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Abstract

The vast amount of online information to-
day poses challenges for non-English speak-
ers, as much of it is concentrated in high-
resource languages such as English and French.
Wikipedia reflects this imbalance, with con-
tent in low-resource languages frequently out-
dated or incomplete. Recent research has
sought to improve cross-language synchroniza-
tion of Wikipedia tables using rule-based meth-
ods. These approaches can be effective, but
they struggle with complexity and generaliza-
tion. This paper explores large language mod-
els (LLMs) for multilingual information syn-
chronization, using zero-shot prompting as a
scalable solution. We introduce the Information
Updation dataset, simulating the real-world pro-
cess of updating outdated Wikipedia tables, and
evaluate LLM performance. Our findings re-
veal that single-prompt approaches often pro-
duce suboptimal results, prompting us to in-
troduce a task decomposition strategy that en-
hances coherence and accuracy. Our proposed
method outperforms existing baselines, partic-
ularly in Information Updation (1.79%) and
Information Addition (20.58%), highlighting
the model’s strength in dynamically updating
and enriching data across architectures.

1 Introduction

In today’s digital era, nearly every subject/domain
is discoverable online. With global access to
high-speed internet expanding, the volume of in-
formation grows exponentially12. From movies
and celebrities to elections and corporate news,
a vast array of topics is just a click away for
those with access. However, since developed coun-
tries—particularly English-speaking ones—were
early adopters of the internet, much online content
is tailored to English-speaking audiences3. This
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is evident on platforms such as Wikipedia and
YouTube, where English dominates4. Although
the number of non-English users is growing, under-
represented languages such as Afrikaans, Cebuano,
and Hindi still face a significant information gap
(Bao et al., 2012).

As shown by Khincha et al. (2023) in their case
study on Wikipedia’s entity-centric tables, infor-
mation in Wikipedia infoboxes (Zhang and Balog,
2020) is heavily skewed toward high-resource lan-
guages such as English, Spanish, and French. They
found that tables in low-resource languages often
lack key information and are frequently outdated or
inaccurate (Jang et al., 2016; Nguyen et al., 2018).
This disparity is especially concerning in the digital
age, where misinformation on widely accessible
platforms can have far-reaching consequences. To
address this, Khincha et al. (2023) developed the
INFOSYNC dataset to analyze information synchro-
nization issues across 14 languages. They proposed
aligning tables by matching similar keys and using
rule-based methods to transfer and update informa-
tion in tables across languages. Figure 1 illustrates
an example of information synchronization across
multilingual tables (Spanish and Hindi). However,
INFOSYNC’s approach has a key limitation: rule-
based methods become increasingly complex as
new corner cases emerge, making generalization
challenging. A more effective alternative is lever-
aging current large language models (LLMs) for
zero-shot prompting, providing an easily scalable
solution for these tasks.

With new and advanced LLMs (such as GPT, Mi-
tral, LLAMA (Brown et al., 2020; Touvron et al.,
2023; Achiam et al., 2023; Jiang et al., 2023)) be-
ing released every year, the zero-shot prompting
capabilities of these models are improving with
each new training iteration. These LLMs are con-
sistently approaching, and in some cases surpass-
ing, human performance across various NLP ap-

4Wikipedia: Active Users by Language
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Figure 1: Example of information synchronization across multilingual tables. A reference table in a high-resource
language is used to update outdated input tables in a low-resource language, resulting in an updated output table in
the low-resource language.

plications (Achiam et al., 2023). LLMs excel at
text-generation (Achiam et al., 2023), text modifi-
cation based on provided prompts (Raffel et al.,
2020), and text refinement by correcting errors
(Davis et al., 2024; Liu et al., 2024; Li et al., 2024).
Given the substantial advancements in LLM capa-
bilities, this paper poses the following questions:
Can LLMs be leveraged for information synchro-
nization in multilingual Wikipedia entity-centric
tables? If so, how can LLMs be utilized, and how
effective are they compared to the rule-based meth-
ods proposed by Khincha et al. (2023)?

To investigate these questions, we first construct
an Information Updation dataset. This dataset sim-
ulates the information updating task by using out-
dated versions of tables to represent old informa-
tion, and comparing them with the latest versions
that have been manually corrected to address any
missing or outdated content. Additionally, we as-
sess the performance of state-of-the-art large lan-
guage models (LLMs), specifically GPT-4 (Achiam
et al., 2023), for the task of information synchro-
nization in entity-centric tables across multiple lan-
guages. To evaluate performance on the Informa-
tion Updation task, we propose novel automated
metrics that offer valuable insights into model per-
formance and identify potential areas for improve-
ment in future iterations.

Our initial experiments reveal that relying on
a single prompt for multilingual information syn-
chronization with LLMs yields suboptimal perfor-
mance, frequently producing incoherent edits. To
enhance these results, we propose a task decompo-
sition approach. Our proposed method uses multi-
ple prompts to address smaller, more manageable
subtasks, which are then connected in a sequential
pipeline to generate the final output. Task decom-
position has shown promise in improving perfor-
mance across a range of complex NLP applications

(Khot et al., 2022; Ma et al., 2024; Wang et al.,
2024), and we find it similarly beneficial in our
work. Our work makes the following contributions:

• We create an Information Updation dataset
by sampling older versions of the same
Wikipedia pages. This dataset simulates the
real world process of updating Wikipedia in-
foboxes with human input, reflecting the task
of correcting and adding new information over
time.

• We employ large language models (LLMs) for
zero-shot automated multilingual information
synchronization in entity-centric Wikipedia
tables. By utilizing prompt-based task decom-
position, we significantly enhance the accu-
racy and coherence of the results.

• Develop novel evaluation metrics for the Infor-
mation Updation task, alongside conducting a
thorough error analysis to identify the limita-
tions of current state-of-the-art LLM models.

Code and dataset are available at https://zero-
shot-llm-infosync.github.io/zero-shot-llm-
infosync/.

2 Proposed Methodology

Information synchronization for Wikipedia in-
foboxes involves updating outdated rows in the
table by conditionally modifying attributes, values,
or both, using data from reference infoboxes(which
have updated information). Consider a source ta-
ble (TS) in language (Li) that contains missing or
outdated information. We also have a reference
table (TR) in language (Lj), which provides the
missing and updated information not found in TS .
Additionally, we assume access to gold-standard
updated table (TG) in language (Li), which can be
regarded as having been manually curated.

