
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 7315–7337

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

LLaMA-Berry: Pairwise Optimization for Olympiad-level Mathematical
Reasoning via O1-like Monte Carlo Tree Search

Di Zhang1,2*†, Jianbo Wu3∗, Jingdi Lei2∗†, Tong Che4∗
Jiatong Li5†, Tong Xie6, Xiaoshui Huang7, Shufei Zhang2, Marco Pavone8

Yuqiang Li2‡ , Wanli Ouyang2, Dongzhan Zhou2‡
1Fudan University, 2Shanghai Artificial Intelligence Laboratory

3University of California, Merced 4Independent Researcher
5Hong Kong Polytechnic University, 6University of New South Wales

7Shanghai Jiao Tong University, 8Stanford University
{liyuqiang,zhoudongzhan}@pjlab.org.cn

Abstract

This paper presents LLaMA-Berry, an advanced
mathematical reasoning framework to enhance
the problem-solving ability of large language
models (LLMs). The framework combines
Monte Carlo Tree Search with Self-Refine
(SR-MCTS) to optimize the reasoning paths
and utilizes a pairwise reward model to eval-
uate different paths globally. By leveraging
the self-critique and rewriting capabilities of
LLMs, our SR-MCTS overcomes the ineffi-
ciencies and limitations of conventional step-
wise and greedy search algorithms, enabling a
more efficient exploration of solution spaces.
To guide the search process, we propose the
Pairwise Preference Reward Model (PPRM),
which predicts pairwise preferences between
solutions through instruction-following capabil-
ities trained by Reinforcement Learning from
Human Feedback (RLHF). Finally, the En-
hanced Borda Count (EBC) method is adopted
to synthesize pairwise preferences into global
quantile scores for evaluations. This approach
mitigates the challenges of scoring variability
and non-independent distributions in mathemat-
ical reasoning tasks. The framework has been
tested on general and advanced benchmarks,
showing superior search efficiency and perfor-
mance compared to existing open-source and
closed-source methods, particularly in com-
plex Olympiad-level benchmarks, including
AIME24 and AMC23.

1 Introduction

Mathematical reasoning represents a great chal-
lenge in artificial intelligence, with broad applica-
tions across automated theorem proving, mathemat-
ical problem solving, and scientific discovery (Ahn
et al., 2024). Recently, significant strides have been

*These authors contributed equally.
†This work was done during his internship at Shanghai

Artificial Intelligence Laboratory.
‡Corresponding author

made by large language models (LLMs) like GPT-
4 (Achiam et al., 2023) in general mathematical
tasks involving arithmetic and geometric problem-
solving (Cobbe et al., 2021; Sun et al., 2024; Ying
et al., 2024). However, complex mathematical
reasoning remains challenging, especially at the
Olympiad-level benchmarks such as AIME (MAA,
2024).

An intuitive approach to improving problem-
solving is to break solutions into step-by-step rea-
soning paths (Lightman et al., 2023; Luo et al.,
2024a), as demonstrated in Chain-of-Thought
(CoT Wei et al., 2022). While prompt-based meth-
ods can effectively facilitate the construction of
such reasoning paths, they may still encounter chal-
lenges due to the lack of comprehensive feedback
during the generation process, which can affect ef-
ficiency (Paul et al., 2023). In contrast to stepwise
generation methods, another promising line of re-
search treats the entire solution as an independent
state, employing rewriting capabilities to refine the
solutions, such as in Self-Refine (Madaan et al.,
2023a) and Reflexion (Shinn et al., 2024). How-
ever, these approaches, while innovative, may oc-
casionally face challenges like being susceptible to
local optima or potentially drifting towards subopti-
mal solutions due to flawed feedback, which could
impact their maximum potential performance.

In addition to generating reasoning paths, effec-
tive solution evaluation is crucial, with models like
the outcome reward model (ORM) and process re-
ward model (PRM) (Uesato et al., 2022) serving
as valuable examples. The ORM focuses on the
correctness of the final answer in a reasoning path,
while the PRM emphasizes the correctness of each
step in the process. While both methods enable
reward models to assign scalar scores, obtaining
reliable labeled data for training these reward mod-
els remains a significant challenge. Moreover, the
scoring standards for mathematical reasoning tasks
can vary significantly, as each problem presents

7315

…
…

Evaluation

𝑆! 𝐶!

𝑆!
𝐶!

𝑆!"#

rewriting

critiqueOriginal
Solution

New
Solution

Self-Refine Process

𝑄$

𝑄#𝑄%

𝑄$

𝛾𝑄!

𝛾𝑄" + 𝛾"𝑄!

𝑆$

𝑆% 𝑆#

𝑆&

𝑆$

Selection

BackpropagationEvaluation

Expansion with Self-Refine

𝑆% 𝑆#𝑄%

𝑄&

𝑄&

𝑄#

𝑆&

Question: The current number is 40. If it is improved by 10%,
what will the new number be?

The original number: 40.
Calculate improvement: 10% of 40 = 4.
New number: 40 + 4 = 44.

The original number: 40.
The Improvement should be: 4.
New number: 36.

Reflection:
Inaccurate calculation.
Lack of clear explanation.

Error Re-correction:
The original number should be 40.
New number: 40 − 4 = 36.

𝑄$

𝑄#𝑄%
𝑆$

𝑆% 𝑆#

…
𝑆&

𝑄$

𝑄#𝑄%
𝑆$

𝑆% 𝑆#

criticizing

Figure 1: The main pipeline of LLaMA-Berry, where Si stand for problem-solving solutions and Ci stands for
critiques. The pipeline consists of four phases detailed in Section 2.2, including selection, expansion, evaluation,
and backpropagation.

unique characteristics. This variation complicates
the scaling of reward models and hinders their abil-
ity to capture local preference relations between
solutions. Although trained using language mod-
els, these reward models have yet to fully leverage
instruction-following capabilities, which may limit
their effectiveness in handling more complex rea-
soning tasks (Zhang et al., 2024a).

To improve the efficiency of solution search in
mathematical problems, we treat a complete solu-
tion as an independent state and apply Self-Refine
to optimize previous solutions in order to obtain
better ones. In the Self-Refine process, feedback
from critiques is utilized to make the search more
efficient compared to stepwise reasoning path gen-
eration. Furthermore, we incorporate Monte Carlo
Tree Search (MCTS Kocsis and Szepesvári, 2006)
to replace the iterative manner in naive Self-Refine,
enhancing the solution search. MCTS leverages
signals from the evaluation process to assess so-
lutions and uses the Upper Confidence Bound ap-
plied to Trees (UCT) method to balance exploration
and exploitation. This approach enables the search
process to effectively exploit higher-quality solu-
tions and explore those with greater potential for
improvement, while avoiding getting trapped in
suboptimal local minima.

In the evaluation process, utilizing the
instruction-following capabilities trained by
Reinforcement Learning from Human Feed-
back (RLHF Christiano et al., 2017), Pairwise
Preference Reward Model (PPRM) transforms
the absolute rewards calculation into preferences
prediction between solutions to calculate rewards.

The approach reduces the variability with scoring
characteristics and thus leads to a more robust
and consistent evaluation of different solutions.
To overcome the locality limitations inherent in
pairwise comparisons, we employ the Enhanced
Borda Count (EBC) method to aggregate local
preference evaluations into global quantile scores,
leading to more informed decision-making and,
ultimately, better solutions. Combining the PPRM
and EBC method not only enables the reward
model to learn a more robust reward signal but also
captures the global characteristics of the solution
space, ensuring more reliable comparisons.

Our contributions are summarized as follows:
(1) We propose SR-MCTS, a novel Markov Deci-
sion Process (MDP) framework that treats entire
solutions as states and Self-Refine as optimization
action to perform advanced solution search with
MCTS. (2) PPRM is developed to leverage the
preference relationship between solutions to eval-
uate their quality, which avoids the volatility of
absolute scores while providing a more guided ex-
ploration of optimal paths. We adopt the EBC
method to convert the local preferences into global
evaluations. (3) We verify the effectiveness of
LLaMA-Berry on multiple benchmarks, which out-
performs baseline approaches like ToT (Yao et al.,
2024) and rStar (Qi et al., 2024) in both search
efficiency and accuracy. Notably, LLaMA-Berry
enhances the performance of LLaMA-3.1-8B, mak-
ing it comparable to proprietary models, including
GPT-4 Turbo on Olympiad-level mathematical rea-
soning without additional training.

7316

2 Methodology

2.1 Preliminary
One of the core challenges in mathematical
problem-solving is to generate and optimize rea-
soning paths to derive high-quality solutions. We
formalize this process in a path-wise Markov Deci-
sion Process (MDP) framework, where each state s
in the state space S represents a complete solution
to a given problem, and the action space A con-
sists of all feasible rewriting actions a that make
transitions between states.

In the framework, we aim to quantify the ex-
pected reward Q(s, a) from executing action a at
state s, that is,

Q(s, a) = E[R(s′)|s′ = T (s, a)], (1)

where T (s, a) indicates the transition from s to
another solution s′ via the rewriting action a. Our
primary objective is to identify the optimal state
s∗ that represents the best solution. We can reach
s∗ by selecting actions that maximize the reward,
guiding us toward the most desirable outcome, as
demonstrated in Equation 2.

s∗ = argmax
s′∈S

Q(s′) (2)

2.2 Self-Refine applied to MCTS
As shown in Figure 1, SR-MCTS integrates Monte
Carlo Tree Search (MCTS) with the Self-Refine
mechanism to continuously evaluate and optimize
the solution search. This integration leverages the
iterative nature of MCTS and the self-improvement
capabilities of LLMs, thereby improving the search
outcomes.

