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Abstract

Recent advancements in NLP systems, partic-
ularly with the introduction of LLMs, have
led to widespread adoption of these systems
by a broad spectrum of users across various
domains, impacting decision-making, the job
market, society, and scientific research. This
surge in usage has led to an explosion in NLP
model interpretability and analysis research, ac-
companied by numerous technical surveys. Yet,
these surveys often overlook the needs and per-
spectives of explanation stakeholders. In this
paper, we address three fundamental questions:
Why do we need interpretability, what are we
interpreting, and how? By exploring these
questions, we examine existing interpretability
paradigms, their properties, and their relevance
to different stakeholders. We further explore
the practical implications of these paradigms by
analyzing trends from the past decade across
multiple research fields. To this end, we re-
trieved thousands of papers and employed an
LLM to characterize them. Our analysis reveals
significant disparities between NLP developers
and non-developer users, as well as between
research fields, underscoring the diverse needs
of stakeholders. For example, explanations of
internal model components are rarely used out-
side the NLP field. We hope this paper informs
the future design, development, and application
of methods that align with the objectives and
requirements of various stakeholders.

1 Introduction

Recent advancements in Natural Language Pro-
cessing (NLP), particularly with the introduction
of Large Language Models (LLMs), have dramati-
cally enhanced model performance. These models
are now capable of executing a wide array of tasks
and have been adopted across various domains and
research fields (Aletras et al., 2016; Calderon et al.,
2024; Yang et al., 2024). Their applications ex-
tend beyond the NLP community, and they are
widely used by the general public (Choudhury and
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Figure 1: Number of NLP Interpretability papers pub-
lished over time. Each year spans from June of the
previous year to the following June. The left plot shows
the distribution of papers across NLP and the other fields
(Outside). The right plot shows trends in other fields
besides NLP. Only papers that use, propose, or discuss
interpretability methods applied to natural language are
counted, following relevance filtering by an LLM.

Shamszare, 2023; Kasneci et al., 2023; von Garrel
and Mayer, 2023). However, these black-box mod-
els are complex and opaque (Wallace et al., 2019;
Calderon et al., 2023; Luo et al., 2024). While per-
formance has advanced, this comes at the cost of
understanding their underlying mechanisms (Lyu
et al., 2022; Madsen et al., 2023; Singh et al., 2024).

The ability to explain decisions is particularly
crucial, given that NLP models, especially LLMs,
significantly influence individual decision-making
(Tu et al., 2024; Yu et al., 2024), society (Samuel,
2023; Taubenfeld et al., 2024), the job market
(Eloundou et al., 2023), and academic research (Ed-
itorials, 2023; Liang et al., 2024). Moreover, model
interpretability and analysis are utilized for scien-
tific insights and discoveries (Roscher et al., 2020;
Allen et al., 2023; Badian et al., 2023; Birhane
et al., 2023; Lissak et al., 2024b).

Unsurprisingly, research on model interpretabil-
ity and analysis has become one of the most pro-
lific areas within the NLP community and beyond,
yielding thousands of publications in recent years,
as illustrated in Figure 1. Consequently, many tech-

656



nical NLP model interpretability and analysis sur-
veys have emerged, reviewing hundreds of methods
(Belinkov and Glass, 2019; Danilevsky et al., 2020;
Balkir et al., 2022; Sajjad et al., 2022a; Bereska
and Gavves, 2024; Luo et al., 2024; Zhao et al.,
2024; Mosbach et al., 2024). In this paper, we aim
to bridge a gap in the existing literature and dis-
cuss model interpretability from the stakeholders’
perspective. Our goals are to broaden the NLP
community’s point of view on the application of
interpretability methods in various fields and to
promote the design and development of methods
that align with the objectives, expectations, and
requirements of various stakeholders.

We will explore three key questions: why do
we need interpretability (§2), what are we inter-
preting (§3), and how are we interpreting (§4)?
This approach allows us to examine common in-
terpretability paradigms (Table 1), their properties
and their applications by different stakeholders.

We start by presenting four perspectives on in-
terpretability and their relevant stakeholders in §2.
Next, in §3, we address a pressing issue in the lit-
erature: the lack of consensus on the definition of
interpretability. We examine various definitions
within and outside the NLP community and pro-
pose a broad definition: Extracting insights into a
mechanism of the NLP system and communicating
them to the stakeholders in understandable terms.

In §4, we propose six properties of interpretabil-
ity methods and discuss the relevance of each prop-
erty to different stakeholders. For example, the
scope property distinguishes between local and
global explanations. If the stakeholder is a physi-
cian, a local explanation that clarifies the prediction
for an individual patient is preferred. Conversely, a
global explanation is more suitable for a scientist,
as it facilitates understanding broader phenomena.

We survey in Appendix §B seven prevalent in-
terpretability paradigms, explain which properties
characterize each (see Table 1), and discuss their
applications by different stakeholders. Throughout
the survey, we review over 200 works.

Following that, in §5 we aim to understand how
the paradigms and their properties are reflected in
practice by analyzing trends over the years and
across different research fields. To this end, we
retrieved over 14,000 papers using the Semantic
Scholar API and employed an LLM to select only
relevant ones, resulting in 2,000 papers. Further-
more, we utilized the LLM to annotate papers with

their interpretability paradigm and properties.1 Im-
portantly, the LLM annotation is in strong agree-
ment (over 90%) with human expert annotation. To
the best of our knowledge, this is the first successful
application of an LLM for such a task.

Below, we summarise our main findings:
1. Within the NLP community, interpretability

paradigm trends have remained stable over the
decade. However, the introduction of LLMs in
the past two years has prompted a notable shift.

2. Outside the NLP community, our main claim
gains support: different stakeholders have vary-
ing needs, reflected in significant differences
between research fields in terms of both the
paradigms and their properties.

3. Comparing NLP developers to non-developers
reveals that the latter group is less interested in
understanding internal model components.

4. Non-developers opt for popular methods not
originally developed within the NLP commu-
nity, such as SHAP and LIME, likely due to
their user-friendly and easy-to-apply software.

5. LLMs have shifted the trends in interpretability
research: not only has the number of published
papers doubled, but there has also been a sub-
stantial increase in the use of natural language
explanations. These explanations are utilized in
nearly half of the papers outside the NLP field.

We hope this first-of-its-kind paper, which reviews
NLP interpretability through the stakeholders’ per-
spective and rigorously analyzes trends within and
outside the NLP field, will pave the way for im-
proved design, development, and application of
these essential methods. To further this aim, we
outline in §6 practical steps that NLP researchers
can undertake to promote the adoption of inter-
pretability methods in other disciplines.

2 Why Do We Need Interpretability?

Understanding why interpretability is necessary
provides a solid framework for discussing, assess-
ing, and enhancing interpretability methods, ensur-
ing they meet practical objectives and expectations.
So, when and why do we need interpretability?
We gather ideas from other surveys (Gade et al.,
2020; Räuker et al., 2023; Saeed and Omlin, 2023)
and propose a decomposition of the need for in-
terpretability into four perspectives (see Figure 2):
algorithmic, business, scientific, and social.

1Data: www.github.com/nitaytech/InterpreTrends
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Algorithmic
”We need interpretability
 to build better models.”

·evaluation ·debugging 
·generalization ·editing 

Stakeholders: developers

Business
·legal compliance
·decision-making
·user trust

Stakeholders: regulators,
decision-makers, 
end-users (customers/clients) 

Scientific
”We need interpretability for
 understanding the mechanisms
 behind underlying predictions.”

·theory validation
·new discoveries
·hypothesis generation

Stakeholders: scientists

Social
·fairness
·AI safety
·public trust
·ethical practices
·aligned with social practices 

Stakeholders: soceity

Figure 2: Overview of four perspectives on the need for interpretability proposed in this paper.

The four perspectives define the objective and
use case of the interpretability method. Clearly,
there can be overlaps between the different per-
spectives, particularly with the algorithmic one.
For example, using interpretability to build a bet-
ter model (algorithmic perspective) might coincide
with making it fairer (social perspective) or one
that promotes more informed business decisions
(business perspective). Similarly, promoting social
values through interpretability (social perspective)
can build customer trust (business perspective).