The Information Synchronization task is to up-
date the table TS using only the information avail-

6475

https://zero-shot-llm-infosync.github.io/zero-shot-llm-infosync/
https://zero-shot-llm-infosync.github.io/zero-shot-llm-infosync/
https://zero-shot-llm-infosync.github.io/zero-shot-llm-infosync/


able in TS and TR, with the goal of matching the up-
dated table to TG. Previous work by Khincha et al.
(2023) approaches this problem with a two-step
methodology: (i) Information Alignment, which
involves identifying similar rows across different
tables using cosine similarity, and (ii) Information
Update, which utilizes rule-based methods to up-
date TS . In contrast, we propose to solve this task
using large language models (LLMs) to provide a
more automated and sophisticated solution, bypass-
ing the need for elementary similarity measures
and rule-based methods. We propose solving the
information synchronization problem using various
prompts, as outlined below:

Simple Prompt. With large-scale pre-training
of language modeling, new language models such
as GPT4, LLaMA, and Gemini Pro support prompt-
based (instruction set) evaluations, which do not
require any finetuning. As a baseline prompt, we
explain the task of information synchronization in
the prompt giving details of types of missing infor-
mation that might be presented between the two
tables such as outdated information, missing infor-
mation, or inconsistent information. The model is
tasked to create an output table that has updated
information from both source and reference tables.
Here, we ask the model to give more importance
to reference table information while creating an
updated output table.

Elementary Task decomposition within a Sin-
gle Prompt: To test whether a single prompt can
give reasonable outputs even when directed to do
task decomposition as an intermediate step, we
propose Align-Update Decomposition prompt. In
this prompt, the model is instructed to first implic-
itly align all corresponding information between
the two tables. Once these alignments are auto-
matically generated, the model should carefully
review each alignment to identify and remove any
outdated information wherever necessary. Addi-
tionally, the model is explicitly instructed to add
missing rows that could not be mapped during the
alignment process. This prompt is inspired by the
task decomposition of Khincha et al. (2023), which
does the same with rule-based approach.

Hierarchical Task Decomposition Prompt. In-
stead of creating a single instruction set for the task
of Information synchronization. We do a hierarchi-
cal decomposition of the task and create prompts
for each step. These prompts are applied sequen-
tially, with the output of the last prompt as input to

the next prompt in the hierarchy. Different hierar-
chical steps for this prompt are:

• Translation: All tables (TS , TR, and TG)
from different languages are converted to En-
glish. English is selected as the base lan-
guage because most state-of-the-art LLMs are
largely trained on curated English data, result-
ing in higher accuracy for complex reasoning
and analysis tasks performed in English com-
pared to other languages.

• Knowledge graphs conversion: The trans-
lated source and reference tables are then con-
verted into knowledge graphs. Our experi-
ments indicate that the subsequent hierarchi-
cal steps are more effective when using knowl-
edge graphs rather than infoboxes/tables.
LLMs perform better reasoning over knowl-
edge graphs.

• Merging or alignment: The source(KGS)
and reference(KGR) knowledge graphs are
merged to create a unified knowledge graph
that consolidates all the information from both
sources. Merging of knowledge graph is equal
to alignment step described in the section
above. This merging process helps eliminate
redundant information from unresolved con-
flicts and enhances the inclusion of missing
details. During the merge step, the model first
gathers all necessary information, and in the
subsequent update step, it makes the relevant
adjustments.

• Update: The merged knowledge graphs is
used to update information in the source
knowledge graphs. Due to these being node
operations, these are fast and have better inter-
pretablity.

After the update step, the revised knowledge
graphs are converted back into tables. These ta-
bles are then translated back into the original lan-
guages of the source tables. We compare these
three prompt designs for the task of information
synchronization with relevant ablations for heirar-
chical task decomposition. Prompt examples are
shown in Appendix B.

3 INFOUPDATE Benchmark

Khincha et al. (2023) concentrated on develop-
ing a dataset for information alignment tasks, i.e.,
aligning similar keys across tables coming from
different languages. They employed a rule-based
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method for updates and conducted human evalua-
tions based on these updates to recommend edits
on Wikipedia pages. However, they did not cre-
ate a dataset or propose an automated method for
evaluating approaches to information updation. To
address this, we introduce a new human-annotated
dataset (INFOUPDATE) for the Information Upda-
tion task focused on Wikipedia infoboxes. This
dataset comprises approximately 950 annotated in-
stances across 9 categories: Album, Athlete, City,
College, Company, Country, Musician, Person, and
Stadium, spanning 14 languages including Spanish,
French, German, Arabic, Hindi, Korean, Russian,
Afrikaans, Cebuano, Swedish, Dutch, Turkish, and
Chinese. Additional dataset statistics are shown in
Appendix Table 4.

INFOUPDATE Construction. We construct the
dataset by extracting two versions of the same
Wikipedia table entity from different time periods.
For a table in Category C titled T and language(Li),
we extract the Old version from 2018 (source ta-
ble) and the New version from 2023 (current at the
time of extraction). The new version of the table
is extracted from two or more different languages,
where the table in the same language serves as the
target, and the table in a different language acts
as a reference (or additional information), i.e., up-
dated table. This setup is designed to simulate a
real-world implementation of the Information Syn-
chronization task for entity centric semistructured
tables. For every entity in a single instance of the
task, the dataset contains 3 tables source table TS ,
reference table TR and a gold table TG.

• The Source Table TS is the (Old) outdated
version of the entity in language Li.

• The Reference Table TR is the New updated
version of the entity in language Lj(i ̸= j)

• The Gold Table TG is the human annotated
version, which is manually created by syn-
chronising the New updated versions of the
entity in the languages Li and Lj .

The information updation task is to update rows
in source table (TS) using reference table (TR) as
context information, so that the resulting generated
table, referred to as the output table (TO), has the
same information as Gold Table (TG).

INFOUPDATE Verification. Human annotators
are tasked to ensure two aspects:(a) The gold table
contains the complete information present in both
the input and reference table combined without any

redundancy. (b) The gold table is consistent, resolv-
ing all conflicts or missing data without adding new
information not found in the Source or Reference
tables.

4 INFOUPDATE Evaluation Metric

For evaluation, we first experimented with an ap-
proach similar to Chiang and Lee (2023), where
we tasked the model with comparing the output ta-
ble against a reference table and providing a score.
However, this approach proved to be highly un-
stable, resulting in vastly different responses even
in low-temperature settings. Moreover, the model
often overlooked multiple rows during evaluation,
making it difficult to establish a consistent scoring
system due to the subjective nature of the process.
Therefore, we propose our novel evaluation metric
consisting of two main steps: (a) Information Align-
ment Evaluation and (b) Information Update Eval-
uation, aimed at addressing the aforementioned
issues.

Figure 2: Alignment Groups For Information Align-
ment. All rows highlighted in blue and connected by
blue lines in the Source, Gold, and Output tables are
tri-aligned, meaning they contain the same information
across all three tables. Rows highlighted in red or green
are bi-aligned, indicating that the information is consis-
tent either between the Input and Gold tables or the Gold
and Output tables. The remaining rows are unaligned,
containing differing information.