Monte Carlo Tree Search (MCTS) is an effec-
tive method within the Markov Decision Processes
(MDP) framework, employing states, actions, and
value functions through sampling. The algorithm
follows four key steps: selection, expansion, evalu-
ation, and backpropagation. In the selection phase,
the root node is expanded using the Upper Con-
fidence Bound applied to Trees (UCT) algorithm,
which selects a node s by balancing exploration
and exploitation:

a = arg max
a∈A(s)

(
Q(s, a) + c ·

√
lnN(s)

N(s, a)

)
, (3)

where N(s) is the visitation count of node s,
N(s, a) is the action frequency, and c is a parame-

ter controlling exploration. In the expansion phase,
node s generates subsequent states s′, added as
new nodes in the tree T . The evaluation phase
typically uses simulations or heuristics to estimate
the Q-values for these nodes. Finally, during back-
propagation, the estimated Q-values are updated
retroactively from the leaf nodes to the root. This
iterative process allows MCTS to refine decision-
making by balancing the exploration of new paths
with the exploitation of known high-value paths.
Selection phase. The selection phase identifies
a node si from the search tree T for expansion,
where each node represents a complete solution
state. The Upper Confidence Bound applied to
Trees (UCT) algorithm is employed to select the
optimal node, with dynamic pruning used to avoid
local optima. A node si is considered fully ex-
plored when its child nodes reach a predefined limit,
and at least one child node’s Q value exceeds the
Q value of si.
Expansion phase. In the expansion phase, as
shown in Figure 1, the selected answer si is ex-
panded by generating successor answers through
a Self-Refine process, which includes a Criticiz-
ing and Rewriting process. The Criticizing pro-
cess generates a critique ci = C(si) that identi-
fies drawbacks (e.g., mathematical wrongs or log-
ical faults) in the current chosen answer Si, and
then Rewriting process generates a new answer
si+1 = R(si, ci). In practice, to simplify the prob-
lem, we assume this process is deterministic, en-
suring that the same original state of solutions si
consistently produces the same successor state of
solution si+1. The new state of solution s′ is then
added to the search tree T as a new node.
Evaluation phase. The evaluation phase cal-
culates the value Q(s′) of the newly generated
node s′ using the Pairwise Preference Reward
Model (PPRM). The evaluation involves two steps:
global and local value assessments. The global
value Qg(s

′) is determined by the quantile of s′ in
a win-loss preference matrix M, which reflects
the win-loss relationships between nodes. The
local value Ql(s

′) is derived from comparisons
with adjacent nodes in the search tree T . The to-
tal value Q(s′) is then computed as a weighted
combination of global and local values: Q(s′) =
αQg(s

′) + (1 − α)Ql(s
′), where α controls the

relative influence of each component.
Backpropagation phase. In the backpropagation
phase, the value Q(s′) of the new node is propa-
gated back to its parent node si, updating Q value

7317

𝑆!

𝑆"

𝑆"

PPRM: Preference Calculation

𝑆! 𝑆" 𝑆# 𝑆$

𝑆"

𝑆$

𝑆#

𝑆!

Quantile Scores CalculationGlobal Ranking

≻ ≻≻

𝑄! = 1.0

𝑄" = 0.66

𝑄# = 0.33

𝑄$ = 0

Figure 2: Preference prediction process of PPRM and global quantile score based on Enhanced Borda Count method.

of si as a discounted sum of its child nodes’ Q
values: Q(si) = (1− γ)Q(si) + γQ(s′). The dis-
count factor γ represents the importance of future
rewards. This iterative update mechanism ensures
that the values of parent nodes are progressively re-
fined, enhancing the guidance for future selections.

Additionally, to control the growth of the search
tree, the SR-MCTS method restricts the maximum
number of rollouts Nmax . The search process ter-
minates when the restriction is reached, imposing
limits on the unbounded expansion of the tree. The
overarching objective of SR-MCTS is to maximize
the expected highest Q value of all existing nodes
S, guiding us towards the most desirable outcome
s∗, ensuring that the search process efficiently con-
verges to high-quality solutions.

2.3 Pairwise Preference Reward Model
Reliable evaluation of different solutions plays
a crucial role in mathematical problem-solving
tasks as it leads to better estimation of Q-values,
thereby offering better guidance. Existing re-
ward models typically evaluate solutions by giv-
ing absolute scores, such as process reward
model (PRM Lightman et al., 2023) and outcome
reward model (ORM Yu et al., 2023). However, the
score-based reward models may fall short in lever-
aging the instruction-following capability of LLMs
or effectively handling the variations in scoring
standards, especially when the differences between
solutions are subtle. To address this, we propose the
Pairwise Preference Reward Model (PPRM), which
leverages a comprehensive preference dataset incor-
porating substantial samples from both PRM and
ORM approaches (Toshniwal et al., 2024; Light-
man et al., 2023) to learn preference relationships
among mathematical solutions.

For two solutions (a1 and a2) to a given mathe-
matical problem, we use a1 ≻ a2 to represent the
situation where a1 is preferred over a2. PPRM pre-
dicts their relative quality using a pairwise partial
ordering, represented by the following probability

formula:

P (a1 ≻ a2 | ϕ) =
eϕ(a1)

eϕ(a1) + eϕ(a2)
, (4)

where P (a1 ≻ a2 | ϕ) denotes the probability
of a partial ordering relation between solution a1
and a2, with ϕ representing the parameters of the
reward model. In our method, a1 ≻ a2 are repre-
sented by tokens of an LLM, and P (a1 ≻ a2 | ϕ)
is estimated using the logits value of tokens calcu-
lated by the LLM.

Then, inspired by advancements in Language
Interface Fine-Tuning (LIFT Dinh et al., 2022),
we frame the training process of PPRM as a
question-answering task to leverage the instruction-
following capabilities of LLMs. The model is
tasked with answering the question, "For Ques-
tion Q, is solution a1 better than solution a2?" as
shown in Figure 2. To form a robust training ob-
jective, the predicted token labels ŷ (’Yes’ or ’No’)
are evaluated with ground truth label y using the
indicator function I:

I(ŷ, y) =

{
1, if ŷ = y

0, if ŷ ̸= y
(5)

Finally, a pairwise preference datasetD that con-
tains millions of mathematical problem-solving so-
lution pairs is converted into a dataset D′ suitable
for a question-answering task. We employ RLHF
techniques to train the model to improve its per-
formance in the partial-order prediction question-
answering task. Subsequently, the Direct Pref-
erence Optimization (DPO Rafailov et al., 2024)
method is utilized to find the optimal Pϕ by maxi-
mizing the objective argmaxϕ EP [I(ŷ, y)]. Please
refer to Appendix C for details about training and
inference of PPRM.

2.4 Enhanced Borda Count Method
Although PPRM allows us to directly compare
the quality of two solutions, we still need to con-

7318

vert these local preferences into a cohesive global
ranking to gain a comprehensive evaluation for
the answers. This conversion process can be
formalized as the global optimal ranking aggre-
gation (GORA) problem related to Learning to
Rank (LtR) methods. Further, we propose the En-
hanced Borda Count (EBC) method based on the
transitivity assumption of mathematical problem
solutions, which integrates the naive Borda Count
algorithm with a transitive closure of preferences
calculated by the Floyd-Warshall (Warshall, 1962)
algorithm. For formalized discussion, please refer
to Appendix H.
Local preference calculation. First, the PPRM
generates a preference matrix M ∈ Rn×n for all n
problem solutions, where Mi,j = 1 indicates that
solution ai is superior to solution aj , and Mi,j = 0
otherwise. This process can be represented as:

Mi,j =

{
1, if P (ai ≻ aj) ≥ 0.5

0, if P (ai ≻ aj) < 0.5
(6)

As shown in Figure 2, this matrix can be viewed
as an adjacency matrix of a directed graph G =
(V,E), where each solution ai corresponds to a
vertex vi, and an edge e = (vi, vj) exists if Mi,j =
1, indicating that solution ai is preferred over aj .
Transitive closure. To simplify the problem, we
adopt the assumption of transitivity for mathemat-
ical solutions, that is, if vi ≻ vk and vk ≻ vj ,
then vi ≻ vj . Under this assumption, the transi-
tive closure C of a preference matrix can be com-
puted through Floyd-Warshall algorithm, e.g., if
Mi,k = 1 and Mk,j = 1, then Mi,j = 1.
Borda count-based global ranking. Next, based
on the transitive closure matrix C, we apply the
Enhanced Borda Count method for global rank-
ing. The Enhanced Borda Count determines the
ranking of each node by calculating its out-degree,
which corresponds to the number of nodes it de-
feats. For each node vi, the Borda(vi) is defined as∑n

j=1Ci,j , like the ranked node listed in Figure 2.
Nodes with higher Borda counts are ranked

higher. However, in practice, cyclic preferences
can cause efficiency issues with the naive Borda
Count method. To further refine the ranking, we
devise a re-ranking stage, where the logits gener-
ated by the PPRM are used for soft comparison
among nodes with equal Borda counts. Specifi-
cally, for two nodes vi and vj with equal Borda
counts, the soft comparison rule can be denoted as

vi ≻ vj ⇐⇒ P (ai ≻ aj) > P (aj ≻ ai). This
process ensures that the ranking remains consistent
and reasonable even in the presence of cycles or
local ambiguities.
Global quantile score of solutions. Finally, the
ranking is converted into a global quantile score
Qg for each solution v is Qg(v) = 1 − rank(v)−1

|V |−1 ,
where rank(v) is the position of v in the ranking
based on Borda counts, and |V | is the total number
of nodes. To reflect local advantages in the search
tree structure, the local win rate Ql(v) for a node v
is calculated in C with its children nodes Childrenv
as follows:

Ql[v] =

∑
u∈Children[v]C[u, v]

|Children[v]| (7)

Finally, score Q(v) for a solution is a weighted
sum of local win rate Ql(v) and global quantile
score Qg.

