1.5 0.098 0.066 -0.125 -0.248 - -0.102
Baichuan2-13B-Base 0.053 1.019 0.797 0.900 - 0.905
Baichuan2-13B-Chat 0.062 0.299 0.628 0.512 - 0.480
Colossal-LLaMA-2-7B-Base 0.065 -0.042 -0.199 - - -0.121
Qwen-14B-Chat 0.049 1.301 1.939 - - 1.620
Qwen-7B 0.061 0.428 0.430 - - 0.429
Qwen-7B-Chat 0.065 0.302 0.226 - - 0.264
Skywork-13B-Base 0.050 0.075 0.276 - - 0.175
ChatGLM3-6B 0.105 -0.187 -0.245 - - -0.216
Zephyr-7B-beta 0.059 -0.049 -0.033 - - -0.041
Yi-6B 0.058 -0.071 0.022 - - -0.024
Yi-6B-Chat 0.060 -0.028 0.023 - - -0.003
Qwen-1.8B 0.080 -0.131 -0.251 - - -0.191
Qwen-1.8B-Chat 0.091 -0.331 -0.496 - - -0.414
RWKV-v5-Eagle-7B 0.065 0.149 0.220 - - 0.184
TinyLLaMA-1.1B-Chat-v0.6 0.070 -0.332 -0.473 - - -0.403
Phi-2 0.072 -0.037 - - - -0.037

formance might overlook crucial aspects of cogni-
tive and interpretative abilities that are essential for
more complex applications.

M Details of Model Accuracy Peaks

Tab. 14 captures the peak performance periods of
various models on Freshbench. It lists specific
models along with their respective dates when they
achieved the best performance.

N Analysis of Best-Achieved Accuracy
and Cutoff Time

Tab. 15 shows an analysis covering the period from
2015 to 2024, with the year 2019 serving as a piv-
otal midpoint, a distinct pattern emerges from the
performance data of various language models: all
models reached their peak accuracy before 2020.
This observation points to a notable trend toward
"Nostalgia", where models demonstrate optimal

performance on data from the earlier part of the
timeline analyzed. This tendency highlights the
models’ alignment with the informational charac-
teristics prevalent prior to the latter half of the ob-
served period, suggesting their training data may
disproportionately reflect earlier times.

The peak accuracy periods analyzed are based
on the average accuracy of all questions within
three-month intervals, to provide a stable and ro-
bust assessment of each model’s performance.
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Table 8: Comprehensive list of models with their release dates and metrics for TBI (multiplied by 1000) across the
arXiv, BBC, and Wiki datasets. Negative TBI values indicate a trend of increasing BPC, which refers to decreasing
performance on MMLU.

Model Name Released
Date

TBI*1000
(arXiv)

TBI*1000
(BBC)

TBI*1000
(Wiki)

OPT-13B May 2022 -19.4 1689.0 -30.2
OPT-2.7B May 2022 -18.8 1080.7 -46.9
LLaMA-7B Feb 2023 -15.3 713.0 52.0
Pythia-12B Mar 2023 -8.1 802.7 -11.1
Falcon-rw-1B Apr 2023 -26.8 607.4 -47.7
Baichuan-13B-Chat Jun 2023 -11.7 685.7 4.8
Baichuan-7B-Chat Jun 2023 -14.6 726.6 -16.5
LLaMA-2-13B Jul 2023 -11.1 769.6 65.9
LLaMA-2-7B Jul 2023 -12.6 684.6 23.2
Baichuan-13B-Chat Jul 2023 -7.0 717.2 12.1
Zhongjing-Base Jul 2023 -15.0 759.7 56.9
InternLM-Chat-7B Jul 2023 -19.3 574.0 -22.0
Baichuan2-7B-Base Aug 2023 -9.5 687.5 3.7
Baichuan2-7B-Chat Aug 2023 -8.4 781.8 -11.6
Mistral-7B-v0.1 Sep 2023 -15.1 756.8 10.4
Phi-1.5 Sep 2023 -26.0 1212.9 -60.7
Baichuan2-13B-Base Sep 2023 -9.1 747.9 15.8
Baichuan2-13B-Chat Sep 2023 -7.0 717.2 12.1
Colossal-LLaMA-2-7B-Base Sep 2023 -21.2 696.3 -36.2
Qwen-14B-Chat Sep 2023 -7.9 762.2 51.5
Qwen-7B Sep 2023 -11.7 662.4 7.4
Qwen-7B-Chat Sep 2023 -13.2 705.7 -3.6
Skywork-13B-Base Oct 2023 -16.3 549.1 30.8
ChatGLM3-6B Oct 2023 -25.5 412.6 -70.4
Zephyr-7B-beta Oct 2023 -21.1 506.9 3.7
Yi-6B Nov 2023 -9.4 451.7 24.6
Yi-6B-Chat Nov 2023 -9.4 506.5 20.2
Qwen-1.8B Nov 2023 -22.7 374.0 -46.2
Qwen-1.8B-Chat Nov 2023 -25.3 426.8 -50.3
RWKV-v5-Eagle-7B Nov 2023 -12.8 511.3 4.2
TinyLLaMA-1.1B-Chat-v0.6 Dec 2023 -25.0 300.1 -45.3
Phi-2 Dec 2023 -21.2 669.3 -44.7