Besides the objectives of the interpretability
method, another key consideration is the stakehold-
ers–the audience to whom the explanation is aimed
and communicated. Accordingly, when design-
ing the interpretability method, we should consider
not only the objective (and the usage) of the ex-
planation but also the stakeholders, their level of
expertise, and their familiarity with NLP models.
By identifying different stakeholders’ specific re-
quirements and concerns, we can foster practical
interpretability methods that align with their expec-
tations (Kaur et al., 2021). We next discuss the four
perspectives and the main stakeholders (in bold):

1. The Algorithmic Perspective: emphasizes
using interpretability for building better models.
Thus, the stakeholders are developers. Inter-
pretability allows for an open-ended, more rigorous
evaluation beyond standard metrics (Ribeiro et al.,
2018; Lertvittayakumjorn and Toni, 2021; Kabir
et al., 2024). It helps uncover why the model fails,
offering insights into identifying and rectifying mis-
takes (Yao et al., 2021) and improving its gener-
alization. For instance, Ghaeini et al. (2019) use
saliency maps, and Joshi et al. (2022) use counter-
factual explanations for modifying the training ob-

jective and improving model robustness. Gekhman
et al. (2024) study the source of hallucinations in
LLMs by curating a diagnostic set that utilizes the
model’s pre-existing knowledge. Moreover, by un-
derstanding how the model works, we can inter-
vene and modify it or design better models from
the start (e.g., reverse engineering) (Meng et al.,
2022; Arad et al., 2023). For example, Dai et al.
(2022) use attributions to locate knowledge neu-
rons, modify them, and edit factual knowledge of
the NLP model. The algorithmic perspective un-
derscores interpretability for debugging, refining
model deployment, and forecasting progress.

2. The Business Perspective: focuses on lever-
aging interpretability across various sectors to en-
hance informed decision-making, legal compliance,
and user trust. Models often aid decision-making
at the business level (e.g., sentiment analysis for
market research (Hartmann et al., 2022)) and at the
user level (e.g., LLMs assisting physicians in pa-
tient diagnostics (Clusmann et al., 2023)). In both
cases, interpretability aids ensure well-grounded
and trustworthy decisions (Lai and Tan, 2019).

Legal compliance includes cases where inter-
pretability is explicitly the regulator’s requirement,
such as the GDPR’s “right to explanation” (Good-
man and Flaxman, 2017) and the Algorithmic Ac-
countability Act proposed in the US (MacCarthy,
2019), or cases where interpretability is instrumen-
tal in ensuring the business adheres to legal stan-
dards, thereby reducing the risk of legal penalties.
For instance, when NLP models are used to pro-
cess credit applications (Zhang et al., 2020; Yang
et al., 2022; Sanz-Guerrero and Arroyo, 2024), they
must comply with the Equal Credit Opportunity
Act (ECOA), which prohibits discrimination.
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Finally, interpretability enhances transparency,
fostering trust and goodwill. When end-users un-
derstand how decisions are made, they are more
likely to trust AI systems, improving business rep-
utation. For example, Facebook’s ’Why am I see-
ing this ad’ tool is designed specifically to provide
more transparency and build trust (Pavón, 2023).
The link between interpretability and trust is well-
documented (Parasuraman and Riley, 1997; Miller
et al., 2016; Buçinca et al., 2020).

3. The Scientific Perspective: Language is tightly
connected to human behavior, cognition, and com-
munication. Researchers and scientists from vari-
ous disciplines, such as social science (Lazer et al.,
2020; Ziems et al., 2024), psychology (Ophir et al.,
2022), psychiatry (Rezaii et al., 2022), psycho-
linguistics (Wilcox et al., 2018), health (Singhal
et al., 2023; Thirunavukarasu et al., 2023), neuro-
science (Goldstein et al., 2022; Tikochinski et al.,
2023), finance (El-Haj et al., 2019), behavioral
economics (Shapira et al., 2023, 2024), political
science (Gennaro and Ash, 2022), and beyond, are
now turning to NLP to model scientific phenomena,
decode complex patterns and derive meaningful in-
sights about humanity. Science is all about gaining
knowledge, and interpretability enables us to un-
derstand the underlying mechanisms and patterns
the NLP model identifies, facilitating deeper com-
prehension and advancing scientific discoveries
(Roscher et al., 2020). For example, by interpreting
the representations of Facebook posts extracted by
an NLP model, Lissak et al. (2024b) identify a new
risk factor for suicide ideation: boredom.

4. The Social Perspective: addresses the broader
impact of NLP systems on society, fairness, the
ethical implications of its use and AI safety. Since
NLP models are optimized using data that may
contain human biases and prejudices (Blodgett
et al., 2020; Dev et al., 2021), interpretability is
crucial for understanding the rationale behind the
models, ensuring they serve what they are de-
signed for rather than reflecting their training data
(Ruder et al., 2022). Interpretability can confirm
the model predictions are just and equitable (Orgad
et al., 2022; Attanasio et al., 2023; Santosh et al.,
2024), foster public trust, promote ethical practices,
and prevent misuse or other harmful consequences
(Bereska and Gavves, 2024; Lissak et al., 2024a).
Accordingly, interpretability helps society embrace
the model or reject it, depending on how well it
aligns with expected social values.

3 Definitions

3.1 What is an Interpretability Method?

In the AI literature, the terms interpretability and
explainability are often subjects of debate, and
there is no clear consensus on their definitions
(Doshi-Velez and Kim, 2017; Lipton, 2018; Kr-
ishnan, 2019). While these terms are used inter-
changeably in much of the NLP literature (Jacovi
and Goldberg, 2020; Lyu et al., 2022; Zhao et al.,
2024), many papers in the XAI literature distin-
guish between the two (Rudin, 2018; Arrieta et al.,
2020), see our note in §A.2.1. Moreover, within
this broad umbrella of model interpretability, the
NLP literature also discusses model analysis (Be-
linkov and Glass, 2019; Mosbach et al., 2024).

For the purposes of this paper, we embrace a
broad perspective and define both interpretability
and explainability methods as:

Interpretability Method
Any approach that extracts insights into a
mechanism of the NLP system.

We justify this broad definition, which explic-
itly encompasses model analysis, because our pa-
per focuses on the perspective of stakeholders for
whom, to some extent, analysis alone may suffice
to achieve their objectives. For instance, a regulator
might only need to ensure that model performance
does not significantly differ between two subpopu-
lations. This does not necessarily demand that the
interpretation elucidate the precise cause of each
decision. Moreover, our broad definition does not
restrict the interpretability method to explain the
full system, but rather, only a mechanism within
it. For example, developers might want to gain
insights about specific components of the system
to improve or modify their functionality.

3.2 What is an Explanation?

Miller (2017) and Lipton (2018) rightfully empha-
size that interpretability should not be confused
with an explanation. Miller (2017) distinguishes
between (causal) attributions and (causal) explana-
tions. Attribution involves extracting relationships
and causes, but it is not necessarily an explanation,
even if a person could use attributions to derive
their own explanation. Explanation also involves
selecting, contextualizing, and presenting causes
and relationships to the stakeholders. Thus, ex-
planations are about communicating insights in a
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Paradigm Examples Mechanism Scope Time Access Presentation

§B.1
Feature
Attributions

Perturbations, Gradients, Propogations,
Surrogate (LIME/SHAP), Attentions

input-output
concept-output

local post-hoc
specific
agnostic

scores
visualiztion

§B.2 Probing Probing and Clustering input-internal global post-hoc specific scores

§B.3
Mechanistic
Interpretability

Stimuli, Sparse Autoencoders, Patching,
Scrubbing, Logits lens

internal-internal global post-hoc specific
visualiztion

text

§B.4 Diagnostic Sets Challenge/Probing sets, Test suites input-output global post-hoc agnostic scores

§B.5 Counterfactuals
Contrastive examples, Adversarial at-
tacks, Concept counterfactuals

input-output
concept-output

local
global

post-hoc
specific
agnostic

scores
examples

§B.6
Natural Lang.
Explanations

Extractive, Abstractive, explain-then-
predict, predict-and-explain, CoT

input-output local intrinsic specific text

§B.7
Self-explaining
Models

Classic ML, Concept bottleneck, KNN-
based, Neural module nets

input-output
input-concept-output

local
global

intrinsic specific
scores

examples text

Table 1: Overview of the interpretability paradigms discussed in this paper, categorised by their what and how
properties (§4). A detailed survey of these paradigms is provided in §B. In bold, methods (SHAP, LIME, Clustering,
Adversarial Attacks, Classic ML) that were analyzed separately of their paradigm in our trend analysis in §5.

way that aligns with human cognitive biases and
social expectations. In some sense, the output of
interpretability methods is an attribution.