3 Evaluation

3.1 Experiment Settings

Settings. To better evaluate the effectiveness of
our approach, we select LLaMA-3.1-8B-Instruct
model (Meta, 2024b) as the base model for SR-
MCTS, without any additional training. We
also train a Gemma2-2B-Instruct model (Google,
2024) as PPRM to provide reward signals during
the search process. We develop the Berry-Tree
inference framework to ensure robust and efficient
inference, which supports advanced features, in-
cluding fault tolerance, checkpoint recovery, multi-
query concurrency, and automatic multi-server load
balancing. Hyper-parameter settings are detailed
in Appendix A.
Grading. We evaluate algorithm-generated an-
swers using the correctness evaluation standards
as in Lightman et al. (2023), focusing on format
adherence and content accuracy. The model is pro-
vided with a prompt specifying the expected answer
format. We score answers as consistent if they ex-
actly match the ground truth, closely approximate
it numerically, or are equivalent in symbolic form.
To ensure a comprehensive and rigorous evalua-
tion, we adopt major@k (Kuncheva, 2014) and
rm@k (Yang et al., 2024c), which can be unified as
the solved rate of problems (Lightman et al., 2023;
Luo et al., 2024a). The evaluation methods and
metric details are further outlined in Appendix B.

7319

Model
Benchmark

GSM8K MATH GaoKao2023En OlympiadBench College Math MMLU STEM

Qwen2-7B-Instruct (Yang et al., 2024a) 85.7 52.9 36.4 21.3 24.5 68.2
Meta-Llama-3.1-8B-Instruct (Meta, 2024b) 76.6 47.2 30.1 15.4 33.8 60.5
Qwen2-72B-Instruct (Yang et al., 2024a) 93.2 69.0 58.7 33.2 43.2 84.4

Meta-Llama-3.1-70B-Instruct (Meta, 2024a) 94.1 65.7 54.0 27.7 42.5 80.4
DeepSeekMath-7B-RL (Shao et al., 2024) 88.2 52.4 43.6 19.0 37.5 64.8
Internlm2-math-plus-7b (Ying et al., 2024) 84.0 54.4 50.1 18.8 36.2 55.2

Mathstral-7B-v0.1 (Mistral AI, 2024) 84.9 56.6 46.0 21.5 33.7 64.0
NuminaMath-7B-CoT (Beeching et al., 2024b) 75.4 55.2 47.5 19.9 36.9 60.8
Qwen2-Math-7B-Instruct (Yang et al., 2024a) 89.9 75.1 62.1 38.2 45.9 63.8

NuminaMath-72B-CoT (Beeching et al., 2024a) 90.8 66.7 58.4 32.6 39.7 64.5
Qwen2-Math-72B-Instruct (Yang et al., 2024a) 96.7 84.0 68.3 43.0 47.9 79.9
Meta-Llama-3.1-8B-Instruct (Meta, 2024b)

+ LLaMA-Berry (Ours)@8
89.8maj@8 54.8maj@8 36.4maj@8 24.8maj@8 36.4maj@8 68.3maj@8
94.9rm@8 69.4rm@8 61.6rm@8 47.2rm@8 63.7rm@8 82.9rm@8

+LLaMA-Berry (Ours)@16 96.1rm@16 75.3rm@16 68.6rm@16 55.1rm@16 68.9rm@16 88.3rm@16

Table 1: Performance comparison of models across benchmarks of different difficulties, as represented by
GaoKao2023En (Liao et al., 2024), College Math (Tang et al., 2024), and OlympiadBench (He et al., 2024),
which range from high school to Olympiad levels. Scores denoted with subscripted notations, such as maj@8,
represent specific metrics, with major@8 as an example. Scores without subscripted notations reflect the model’s
greedy performance evaluated in a zero-shot CoT manner.

3.2 Benchmarks

General mathematical reasoning benchmarks.
We summarize the results on general mathemat-
ical reasoning benchmarks in Table 1, which in-
dicates that our method significantly boosts the
base model’s performance. The results consis-
tently demonstrate improvements across various
levels of difficulty. Specifically, the solved rate
of problems in 16 rollouts of Meta-Llama-3.1-8B-
Instruct (Meta, 2024b) has been improved by more
than 35% on three benchmarks. Qwen2-Math-72B-
Instruct (Yang et al., 2024b) exhibits the strongest
mathematical reasoning capability among the com-
peting methods, while our LLaMA-Berry, built on
a base model with only 8B parameters, exceeds
it in the solved rate of problems on four bench-
marks. In particular, LLaMA-Berry reaches 55.1%
on OlympiadBench and 68.9% on College Math,
surpassing it by 11.9% and 21%, respectively.
Cutting-edge mathematical Olympiad bench-
marks. In Table 2, we compare the perfor-
mance of LLaMA-Berry with other leading models
on Olympic-level benchmarks. The results demon-
strate that LLaMA-Berry is highly competitive on
these benchmarks, demonstrating its capability in
complex reasoning. Notably, on the most challeng-
ing AIME2024 benchmark, our method boosts the
base model’s solving rate from 2/30 to 8/30, sur-
passing typical open-source models and commer-
cial closed-source models, except for the OpenAI
o1 series (OpenAI, 2024).

In addition to excelling in mathematical reason-
ing, our approach also excels across various sci-

ence and engineering domains. For example, it
achieves top performance on benchmarks such as
MMLU STEM (Hendrycks et al., 2021a) in Table 1
and GPQA diamond (Rein et al., 2024) in Table 2.
This demonstrates the method’s robustness and ver-
satility, which highlights its potential for broader
applications in both research and practical scenes.

Model Benchmarks
AIME24 AMC23 Math Odyssey GPQADiamond

Claude 3 Opus 6.7 42.0 40.6 50.4
GPT 4 Turbo 3.3 – 47.0 38.8
GPT 4o 13.4 – – 56.1
OpenAI o1 Preview 56.7 – – 78.3
OpenAI o1 83.3 – – 78.0
Gemini 1.5 Pro 6.7 – 45.0 –
Gemini Math-Specialized 1.5 Pro 23.3 – 55.8 –
Meta-LLaMA-3.1-8B-Instruct 6.7 15.7 41.7 30.4
Qwen2-Math-7B-Instruct 13.3 62.5 – –
NuminaMath-72B CoT 3.3 52.5 – –
Qwen2-Math-72B-Instruct 20.0 60.0 – –
Meta-Llama-3.1-8B-Instruct
+ LLaMA-Berry (Ours)@8

13.3maj@8 22.9maj@8 44.2maj@8 39.4maj@8
16.7rm@8 48.2rm@8 60.4rm@8 77.3rm@8

+LLaMA-Berry (Ours)@16 26.7rm@16 54.2rm@16 65.0rm@16 92.4rm@16

Table 2: Performance comparison across multiple
olympiad benchmarks, including AIME24 (MAA,
2024), AMC23 (MAA, 2023), Math Odyssey (Fang
et al., 2024), and GPQA Diamond (Rein et al., 2024).

Comparison with other tree-based or CoT meth-
ods. We compare our algorithm with other tree-
based reasoning methods and CoT-based methods
on GSM8K (Cobbe et al., 2021), GSMHard (Gao
et al., 2022), and MATH500 (Lightman et al., 2023)
which is a representative and highly challenging
10% subset of MATH (Hendrycks et al., 2021b)
benchmark. As shown in Table 3, the performance
of RAP (Hao et al., 2023) and ToT (Yao et al., 2023)
tends to degrade relative to more straightforward
methods like Few-shot CoT and One-turn Self-

7320

Method
Benchmark GSM8K GSMHARD MATH500

Zero-Shot CoT 68.4 14.9 5.8
Few-shot CoT 74.5 25.6 17.8
One-turn Self-Refine 75.7 26.5 25.0
Self-Cons@8 78.4 28.5 30.0
Self-Cons@64 83.2 30.3 33.0
Self-Cons@128 84.7 31.2 33.8
ToT@32 69.1 19.6 13.6
RAP@32 80.6 29.6 18.8
rStar@32 88.7maj@32 33.4maj@32 38.3maj@32

LLaMA-Berry (Ours)@8 86.4maj@8 30.2maj@8 35.2maj@8
94.1rm@8 37.1rm@8 56.4rm@8

LLaMA-Berry (Ours)@16 88.1maj@16 31.5maj@16 39.6maj@16
96.4rm@16 41.1rm@16 63.8rm@16

Meta-Llama-3.1-70B-Instruct 91.0 50.0 66.0
Meta-Llama-3.1-70B-Instruct

+ LLaMA-Berry (Ours)@8
91.7maj@8 52.3maj@8 70.0maj@8
96.2rm@8 59.1rm@8 76.0rm@8

Table 3: Performance of different tree-based meth-
ods for LLaMA-3.1-8B-Instruct and LLaMA-3.1-70B-
Instruct on GSM8K, GSMHARD, and MATH500
benchmarks. The 70B model is evaluated using a 10%
subset of benchmarks due to the limitation of computa-
tion resources.

Refine when the difficulty increases from GSM8K
to GSMHard. We suspect the reason could be the
weak self-evaluation capability of LLMs, which
may guide reasoning steps to the inefficient side.
Moreover, tree-based methods can incur more com-
putational overhead than straightforward methods.
In contrast, rStar (Qi et al., 2024) and our method
maintain a positive output performance trend, high-
lighting both approaches’ higher search efficiency.