Information Alignment Evaluation. In this step,
we first create a mapping of similar information or
alignments between {SOURCE TABLE(TS), GOLD

TABLE(TG)} and {OUTPUT TABLE (GENERATED

TABLE)(TO), GOLD TABLE(TG)} tables. REFER-
ENCE TABLE (TR) is not used during the evaluation
process, as it in different language and only used
as referenced for updating source (TS) tables.
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Alignment between (TS) and (TG) gives us a
metric of information already present in the source
when compared to gold, whereas alignment be-
tween (TO), and (TG) informs us of extra align-
ments added due to the information generated by
the synchronization model, i.e., table updation. The
alignments are compared and separated into three
groups: Tri-Aligned, Bi-Aligned, and Un-Aligned.
Figure 2 shows pictorial the meaning and different
between the three alignment group we defined and
Table 5 shows the results for each types of align-
ments. Formal definitions in logic statements can
be found in Appendix Table 6.
- Tri-Aligned: These refer to the table keys that are
common across all three tables: the SOURCE, OUT-
PUT, and GOLD. (ir1, gr1, or1) and (ir2, gr2, or2)
are trialigned rows in example Figure 2. These rep-
resent information that is either kept intact by the
model from source to output, or can also have cases
where the information was incomplete in source
table but was completed by model operations.
- Bi-aligned: When the table keys are com-
mon across pairs of tables GOLD-OUTPUT

(gr4, or3), (gr7, or5) or GOLD-SOURCE

(ir3, gr3), but not across all three tables,
these define Bi-aligned rows. The number of Gold
elements aligned with the Output but not the Input
indicates the amount of information added, which
was not present before (gr4, or3), (gr7, or5), while
the number of Gold elements aligned with the
Input but not the Output represents the amount of
relevant information deleted (ir3, gr3).
- Un-aligned: These are keys remaining in
SOURCE, OUTPUT and GOLD tables after tri- and
bi-aligned keys are removed from tables. We have
three types of unaligned rows as follows:

(a.) Unaligned SOURCE TABLE keys (ir4),
refers to redundant input information deleted in
the output table.

(b.) Unaligned OUTPUT TABLE keys (or4, or6),
refers to hallucinated/noisy/irrelavant information
added to output table not present in either (Source
or Gold).

(c.) Unaligned GOLD TABLE keys
(gr5, gr6, gr8), refer to information gaps that the
model could not add to the Output table, either due
to model inaccuracies or because the information
is missing in the Source and Reference tables.

Information Updation Evaluation. We evalu-
ate each alignment pair from both SOURCE-GOLD

alignments and OUTPUT-GOLD alignments for se-

mantic equivalence using Large Language Mod-
els (EvalLLM). Here, we check if the align in-
formation is fully-matching, partially matching
or contradictory to each other. For each aligned
key-value pair, the LLM is instructed to exam-
ine the information, translate it into English, and
decompose it into fine-grained atomic details.
These atomic details are then categorized into
four distinct groups: (a) Similar and Consistent
(SCT)—information appearing in both tables with
consistent values; (b) Similar and Contradictory
(SCD)—information present in both tables but ex-
hibiting contradictory or conflicting values; (c) Ta-
ble 1 Unique (T1U)—information unique to Table
1, not found in Table 2; and (d) Table 2 Unique
(T2U)—information unique to Table 2, not present
in Table 1. These four categories are used to cal-
culate the precision and recall for evaluation as
follows:

Precision =
|SCT|

|SCT|+ |SCD|+ |T1U|

Recall =
|SCT|

|SCT|+ |SCD|+ |T2U|

F1 Score =
2× Precision × Recall

Precision + Recall

Here, | X | denotes the cardinality of the set X,
indicating the number of elements within set X.
The precision and recall scores are normalized by
dividing them by the length of the gold table (TG),
ensuring a fair comparison. We use these measures
to evaluate SCT, SCD, T1U and T2U for different
models. We used this metric for all information
alignment. The detail metric for each information
alignment types (tri, bi, and un) is shown in Ap-
pendix Table 7, grounded with the running exam-
ples shown in the Figure 2.

5 Experiments and Results

Alignment Models. For information alignment,
we employ an ensemble of multiround voting meth-
ods that combine InfoSync—a deterministic align-
ment algorithm—with LLM-based alignment uti-
lizing few-shot chain-of-thought prompting with
detailed instructions. We conducted three runs each
with GPT-3.5 and Gemini 1.5 Flash Pro, followed
by majority voting to establish the LLM alignment.
The majority-voted alignments from both GPT-3.5
and Gemini 1.5 Flash Pro are then integrated into
InfoSync, using majority voting again to achieve
the final alignment. We refer to this approach as
the multi-voting scheme.
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Updation Models. For information updation, we
utilize three large language models (LLMs) for our
experiments: GPT-3.5, Gemini 1.5 Flash Pro (Reid
et al., 2024), and LLAMA 3.0 (70B) (AI@Meta,
2024). The first two are closed-source models
accessible only via API, whereas the latter is an
open-source model. These models were selected
as they represent state-of-the-art performance or
are at least close to it and fall within the computa-
tional budget of our project. We believe that our
results will also be applicable to other closed and
open-source LLMs.

Evaluation Strategy. Evaluating the efficacy of
large language models (LLMs) involves two key
steps: (a) information alignment, which prepares
the tables for comparison, and (b) information eval-
uation, which assesses the semantics. We evaluate
both of these as following:

1. Alignment Evaluation. The alignments are
compared with human alignments for both INPUT-
OUTPUT (200 pairs) and OUTPUT-GOLD (200
pairs), for GPT 3.5 generated updated tables with
our decomposition approach.

2. Updation Evaluation. Human evaluation is
the ideal approach; however, it is extremely cum-
bersome and costly. Therefore, we use an LLM-
based evaluation to assess the effectiveness of in-
formation updates. We utilized average outputs
from three closed-source LLMs accessed via their
APIs: Gemini 1.5 Flash Pro, GPT-4, and GPT-
3.5. 5 In our evaluation process, we systematically
measured the individual similarity of each aligned
row for both INPUT-OUTPUT and OUTPUT-GOLD

across all three models. After generating predic-
tion scores, we averaged the similarity scores from
each model to obtain a consolidated view of overall
alignment quality. This ensemble approach proved
significantly more effective for similarity matching
than relying on a single LLM. By averaging the
output of multiple models, we effectively utilized
their diverse strengths, enhancing the robustness
and accuracy of our semantic evaluations. This
also mitigated the limitations associated with any
individual model and provided a more consistent
semantic matching.