(a) STEM: base models (b) non-STEM: base models (c) Non-STEM: chat models

Figure 10: The heatmaps display the correlations by loss for a group of models across different text chunk lengths
and different benchmark scores. Each row represents a specific truncation length, while the columns represent
different benchmark score categories. The values in the cells indicate the corresponding correlation coefficients. (a)
presents the correlations by loss for all 18 base models on STEM Academia texts. (b) presents the correlations
by loss for all 18 base models on non-STEM Academia texts. (c) presents the correlations by loss for all 15 chat
models on non-STEM Academia texts.
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Table 9: Overview of text categories with their sources counts, and average lengths in one sample crawl.

Category Source Count Length

Academic STEM

arXiv Mathematics 50 42850
arXiv Computer Science 50 43336
arXiv Physics 50 42580
arXiv Statistics 50 42619
arXiv Electrical Engineering and Systems Science 50 43027

Academic Non-STEM
arXiv Economics 50 42592
arXiv Quantitative Finance 50 43969
arXiv Quantitative Biology 50 42974

Code GitHub 30 21849

Internet QA

Reddit 583 643
Quora Health 20 1150
Quora Movies 69 1349
Quora Mathematics 70 1365
Quora Technology 80 1674

Internet article

Wiki 220 4091
Wattpad 38 6615
BBC 45 4792
Yahoo 41 5373

(a) STEM: base models (b) non-STEM: base models (c) Non-STEM: chat models

Figure 11: The heatmaps display the correlations by loss for a group of models across different text chunk lengths
and different benchmark scores. Each row represents a specific truncation length, while the columns represent
different benchmark score categories. The values in the cells indicate the corresponding correlation coefficients. (a)
presents the correlations by loss for all 18 base models on STEM Academia texts. (b) presents the correlations
by loss for all 18 base models on non-STEM Academia texts. (c) presents the correlations by loss for all 15 chat
models on non-STEM Academia
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Table 10: Sample of Questions and Their Respective Answers (Correct Answer in Bold): The percentages represent
the proportion of forecasters’ votes on a prediction website.

Question Start
Time

End
Time

Possible Answers

What will be the
12-month percent-
age change in the
US Consumer Price
Index (CPI) for
September 2024?

May 31,
2024
05:00PM
UTC

Oct 01,
2024
07:01AM
UTC

Up by less than 1.200% or down: 0%
Up by at least 1.200%, but less than 1.800%: 0%
Up by at least 1.800%, but less than 2.400%: 53%
Up by at least 2.400%, but less than 3.000%: 44%
Up by at least 3.000%, but less than 3.600%: 3%
Up at least 3.600%, but less than 4.200%: 0%
Up by 4.200% or more: 0%

If Israeli Defense
Forces (IDF)
ground forces
invade the Gaza
Strip before 7
November 2023,
when will Israel
publicly announce
or acknowledge
that IDF ground
forces have left the
Gaza Strip?

Oct 17,
2023
05:00PM
UTC

Oct 10,
2024
07:01AM
UTC

Before 30 November 2023: 0%
Between 30 November 2023 and 13 January 2024: 0%
Between 14 January 2024 and 13 March 2024: 0%
Between 14 March 2024 and 11 June 2024: 0%
Between 12 June 2024 and 9 October 2024: 2%
Not before 10 October 2024: 96%
IDF ground forces will not invade the Gaza Strip
before 7 November 2023: 2%

What will Kamala
Harris’ favorability
rating be as of 3
October 2024, ac-
cording to FiveThir-
tyEight?