To make a fair comparison between the reported
results on LLaMA-3-8B-instruct from rStar (Qi
et al., 2024), self-consistency (Wang et al., 2022),
and our algorithm, we also utilize the LLaMA-3-
8B-instruct as the base model instead of the 3.1
version. We observe that our approach achieves
on-par or even better performance with fewer roll-
outs. Specifically, our method achieves an accu-
racy of 88.1%, 31.5%, and 39.6% on GSM8K,
GSMHARD, and MATH500 benchmarks, respec-
tively, using the majority voting metric, which is
among the same accuracy level as others while only
consuming 1/2 of the rollout times of rStar and
1/8 of Self-consistency. This provides compelling
validation of the efficacy of the EBC method and
the aggressive exploration fostered by the dynamic
pruning strategy.

3.3 Ablation Study

As shown in Table 4, we conduct ablation ex-
periments to evaluate the key components of
LLaMA-Berry, using the solved rate of prob-
lems (Luo et al., 2024a) as a metric across bench-
marks of increasing difficulty: GSM8K, MATH500

Method

Benchmark
GSM8K MATH500 AIME2024

Multi-turn Self-Refine with Self-Verification 78.9 40.4 6.7

Major Voting with Random Repeated Sampling 88.3maj@8 46.8maj@8 10maj@8

Step-level CoT-based MCTS (Process Self-Reward) 70.7rm@8 33.2rm@8 6.7rm@8

SR-MCTS without PPRM (Outcome Self-Reward) 82.0rm@8 37.2rm@8 6.7rm@8

SR-MCTS (with PPRM) 95.0rm@8 69.0rm@8 16.7rm@8

Table 4: Ablation study comparing different methods
on GSM8K, MATH500, and AIME2024 benchmarks
with LLaMA-3.1-8B-Instruct.

and AIME2024. Major Voting method represents
the base model’s reasoning capabilities. CoT-based
MCTS which is a step-level MCTS is a compari-
son with SR-MCTS method. SR-MCTS without
PPRM refers to a basic version of our method that
uses self-evaluation as the reward instead of PPRM
and EBC.

When comparing the two distinct tree search
node expansion strategies, namely step-level CoT
and Self-Refine, it is evident that the Self-refine
method surpasses the step-level CoT approach
across all datasets under the same number of roll-
outs. This advantage is further amplified when em-
ploying PPRM, as exemplified by the improvement
from 37.2% to 69.0% on the MATH500 dataset.

When comparing multi-turn Self-Refine with
SR-MCTS methods, especially on the GSM8K
dataset, the introduction of MCTS effectively mit-
igates the issue of solution degradation into sub-
optimal results caused by flawed critiques in iter-
ative methods. As shown in Table 4, with roll-
outs of 8, SR-MCTS without PPRM improves the
problem-solving rate by 3.1%, while SR-MCTS
with PPRM further enhances the problem-solving
rate by 16.1%. On the more challenging MATH500
dataset, the advantage of SR-MCTS with PPRM
becomes even more pronounced, achieving a 28.6%
improvement in the problem-solving rate. Further-
more, in comparing SR-MCTS without PPRM and
SR-MCTS with PPRM, PPRM further boosts the
solved rate of problems on GSM8K and MATH500
datasets, the solved rate of problems is elevated by
13% and 31.8%, respectively.

Notably, on the more challenging AIME2024
dataset, both Multi-turn Self-Refine and SR-MCTS
without PPRM demonstrate limited search effi-
ciency. However, SR-MCTS with PPRM can sig-
nificantly improve the solved rate of problems from
6.7% (2/30) to 16.7% (5/30) with rollouts of 8.
The results underscore the efficacy of combining
the Self-Refine method with PPRM when address-
ing complex problems. The contrast between self-

7321

α

Benchmark
GSMHARD MATH500

0.0 (global scores only) 44.9rm@8 68.2rm@8

0.9 (default) 43.8rm@8 69.0rm@8

1.0 (local scores only) 44.2rm@8 67.9rm@8

Table 5: The results with 8 rollouts of varying the hyper-
parameter α in the reward mechanism of PPRM.

reward and PPRM underscores the importance of
designing reward mechanisms that can more effec-
tively guide the search process. PPRM provides a
more holistic incentive to the model, thus fostering
more effective problem-solving strategies.

Our ablation study on LLaMA-3-1-8B-Instruct
reveals that the hyper-parameter α, which bal-
ances local and global reward scores in PPRM, has
scenario-dependent impacts. For simpler tasks like
GSMHARD, global scores dominate, as evidenced
by the superior performance of LLaMA-Berry
when prioritizing global metrics. This suggests
that holistic evaluation is sufficient for straight-
forward problems. In contrast, complex tasks
like MATH500 benefit from a balanced combina-
tion of local and global signals—the MATH500
benchmark shows a significant improvement (from
37.2% to 69.0%) when both metrics are optimally
weighted. These results indicate that while α has
a limited impact on simpler tasks, its tuning is cru-
cial for complex tasks requiring both granular and
global reasoning. These findings suggest that fu-
ture work could focus on optimizing α adaptively
for different task complexities.

3.4 Scaling Study

To explore the potentials and trends of the scal-
ing with rollouts in inference-time, we depict the
solved rate of problems with rollouts in three bench-
marks with different difficulty levels. Analyzing
the performance alongside Figure 3, the increment
in the number of rollouts consistently enhances
model performance across various benchmarks,
and the extent of these improvements differs de-
pending on the benchmark’s complexity and the
base model’s reasoning capability. These curves un-
derscore that the performance of the LLaMA-Berry
framework benefits from scaling up rollouts during
inference, similar to the observations in OpenAI
(2024). However, there are ceiling limitations, as
seen in the GSM8K dataset, which suggest that
the base model’s capabilities in both reasoning and
refinement play a crucial role in determining the

overall performance.

4 Related Works

Reward models for reasoning. Reliable reward
models (Kang et al., 2024; Wang et al., 2023;
Havrilla et al., 2024; Lightman et al., 2023; Ma
et al., 2023) can effectively distinguish desirable
responses from undesirable ones, which is espe-
cially important in complex reasoning. The out-
come reward model (ORM) are trained with the
final results of the reasoning paths. As the rewards
are determined by the final answers, ORM may
suffer from coarse supervision and misalignment
issues. In contrast, process reward model (PRM)
provides step-wise reward signals that are easier to
interpret and guide the models to follow the CoTs.
Therefore, PRM is generally considered to be more
effective (Lightman et al., 2023). However, the
success of PRM relies on extensive manually anno-
tated data (Luo et al., 2024a; Havrilla et al., 2024),
which is time-consuming and still faces the chal-
lenge of the volatility of absolute reward scores.
Pairwise Preference Reward Model (PPRM) in
LLaMA-Berry converts absolute scoring into pref-
erence prediction task, which then brings robust
reward signals via EBC method.
Tree search reasoning. Sampling diverse reason-
ing paths (Brown et al., 2024) has demonstrated its
effectiveness in enhancing the probability of find-
ing the correct answers. Self-Consistency (Wang
et al., 2022) samples a complete path each time
while tree search methods like Tree-of-Thought
(ToT) (Yao et al., 2023) and Monte Carlo Tree
Search (MCTS) (Chen et al., 2024a,b; Luo et al.,
2024b; Feng et al., 2023; Xie et al., 2024; Xu, 2023;
Liu et al., 2023; Tian et al., 2024; Ding et al., 2023)
extend multiple steps to optimize step answers and
ultimately obtain the optimal solution. Addition-
ally, Self-Refine (Madaan et al., 2023a) method
has become a recent focus. Self-verification (Gero
et al., 2023; Weng et al., 2022) and rStar (Qi et al.,
2024) utilize the inherent capabilities of the model
to iteratively explore and refine answers. However,
the performance of Self-Refine is typically con-
strained by the inherent capabilities of the model,
especially for small language models (SLMs) with
significantly weaker Self-Refine abilities (Madaan
et al., 2023b). Zhang et al. (2024b) suggests that
the mathematical reasoning abilities of LLMs can
be enhanced by treating the refinement process as a
directed acyclic graph (DAG) through multi-agent

7322

1 2 4 8 12 16
Rollouts

60

65

70

75

80

85

90

95

100
So

lv
ed

 R
at

e
(%

)

76.6

68.4

84.4

75.7

93.0

90.4

95.0

94.1

95.8
95.7

96.4
96.1

GSM8K

1 2 4 8 12 16
Rollouts

10

15

20

25

30

35

40

45

50

55

So
lv

ed
 R

at
e

(%
)

32.8

14.9

35.7

26.5

39.7

34.3

43.8

37.1

46.3

39.5

48.1

41.1

GSMHARD

1 2 4 8 12 16
Rollouts

0

10

20

30

40

50

60

70

80

So
lv

ed
 R

at
e

(%
)

46.2

5.8

55.4

25.0

63.6

49.6

69.0

56.4

73.2

61.4

76.6

63.8

MATH500
LLaMA-3-8B-Instruct LLaMA-3.1-8B-Instruct

Figure 3: Scaling of inference-time rollouts.

collaboration. In our approach, we combine MCTS
with Self-Refine to explore potential solutions and
a global win-loss matrix is then constructed in the
form of a directed graph to calculate the final quan-
tile scores.

5 Conclusion

This research addresses challenges in com-
plex mathematical reasoning, particularly at the
Olympiad level, by enhancing the accuracy and
efficiency of the search for reasoning paths. By
introducing Self-Refine applied to Monte Carlo
Tree Search (SR-MCTS), the LLaMA-Berry frame-
work significantly improves the efficiency of so-
lution generation by LLMs. Additionally, the
Pairwise Preference Reward Model (PPRM) con-
structs preferences between solutions rather than
merely scoring outcomes, calculating the final
global quantile score using the enhanced Borda
Count (EBC) method. Evaluation results demon-
strate that LLaMA-Berry outperforms baseline ap-
proaches on benchmarks like GSM8K and MATH,
and achieves competitive performance compared
to closed-source models on Olympiad-level bench-
marks such as AIME2024.