Baselines Methods. We compare our proposed
decomposition approach against multiple base-

5We avoided open-source models like LLaMA 3.0 due to
their weaker performance in semantic similarity tasks, as prior
research shows closed-source models excel in capturing subtle
semantics.

lines, including both deterministic rule-based and
generation-based methods. For the deterministic
rule-based comparison, we utilize the rule-based
update technique from InfoSync (Khincha et al.,
2023). In the generation-based approach, we take
a straightforward approach with direct prompting.
We simply describe the task at hand, without break-
ing it into smaller steps or outlining modeling
strategies. The model is then free to tackle the
task on its own, using chain-of-thought reasoning
to guide its process. Additionally, we adapt the In-
foSync technique (Align-Update variants, two and
joint prompts), implementing a two-step process in-
volving initial alignment followed by updates with
a large language model (LLM). This involves two
strategies: one where we provide instructions in
a single prompt (joint prompts) to perform both
steps simultaneously, and another where we use
two sequential prompts—one (two prompts) for
alignment and the output of which feeds into a
second prompt that handles the final updates.

Ablations. Additionally, we also compare our
approach through various ablation studies, starting
with a single prompt containing all instructions, re-
ferred to as the Direct Decompose Prompt. We then
conduct step-wise ablations of our decomposition
method, beginning with just English translation and
direct updates, followed by back-translation, which
we refer to as Translation (+BackTrans). Next,
we incorporate the merge and alignment steps in
place of direct updates, referred to as Merge and
Alignment. Finally, we transform the output into
a knowledge graph before merging and aligning,
completing our decomposition methods, which we
refer to as Knowledge Graphs.
Human Baseline. We also assess our model’s per-
formance against a human baseline (from indepen-
dent research team members), although this evalua-
tion is limited to only 100 randomly selected table
updating pairs due to cost and time constraints.

5.1 Results and Analysis

Information Alignment Results. The results of
Alignment are shown in Table 2, which show
that our multi-voting achieves superior alignment,
demonstrating very high precision and recall, with
an overall F1 score of 93%. Additionally, multi-
voting enhances robustness and reduces variations
inherent in each individual model, leading to a
more consistent and reliable alignment outcome.
Information Updation Results. Our main results,
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Trialign Rows (Tr) Bialign Rows (Bi) UnAlign Gold (UG) Input BiAlign (Bi)

Methods Updated ↑ Added (%) ↑ Added (#Rows) ↑ Missed (G) ↓ Delete (I) ↓
InfoSync (Khincha et al., 2023) 1.28 12.18 2.99 4.67 0.35
Direct Prompt 0.63 11.55 3.63 4.40 0.50
Align-Update (Two Prompts) -0.77 12.59 3.98 2.74 0.14
Align-Update (Joint Prompt) 0.51 13.58 3.48 3.24 0.17

Our Proposed Decomposition Approach
Direct Decompose Prompt 0.90 12.06 2.98 4.65 0.35
Translation(+BackTrans) 0.62 16.88 4.09 3.71 0.38
+ Merge and Alignment 1.33 17.80 4.99 2.92 0.48
+ Knowledge Graph 1.79 20.58 4.88 2.69 0.45

Human (100 examples) 1.75 21.44 5.6 2.09 0.12

Table 1: Information updation results with average over multiple LLMs. The performance is reported after
using the average of similarity score for multiple LLMs for information evaluation, including GPT-3.5, LLaMA 3.0
(70B), and Gemini 1.5 Flash Pro. These results also include ablation studies on various components of our proposed
task decomposition, including Translation, KG conversion, and merge-alignment.

Model Type Precision Recall F1

InfoSync
Input_Gold 96.62 88.64 91.26
Output_Gold 89.37 82.07 84.42
Overall Average 92.90 85.27 87.75

GPT3.5
Input_Gold 96.29 93.99 94.40
Output_Gold 89.63 85.98 86.70
Overall Average 92.88 89.88 90.46

GPT3.5
Input_Gold 98.06 94.10 95.66
Output_Gold 94.57 87.41 89.81

voting(3x) Overall Average 96.27 90.67 92.66

Gemini
Input_Gold 96.88 92.05 93.63
Output_Gold 92.52 83.95 86.46

voting(3x) Overall Average 94.65 87.90 89.96

Multi
Input_Gold 99.15 93.88 95.80
Output_Gold 94.18 88.39 90.69

voting(3x) Overall Average 96.60 91.07 93.18

Table 2: Evaluation models alignment performance.

i.e. on updating information, are shown in Table 1,
demonstrate that our proposed decomposition tech-
nique significantly outperforms several baselines,
including Khincha et al. (2023), particularly in In-
formation Updation (1.79%) and Information Ad-
dition (20.58%), highlighting the methods strength
in dynamically updating and enriching data.

Our approach excels in correcting erroneous
and adding missing information, consistently out-
performing other methods. For instance, Align-
Update (Two Prompts) shows a negative result (-
0.77) in updates, while our approach performs re-
liably across key metrics. It captures missing data
effectively, with the least amount of missed rows
(2.69), closest to human performance (2.09 rows).
Although there is a slight increase in the deletion
rate (0.45) due to more prompts, this is outweighed
by the improvements in adding and updating infor-
mation, demonstrating our method’s strength.

The integration of the +Knowledge Graph plays
a crucial role in boosting performance, particu-
larly in Information Addition, where we achieve

the highest score of 20.58%. The combination
of +merging and alignment techniques further en-
hances performance, reflected in the added rows
metric (4.99). The model falls slightly behind hu-
man performance in deletion rates, but it outper-
forms in information addition and updating, signif-
icantly narrowing gap between human and model.

We observe consistent performance gains across
models, with detailed results in Table 11 in Ap-
pendix A.3 for GPT 3.5, Gemini 1.5 flash Pro,
and LLAMA 3.0 (70B). Our approach consistently
outperforms existing methods across architectures.
Gemini 1.5 Flash Pro achieves the highest scores,
excelling in complex tasks. LLAMA 3.0 performs
well but slightly behind Gemini 1.5, whereas GPT-
3.5 improves on earlier baselines but lags behind
the others. These differences likely reflect varia-
tions in architecture and training data, with Gem-
ini’s advanced features providing an edge. Our
method’s consistent success across models high-
lights its broad effectiveness and generalizability.