Sep 17,
2024
08:00AM
UTC

Oct 03,
2024
07:01AM
UTC

Lower than 42.0%: 1%
At least 42.0%, but less than 44.0%: 4%
At least 44.0%, but less than 46.0%: 7%
At least 46.0%, but less than 48.0%: 70%
At least 48.0%, but less than 50.0%: 15%
At least 50.0%, but less than 52.0%: 2%
At least 52.0%, but less than 54.0%: 1%
54.0% or higher: 0%
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(a) STEM: all chat models (b) STEM: 7B level chat models

Figure 12: (a) presents the correlations by loss for all 15 chat models on STEM Academia texts. (b) presents the
correlations by loss for all 9 7B level chat models on STEM Academia texts.

Table 11: Overview of AI Benchmarks and Their Evaluation Focus

Benchmark Description

HellaSwag Tests an AI’s common sense reasoning by requiring it to complete sen-
tences or narratives that reflect everyday logic, highlighting the model’s
ability to predict logical continuations. Zellers et al. (2019)

MMLU Evaluates an AI’s breadth and depth of understanding across a diverse
range of subjects, from science to literature, showcasing its versatility
and comprehensive grasp of human language. Hendrycks et al. (2021)

TruthfulQA Focuses on the model’s capacity to provide honest and accurate responses,
particularly to questions where the truth may not be intuitive, testing its
commitment to truthfulness and its proficiency in avoiding misinforma-
tion. Lin et al. (2022)

Winogrande Assesses common sense reasoning and natural language understanding
through sentence completion tasks, measuring an AI’s ability to apply
common sense knowledge in language processing. Sakaguchi et al.
(2019)

GSM8K Challenges AI models with elementary-level math problems, testing
their mathematical reasoning capabilities and their understanding and
application of basic math concepts. Cobbe et al. (2021)
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Table 12: Correlation with Different Benchmarks, Base vs. Chat Models

Benchmarks Loss of Base Model Loss of Chat Model Delta

MMLU -0.61 -0.22 0.39
MMLU:Humanities -0.59 -0.42 0.17
MMLU:SocialSciences -0.54 0.42 0.96
MMLU:STEM -0.29 0.02 0.31
MMLU:Other -0.47 -0.1 0.37
Arc -0.46 0.34 0.8
Hellawasg -0.66 -0.57 0.09
Wnogrande -0.56 0.57 1.13
Longbench -0.04 -0.65 -0.61
GSM8K -0.4 0.22 0.62
TrustfulQA 0.05 0.39 0.34

Table 13: Correlation with Longbench values across different lengths

Length 10 30 50 100 200 300 400 500 800 1000 1200 1500 2000

Base Models 0.35 0.13 0.06 -0.03 -0.05 -0.06 -0.05 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04
Chat Models 0.01 -0.07 -0.16 -0.39 -0.53 -0.58 -0.61 -0.63 -0.65 -0.65 -0.67 -0.67 -0.68
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Table 14: Detailed Record of Model Accuracy Peaks

Date Models

2015-01 Skywork-13B-Base, Phi-1.5

2015-07 Skywork-13B-Base, Phi-1.5

2016-01 Baichuan2-7B-Chat, Colossal-LLaMA-2-7B-Base, LLaMA-2-7B, Qwen-
14B-Chat, Qwen-1.8B, Qwen-1.8B-Chat, Yi-6B, Yi-6B-Chat, Baichuan-
13B-chat, Baichuan-7B-chat, ChatGLM3-6B, falcon-1B, InternLM-chat-7B,
OPT-13B, Phi-2

2016-07 RWKV5-Eagle-7B

2017-01 GPT-3.5-turbo-0613

2017-07 Baichuan2-7B-Base

2018-01 Baichuan2-13B-Base

2018-07 Baichuan2-13B-Chat, LLaMA-2-13B-hf, Qwen-7B, GPT4-0613, GPT4-
1106, LLaMA2-7B-Chat, LLaMA-7B, mistral-7B-v0.1, OPT-2.7B, Pythia-
12B, Zephyr-7B-beta

2019-07 TinyLLaMA-1.1B-Chat

2020-01

2020-07

2021-01

2021-07

2022-01

2022-07

2023-01

2023-07

2024-01

2024-07

Table 15: Analysis about the time of the best-achieved accuracy and its cutoff time.

Peak Period Model Peak Time of Accuracy Cutoff Time Interpolation

Post-2019 TinyLLaMA1.1B 2019-07 2023-11 52

2017 to 2018 GPT4-1106 2018-07 2023-06 59
LLaMA2-13B 2018-07 2023-02 55
Baichuan2-13B-Base 2018-01 2023-06 65

2015 to 2016 Baichuan2-7B-Chat 2016-01 2023-08 91
Colossal-LLaMA-2-7B-Base 2016-01 2023-09 92
LLaMA2-7B 2016-01 2023-02 85
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