Limitation

The LLaMA-Berry framework has demonstrated
strong performance in reasoning tasks, but there
are still some challenges in practical applications.
First, methods such as Monte Carlo Tree Search
(MCTS) and Self-Refine have high computational
costs. These techniques demand significant com-
putational resources, which may limit the feasi-
bility of deployment in environments with con-
strained computational capacity. As for summa-
rizer of solutions, rule-based heuristics methods

like self-consistency, major voting and mutual rea-
soning have shown a constraint to the ceiling search
performance of MCTS. Thus, we aim to develop
a learning-based summarizer as OpenAI (2024)
does to further enhance the search efficiency.

Furthermore, the current evaluation of the
LLaMA-Berry framework has primarily focused on
mathematical reasoning benchmarks, resulting in a
relatively narrow assessment scope. As a result, its
performance in broader domains, such as general
knowledge, symbolic logic tasks, and multimodal
applications, has not been sufficiently validated.
In future work, we aim to improve the framework
by evaluating it on a more diverse set of tasks to
enhance its applicability.

Lastly, most experiments so far have utilized
relatively small open-source models, with limited
testing on larger or closed-source models. In future
research, we plan to investigate the performance
of LLaMA-Berry on larger models, particularly ad-
dressing challenges related to scaling and perfor-
mance optimization.

Acknowledgments
This work is supported by the Shanghai Munici-
pal Science and Technology Major Project. This
work is also supported by Shanghai Artificial Intel-
ligence Laboratory.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language

7323

models for mathematical reasoning: Progresses and
challenges. arXiv preprint arXiv:2402.00157.

Anthropic. 2024. The Claude 3 Model Family: Opus,
Sonnet, Haiku. Technical report, Anthropic. Ac-
cessed: 2024-09-19.

Edward Beeching, Shengyi Costa Huang, Albert Jiang,
Jia Li, Benjamin Lipkin, Zihan Qina, Kashif Ra-
sul, Ziju Shen, Roman Soletskyi, and Lewis Tun-
stall. 2024a. Numinamath 72b cot. https://
huggingface.co/AI-MO/NuminaMath-72B-CoT.

Edward Beeching, Shengyi Costa Huang, Albert Jiang,
Jia Li, Benjamin Lipkin, Zihan Qina, Kashif Ra-
sul, Ziju Shen, Roman Soletskyi, and Lewis Tun-
stall. 2024b. Numinamath 7b cot. https://
huggingface.co/AI-MO/NuminaMath-7B-CoT.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai
Fan. 2024b. Step-level value preference optimiza-
tion for mathematical reasoning. arXiv preprint
arXiv:2406.10858.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu,
Minghua Ma, Wei Zhang, Si Qin, Saravan Raj-
mohan, Qingwei Lin, and Dongmei Zhang. 2023.
Everything of thoughts: Defying the law of pen-
rose triangle for thought generation. arXiv preprint
arXiv:2311.04254.

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin,
Michael Gira, Shashank Rajput, Jy-yong Sohn, Dim-
itris Papailiopoulos, and Kangwook Lee. 2022. Lift:
Language-interfaced fine-tuning for non-language
machine learning tasks. Advances in Neural Informa-
tion Processing Systems, 35:11763–11784.

Meng Fang, Xiangpeng Wan, Fei Lu, Fei Xing, and
Kai Zou. 2024. Mathodyssey: Benchmarking
mathematical problem-solving skills in large lan-
guage models using odyssey math data. Preprint,
arXiv:2406.18321.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2023. Alphazero-like tree-search can guide large lan-
guage model decoding and training. arXiv preprint
arXiv:2309.17179.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Zelalem Gero, Chandan Singh, Hao Cheng, Tristan
Naumann, Michel Galley, Jianfeng Gao, and Hoi-
fung Poon. 2023. Self-verification improves few-
shot clinical information extraction. arXiv preprint
arXiv:2306.00024.

Google. 2024. Gemma-2b-it. https://huggingface.
co/google/gemma-2b-it. Accessed: 2024-09-19.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Alex Havrilla, Sharath Raparthy, Christoforus Nalm-
pantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,
Eric Hambro, and Roberta Raileanu. 2024. Glore:
When, where, and how to improve llm reasoning
via global and local refinements. arXiv preprint
arXiv:2402.10963.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi,
Qianyi Sun, Boxing Chen, Dong Li, Xu He, Quan He,
Feng Wen, Jianye Hao, and Jun Yao. 2024. Mind-
star: Enhancing math reasoning in pre-trained llms
at inference time. arXiv preprint arXiv:2405.16265.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In European conference
on machine learning, pages 282–293. Springer.

Ludmila I Kuncheva. 2014. Combining pattern classi-
fiers: methods and algorithms. John Wiley & Sons.

7324

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://huggingface.co/AI-MO/NuminaMath-72B-CoT
https://huggingface.co/AI-MO/NuminaMath-72B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://arxiv.org/abs/2406.18321
https://arxiv.org/abs/2406.18321
https://arxiv.org/abs/2406.18321
https://huggingface.co/google/gemma-2b-it
https://huggingface.co/google/gemma-2b-it

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and
Kai Fan. 2024. Mario: Math reasoning with code
interpreter output – a reproducible pipeline. arXiv
preprint arXiv:2401.08190.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru,
Yejin Choi, Hannaneh Hajishirzi, and Asli Celiky-
ilmaz. 2023. Don’t throw away your value model!
generating more preferable text with value-guided
monte-carlo tree search decoding. arXiv preprint
arXiv:2309.15028.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, and Abhinav Rastogi. 2024a.
Improve mathematical reasoning in language mod-
els by automated process supervision. Preprint,
arXiv:2406.06592.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024b. Improve mathemat-
ical reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,
Pengfei Liu, Yang You, and Hongxia Yang. 2023.
Let’s reward step by step: Step-level reward model
as the navigators for reasoning. arXiv preprint
arXiv:2310.10080.

MAA. 2023. American mathematics competitions. On-
line.

MAA. 2024. American invitational mathematics exami-
nation. Online.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023a. Self-refine: Itera-
tive refinement with self-feedback. arXiv preprint
arXiv:2303.17651.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023b. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534–46594. Curran Associates, Inc.

Meta. 2024a. Meta-llama 3.1-70b instruct. Accessed:
2024-09-03.

Meta. 2024b. Meta-llama 3.1-8b instruct. Accessed:
2024-09-03.

Aaron Meurer, Christopher P. Smith, Mateusz Pa-
procki, Ondřej Čertík, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K.
Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig,
Brian E. Granger, Richard P. Muller, Francesco
Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johans-
son, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fer-
nando, Sumith Kulal, Robert Cimrman, and Anthony
Scopatz. 2017. SymPy: symbolic computing in
Python. PeerJ Computer Science, 3:e103. Publisher:
PeerJ Inc.

Mistral AI. 2024. Mathstral. https://mistral.ai/
news/mathstral. Accessed: 2024-08-12.

OpenAI. 2024. Introducing openai o1-preview. Online.

OpenAI. 2024. Learning to reason with
llms. https://openai.com/index/
learning-to-reason-with-llms/. Accessed:
2024-09-19.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2023. Refiner: Reasoning feedback
on intermediate representations. arXiv preprint
arXiv:2304.01904.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller llms stronger problem-solvers. arXiv
preprint arXiv:2408.06195.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300.

Noah Shinn, Federico Cassano, Edward Berman,
Karthik Narasimhan Ashwin Gopinath, and Shunyu
Yao. 2024. Reflexion: Language agents with
verbal reinforcement learning. arXiv preprint
arXiv:2303.11366.

7325

https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://artofproblemsolving.com/wiki/index.php/American_Mathematics_Competitions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://mistral.ai/news/mathstral
https://mistral.ai/news/mathstral
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang
Liu, Yiming Yang, Sean Welleck, and Chuang Gan.
2024. Easy-to-hard generalization: Scalable align-
ment beyond human supervision. arXiv preprint
arXiv:2403.09472.

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and
Furu Wei. 2024. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint
arXiv:2403.02884.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of llms via imagination, searching, and
criticizing. arXiv preprint arXiv:2404.12253.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
Openmathinstruct-1: A 1.8 million math instruction
tuning dataset. arXiv preprint arXiv:2402.10176.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, R.X. Xu, Damai
Dai, Yifei Li, Deli Chen, Y.Wu, and Zhifang Sui.
2023. Math-shepherd: Verify and reinforce llms step-
by-step without human annotations. arXiv preprint
arXiv:2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Stephen Warshall. 1962. A theorem on boolean matri-
ces. J. ACM, 9(1):11–12.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu
He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. 2022. Large language models are better
reasoners with self-verification. arXiv preprint
arXiv:2212.09561.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen
Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
Michael Shieh. 2024. Monte carlo tree search boosts
reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451.

Haotian Xu. 2023. No train still gain. unleash math-
ematical reasoning of large language models with
monte carlo tree search guided by energy function.
arXiv preprint arXiv:2309.03224.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024b. Qwen2 techni-
cal report. Preprint, arXiv:2407.10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024c. Qwen2.
5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu,
Shuaibin Li, Fengzhe Zhou, Hongwei Liu, Songyang
Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu
Wang, Kai Chen, and Dahua Lin. 2024. Internlm-
math: Open math large language models toward veri-
fiable reasoning. Preprint, arXiv:2402.06332.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023.
Outcome-supervised verifiers for planning in mathe-
matical reasoning. arXiv preprint arXiv:2311.09724.