Where do LLM Fail? We performed a step-
wise error analysis of our approach compared to
the Gold Tables, classifying the errors into the fol-
lowing categories: (a) Missing Information: A
complete row is missing from the table compared to
the gold table. (b) Outdated Information (Full):
The entire row contains outdated information when
compared to the gold table. (c) Outdated Informa-
tion (Partial): Some parts of the row are outdated,
while others are up to date. (d) Redundant Infor-
mation: The model retains redundant data from
the input alongside updated information from the
reference. This categorization helps identify the
specific areas where the model’s performance di-
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Error Types. In Refer. +Tr. (En) + KG Cons. + Merge + Table Conv. + Tr. (BT-Orig)

Missing 145 145 151 (+6) 198(+47) 202 (+4) 202
Outdated (Full) 35 35 35 51(+16) 59(+8) 59
Outdated (Partial) 59 59 59 68 (+9) 73 (+4) 73
Redundant 0 0 66 (+66) 66 66 66

Total 239 239 311 (+72) 383 (+72) 400 (+17) 400

Table 3: Error analysis: Step-wise error analysis of the decomposition pipeline, showing error compounding at
each stage: "In Reference" refers to total errors in the input reference tables (lower bound), "+Tr. (En)" captures
total errors after translation to English, "+KG Cons." indicates total errors after knowledge graph construction,
"+Merge" shows total errors after merging, "+Table Conv." tracks total errors after converting graphs to tables,
and "+Tr. (BT-Orig)" refers to total errors after back translation. Numbers in parentheses reflect incremental error
increases at each stage.

verges from the gold standard.
Table 3 breaks down the errors introduced at

various stages of our decomposition pipeline, cate-
gorizing them into four types: Missing Information,
Outdated Information (Full), Outdated Information
(Partial), and Redundant Information. Each col-
umn tracks errors at different stages: "In Refer-
ence" shows baseline errors in the reference tables
which are used to update outdated tables. These er-
rors serve as a lower bound because even a perfect
method cannot resolve information that is missing
from the reference table used for updates. The ref-
erence tables initially contain 239 errors, including
145 missing rows, 35 fully outdated rows, and 59
partially outdated rows, with no redundancy.

The subsequent columns detail total errors after
each step, i.e. translation to English (+Tr. En),
knowledge graph construction (+KG Cons.), merg-
ing (+Merge), table conversion, i.e., restructuring
(+Table Conv.), and back translation to the original
language (+Tr. BT-Orig). The numbers in parenthe-
ses show the errors added in that step as compared
to the prior step, i.e. new errors introduced in that
step. Translation to English adds no new errors.
However, errors rise to 400 after the knowledge
graph construction and merging stages. Knowl-
edge graph construction introduces 6 missing rows
and 66 redundant rows, highlighting issues with
removing outdated data. The merging stage adds
47 missing rows, 16 fully outdated rows, and 9
partially outdated rows, indicating challenges with
data integration. Improving these stages, particu-
larly knowledge graph construction and merging,
could greatly reduce errors and enhance accuracy.

6 Further Discussion

Why Zero-Shot over Few-Shot ? Our proposed
method employs hierarchical decomposition to
break the problem into multiple, simplified tasks,

effectively eliminating the reliance on few-shot
learning. Moreover, using a few-shot approach
may introduce bias, as the model could perform
disproportionately well on categories selected as
exemplars. To ensure that information synchro-
nization remains unbiased and generalizable across
various entity categories, we opted for a zero-shot
setting. Lastly, our preliminary tests revealed that
the increased computational and financial costs as-
sociated with few-shot learning using GPT APIs
resulted in only marginal improvements, making it
a less practical choice for our objectives.

Why Translation to English? Translation mod-
els for low-resource languages like Afrikaans and
Cebuano often struggle with accuracy. Our re-
search shows that direct translations between these
languages tend to be unreliable, but translating
everything into English boosts performance sig-
nificantly. To address cultural nuances, we em-
ploy a two-way translation strategy. For reverse
translations, we include examples from the origi-
nal English-to-X translations, formatted as X-to-
English mappings, as few-shot prompts. This ap-
proach helps capture cultural context and ensures
more accurate alignment without losing meaning,
especially for complex terms and idioms. This
trend aligns with the fact that large language mod-
els (LLMs) are predominantly trained on English
data. Although multilingual models continue to
improve, LLMs trained primarily with English
datasets still excel at tasks like knowledge graph
construction, data merging, and table generation.
Translating content into English allows us to lever-
age these LLMs’ capabilities, improving semantic
accuracy, consistency, and cross-lingual data pro-
cessing. Additional discussion on explanation for
using Knowledge graphs in the above proposed
methods is explained in Appendix section A.4,
showing an example.
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7 Related Works

MultiLingual Information Alignment and Up-
date. Past efforts in multilingual table attribute
alignment have employed both supervised and un-
supervised techniques. Supervised methods used
simple classifiers based on features such as cross-
language links and cosine text similarity derived
from tables (Adar et al., 2009; Zhang et al., 2017;
Ta and Anutariya, 2015). On the other hand, un-
supervised approaches relied on corpus statistics
and template or schema matching for alignment
(Bouma et al., 2009; Nguyen et al., 2011). Previ-
ous research on information updates (Iv et al., 2022;
Spangher et al., 2022; Panthaplackel et al., 2022;
Zhang et al., 2020a,b) has primarily focused on
Wikipedia and news articles, rather than semistruc-
tured data like tables. Spangher et al. (2022), specif-
ically, examines the challenge of updating multilin-
gual news articles across different languages. The
most closely related work is (Khincha et al., 2023),
which proposed a rule-based approach. However,
this method struggles with corner cases and does
not leverage current state-of-the-art large language
models (LLMs) for multilingual information syn-
chronization. Our work addresses these gaps by in-
troducing an LLM-based prompting approach that
is adaptable across different languages, providing
a more scalable solution.

Temporal Understanding. Temporal evolv-
ing information has been explored through var-
ious datasets in the context of question answer-
ing. TORQUE (Ning et al., 2020) and TIME-
SENSITIVEQA (Chen et al., 2021) focus on time-
sensitive questions from Wikipedia, while SYGMA
(Neelam et al., 2022), CRONQUESTIONS (Saxena
et al., 2021), and TEMPQUESTIONS (Jia et al.,
2018) deal with temporal queries in knowledge
graphs. SUMIE (Hwang et al., 2024), addresses a
similar task in a specific domain and shares some
similarities with our work. SUMIE deals with tex-
tual summarization, analyzing unstructured text. In
contrast, our approach focuses on semistructured
data, specifically the synchronization of infobox ta-
bles. This distinction allows us to tackle a broader
range of synchronization tasks that require struc-
tured reasoning, beyond just textual content. Our
dataset and approach are multilingual, concentrat-
ing on the synchronization of tables across different
languages—an aspect not covered by SUMIE. We
investigate how data can be aligned and updated
across multiple languages, whereas SUMIE does

not explore multilingual contexts. SUMIE gen-
erates data using LLM-based synthetic pipelines,
whereas our dataset is directly sourced from real-
world Wikipedia data, offering more diversity.

SituatedQA (Zhang and Choi, 2021) and TEM-
PLAMA (Dhingra et al., 2022) target open-domain
and cloze-style temporal queries. TempTabQA
(Gupta et al., 2023), TIQ (Jia et al., 2024), TRAM
(Wang and Zhao, 2024), and the BIG-bench project
(et. al., 2023) address temporal reasoning over ta-
bles and knowledge bases. More recent work (Tan
et al., 2023, 2024) investigates temporal reasoning
in large language models (LLMs) using unstruc-
tured and synthetic data.