Most existing work in the NLP literature is on
how we extract insights and not about communi-
cating them. Since this paper is directed at this
community rather than the HCI or XAI communi-
ties, we mostly focus on interpretability methods.
However, to begin the discussion about the what
and how parts (see the paragraph below the follow-
ing definition), we must first define an explanation.
This is because the what and how are derived from
the why – the stakeholders, and clearly, they are
part of an explanation. To this end, we have gath-
ered common (though not formal) definitions from
seminal works in the literature (Doshi-Velez and
Kim, 2017; Lipton, 2018; Murdoch et al., 2019;
Arrieta et al., 2020; Lyu et al., 2022; Räuker et al.,
2023), and propose the following definition:

Explanation (explaining):
Extracting insights into a mechanism of the
NLP system and communicating them to the
stakeholders in understandable terms.

We define and elaborate on the mechanism and
understandable terms aspects of the above defini-
tion in Appendix §C. These two aspects are related
to the what part: what mechanism are we interpret-
ing, what terms are we using to describe its states,
and what is the scope of the explanation?

Conversely, the extracting and communicating
aspects are related to the how part: how are we
interpreting and extracting insights and how are
we presenting and communicating insights? Note

that extracting is essentially the interpretability
method defined in §3.1.

To summarize, an interpretability (or explain-
ability or analysis) method extracts insights from a
model, whereas an explanation involves communi-
cating these insights to stakeholders. This process
includes filtering and selecting relevant insights,
processing them, and presenting them in an under-
standable terms. For example, computing SHAP
values is an interpretability method, while visualiz-
ing these values using the SHAP Python package2

and providing guidance on interpreting these visu-
alizations constitute an explanation.

4 Properties and Categorization

In this section, we propose and briefly describe
properties that answer the what and how questions
derived from our interpretability definitions. In Ta-
ble 1, we present a categorization of interpretability
paradigms based on the properties. In Appendix
§A, we thoroughly examine the properties and dis-
cuss their alignment with the objectives, require-
ments, and expectations of various stakeholders.

[what] Explained mechanism §A.1.1: Inter-
pretability methods can explain different mecha-
nisms of the NLP system. While most methods
explain the whole system (an input-output mecha-
nism), other methods explain input representations
(an input-internal mechanism) or internal compo-
nents such as neurons, attention heads, circuits, and
more (an internal-internal mechanism). In addi-
tion, this property covers any abstraction of the

2https://shap.readthedocs.io
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1. Retrieval – 
Using Semantic 
Scholar to retrieve NLP 
interpretability papers.
15K papers

2. Annotation – 
Employing an LLM to 
automatically annotate 
the paradigms and 
properties.

3. Filtering – 
Keeping only relevant 
papers that use NLP models 
and employ interpretability 
methods.
2K papers

4. Correction – 
Examining a subset of 
papers and deriving 
automatic rules to correct 
annotations (e.g., merging 
CS and NLP fields).

5. Verification – 
Sampling 100 papers, 
manually annotating them, 
and verifying the LLM 
annotations.  
Over 90% of agreements!

Figure 3: An illustration of our five-stage procedure for
annotating NLP interpretability papers, with the stages
fully detailed in Appendix §D.

mechanism states (see §C.2), for example, explain-
ing the impact of concepts conveyed in the text in-
stead of explaining long and complex raw input. In
this case, which is thoroughly discussed in §A.1.2,
the explained mechanism is concept-output.

[what] Scope §A.1.3: Determined by whether the
explanation is local – describes the mechanism for
an individual input instance, or global – describes
the mechanism for the entire data distribution.

[how] Time §A.2.1: Determined by the time the
explanation is formed. Post-hoc methods produce
explanations after the prediction, while intrinsic
methods are built-in: the explanation is generated
during the prediction, and the model relies on it.

[how] Access §A.2.2: Determined by accessibil-
ity requirement to the explained model. Model-
agnostic methods can only access its inputs and
outputs, while model-specific methods require ac-
cess to the explained model during the training
time of the interpretability method and can access
its internal components or representations.

[how] Presentation §A.2.3: Determined by how
insights extracted by the interpretability method are
presented to the stakeholder. This includes scores,
such as importance scores or metrics, and visual-
ization, such as heatmaps and graphs. Other ex-
planations present similar or contrastive examples
to stakeholders or communicate insights through
texts written in natural language.

[how] Causal-based §A.2.4: Providing faithful ex-
planations might involve incorporating techniques
from the causality literature. This property deter-
mines whether the method is causal-based or not.

5 Trends in Model Interpretability

In this section, we analyze trends over the last
decade in papers that propose or employ an inter-
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Figure 4: Distribution of NLP interpretability paradigms
by research field, including papers in years 2015-24.

pretability method in the NLP field or fields outside
of NLP. The analysis covers trends in interpretabil-
ity method paradigms and their properties.

5.1 Data
Our data collection process consists of five stages
and is illustrated in Figure 3. In the first stage,
we utilized the Python client3 of the Seman-
tic Scholar API4 to retrieve 14,676 NLP inter-
pretability papers by searching queries such as NLP
interpretability (a full list of queries is pro-
vided in Box D.1). Subsequently, we employed an
LLM (gemini-1.5-pro-preview-0514)5 to de-
termine the relevance of each paper based on its
title and abstract. A paper is considered relevant if
it relates to NLP research, employs NLP methods
or models with text input, and proposes, utilizes,
or discusses an interpretability method. After rele-
vancy filtering, 2,009 papers remained (see Figure 1
for their distribution across fields).

In addition, we used the LLM to annotate vari-
ous attributes, including the research field, whether
an LLM is employed, the paradigm of the inter-
pretability method and its mechanism, scope, ac-
cessibility and whether it is causal-based or not.
The zero-shot prompt is provided in Box D.4. See
Appendix §D for additional details about our re-
trieval and annotation processes.

To verify the LLM annotations, we randomly
sampled 100 papers, which one of the authors man-
ually annotated. The agreement statistics are pre-
sented in Table 4. Notably, 96% of the papers the
LLM annotated as relevant were indeed relevant.
Furthermore, over 90% of the annotations across

3www.github.com/danielnsilva/semanticscholar
4www.semanticscholar.org/product/api
5www.ai.google.dev/#gemini-api

661

www.github.com/danielnsilva/semanticscholar
www.semanticscholar.org/product/api
www.ai.google.dev/#gemini-api


'17 '18 '19 '20 '21 '22 '23 '24
0

20

40

60

80

100
NLP Field

'17 '18 '19 '20 '21 '22 '23 '24

Fields Outside NLP

Attributions
LIME/SHAP
Probing
Clustering

Mechanistic
Diagnostic Sets
Adversarial
Counterfactuals

Lang. Explanation
Self-explaining
Classic

Figure 5: Trends in NLP interpretability paradigms over
time in the NLP field (left plot) and in fields outside
of NLP (right plot). The plots show the percentages of
papers for each paradigm, as predicted by an LLM. The
data smoothed using a one-year moving average.

each property were correct. When excluding anno-
tations labeled as ‘unknown’ (e.g., where the LLM
indicated the method scope was unknown, but suf-
ficient domain knowledge could infer it), over 95%
of the annotations were correct. To the best of our
knowledge, this is the first paper to utilize an LLM
successfully for such a task.

5.2 Results

We present the results in the following figures and
tables, all illustrating trends in the NLP field and
external fields, thereby emphasizing differences be-
tween developers and non-developer stakeholders.6

(1) Figure 1 in §1 presents the number of inter-
pretability papers by research field and year.7 (2)
Figure 4 displays the distribution of interpretabil-
ity method paradigms across each field, while (3)
Figure 5 illustrates trends over the last decade. (4)
Figure 6 presents the distribution of the explained
mechanisms, and (5) Table 2 reports statistics on
method properties. (6) Table 3 emphasizes trends
between papers that employ LLMs and those that
do not. Finally, (7) Table 5 in the appendix pro-
vides the absolute number of papers and average
citations for each paradigm.