7326

https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024a.
Generative verifiers: Reward modeling as next-token
prediction. arXiv preprint arXiv:2408.15240.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao.
2024b. On the diagram of thought. arXiv preprint
arXiv:2409.10038.

7327

A Hyper-paramerer settings

All hyper-parameter settings for Section 3 are listed
in Table A1.

Hyper-parameter Description Value

α Balance coefficient between local and global 0.9

c Exploration coefficient in UCT function 1.4

γ Discount factor for backpropagation 0.1

max_child Dynamic pruning hyper-parameter in search 2

Table A1: Hyper-parameter settings

B Details of Grading and Metrics

Grading. We follow the correctness evaluation
method proposed in PRM800K (Lightman et al.,
2023) to score the answers generated by the algo-
rithm. For the mathematical solutions proposed by
the algorithm and their corresponding ground truth,
we inform the model of the expected response for-
mat in a prompt. The answer’s formula or value
is extracted by matching the response format with
predefined rules. If the model fails to follow the
expected format in the prompt and the rule-based
extraction fails, the solution is directly judged as
inconsistent with ground truth.

For the extracted label, we score the answer
based on the following criteria. The answer is con-
sidered consistent with the ground truth label and
passes the evaluation if at least one of the criteria
is met:

1. The answer label string is exactly equal to the
ground truth label string in terms of literal
value.

2. Both the answer label and the ground truth
label can be converted to floating-point num-
bers, and the difference between the two val-
ues is less than 1× 10−6.

3. Following the criterion proposed in
PRM800K (Lightman et al., 2023), we
use the Sympy library (Meurer et al., 2017)
to simplify the difference between the
expression corresponding to the answer
label, denoted as a, and the expression
corresponding to the ground truth label,
denoted as b. If the simplification yields
a− b ⇐⇒ 0, the criterion is satisfied.

Metrics. To provide a comprehensive and robust
evaluation metric, we adopt major@k and rm@k
as the evaluation metrics.

• rm@k represents reward model best-of-N
among k sampled response (Yang et al.,
2024c).

• major@k (Kuncheva, 2014), also abbreviated
as maj@k, is defined as the fraction of tasks
where a majority of the top k samples gen-
erated return the same correct solution. This
metric focuses on consistency across multiple
generated answers. The majority weight is
calculated on the solution’s extracted labels.

• The solved rate of problems (Lightman et al.,
2023; Luo et al., 2024a) refers to the percent-
age of problems who have solutions meet the
evaluation criteria.

For results without a subscript, the score represents
the greedy evaluation using the default prompt of
the base model. Results with a notation indicate
the use of the corresponding prompt engineering
technique, and those marked with self-consistency
use the self-consistency aggregation method.

For closed-source models, we report the scores
from existing official technical reports (Anthropic,
2024; Reid et al., 2024; OpenAI, 2024) or dataset-
provided results, with no modifications.

C Details of PPRM Trainging

C.1 Overview

The design goal of the PPRM is to integrate the
properties of both PRM and ORM, providing a
more nuanced preference prediction between any
two solution answers. We attempt to utilize rein-
forcement learning methods for training, leveraging
the model’s instruction-following capability to pre-
dict the relative merits of pairs of problem-solving
answers. This will further enable the use of the
EBC method to evaluate the global quantile scores
of mathematical solutions.

C.2 Data Collection

Our data synthesis is derived from two
datasets: PRM800K (Lightman et al., 2023)
and OpenMathInstruct-1 (Toshniwal et al., 2024).
The PRM800K dataset, collected from the MATH
dataset, comprises a substantial number of step-
divided problem-solving answers, with manual
quality annotations for each step. We primarily
utilize this dataset to generate pairs of answers
for comparative analysis based on step-wise
process quality. The OpenMathInstruct-1 dataset

7328

𝒟𝒟1

𝒟𝒟2

OpenMathInstruct-1

PRM800K

𝒟𝒟

{𝑄𝑄, 𝑆𝑆𝑐𝑐𝐹𝑐𝑐𝑠𝑠𝐹𝐹𝑐𝑐, 𝑆𝑆𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝑟𝑟}

𝒟𝒟′

Instruction: For Question Q, is
solution 𝑚𝑚1 better than solution 𝑚𝑚2?
Chosen Answer: Yes
Rejected Answer: No

Figure A1: Dataset Construction of PPRM.

incorporates data from the GSM8K and MATH
datasets, which have been manually annotated
for outcome correctness. We use this dataset to
synthesize pairs for comparative analysis based on
outcome quality.

In processing PRM800K, for a given problem,
we first sample steps of varying quality annotations
from the step-wise dataset to construct a complete
reasoning path. For pairs with the same final step
annotation, paths composed of higher-quality steps
are considered superior to those with lower-quality
steps. In cases where the final step annotations are
not identical, the reasoning path with the superior
final step annotation is regarded as better.

During the processing of OpenMathInstruct-1,
we exclusively utilize samples without Python in-
terpreter calls. For the same problem, we sample
pairs composed of outcomes with higher and lower
quality annotations.

Notably, we filtered out any data samples from
PRM800K and OpenMathInstruct-1 that may over-
lap with the GSM8K and MATH test sets, espe-
cially the PRM800K. Ultimately, we formed a
dataset of 7,780,951 entries for training the PPRM
model.

C.3 Direct Preference Pair Construction

For all pairs, we frame the inquiry as "For Ques-
tion Q, is solution a1 better than solution a2?" If
solution a1 is deemed superior to solution a2, we
label it as ’Yes’; otherwise, it is labeled as ’No’.

In this manner, we transform the ordinal rela-
tionship prediction task into a question-answer for-
mat, employing the Direct Preference Optimiza-
tion (DPO) method for model training through rein-
forcement learning from human feedback (RLHF).
This approach aims to enhance the model’s capabil-

ity to follow instructions in predicting the relative
merits of pairs of problem-solving answers.

C.4 RLHF Training

We apply the DPO method to train the
Gemma2-2B-it model using RLHF which
is shown in Figure A2. The loss function
for DPO is structured as LDPO(πθ;πref) =

−E
[
log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
,

where σ is the logistic function, β is a parameter
controlling the deviation from the base reference
policy πref , namely the initial model πLLM . In
practice, the language model policy πθ is also
initialized to πLLM . For one answer, denoted as
yw ≻ yl|x where yw and yl denote the preferred
and dispreferred completion amongst (ŷ, y)
respectively.

D Details of Berry-Tree Inference
Framework

D.1 Overview

Berry-Tree is an inference framework specifi-
cally designed for complex multi-model reason-
ing tasks, addressing the need to improve in-
ference efficiency and accuracy in intricate tree
search processes of LLM’s mathematical reason-
ing. This framework is particularly suited for large-
scale reasoning tasks that involve the integration
of multiple models and algorithms. By incorpo-
rating advanced tree search methods especially
Monte Carlo Tree Search (MCTS), robust concur-
rency handling, and high-performance inference
engines, Berry-Tree significantly enhances infer-
ence speed and resource utilization of LLM’s math-
ematical reasoning process. This section provides a
explanation of the system architecture and key tech-

7329

For Question Q, is solution
𝑎!	better than solution 𝑎"? 𝑦$: “Yes” 𝐈(𝑦$, 𝑦)

Pairwise Preference
Reward Model (PPRM)

∇ℒ#$%

RewardPredicted LabelInstruction

Figure A2: RLHF training of PPRM.

nologies of Berry-Tree, along with a preliminary
performance evaluation results.

D.2 System Architecture Overview

Figure A3 demonstrates the architecture of
Berry-Tree which is divided into several lay-
ers, each handling different functional require-
ments. The Data Management Layer is respon-
sible for the serialization and deserialization of
data, ensuring efficient data read/write operations
across models and systems and the ablity of re-
covering the search process from serialized data.
The Tree Search Methods Layer incorporates
MCTS (Monte Carlo Tree Search), ToT (Tree of
Thoughts), and A* algorithms to optimize the infer-
ence process and explore multiple reasoning paths.
Additionally, Berry-Tree includes a Reliability
Layer, which ensures load balancing and failover
support in highly concurrent scenarios, guarantee-
ing the stability of inference tasks. Finally, the
Inference Engines Layer integrates efficient in-
ference engines such as vLLM, FastAPI, and Hug-
gingFace TGI to enable parallelized and efficient
task processing.

D.3 Key Technical Components

Data Management. Berry-Tree employs serial-
ization and deserialization techniques, specifically
using formats including JSON and CSV, to effi-
ciently store, transfer and recover checkpoint data
from tree search reasoning processes. The frame-
work stores this data along with hash values to
ensure integrity and allows for quick restoration of
tree search states in memory when needed. Fur-
thermore, Berry-Tree leverages the HuggingFace
Datasets library to handle core dataset inputs for
both training and inference. It supports seamless
loading of benchmark datasets such as GSM8K and
MATH from the HuggingFace Hub, enhancing its

flexibility and ensuring compatibility with diverse
reasoning tasks.

Tree Search Methods. Berry-Tree support mul-
tiple tree search algorithms, with MCTS being cen-
tral to handling large-scale complex reasoning tasks
by leveraging random simulation and statistical
analysis to optimize the search space. The Tree
of Thoughts (ToT) extends the exploration depth
and breadth of reasoning paths, helping the system
manage uncertainty. And A* can offer a efficient
heuristic search capabilities.

Reliability Design. To ensure the stability and
continuity of inference tasks, Berry-Tree incorpo-
rates load balancing and failover mechanisms. Dur-
ing high-concurrency operations, the load balance
componet distributes workloads across different in-
ference servers, preventing server overload. The
failover mechanism ensures that tasks can seam-
lessly recover and transition to backup servers in
case of partial server failures.