However, none of this work focuses on edit-
ing multilingual tables. Some studies focus on
Wikipedia-based document editing (Lange et al.,
2010; Sáez and Hogan, 2018; Sultana et al., 2012),
but not tables. Others apply editing strategies
to technical, scientific, legal, and medical tables
(Wang et al., 2013; Gottschalk and Demidova,
2017). Expanding our approach to include social,
economic, and cultural aspects in table updates
would be a valuable direction for future research.

8 Conclusion and Future Work

In this paper, we explored the application of large
language models (LLMs) for multilingual informa-
tion synchronization, focusing on improving the
accuracy and coherence of updates to Wikipedia ta-
bles in low-resource languages. Our task decompo-
sition strategy significantly outperformed baseline
methods, especially in information updating and ad-
dition. The Information Updation dataset enabled a
more precise evaluation of LLM capabilities. Over-
all, our findings highlight the potential of LLMs
for dynamic data enrichment across diverse archi-
tectures, advancing multilingual and low-resource
information systems.

Future research could explore several key di-
rections: (a) extending the dataset to include di-
verse languages and more complex information
structures to test LLM generalizability, (b) integrat-
ing LLMs with rule-based methods or knowledge
graphs for improved factual accuracy, (c) enhanc-
ing the model’s performance in deletion tasks with-
out weakening its strength in addition and updating,
and (d) investigating efficient prompting strategies
and fine-tuning techniques to improve scalability
and real-world applicability across different model
architectures.
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Limitations

Even though our research demonstrates significant
improvements in multilingual information synchro-
nization using large language models (LLMs), sev-
eral limitations remain. The performance of the
models is highly dependent on the quality and di-
versity of the pre-training data, which may not fully
capture the nuances of low-resource languages,
leading to inconsistencies across different linguistic
contexts, and across different LLMs. Additionally,
although our task decomposition strategy improves
performance in information updating and addition
tasks, it also increases the number of prompts, re-
sulting in a slight rise in deletion errors. This high-
lights the need for further refinement to balance
the model’s strengths in information addition and
correction with its ability to manage deletions ef-
fectively. The use of closed-source models such
as GPT-3.5 and Gemini 1.5 Flash Pro also limits
transparency and replicability, while open-source
models such as LLAMA 3.0 offer more flexibility
but may not achieve the same performance lev-
els. Lastly, the computational demands of our
approach, though manageable within our project,
could pose challenges for broader scalability, par-
ticularly in resource-constrained environments. Fu-
ture research should focus on developing more effi-
cient and scalable solutions to address these limi-
tations and ensure generalizability across diverse
languages and domains.

Ethics Statement

This research on leveraging large language models
(LLMs) for multilingual information synchroniza-
tion involves several ethical considerations. First,
there is a risk of reinforcing biases, particularly in
low-resource languages where training data may
be limited and skewed, potentially leading to the
spread of cultural or factual inaccuracies. Ensur-
ing transparency and incorporating mechanisms for
human oversight are essential to prevent misinfor-
mation, especially when automating updates for
public knowledge sources such as Wikipedia. Ad-
ditionally, respecting intellectual property and data
rights is critical when utilizing publicly available
datasets, as unauthorized use could raise ethical and
legal concerns. The computational cost of training
and deploying LLMs also contributes to environ-
mental impacts, highlighting the importance of de-
veloping more energy-efficient models. Although
this research demonstrates the potential of LLMs

to improve information synchronization, address-
ing these ethical issues is key to responsible and
equitable deployment in real-world applications.
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A Appendix

A.1 Information Updation Dataset Statistics
Table 4 shows the statistics for the proposed infor-
mation update dataset grouped by different cate-
gories and different languages in the table. The
dataset is skewed toward high-resource languages
because updated tables on entities of interest are
seldom available in low-resource languages such
as Afrikaans and Cebuano.

A.2 Metrics Definitions for Example in the
main paper

Table 5 shows the tri-align, bi-align and un-aligned
set of rows for the example shown in Figure 2 using
formal defination from Table 6.

Table 7 shows the metrics defined for each align-
ment type defined in Section for example presented
in Figure 2. The figure illustrates the calculation
of various metrics by presenting an example and
evaluating each defined metric step by step.

Language Tables Category Tables

af 7 Album 76
ar 120 Athlete 70
ceb 4 City 108
de 105 College 112
en 206 Company 148
es 23 Country 122
fr 123 Musician 138
hi 64 Person 108
ko 93 Stadium 66
nl 21
ru 131
sv 15
tr 18
zh 18

Table 4: Dataset Statistics. Number of pair of (old,new)
tables in the dataset grouped the language and different
categories.

Component Definition Example Associations
Tri-Align
(tr)

Alignment
across Input,
Gold, and
Output.

ir1 ↔ gr1 ↔ or1
ir2 ↔ gr2 ↔ or2

Bi-Align
(bi)

Alignment
between only
two compo-
nents.

Input ↔ Gold:
ir3 ↔ gr3
Gold ↔ Out-
put: gr4 ↔ or3,
gr7 ↔ or5

Un-
Aligned
(un)

Elements not
aligned with
any compo-
nent.

Input: ir4
Gold: gr5, gr6, gr8
Output: or4, or6

Table 5: Summary of Alignment Components and Ex-
ample Associations for the example in Figure 2.

Type Formal Definition

Trialign
All {(i, o, g) | i ∈ Ti, o ∈ To, g ∈

Tg,Aligned(i, g) ∧ Aligned(o, g)}

Bialign
Input {i ∈ Ti | ∃g ∈ Tg,∀o ∈ To,Aligned(i, g) ∧

¬Aligned(o, g)}
Output {o ∈ To | ∃g ∈ Tg,∀i ∈ Ti,Aligned(o, g) ∧

¬Aligned(i, g)}

UnAlign
Input {i ∈ Ti | ∀g ∈ Tg,¬Aligned(i, g)}
Output {o ∈ To | ∀g ∈ Tg,¬Aligned(o, g)}
Gold {g ∈ Tg | ∀i ∈ Ti, ∀o ∈ To,¬Aligned(i, g) ∧

¬Aligned(o, g)}

Table 6: Definitions of alignment groups

A.3 Results with Single Model Evaluations

In the main paper (Table 1), we reported results
based on voting across multiple model predictions.
However, we also evaluated the performance using
individual models without voting. These results
are presented in Table 11. It is clearly demon-
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Component Notation Information Metrics
Tri-Align (tr) tr(o, g): Gold elements aligned with

Output.
tr(i, g): Gold elements aligned with In-
put.
|g|: Total Gold elements.

Information Updated:
tr(o,g)−tr(i,g)

|g| = 2
8

Represents the net addition of relevant
information to the Output.

Bi-Align (bi) bi(o, g): Gold elements aligned with
Output but not Input.
bi(i, g): Gold elements aligned with In-
put but not Output.
|g|: Total Gold elements.