Below we discuss our key findings:

Inside: Stable trends in the NLP community.
Figure 5 shows that paradigm trends within the

6While developers may be stakeholders in fields outside of
NLP, and vice versa, the primary distinction remains applica-
ble. Most stakeholders in NLP are developers, while those in
other fields are typically non-developers.

7Note that each year spans from June of the previous year
to the following June.
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Figure 6: Trends in the explained mechanism. The left
plot presents trends over time in the NLP field, show-
ing the percentages of papers for each mechanism, as
predicted by an LLM. The right plot presents pie charts
with the percentage distribution of the mechanisms: the
inner pie shows the distribution within the NLP field,
and the outer pie shows for fields outside of NLP.

NLP community are generally stable over time.
However, two leading paradigms, Feature Attribu-
tions and Natural Language Explanations, demon-
strate contrasting trends: the proportion of Fea-
ture Attribution papers has gradually decreased
(from ~45% in 2017 to ~30% in 2024) while papers
on Natural Language Explanations have increased
(from ~10% in 2017 to ~25% in 2024). The latter
rise is likely attributed to advancements in text gen-
eration capabilities, which will be discussed later.
The next two most common paradigms—Probing
and Mechanistic Interpretability, each account for
about 12% (see Figure 4).

Regarding the trends in mechanisms illustrated
in Figure 6, the explanation of Word Embedding,
which was very popular a decade ago, has dimin-
ished over the years. Currently, two-thirds of the
papers explain the input-output mechanism.

Inside vs Outside: Non-developers care less
about model internals. We observe notable dif-
ferences when comparing paradigm distributions
between the NLP field and outside of NLP. While
Feature Attribution is the dominant paradigm in
both, Mechanistic Interpretability and Adversar-
ial Attacks hold a large share within NLP but are
rarely seen outside of it. Conversely, Clustering
and Surrogate Models (such as LIME and SHAP)
are common outside of NLP but not frequently en-
countered in general NLP papers.

We attribute these distinctions to two main rea-
sons. The first reason is that non-developers care
less about model internals and are more concerned
with input-output mechanisms. This is evident in
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Scope Accessibility Causal-based
local global specific agnostic causal not

NLP 57.3 42.7 84.6 15.4 5.2 94.8
Outside 61.7 38.3 80.1 19.9 1.9 98.1
↪→ Healthcare 66.5 33.5 76.7 23.3 2.0 98.0
↪→ Neuroscience 25.0 75.0 92.6 7.4 0.0 100
↪→ Social 57.7 42.3 76.9 23.1 2.0 98.0

Table 2: Percentage of papers by properties (§4) across
fields. Outside encompasses all fields outside NLP
and CS. Healthcare includes Medicine and Psychol-
ogy, while Social includes Social Sciences, Economics
and Education fields.

the right plot of Figure 6, where there are five times
more internal-internal mechanism papers in the
NLP field. Moreover, although 9% of the papers
outside of NLP explain an input-internal mecha-
nism (representations), most involve field-specific
techniques. For example, Probing is the most com-
mon paradigm in the neuroscience field (64% of
the papers, see Figure 4), where researchers try to
align model representations with brain activities
(Goldstein et al., 2022; Tikochinski et al., 2023).

The second reason is the ease of application and
the level of support for these methods in popular
code packages. These aspects are particularly im-
portant for non-developers. For instance, LIME
and SHAP packages are widely used across many
domains beyond NLP (Kaur et al., 2020), and clus-
tering or classic ML methods are readily available
in popular data science packages like Scikit-learn.

Outside NLP: Different fields, different needs.
The choice of interpretability method depends on
the stakeholder’s objectives and needs. Different re-
search fields have distinct requirements, as clearly
shown in Figure 4, where paradigm distributions
vary across the fields. These differing needs are
also reflected in method properties in Table 2. For
instance, in healthcare fields, local explanations
are much more prominent. This makes sense con-
sidering that the main stakeholders, patients and
therapists, are interested in understanding individ-
ual decisions. Conversely, in neuroscience and so-
cial science, scientists aim to understand cognitive
mechanisms or social phenomena, thus preferring
global explanations.

LLMs dramatically change the trends. The in-
troduction of LLMs in the last two years has dras-
tically improved the capabilities of NLP models.
These models have been widely adopted not only
by NLP researchers but also by practitioners in
various fields. This is evident in Table 3, where

NLP Outside
No LLMs LLMs No LLMs LLMs

Ye
ar

2022 97.5 2.5 100.0 0.0
2023 72.4 27.6 81.8 18.2
2024 33.3 66.7 49.3 50.7

Pa
ra

di
gm

s(
’2

3
+

’2
4)

Attributions 37.4 19.4 41.9 24.3
LIME/SHAP 6.3 3.3 17.5 4.3
Probing 11.4 10.6 6.9 3.5
Clustering 3.4 0.5 16.9 2.6
Mechanistic 10.6 15.2 2.5 2.6
Diagnostic 3.7 4.8 1.2 1.7
Adversarial 4.6 5.6 1.2 0.0
Counterfactuals 3.4 4.3 0.0 1.7
Lang. Expl. 10.9 30.8 6.2 48.7
Self-explain 7.1 4.8 4.4 6.1
Classic 1.1 0.8 1.2 4.3

Table 3: Percentage of ’23-’24 interpretability pa-
pers by field (NLP and fields Outside NLP) and by
whether the paper employs an LLM. The top three rows
present the distribution for each field and year (LLMs
+No LLMs=100%). The 11 bottom rows present the dis-
tribution by paradigms, each column summing to 100%.

LLM papers have become prominent both within
the NLP field (66.7% of the papers in 2024) and out-
side of it (from 18.2% in 2023 to 50.7% in 2024).

The widespread adoption of LLMs has shifted
interpretability paradigms. Although paradigm
trends in NLP were stable, the introduction of
LLMs tripled the portion of Natural Language Ex-
planation papers (30.8%), likely due to the strong
generation capabilities of LLMs. Outside NLP, this
paradigm accounts for nearly half of the papers
that employ LLMs (48.7% compared to 6.2% in
non-LLM papers). This is another indication that
non-developers favor methods that do not require
advanced technical skills, as generating textual ex-
planations can be done through simple prompting.

We anticipate more trend shifts in the LLM era,
particularly toward methods that leverage strong
generation capabilities, such as generating Counter-
factuals and dedicated Diagnostic Sets, which is al-
ready evident in a 30% increase in these paradigms.

6 Conclusions and Recommendations

In this half-position-half-survey paper, we re-
viewed hundreds of works on NLP model inter-
pretability and analysis from the past decade. Un-
like other surveys, we examined interpretability
methods, paradigms, and properties from the stake-
holders’ perspective. Additionally, we conducted a
first-of-its-kind large-scale trend analysis by explor-
ing the usage of interpretability methods within the
NLP community and in research fields outside of it.
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Our analysis reveals substantial diversity between
research fields, particularly between NLP devel-
opers and non-developer stakeholders. To bridge
these gaps and promote the adoption of NLP inter-
pretability methods in other fields, we recommend
the following steps for NLP researchers:

Clearly define the stakeholders and applica-
tions of your work. Researchers should explic-
itly state in the introduction who the stakehold-
ers of their method are, the needs it addresses,
its core properties, and its potential applications
within and outside the NLP community. Articulat-
ing these aspects helps position the research within
a broader context and ensures relevant audiences
can effectively engage with the method. Addition-
ally, demonstrating applications of interpretability
methods in other fields can enhance their visibil-
ity and adoption. Publishing NLP research in in-
terdisciplinary venues (Ophir et al., 2020; Badian
et al., 2023) fosters cross-domain collaboration and
broadens the impact beyond NLP.

Develop user-friendly code and write detailed
guides for non-technical users. Researchers out-
side the NLP community sometimes utilize spe-
cific methods due to specific needs (e.g., probing
in neuroscience is used for aligning representations
with brain activity). Yet, many utilize methods
for the wrong reason: extensive familiarity with
popular methods in non-NLP domains and with
well-documented code in common data science li-
braries (e.g., SHAP, LIME, and Scikit-learn).