Server Architecture. The framework’s server
architecture is divided into two segments: one
dedicated to executing Large Language Model
(LLM) inference and the other designated explicitly
for handling PPRM (Pairwise Preference Reward
Model) with EBC (Enhanced Borda Count) method.
This modular design allows the framework to allo-
cate computational resources flexibly, improving
overall efficiency.

Inference Engines. Inference engines of
Berry-Tree include VLLM , HuggingFace Trans-
formers warpped by FastAPI, and HuggingFace
TGI. These engines collectively enable the system
to maintain high efficiency and stability while han-
dling multi-model inference tasks, with robust sup-
port for high-concurrency demands.

7330

MCTS ToT A*

Serialization Deserialization DatasetsData Management

Tree Search Methods

Reliability Layer Load
Balancing Failover High

Concurrency

Servers LLM Servers PPRM and
EBC Servers

VLLM FastAPI
Inference Engines

HuggingFace
TGI

Figure A3: Architecture design of Berry-Tree

D.4 Preliminary Performance Evaluation

In a preliminary performance evaluation, we utilize
16 A100 GPUs to run the LLaMA3.1-8B-instruct
model for large-scale inference tasks, while 4 A100
GPUs are used to run the Gemma2-2B-it model as
PPRM servers. The test dataset consists of 1319
GSM8K test samples.

We conduct 16 rollouts to parallelize the infer-
ence tasks of LLaMA-Berry via Berry-Tree. The
results indicate that the total inference time is 1
hour and 25 minutes, with an average inference
time of approximately 3.87 seconds per sample.
These results demonstrate a strong parallel infer-
ence capabilities of Berry-Tree under the given
hardware configuration.

E Scaling Study on Inference-time Token
Overheads

Comparing LLaMA-3-8B-Instruct and LLaMA-
3.1-8B-Instruct across GSM8K, GSMHARD,
and MATH500, LLaMA-3.1-8B-Instruct consis-
tently consumes more tokens across all cate-
gories—Solutions, Critiques, and Overall. This
Figure A4 result reflects LLaMA-3.1-8B-Instruct’s
tendency to generate more detailed and compre-
hensive outputs with increased overhead. While
this likely improves solution quality, it also intro-
duces greater resource demands and variability in
token usage, highlighting a trade-off between accu-
racy and computational resources. LLaMA-3.1-8B-
Instruct is thus better suited for tasks prioritizing
precision over speed. As shown in Figure A5, To-

ken overheads during inference also scale with task
difficulty across different olympiad-level bench-
marks with LLaMA-3.1-8B-Instruct. AIME2024
exhibits the highest token consumption with sig-
nificant variability, reflecting the complexity of its
solution paths. In contrast, GPQA Diamond shows
lower overall overhead, while AMC2023 falls in
between, with moderate token consumption and
less variability than AIME2024 but still notable.

F Future Work

LLaMA-Berry holds significant potential for further
development. First, we plan to enhance its multi-
modal capabilities, enabling it to better handle com-
plex problems like VQA and mathematic geomet-
ric problems that require visual, auditory, or even
tactile perception. For instance, in tasks involv-
ing visual reasoning, such as geometric problems,
LLaMA-Berry could be extended to integrate image
recognition and analysis capabilities, thereby assist-
ing in solving challenges related to spatial relation-
ships and shape recognition. Furthermore, we aim
to generalize its application across other scientific
domains, improving its performance in disciplines
such as physics, chemistry, and biology. In physics,
for example, it could be utilized to address com-
plex micro- and macroscopic dynamics problems;
in chemistry, it may assist in molecular structure
prediction and drug design; and in biology, it could
potentially be used for genome analysis and disease
prediction. Moreover, LLaMA-Berry can also offer
technical support for other interdisciplinary fields,
such as meteorology, environmental science, and

7331

Solutions Critiques Overall

0

250

500

750

1000

1250

1500

1750

To
ke

n
Co

ns
um

pt
io

n

GSM8K
LLaMA-3-8B-Instruct
LLaMA-3.1-8B-Instruct

Solutions Critiques Overall

GSMHARD

Solutions Critiques Overall

MATH500

Figure A4: Average token consumption comparison across datasets, error bar stands for standard deviation.

Solutions Critiques Overall
0

500

1000

1500

2000

2500

3000

To
ke

n
Co

ns
um

pt
io

n

GPQA Diamond

Solutions Critiques Overall

AMC2023

Solutions Critiques Overall

AIME2024

Figure A5: Average token consumption for LLaMA-3.1-8B-Instruct across olympiad-level datasets, error bar stands
for standard deviation.

materials science, by integrating multimodal data
to enhance predictive accuracy. At the same time,
we will focus on how LLaMA-Berry can further en-
hance AI safety. For instance, LLaMA-Berry could
be leveraged to design more robust safety and risk
assessment mechanisms. Besides, the generation
of responses could be guided by a safety-trained
PPRM to produce outputs with higher safety stan-
dards. These advancements not only pave the way
for broader scientific applications of LLaMA-Berry
but also offer new possibilities for enhancing AI
safety and promoting its widespread adoption.

G Case Study

The prompts utilized in LLaMA-Berry for the
LLaMA-3.1-8B-Instruct model are presented in
Figure A6. Additionally, Figure A7 provides a
detailed breakdown of problem-solving examples
derived from the GSM8K dataset.

H Convergence Analysis of the Enhanced
Borda Count (EBC) Method

In this appendix, we present a formal discussion
on how the quantile scores, as evaluated by the
Enhanced Borda Count (EBC) method, converge
to the true quantile scores of solutions within the
actual quality distribution as the number of samples
increases.

H.1 Definitions and Assumptions
Solution Set. Let A = {a1, a2, . . . , an} be a finite
set of n solutions (answers).
True Quantile Scores. Each solution ai has a true
quality score Q∗(ai) ∈ R, drawn from a continu-
ous distribution PQ.
True Ranking. The true ranking R∗ is induced by
ordering the solutions in decreasing order of their
true quantile scores Q∗(ai).
True Pairwise Preference Probabilities. The true
probability that solution ai is preferred over aj is
defined as:
P ∗(ai ≻ aj) =

P(Q∗(ai) > Q∗(aj)) + 1
2P(Q

∗(ai) = Q∗(aj)).
(A1)

Given the continuity of PQ, we have P(Q∗(ai) =
Q∗(aj)) = 0, so:

P ∗(ai ≻ aj) =

{
1, if Q∗(ai) > Q∗(aj),

0, if Q∗(ai) < Q∗(aj).
(A2)

Estimated Preference Probabilities. For T inde-
pendent samples, the estimated preference proba-
bility is:

PT (ai ≻ aj) =
1

T

T∑

t=1

X
(i,j)
t , (A3)

where X
(i,j)
t are independent Bernoulli random

variables with success probability P ∗(ai ≻ aj).

7332

Component Details

Generate	the	first	solutions

Generate	Critique

Rewriting

Instruction	PPRM

Please	write	an	answer	for	this	question.
The	Answer	should	format	as
’####	Reasoning	Process
...
####	Verification
...
####	Final	Answer
...‘.	The	Final	Answer	should	format	as	\boxed{Final	Answer}
Let’s	think	step	by	step

Analyze this weak Answer, write a strict Critic/Reflection for error
re-correct and Hints/Guidelines for maximum improvement.
Let’s think step by step.

Please	write	a	better	answer	for	this	question	refer	to	the	comments.
The	Answer	should	format	as
’####	Reasoning	Process
...
####	Verification
...
####	Final	Answer
...’.	The	Final	Answer	should	format	as	\boxed{Final	Answer}
Let’s	think	step	by	step

Problem: ...
First	Answer: ...
Second	Answer: ...
Is	First	Answer	better	than	Second	Answer?

Figure A6: Prompts for LLaMA-3.1-8B-Instruct

Component Details

Problem	Statement

First	Attempt

Critique	of	First	Attempt

Improved	Answer

Lee used to be able to run the 400-meter hurdles two seconds faster
than Gerald would run the 400-meter hurdles. But Gerald changed
his diet, which improved his speed by 10%. If Lee runs the 400-
meter hurdles in 38 seconds, how fast can Gerald, with his improved
diet, run the 400-meter hurdles, in seconds?

Reasoning Process:
1. Gerald’s original time: 40 seconds (Lee’s time + 2 seconds).
2. Calculate improvement: 10% of 40 seconds = 4 seconds.
3. New	time:	40	+	4	=	44	seconds.

Verification:
Calculated time based on Lee’s current time and original difference.
Final Answer: 44 seconds.

Reflection:
1. Lack of clear explanation.
2. Inaccurate percentage increase representation.
3. Incorrect verification.
4. Insufficient mathematical notation

Error Re-correction:
1. Gerald’s original time: 40 seconds.
2. New time: 40 − 4 = 36 seconds

Reasoning Process:
1. Lee runs in 38 seconds.
2. Gerald’s original time: 40 seconds.
3. Improvement: 4 seconds.
4. New	time:	36	seconds.

Final Answer: 36 seconds.

ERROR

CORRECT

Figure A7: Problem-solving example

Convergence Assumption. As T →∞, PT (ai ≻
aj) converges almost surely to P ∗(ai ≻ aj).

Preference Matrix. Construct the estimated pref-
erence matrix MT and the true preference matrix

M∗ as:

MT [i, j] =

{
1, if PT (ai ≻ aj) ≥ 0.5,

0, otherwise.

M∗[i, j] =

{
1, if P ∗(ai ≻ aj) = 1,

0, if P ∗(ai ≻ aj) = 0.

(A4)

Transitive Closure. Let CT and C∗ be the transi-

7333

tive closures of MT and M∗, respectively.
Borda Counts. Compute the Borda count for each
solution:

BT (ai) =
∑

j ̸=i

CT [i, j], B∗(ai) =
∑

j ̸=i

C∗[i, j].