Noisy Information Added:
bi(o,g)
|g| = 2

8

Represents misaligned additions from
the Output.
Noisy Information Deleted:
bi(i,g)
|g| = 1

8

Represents omissions from the Input
that were relevant.

Un-Aligned (un) un(g): Unaligned Gold elements.
un(i): Unaligned Input elements.
un(o): Unaligned Output elements.
|g|: Total Gold elements.
|i|: Total Input elements.
|o|: Total Output elements.

Missing Information (Gold):
un(g)
|g| = 3

8

Represents the proportion of relevant
Gold elements left unaligned.
Noisy Information Added (Input):
un(i)
|i| = 1

4

Indicates the proportion of irrelevant el-
ements in Input.
Noisy Information Added (Output):
un(o)
|o| = 2

6

Indicates the proportion of irrelevant el-
ements in Output.

Table 7: Summary of Notation and Metrics for Alignment Components with Information Details

strated here that our proposed approach outper-
forms all other approaches discussed consistently
across models, further proving its efficacy. From
the table we can clearly see that Gemini is the best
performing model across most metrics.

The prompts used to generate outputs are shown
in B. The evaluation prompt used is shown in B.5(it
is paired with several examples across multiple
languages annotated by us covering a variety of
evaluation examples to ensure efficacy).

A.4 Importance of Using Knowledge Graphs.

Our method involves table merging, which often
faces challenges due to variations in naming con-
ventions, relationships, and structures across differ-
ent data sources (in our case table form multilingual
pages). To address these issues, the Hierarchical
Task Decomposition Prompt utilizes knowledge
graphs (KGs), providing a unified structured, hier-
archical representation of the data. This structure
enables more effective reasoning and merging. For
example, let’s consider two tables Albert Einstein,
current table 8 and outdated table that needs to be
updated Table 9.

By converting these tables into knowledge
graphs, we can align: "Birthdate" and "Date of
Birth" as the same entity and "Profession" and "Oc-
cupation" as related attributes very easily and ac-

keys values
Name Albert Einstein

Birth date March 14, 1879
Profession Theoretical Physicist
Country Germany, United States

Table 8: Current Table in English.

keys values
Name Albert Einstein

Birth date 14 March 1879
Profession Physicist
Country Germany

Table 9: Outdated Table which Needs to be updated,
translated to English form German.

curately. This knowledge graphs representation
simplifies merging for the LLM:

• Handling Variations in Data Representa-
tion, such as "Birthdate" vs. "Date of Birth" or
"Profession" vs. "Occupation". Directly using
LLMs on these tables may cause confusion or
difficulty in aligning these terms. The LLM
might not explicitly recognize that these at-
tributes refer to the same entity. By converting
the tables into knowledge graphs, we explic-
itly capture the relationships between the enti-
ties. For example, in a knowledge graph, the
entity "Albert Einstein" is connected to "Birth-
date", "Profession", and "Country" with clear
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edges that denote these relationships. Even if
different names are used (like "Date of Birth"
and "Birthdate"), the LLM can recognize that
these refer to the same concept by examining
the structure and context in the KG.

• Improved Alignment and Merging. With
KGs, the LLM can easily align data across
tables based on the semantic relationships rep-
resented in the graph. For example: "Birth-
date" in Table 1 and "Date of Birth" in Table
2 refer to the same information. "Profession"
in Table 1 and "Occupation" in Table 2 are
related attributes. Similarly, "Country" and
"Nationality" refer to the same concept.

With this graph-based representation, merging
the two tables becomes much more straight-
forward. The graph structure helps resolve
ambiguities between different terminologies
and aligns the data correctly. The LLM can
leverage the hierarchical relationships (e.g.,
Person → Birthdate → 14 March 1879) to
merge the two infoboxes into a unified repre-
sentation. After converting both tables into
knowledge graphs and resolving the semantic
mappings, the merged table would look Table
10.

keys values
Person Albert Einstein

Birthdate 14 March 1879
Profession/Occupation Theoretical Physicist

Birth Country Germany
Nationality Germany, United States

Table 10: Merged Table.

• Improved Reasoning with LLM. The knowl-
edge graph approach improves performance
over directly using LLMs on raw tables for
the following reasons:

– Hierarchical Reasoning. The hierarchi-
cal nature of KGs enables the LLM to
reason more effectively about the rela-
tionships between entities and their at-
tributes. This is particularly useful in
complex tasks like table merging, where
identifying relationships between entities
in different tables is crucial.

– Merging Benefit Reasoning. With KGs,
merging data becomes more straightfor-
ward because the relationships between
entities are explicitly defined. The LLM

can merge information by focusing on
the nodes and edges that connect related
concepts, leading to more accurate in-
tegration of data and better reasoning.
Converting tables into knowledge graphs
allows the LLM to reason effectively
over hierarchical and relational data, han-
dling variations in data representation
with greater precision. This approach
simplifies tasks like table merging, en-
abling the LLM to align data, resolve
ambiguities, and generate more accurate
merged results.
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Trialign Rows (Tr) Bialign Rows (Bi) UnAlign Gold (UInput BiAlign (Bi)

Methods Updated ↑ Added (%) ↑ Added (#Rows) ↑ Missed (G) ↓ Delete (I) ↓
InfoSync (Khincha et al., 2023) 0.94 12.18 2.99 4.67 0.35

GPT 3.5
Direct Prompt 1.34 5.44 5.14 4.03 0.43
Align-Update (Two Prompts) -0.37 4.45 0.88 3.39 0.29
Align-Update (Joint Prompt) -0.64 1.08 0.75 5.03 0.64
Our Proposed Decomposition Approach
Direct Decompose Prompt 0.65 5.8 1.75 5.76 0.78
Translation(+BackTrans) 0.31 5.67 1.85 5.67 1.04
+Merge and Alignment 0.42 8.75 2.66 4.84 1.13
+Knowledge Graph 0.76 12.32 3.53 3.8 1.06

Gemini 1.5 Flash Pro
Direct Prompt 1.27 17.29 5.12 4.02 0.42
Align-Update (Two Prompts) -0.97 17.24 4.07 3.44 0.07
Align-Update (Joint Prompt) 1.14 20.36 4.83 3.11 0.11
Our Proposed Decomposition Approach
Direct Decompose Prompt 1.04 15.67 3.63 4.03 0.12
Translation(+BackTrans) 0.59 23 5.24 2.67 0.05
+Merge and Alignment 1.77 22.84 6.19 1.91 0.16
+Knowledge Graph 2.23 25.22 5.6 2.09 0.12

LLAMA 3.0 (70B)
Direct Prompt 1.25 16.27 5.01 4.14 0.42
Align-Update (Two Prompts) -0.97 16.09 3.99 3.53 0.06
Align-Update (Joint Prompt) 1.04 19.29 4.75 3.22 0.12
Our Proposed Decomposition Approach
Direct Decompose Prompt 1 14.72 3.55 4.15 0.13
Translation(+BackTrans) 0.96 21.96 5.16 2.79 0.05
+Merge and Alignment 1.81 21.83 6.11 2.01 0.16
+Knowledge Graph 2.38 24.2 5.52 2.18 0.17

Human (100 examples) 1.75 21.44 5.6 2.09 0.12

Table 11: Information Updation Results for individual LLMs. GPT3.5, Gemini 1.5 Flash Pro, LLAMA 3.0
(70B) individual performance.