To encourage the adoption of NLP interpretabil-
ity methods beyond our community, researchers
should prioritize developing user-friendly code ac-
companied by detailed guides for non-technical
users. Additionally, the code should generate attrac-
tive and easy-to-understand visualizations. Making
the methods more accessible can help integrate
them into other scientific and industrial domains.

Expand the reach of prevalent NLP inter-
pretability paradigms. Two paradigms have
gained traction in NLP, particularly with the rise
of LLMs: Natural Language Explanations and
Mechanistic Interpretability. We found that natural
language explanation methods are also extremely
prevalent in non-NLP fields. We believe this rapid
adoption is concerning, as their reliability remains
a topic of ongoing debate in research. Our com-
munity should investigate the faithfulness of these
methods (Lanham et al., 2023; Parcalabescu and
Frank, 2023; Bao et al., 2024; Wu et al., 2024)

and determine whether they can replace traditional,
extensively researched methods.

Conversely, while Mechanistic interpretability
research is trending within the NLP community, ex-
planations of internal model components are rarely
used in other fields. Our community should explore
whether and how mechanistic interpretability can
be adapted more broadly (Sharkey et al., 2025).

We need more concept-level, self-explaining, and
causal-based methods. In Appendix §A.1.2, we
highlight the potential of high-level concept expla-
nations, particularly for non-expert stakeholders
such as end-users, given the challenges of explain-
ing lengthy raw textual inputs. Even though they
can improve the accessibility of model insights
(Poursabzi-Sangdeh et al., 2021), concept-level
methods remain largely underutilized, accounting
for only 2% of the papers, as shown in Figure 6.

Stakeholders using NLP models for decision-
making require faithful explanations (Feder et al.,
2022). In Appendix §A.2.4, we highlight the im-
portant role of causality in fostering faithfulness.
Yet, Table 2 indicates that causal-based methods
are rarely used (5.2% in NLP and 1.9% outside).

Finally, building on the seminal calls of XAI re-
searchers (Rudin, 2018; Arrieta et al., 2020), we
believe in self-explaining methods as a promising
path toward the “holy grail” of NLP: achieving
intrinsic interpretability while minimizing perfor-
mance degradation. Yet, as Table 3 indicates, only
about 7% of papers focus on self-explaining mod-
els, leaving them largely underexplored.

The LLM era presents new research opportuni-
ties. Despite the expectation that non-developers
would benefit from concept-level, self-explaining,
and causal-based methods, their adoption remains
limited. We believe this is mainly due to the lack of
research and development within the NLP commu-
nity. This gap restricts the broader applicability of
NLP models, particularly in domains where trans-
parency and interpretability are essential.

The increasing capabilities of LLMs provide
an unprecedented opportunity to develop novel
concept-level, self-explaining, and causal-based in-
terpretability methods. Indeed, many of the works
discussed in this paper demonstrate such potential
(e.g., Gat et al. (2023) and Stacey et al. (2024)).
By expanding research in these directions, the NLP
community can contribute to developing models
that are more reliable, explainable, and accessible
to a broader range of stakeholders.
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7 Limitations

Other Modalities. The focus of our paper, while
broad, centers on NLP and does not address other
input modalities beyond text, such as visual or au-
dio. These modalities, especially when considering
the recent advancement of large multimodal mod-
els, could be vital for certain stakeholders, and it
can be believed that the conclusions from our anal-
ysis would not be generalized to interpretability
methods of vision and audio systems.

LLM Annotations. Even though we manually ver-
ified the LLM annotations on a subset of 100 papers
and observed high agreement rates with human an-
notations (over 95%), it is possible that the LLM in-
troduced potential biases. The statistics might have
differed slightly if all 2000+ papers had been man-
ually annotated. However, the manual annotation
process is extremely time-consuming and requires
high-domain expertise. This process involved read-
ing full abstracts and assessing the nine annotation
properties (900 annotations). Therefore, while our
findings benefit from high agreement rates between
LLM and human annotations, they also empha-
size the need for continuous human oversight and
validation in studies that use automated tools for
literature analysis (Calderon et al., 2025).
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A Properties: Discussion

In this section, we thoroughly discuss the proper-
ties and categorization of interpretability methods
presented in §4. We aim to provide the stakehold-
ers’ perspective, deepening our understanding of
how these properties align with their objectives and
requirements. We begin by discussing the what as-
pect properties in §A.1, followed by the how aspect
properties in §A.2.

A.1 What Properties
A.1.1 The Explained Mechanism
In Appendix §C.1, we formally define what a mech-
anism is. Broadly, a mechanism can refer to the
entire NLP system or a specific process or compo-
nent within it. To better categorize interpretability
methods, we distinguish four types of mechanisms.
While most methods explain the whole system (an
input-output mechanism), other methods explain
input representations or hidden states (an input-
internal mechanism). Another mechanism type
focuses on explaining the functionality of internal
components such as neurons, attention heads, cir-
cuits, and more (an internal-internal mechanism).

In addition, the mechanism property covers any
abstraction of the mechanism states (see §C.2), for
example, explaining the impact of concepts con-
veyed in the text input instead of explaining long
and complex raw input. In this case, which is thor-
oughly discussed in the next subsection §A.1.2, the
explained mechanism is concept-output.

The choice of which mechanism to explain de-
pends on the why: the objective of the explanation
and the stakeholder’s needs. Stakeholders mostly
utilize methods that explain the full system (an
input-output mechanism). However, many are in-
terested in other mechanisms. For example, devel-
opers aim to understand the functionality of internal
components such as neurons or layers to modify
and edit factual knowledge encoded by them (Hase
et al., 2023). Scientists might explore the repre-
sentational space, for example, neuroscientists ex-
amine the brain by aligning model representations
with brain activity (Tikochinski et al., 2024), and
social scientists cluster representations to monitor
opinions, such as attitudes towards COVID-19 vac-
cines (Hristova and Netov, 2022).

A.1.2 Raw Input or Abstracted Input
A common interpretability paradigm is feature at-
tributions, where each input feature is assigned
an importance score reflecting its relevance to the
model prediction. In computer vision, the raw in-
puts consist of pixels, and feature attributions ef-
fectively highlight relevant areas that can be im-
mediately and intuitively grasped (Alqaraawi et al.,
2020; Müller, 2024). In contrast, explaining the
raw input in NLP, often a lengthy and complex text,
presents distinct challenges. For end-users, assign-
ing scores to each token can be overwhelming as
the cognitive load increases with the text length.

Instead, simplifying the system by abstracting
the input to concepts or a summary, thus reduc-
ing the number of features explained, could lead
to a better mental model of the system (Poursabzi-
Sangdeh et al., 2021). For example, concept coun-
terfactual methods (see §B.5, Feder et al. (2021)
and Gat et al. (2023)) change a specific concept
conveyed in the text. By contrasting the counterfac-
tual predictions with the original prediction, we can
gain digestible insights into how the concept im-
pacts the prediction (a concept-output mechanism).
Moreover, due to the vast space of textual data,
providing global explanations by explaining the
raw input is challenging. In contrast, concept-level
explanations naturally support global explanations.
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A.1.3 Scope: Local or Global

This categorization is based on the scope of the
explanation: local or global. A local explanation
describes the mechanism for an individual instance.
For example, feature attributions and attention visu-
alizations (§B.1). Conversely, global explanations
describe the mechanism for the entire data distribu-
tion, for example, probing (§B.2) and mechanistic
interpretability (§B.3). Many local explanations
can be generalized into global ones. For exam-
ple, concept counterfactuals (§B.5) measure the
causal effect of a concept on the prediction of an
individual instance. A global average causal effect
estimation can be derived by iterating the entire
dataset and applying adjustments (Gat et al., 2023).

The choice of scope, local or global, depends
on the objectives of the explanation and its stake-
holders. For instance, developers debugging edge
cases may prefer local explanations. Conversely,
when aiming to improve the functionality of model
components, developers might lean towards global
explanations offered by mechanistic interpretability.
End-users, such as clients and customers, require
local explanations since they are concerned with
decisions directly affecting them; this local need is
also reinforced by the “right to explanation” (Good-
man and Flaxman, 2017). Similarly, physicians
using NLP systems must rely on local explana-
tions. On the other hand, business decision-makers
and scientists generally favor global explanations,
which help identify broader trends and underlying
patterns. From a social perspective, global expla-
nations hold more significance. However, accu-
mulating local evidence can progressively provide
insights into global tendencies.