(A5)
Estimated Ranking and Quantile Scores.

• Estimated ranking RT : Order solutions by
decreasing BT (ai).

• Estimated quantile score:

Qg(ai) = 1− rankT (ai)− 1

n− 1
. (A6)

• True quantile score:

Q∗
g(ai) = 1− rank∗(ai)− 1

n− 1
. (A7)

H.2 Objective
To prove that as T → ∞, the estimated quantile
scores Qg(ai) converge almost surely to the true
quantile scores Q∗

g(ai):

lim
T→∞

Qg(ai) = Q∗
g(ai), ∀ai ∈ A. (A8)

H.3 Proof
Convergence of Estimated Preference Probabili-
ties.

By the Strong Law of Large Numbers (SLLN),
since X

(i,j)
t are i.i.d. Bernoulli random variables

with success probability P ∗(ai ≻ aj), we have:

lim
T→∞

PT (ai ≻ aj) = P ∗(ai ≻ aj) almost surely.

(A9)
Convergence of Preference Matrix MT to M∗.

Since PT (ai ≻ aj) converges to P ∗(ai ≻ aj)
and P ∗(ai ≻ aj) ∈ {0, 1}, for sufficiently large T ,
we have:

MT [i, j] = M∗[i, j], ∀i ̸= j, (A10)

almost surely.
Justification: Because PT (ai ≻ aj) converges

to either 0 or 1, and PT (ai ≻ aj) ̸= 0.5 almost
surely for large T .
Convergence of Transitive Closure CT to C∗.

The transitive closure is a deterministic function
of the preference matrix. Therefore, since MT →
M∗, it follows that:

CT → C∗ as T →∞, (A11)

almost surely.
Convergence of Borda Counts BT (ai) to B∗(ai).

Given that CT → C∗, the Borda counts con-
verge:

BT (ai) =
∑

j ̸=i

CT [i, j]→ B∗(ai) =
∑

j ̸=i

C∗[i, j],

(A12)
almost surely.
Convergence of Estimated Ranking RT to True
Ranking R∗.

Since the Borda counts BT (ai) converge to
B∗(ai), and assuming that all Q∗(ai) are distinct
(due to the continuity of PQ), the rankings induced
by BT (ai) converge to the true rankings:

RT → R∗ as T →∞, (A13)

almost surely.
Convergence of Quantile Scores Qg(ai) to
Q∗

g(ai).
Since rankT (ai)→ rank∗(ai), we have:

Qg(ai) = 1− rankT (ai)− 1

n− 1
→

Q∗
g(ai) = 1− rank∗(ai)− 1

n− 1

(A14)

almost surely.
Conclusion.

Therefore, we have shown that:

lim
T→∞

Qg(ai) = Q∗
g(ai), ∀ai ∈ A, (A15)

which means that the EBC method’s estimated
quantile scores converge almost surely to the true
quantile scores of the solutions.

H.4 Finite Sample Analysis and Convergence
Rate

Lemma 1: Hoeffding’s Inequality for Preference
Probability Estimates.

For each pair (ai, aj), PT (ai ≻ aj) is the sam-
ple mean of T i.i.d. Bernoulli trials with success
probability P ∗(ai ≻ aj). By Hoeffding’s inequal-
ity:

P (|PT (ai ≻ aj)− P ∗(ai ≻ aj)| ≥ ϵ)

≤ 2 exp(−2Tϵ2).
(A16)

Lemma 2: Uniform Convergence over All Pairs.
Apply the union bound over all N = n(n−1)/2

pairs:

P (∃(i, j) : |PT (ai ≻ aj)− P ∗(ai ≻ aj)| ≥ ϵ)

≤ N · 2 exp(−2Tϵ2).
(A17)

7334

Set the right-hand side equal to δ to solve for T :

T ≥ 1

2ϵ2
ln

(
2N

δ

)
. (A18)

Lemma 3: Correctness of Preference Matrix
with High Probability.

Given that P ∗(ai ≻ aj) ∈ {0, 1}, for any 0 <
ϵ < 0.5, if:

|PT (ai ≻ aj)− P ∗(ai ≻ aj)| < ϵ, (A19)

then MT [i, j] = M∗[i, j] because PT (ai ≻ aj)
will be greater than 0.5 when P ∗(ai ≻ aj) = 1,
and less than 0.5 when P ∗(ai ≻ aj) = 0.
Lemma 4: Probability of Correct Ranking.

From Lemma 2 and 3, with probability at least
1 − δ, MT = M∗, and thus CT = C∗, leading to
RT = R∗ and Qg(ai) = Q∗

g(ai).
Convergence Rate Analysis.

To achieve this with confidence level 1− δ, the
required number of samples per pair is:

T ≥ 1

2ϵ2
ln

(
n(n− 1)

δ

)
. (A20)

For small δ and ϵ < 0.5, T scales logarithmically
with the number of solutions n.

H.5 Addressing Practical Considerations
In practice, the true preference probabilities may
not be exactly 0 or 1 due to noise or overlapping
quality scores. To accommodate this:

• Extended Preference Model: Assume
P ∗(ai ≻ aj) is a strictly increasing function
of ∆Q∗

ij = Q∗(ai)−Q∗(aj), such as:

P ∗(ai ≻ aj) = F (∆Q∗
ij), (A21)

where F is a cumulative distribution function
(CDF).

• Margin Condition: Define a margin m > 0
such that for all i ̸= j:

|P ∗(ai ≻ aj)− 0.5| ≥ m. (A22)

This ensures a minimum separation between
preference probabilities.

• Modified Sample Complexity: With the
margin condition, Hoeffding’s inequality be-
comes:

P (MT [i, j] ̸= M∗[i, j]) ≤ 2 exp(−2Tm2).
(A23)

To achieve P (MT = M∗) ≥ 1− δ, we need:

T ≥ 1

2m2
ln

(
n(n− 1)

δ

)
. (A24)

• Convergence under Noise: Even with noisy
preference probabilities, as long as there is
a margin m > 0, the convergence of Qg(ai)
to Q∗

g(ai) still holds with high probability for
sufficiently large T .

H.6 Final Conclusion
We have provided a formal discussion showing
that the estimated quantile scores Qg(ai), obtained
through the EBC method, converge almost surely
to the true quantile scores Q∗

g(ai) as the number of
samples T approaches infinity. The finite sample
analysis demonstrates that the convergence rate
depends logarithmically on the number of solutions
and is inversely proportional to the square of the
margin m between preference probabilities.

I Pseudo-code of main Algorithms

We present the process of Self-Refine applied to
Monte Carlo Tree Search (SR-MCTS) Method in
Algorithm 1 and provide overall pseudo-code for
Ehanced Borda Count (EBC) Method in Algo-
rithm 2.

7335

Algorithm 1: Self-Refine applied to Monte Carlo Tree Search (SR-MCTS) Method
Input: Initial state s0, search tree T , max nodes Nmax, exploration constant c
Output: Ranked solution list S

1 Initialize search tree T with root node s0;
2 while number of nodes N(T) < Nmax do
3 ———Selection Phase———
4 Select a node si which met the dynamic pruning rule from T using UCT:

a = arg max
a∈A(s)

(
Q(s, a) + c ·

√
lnN(s)

N(s, a)

)

5 ———Expansion Phase———
6 Expand si by generating a successor node s′ using the rewriting process R(si, ci), where

ci = C(si) is a critique of the current state;
7 Add the new node s′ to T ;
8 ———Evaluation Phase———
9 Compute the value Q(s′) of the new node with Enhanced Borda Count (EBC) method:

Q(s′) = αQg(s
′) + (1− α)Ql(s

′)

where Qg(s
′) is the global value from the win-loss matrix M and Ql(s

′) is the local value
from adjacent nodes in T ;

10 ———Backpropagation Phase———
11 Propagate Q(s′) back to its parent node si, updating si’s Q value:

Q(si) = (1− γ)Q(si) + γQ(s′)

12 ———Check for tree growth limit———
13 if N(T) ≥ Nmax then
14 break;
15 end
16 end
17 return Ranked solution list S

7336

Algorithm 2: Ehanced Borda Count (EBC) Method
Data: M (Binary Reward Matrix),P (Pairwise Preference Reward model)
Result: Q (quantile rewards), R (ranked node list), L (ranked layers of nodes)

1 Function FillTransitiveClosure(M):
2 C ← all-zero matrix from size of M
3 C[i, j]← −1 for all i, j
4 C[i, j]← sign(M [i, j]− 0.5) if M [i, j] ̸= −1 else −1
5 for k = 0 to |C| − 1 do
6 for i = 0 to |C| − 1 do
7 for j = 0 to |C| − 1 do
8 if C[i, k] = C[k, j] then
9 C[i, j]← C[i, k]

10 end
11 end
12 end
13 end
14 return Updated C

15 Function BordaCount(C):
16 D ← outdegree of each node from C
17 R← argsort(−D)
18 L← Define layers using unique values in D
19 return R , L
20 Function Rerank(R, L, C, P):
21 G← Group R by L
22 R← Sort each group in G using local comparisons computed by P
23 L,C ← Update L,C by R
24 return R, L, Updated C

25 Function CalculateQuantileScores(R, L):
26 Q← ∅
27 SL ← {1− l

max(L) : l ∈ L}
28 Q[x]← SL[layer of x] for each x ∈ R
29 return Q

30 Function EnhancedBordaCount(M , q):
31 C ← FillTransitiveClosure(M)
32 R, L← BordaCount(C)
33 R, L, C ← Rerank(R, L, C,P)
34 Q← CalculateQuantileScores(R, L)
35 return Q, R, L

7337