B Prompt Examples

This section presents example prompts used for
hierarchical task decomposition and evaluation in
our experiments.

B.1 Hierarchical Decomposition Prompt

B.1.1 Translation(x -> English)

Translate the following of Category CATE-
GORY into English, and provide only the
translated table as the output. Ensure that
strings with apostrophes are escaped prop-
erly using a backslash. Output table Schema:
[ ["key","value"], ["key","value"] ]
Table:

B.1.2 Table to Knowledge Graph Conversion

Please convert the following table into a
knowledge graph and provide the final
knowledge graph in a structured json format.
This table is from the category The Output
should be in a nested dictionary format. En-
sure you do not miss any information in the
original table.
Example Output Knowledge Graph: {
"Person": { "Name": "Karla Camila Ca-
bello Estrabao", "Born": "March 3, 1997",
"Age": "24", "Birthplace": "Cojímar, Ha-
vana, Cuba" }, "Occupation": { "Primary":
"Singer", "Additional": ["Songwriter", "Ac-
tress"] } ....}
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B.1.3 Knowledge Graph Merge or Alignments

Given two knowledge graphs containing in-
formation about an entity, your task is to
merge the graphs while adhering to the fol-
lowing guidelines:
Avoid Duplicate Entries: Ensure that there
are no duplicate nodes and relations in the
merged knowledge graph.
Resolve Conflicting Information: In cases
where there is conflicting information for a
specific node, use the most updated value to
resolve the conflict. If you are still not able
to merge the conflict, then prefer the value in
Graph B. When you resolve a conflict, only
one of the rows should finally be outputted,
not both.
Merge Redundant Rows: Explicitly check for
and merge redundant rows holding the same
information. Combine them into a single en-
try, and only one of them should be outputted.
Ultimate Goal: Create a merged knowledge
graph that includes the latest and most accu-
rate information available, without any miss-
ing entries. Do not remove any entry during
the merging process. Provide only the merged
knowledge graph as the output.
Knowledge graphs:

B.1.4 Back-Translation

Convert the knowledge graph into an entity
centric table in the format of a list of lists.
Here is an example conversion of knowl-
edge graph A to table A:
Graph A:
Table A:
Now convert Knowledge Graph G to table
G following similar keys to table A:
Knowledge Graph G:
Ensure that strings with apostrophes are
escaped properly using a backslash. Out-
put table Schema: [ ["key","value"],
["key","value"]

B.1.5 Translation(English -> x)

Translate the following English language ta-
ble of Category Ensure that strings with apos-
trophes are escaped properly using a back-
slash.
Here is an example translation:
Original Table:
Translated Table:
Now translate the following table:
Output table Schema: [ ["key","value"],
["key","value"] ]

B.2 Align-Update-Joint

This prompt is used for Align-Update (Joint
Prompts). For Align-Update (Two Prompts), we
separate the prompts into two parts: one for align-
ment and one for the update tasks.

Your task is to update Table A(To help you
in the task, you are given a set of alignments.
Alignments are a mapping between two ta-
bles that match similar information. Use
these alignments as a reference to make up-
dates as only aligned rows need to be consid-
ered while making updates. Alignments are
in the following format: [ [’Table A Aligned
Key 1’],[’Table B Aligned Key 1’], [’Table
A Aligned Key 2’],[’Table B Aligned Key
2’], ]
Follow these steps:
Identify missing or outdated information
in Table A compared to its aligned infor-
mation in Table B, and update it with the
corresponding information from Table B.
You should add any missing rows present
in Table B that are not present in table A.
These would be rows of table B that are
not present in the set of alignments. You
should also fix any wrong, outdated or
missing information present in Table using
the set of alignments. Your solution should
ensure that Table A contains complete and
accurate information about the entity using
data from Table B. Table A :
Table B :
Alignments:
Provide the updated Table A only
in language Output table Schema: [
["key","value"], ["key","value"] ]
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B.3 Direct Decompose

Your task is to update Table A(
Follow these instructions: 1) Translate both
tables to English. 2) Create a merged ta-
ble combining the information from both
tables ENSURING that you fix any wrong,
outdated or missing information present in
both tables. 3) Use the Merged table to up-
date the translated version of Table A. 4)
Translate table A back to
Your solution should ensure that Table A
contains complete and accurate information
about the entity using data from Table B.
Table A :
Table B :
Provide the updated Table A ONLY in
language Ensure that strings with apostro-
phes are escaped properly using a backslash.
Output table Schema: [ ["key","value"],
["key","value"] ]

B.4 Just Alignments Prompt

Please provide a list of aligned keys by
matching Table G keys with suitable Table
A keys, ensuring that they have similar se-
mantic values. Allow for multi-alignments
where appropriate. If no suitable alignment
is found, please skip that key. Do not change
the way a key is written and use the exact
representation while making alignments.
Tables for Alignment(language):
Table A:
Table G:
Output Schema:
[ [A-key,G-key], [A-key,G-key].... ]
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B.5 Evaluation Prompt

Your task involves analyzing two sets of key-value pair tables. Begin by translating the tables
to English. Then, extract all pertinent fine-grained details from each table. Then, delve into
the semantic content, disregarding minor differences due to formatting, grammar, and language
nuances.
Within the tables, information may fall into two categories:
‘Similar Information’: Information common to both tables

• ‘Consistent Information’: Both tables contain identical data with possible differences in
format.

• ‘Contradictory Information’: Tables present conflicting data with clear difference in
meaning.

Note: While analyzing the information, especially for similar information from two tables, solely
focus on the semantic content, disregarding any minor differences due to formatting, grammar,
and linguistic variations. While comparing numerical information, allow a reasonable error
percentage that you consider acceptable before presenting information as inconsistent. Allow the
same error margin for other types of information such as coordinates. Be lenient in grouping
information as ’Consistent’ when slight differences still refer to the overall same data.
‘Unique Information’: Information exclusive to one table.
Your comparison should result in four types of information:

• Similar and consistent information: similar_consistent

• Similar and contradictory information: similar_contradictory

• Table 1 unique information: table1_unique

• Table 2 unique information: table2_unique

Here are the test tables provided in language :
Table 1:
Table 2:
Note: While comparing information, solely focus on the semantic content, disregarding formatting,
grammar, and language nuances.
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