A.2 How Properties

A.2.1 Time: Post-hoc or Intrinsic

This property distinguishes between methods based
on the time the explanation is formed. Post-hoc
methods produce explanations after the prediction
and are typically external to the explained model.
Conversely, intrinsic methods are built-in; the ex-
planation is generated during the prediction, and
the model relies on it. Intrinsic methods include,
for example, natural language explanations (§B.6)
or self-explaining models (§A.1.2) such as con-
cept bottleneck models, which train a deep neural
network to extract human-interpretable features,
which are then used in a classic transparent model
(e.g., logistic regression).

In the XAI literature, this distinction also de-
fines the difference between explainable AI (post-
hoc) and interpretable AI (intrinsic) (Rudin, 2018;
Arrieta et al., 2020). However, interpretable AI
generally refers to transparent models (see (Lipton,
2018)), while in our categorization, intrinsic mod-
els can be opaque to some extent: in self-explaining
methods, an opaque neural network extracts human-
interpretable features; similarly, in natural language
explanations, the explanation is generated by an
opaque neural network. Intrinsic methods aim to
produce more faithful and understandable insights
and could better serve all stakeholders. However,
they may also limit model architecture and thus
could potentially degrade system performance, al-
though this is not always the case (see Badian et al.
(2023) for an example).

A.2.2 Access: Model Specific or Agnostic
This property distinguishes interpretability meth-
ods based on their access to the explained model.
Model-agnostic methods do not assume any spe-
cific knowledge about the model and can only ac-
cess its inputs and outputs. For example, diagnostic
sets (§B.4), perturbation-based attributions (§B.1),
or some counterfactual methods (§B.5). The lat-
ter two modify only the input and measure its
impact on model prediction. On the other hand,
model-specific methods require access to the ex-
plained model during the training time of the inter-
pretability method. They can also access its internal
components and representations. Hence, while a
model-specific method can be applied only to one
explained model, the same model-agnostic method
can be applied to any model simultaneously.

Unlike model-specific methods, model-agnostic
methods can not explain internal mechanisms.
However, they can still be extremely valuable for
some stakeholders. From an algorithmic perspec-
tive, they are useful during model selection and
deployment. For example, developers juggling mul-
tiple models can easily rank them based on their
vulnerability to confounding biases, such as gender
bias. Moreover, regulators would prefer model-
agnostic methods, utilizing a dedicated diagnostic
set or a pool of counterfactuals to verify whether
the model meets the required standards.

A.2.3 Presenting Insights
The presentation of insights extracted by the inter-
pretability method falls under the communicating
aspect of the explanation definition in §3.2. There
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is extensive research in the XAI field that explores
this aspect and examines how the presentation af-
fects different stakeholders (Hohman et al., 2019;
Schulze-Weddige and Zylowski, 2021; Bove et al.,
2022; Karran et al., 2022; Zytek et al., 2022). Even
though we do not delve into the stakeholder per-
spective, we still discuss this property since not all
methods support every form of presentation. The
design of interpretability methods and the choice
of which to use depend on it.

The most common form of presentation is scores,
such as importance scores (§B.1), causal effects
(§B.5) or metrics (§B.2 and §B.4). Scores are typi-
cally visualized using colors (Gat et al., 2022) or
bar plots (Kokalj et al., 2021). Another form is visu-
alization, which includes means such as heatmaps
(Jo and Myaeng, 2020), graphs (Vig, 2019), and di-
agrams (Katz and Belinkov, 2023). Others present
similar or contrastive examples to stakeholders,
along with their prediction, aiding in speculating
on why P and not Q?. Such example presenta-
tions are found in counterfactual methods (§B.5)
and KNN-based nets (§B.7). Finally, insights can
also be conveyed through texts written in natural
language (e.g., Menon et al. (2023) and §B.6).

A.2.4 Faithfulness and Causality
Note that some applications of interpretability
methods are satisfied by correlational insights
(what knowledge the model encodes), e.g., in a
case when scientists explore new hypotheses which
will then be validated in a controlled experiment
(see (Lissak et al., 2024b)). However, most applica-
tions seek to understand the reasons behind specific
predictions. In this context, faithfulness becomes a
crucial principle, demanding that explanations ac-
curately reflect the system’s decision-making pro-
cess (Jacovi and Goldberg, 2020). Unfaithful ex-
planations, particularly those that seem plausible,
can be misleading and dangerous and lead to po-
tentially harmful decisions. As such, faithfulness
is crucial in scenarios involving decision-makers
and end-users. To ensure that explanations are
faithful, establishing causality is essential (Feder
et al., 2022). Indeed, Gat et al. (2023) theoretically
demonstrated that non-causal methods often fail to
provide faithful explanations.

A key approach to providing faithful explana-
tions involves incorporating techniques from the
causal inference literature, such as counterfactu-
als (Feder et al., 2021), interventions (Wu et al.,
2023b), adjustment (Wood-Doughty et al., 2018),

and matching (Zhang et al., 2023). Therefore, an
important property of an interpretability method
is whether it is causal-based or not. We note that
this categorization is not included in Table 1 as it
pertains more to specific methods rather than to a
paradigm. For a comprehensive survey on faithful-
ness in NLP interpretability, see Lyu et al. (2022).

B Common Interpretability Paradigms

This section aims to establish a clear link between
the properties introduced in §4 and interpretability
methods. To this end, we comprehensively review
common interpretability paradigms, detailing rele-
vant methods and works within each and explaining
the paradigm’s properties. Note that some methods
may fall under multiple paradigms.

Our classification of methods into paradigms is
inspired by previous surveys on model analysis (Be-
linkov and Glass, 2019), local methods (Luo et al.,
2024), post-hoc methods (Madsen et al., 2023),
faithful methods (Lyu et al., 2022), mechanistic
interpretability (Räuker et al., 2023; Bereska and
Gavves, 2024), LLMs (Singh et al., 2024; Zhao
et al., 2024), and others (Danilevsky et al., 2020;
Balkir et al., 2022; Sajjad et al., 2022a). Further-
more, while the categorization of the properties cap-
tures the standard characterization each paradigm,
there may be exceptions with some methods.

B.1 Feature Attributions

Categorization
What: input-output or concept-output , local
How: post-hoc , specific or agnostic , scores

Feature attribution methods measure the rele-
vance (sometimes referred to as importance) of
each input feature, primarily tokens or words, and
are a widely used local interpretability paradigm.
Each input feature is assigned a score reflecting its
relevance to a specific prediction, thus describing
an input-output mechanism. Various attribution
methods have been developed, which can be mainly
categorized into four types.

Perturbation-based methods work by perturb-
ing input examples, such as removing, masking,
or altering input features at various levels, includ-
ing tokens, embedding vectors, or hidden states
(Wu et al., 2020; Li et al., 2016). Those are
model-agnostic methods since the perturbations
are applied to the input. In contrast, the follow-
ing methods are model-specific: Gradient-based
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methods measure relevance via a regular backward
pass (backpropagation) from the output through the
model (Smilkov et al., 2017; Sikdar et al., 2021;
Gat et al., 2022; Enguehard, 2023). Propagation-
based methods define custom rules for different
layer types (Montavon et al., 2019; Voita et al.,
2021; Chefer et al., 2021). Other methods in-
volve surrogate models, such as LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017),
which locally approximate a black-box model with
a white-box surrogate model (Kokalj et al., 2021;
Mosca et al., 2022). Rarely, the features are
mapped into concepts (Yeh et al., 2020), describing
a concept-output mechanism.

We also include here attention-based explana-
tions, which aim to capture meaningful correlations
between intermediate states of the instance (Jain
and Wallace, 2019; Kovaleva et al., 2019; Wiegr-
effe and Pinter, 2019), because typically the inter-
mediate state is represented by its corresponding
token. Usually, attention-based explanations are
presented with visualizations such as heatmaps.

B.2 Probing and Clustering

Categorization
What: input-internal , global
How: post-hoc , specific , scores or text

Probing typically involves training a classifier
that takes the representations of the explained
model and predicts some property (Belinkov,
2022), making it a post-hoc model-specific method.
Typically, the predicted concept is a syntactic or
semantic property (Adi et al., 2017; Conneau et al.,
2018; Hewitt and Liang, 2019; Lepori and Mc-
Coy, 2020; Ravichander et al., 2021; Antverg and
Belinkov, 2022; Amini et al., 2023; Vulic et al.,
2023). Probing methods usually answer questions
of how extractable a property is from a representa-
tion or what knowledge a model encodes. Thus, it
can globaly describe the input-internal mechanism.
However, even though the model encodes some
property, it does not mean it uses it for prediction
(Belinkov, 2022). Therefore, how we communicate
probing insights to the stakeholders is important.

In the scope of probing, we also include clus-
tering methods. While most clustering methods
are used to discover patterns in data, here, clus-
tering is employed to explore the model’s learned
space and gain insights about what it has encoded.
Clustering is considered the unsupervised counter-

part of probing (Michael et al., 2020; Gupta et al.,
2022), and they share the same categorization: both
methods explore the input-internal mechanisms of
the system and are characterized as global, post-
hoc, and model-specific. After representations are
clustered, explanations are provided through clus-
ter descriptions defined by gold labels, top key-
words, concepts, topic modeling, ontologies, or
LLM-generated text (Aharoni and Goldberg, 2020;
Zhang et al., 2022; Thompson and Mimno, 2020;
Gupta et al., 2022; Sajjad et al., 2022b; Alam
et al., 2023; Mousi et al., 2023; Wang et al., 2023c;
Hawasly et al., 2024; Lissak et al., 2024b). Finally,
we also include works that explain representation-
based similarity using concepts and semantic as-
pects (Opitz and Frank, 2022).

B.3 Mechanistic Interpretability

Categorization
What: internal-internal , global
How: post-hoc , specific , visualiztion or text

In contrast to probing, which is a top-down ap-
proach (i.e., we know in advance what we are look-
ing for), mechanistic interpretability is a bottom-up
approach that studies neural networks through anal-
ysis of the functionality of internal components
of the NLP systems such as neurons, layers, and
connections (Sajjad et al., 2022a; Räuker et al.,
2023; Bereska and Gavves, 2024). The goal of such
methods is to globaly explain one internal-internal
mechanism of a specific model. Many mechanis-
tic interpretability methods study how neurons re-
spond to stimuli (real or synthetic examples) and
visualize or describe the sensitivity of the neuron’s
activations (Finlayson et al., 2021; Vig et al., 2020;
Geiger et al., 2021, 2022; Dai et al., 2022; Conmy
et al., 2023; Garde et al., 2023; Gurnee et al., 2024).

Other works perturb or intervene in neurons to
study their functionality (Bau et al., 2019; Ghor-
bani and Zou, 2020; Wang et al., 2023b), or mask
network weights (Zhao et al., 2020; Csordás et al.,
2021). Some works focus on gradients instead of
activations (Durrani et al., 2020; Syed et al., 2023;
Kramár et al., 2024) or train sparse autoencoders
in an attempt to disentangle features, which are
then described (Cunningham et al., 2023; Yu et al.,
2023). Another line of work explores which in-
formation the internal states encode by projecting
them into the vocabulary (Geva et al., 2022; Dar
et al., 2023; Belrose et al., 2023; Pal et al., 2023;
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Sakarvadia et al., 2023; Ghandeharioun et al., 2024)
or even by generating images (Toker et al., 2024).

B.4 Diagnostic Sets

Categorization
What: input-output , global
How: post-hoc , agnostic , scores

Diagnostic sets, also known as challenge sets,
probing sets, or test suites, are specialized collec-
tions of data designed to analyze specific properties
of the NLP system or challenging cases. These
sets are typically curated manually to target spe-
cific aspects of system behavior within a predefined
NLP task, enabling the identification of strengths,
weaknesses, and biases (Belinkov and Glass, 2019).
Diagnostic sets are model-agnostic since they are
curated independently from the analyzed model.
They support scoring the model’s predictive capa-
bilities (input-output mechanism) on subpopula-
tions of interest, providing global insights on how it
works within them. As one of the oldest techniques
for analyzing NLP systems (King and Falkedal,
1990; Lehmann et al., 1996), diagnostic sets have
been reintroduced as essential tools for understand-
ing NLP models (Hill et al., 2015; Leviant and
Reichart, 2015; Wang et al., 2019b; Vulic et al.,
2020; Wang et al., 2019a; Gardner et al., 2020)
and LLMs (Srivastava et al., 2022; McKenzie et al.,
2023; Laskar et al., 2024). Rarely, diagnostic sets
can be model-specific. For example, the diagnostic
dataset curated by Gekhman et al. (2024) involves
examples not included in a specific LLM’s pre-
existing knowledge. Fine-tuning the same LLM
using these examples increases hallucinations.

Many diagnostic sets are employed to examine
linguistic phenomena (Burchardt et al., 2017; Bur-
lot and Yvon, 2017; Sennrich, 2017; White et al.,
2017; Giulianelli et al., 2018; Gulordava et al.,
2018; Jumelet and Hupkes, 2018; Ravichander
et al., 2020; Newman et al., 2021; Sullivan, 2024),
while others evaluate biases such as gender bias
(Waseem and Hovy, 2016; Webster et al., 2018;
Zhao et al., 2018; De-Arteaga et al., 2019; Dhamala
et al., 2021; Doughman and Khreich, 2022), cul-
tural bias (Ventura et al., 2023; Chiu et al., 2024;
Rao et al., 2024), and political bias (Smith et al.,
2022; Taubenfeld et al., 2024). Beyond manually
collecting diagnostic datasets or using simple rule-
based programs, generative models are also being
applied (Goel et al., 2021; Ribeiro et al., 2021; Ross

et al., 2022). Importantly, these sets are crucial not
only for evaluating the performance of NLP sys-
tems on specific examples or subpopulations but
also serve as foundational elements in many prob-
ing and mechanistic interpretability methods.

B.5 Counterfactuals and Adversarial Attacks

Categorization
What: input-output or concept-output ,

local or global
How: post-hoc , agnostic or specific ,

scores or examples

The term counterfactual (CF) is frequently used
in the NLP literature, often referring to various con-
cepts. In this subsection, we aim to align the com-
munity’s understanding of this term and clearly dis-
tinguish between CF-based methods. In the context
of NLP, we adopt the following definition, which
captures the fundamental characteristic common
to all CF-based methods: “a counterfactual for a
given textual example is a result of a targeted in-
tervening on the text while holding everything else
equal.” (Calderon et al., 2022; Gat et al., 2023).
The primary distinction among CF-based methods
lies in the type of question the CFs aim to answer.

From a philosophical perspective, CFs answer
what-if questions: ‘If X had been different, then Y
would be...’. Presenting an alternation (CF) of the
input example to stakeholders allows for specula-
tion on the input-output mechanism: ‘Why predic-
tion A and not B?’ (Miller, 2017; Wu et al., 2021).

From a causal inference perspective, CFs an-
swer questions such as ‘How does C impact Y?’,
which can then help derive a score quantifying the
causal effect of some concept C on the prediction: a
concept-output mechanism (Abraham et al., 2022;
Feder et al., 2022; Wu et al., 2023a).

Contrastive Examples. These methods address
what-if questions and can explain a local prediction
by presenting CFs to stakeholders. They typically
focus on minimally editing the text to change the
model prediction. The edited texts are commonly
known as contrastive examples. Most approaches
for generating contrastive examples are model-
agnostic. For instance, asking annotators to write
them manually (Gardner et al., 2020; Kaushik et al.,
2020; Sen et al., 2023), utilizing a generative model
and applying edit operations (Wu et al., 2021; Ross
et al., 2022; Li et al., 2024; Nguyen et al., 2024), or
generating text until a proxy predictor indicates the
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label has changed (Ross et al., 2021; Chemmengath
et al., 2022; Filandrianos et al., 2023; Treviso et al.,
2023; Bhan et al., 2024).

Adversarial Attacks. A prominent model-specific
approach for generating contrastive examples is
known as adversarial attacks, in which care-
fully crafted modifications barely noticeable to hu-
mans (e.g., a typo, extra space, or punctuation,
etc...) are applied to the input and change the
system predictions (Morris et al., 2020; Goyal
et al., 2023). These attacks are typically gen-
erated through gradient-based token replacement
(Ebrahimi et al., 2018; Li et al., 2019; Guo et al.,
2021), and character-level perturbations (Belinkov
and Bisk, 2018; Yang et al., 2020; Rocamora et al.,
2024). With LLMs, the focus is on adversarial
prompts that break model alignment (Perez et al.,
2022; Zhu et al., 2023; Samvelyan et al., 2024;
Paulus et al., 2024). Note that most applications of
contrastive examples in the NLP literature, particu-
larly adversarial attacks, are for data augmentation
to improve model generalization or red teaming
(Chen et al., 2021; Kaushik et al., 2021; Dixit et al.,
2022; Balashankar et al., 2023; Zhao et al., 2023b;
Sachdeva et al., 2024; Zhang et al., 2024b).

Concept Counterfactuals. The second group of
CF-based methods, which address How does C im-
pact Y? questions, is more theoretically grounded
in the causal inference literature, making them
more faithful (Lyu et al., 2022; Gat et al., 2023).
Besides presenting stakeholders with explanations
similar to contrastive examples, which allows for
speculation on what would have happened if a con-
cept C were different (e.g., a different gender of
the writer), concept CFs can also be used to esti-
mate the causal effect of high-level concepts on
model predictions (Abraham et al., 2022; Feder
et al., 2022). This is typically done by calculating
the difference between the model’s predictions for
the original text and the counterfactual (CF) input.

In addition to providing a local score for an
individual instance, concept CFs can deliver a
global average causal effect estimation by iterat-
ing through the entire dataset and applying certain
adjustments (Gat et al., 2023). The objective of the
global score, similar to diagnostic sets, is to exam-
ine model behavior on subgroups. However, the
score derived from CFs offers greater fidelity by
relying on causation rather than correlation (Elazar
et al., 2022; Keidar et al., 2022; Li et al., 2022;
Liu et al., 2023; Wang et al., 2023a; Madaan et al.,

2023; Zhou and He, 2023; Elazar et al., 2024).
Typically, a causal graph describing the input

and output data-generating processes is provided,
and an approximated counterfactual (CF) is gen-
erated by intervening on the concept of interest
and adjusting for confounders (Feder et al., 2021;
Gat et al., 2023). Model-agnostic methods focus
on generating coherent, human-like CFs, either
through controlled text generation (Calderon et al.,
2022; Fang et al., 2023; Hong et al., 2023; Howard
et al., 2022; Zheng et al., 2023) or by prompting
LLMs (Gat et al., 2023; Feder et al., 2023; Zhang
et al., 2024a). An alternative to the computationally
intensive generation process is causal matching,
where the example is paired with a similar control
example that has a different concept value (Roberts
et al., 2020; Zhang et al., 2023; Gat et al., 2023).
In contrast, model-specific methods typically in-
tervene on the latent space of the explained model
(Ravfogel et al., 2020; Feder et al., 2021; Elazar
et al., 2021; Haghighatkhah et al., 2022; Kumar
et al., 2022; Wu et al., 2023a; Zhao et al., 2023a),
or train a proxy model that mimics the CF behavior
of the explained model (Wu et al., 2023a).

B.6 Natural Language Explanations

Categorization
What: input-output , local
How: intrinsic , specific , text

We define Natural Language Explanations
(NLE) as any textual explanation extracted or gen-
erated by an NLP system that is used for justifying
its own prediction. We do not consider generative
models used to explain other model predictions
as an NLE method. Thus, all NLE methods are
model-specific, intrinsic, and local as they explain
a single prediction. Usually, human-written expla-
nations are used as an additional training signal for
supervision (Wiegreffe and Marasovic, 2021; Sun
et al., 2022; Kim et al., 2023).

NLE can be abstractive (by generating free-text)
or extractive (by highlighting spans of relevant text
in the input). The term rationale is often used in the
extractive context to describe short and sufficient
input spans for making a correct prediction (Zaidan
et al., 2007). In addition, and following Camburu
et al. (2018); Kumar and Talukdar (2020); Lyu et al.
(2022), we divide NLE into explain-then-predict
and predict-and-explain methods.

The explain-then-predict category comprises
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methods that extract or generate an explanation
and then independently predict the output by condi-
tioning solely on the explanation, typically by train-
ing explainer and predictor components separately
(Lei et al., 2016; Bastings et al., 2019; Camburu
et al., 2020; Jain et al., 2020). The predict-and-
explain category includes methods that explain and
predict simultaneously (i.e., the output is predicted
based on both the input and the explanation, such as
chain-of-thoughts (CoT)) or first predict and then
provide an explanation (Ling et al., 2017; Rajani
et al., 2019; Narang et al., 2020; Marasovic et al.,
2022), including explanations that reflect uncer-
tainty (Xiong et al., 2023; Zhou et al., 2024). This
category covers all the recent and commonly used
CoT methods (Chu et al., 2023; Lyu et al., 2023).

In the era of LLMs, which are used daily by
numerous end-users, NLE (either through CoT or
explicitly asking the LLM to explain its output) has
become the de facto method for explaining LLM
outputs, despite being considered unfaithful (Lan-
ham et al., 2023; Turpin et al., 2023). Moreover,
NLE helps address challenges in explaining gener-
ative models since many interpretability methods
were designed to explain a single decision rather
than a sequence of decisions (a generated text).

B.7 Self-explaining Models

Categorization
What: input-output or input-concept-output ,

local or global
How: intrinsic , specific , scores or examples or text

Classic machine learning models, such as lin-
ear models, decision trees, Hidden Markov Mod-
els (HMMs), and Topic Models are often called
transparent or whitebox models due to their simple
structure and well-studied nature. These models
represent the highest degree of self-explanation
because explaining their decision-making process
is relatively straightforward. Drawing inspiration
from them, researchers attempt to design neural
models with more structural transparency while
maintaining their performance (Rajagopal et al.,
2021; Das et al., 2022; Su et al., 2023).

An example is concept bottleneck models, which
train a deep neural network to extract human-
interpretable features and then apply a classic trans-
parent that takes these features as an input, some-
times simultaneously. Concept bottleneck models
describe relations of input-concepts and concepts-

output. The interpretable features used for training
the network can be manually annotated (Koh et al.,
2020; Rezaii et al., 2022; Tan et al., 2024), defined
by domain experts and automatically extracted us-
ing an LLM (Badian et al., 2023), or automatically
discovered and annotated (Yeh et al., 2020; Ludan
et al., 2023). In concept bottleneck models, expla-
nations can be global, such as the linear regression
weights of concepts, or local. In the case of local
explanations, they are provided with respect to the
predicted concepts of a specific instance. KNN-
based networks, for example, replace the final soft-
max classifier head with a KNN classifier at test
time (Papernot and McDaniel, 2018; Wallace et al.,
2018; Sarwar et al., 2022). The local explanations
in KNN-based networks are example-based.

Another prominent line of works focuses on neu-
ral module networks, which decompose the task
into small interpretable steps, which are then pre-
sented to the stakeholder (Andreas et al., 2016;
Hu et al., 2017; Santoro et al., 2017; Gupta et al.,
2020). Similarly, other methods break down the in-
put into “atoms” and then combine the atom-level
solutions to reach a final decision (Stacey et al.,
2022, 2024). Presenting such decompositions helps
in understanding the decision-making process.

Note that models that extract or generate expla-
nations during their predictions are self-explaining
models and are covered in §B.6.

C Mechanism and Understandable Terms

C.1 What is the Explained Mechanism?

Mechanism:
A process that constitutes a relation between
two states of the NLP system.

To complete the definition, A state of an NLP
system refers to any form of data at any stage within
the data analysis process of the system. This in-
cludes the initial state, encompassing the raw input
received, all intermediate states comprising vari-
ous levels of transformed data, and the final state,
the system’s output or decision. For example, the
raw input, tokenized input, embeddings, hidden
states (of a specific layer), activations, attention
scores, logits, output, decision. Accordingly, the
mechanism we explain is defined by two system
states. For instance, the mechanism between a sen-
tence and the final output is the whole NLP model;
the mechanism between the representations of the
third layer and those of the fourth layer is the fourth
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layer; the mechanism between the raw input and
the tokenized input is the tokenizer.

Notably, the explained mechanism does not need
to encompass the entire NLP system. It is accept-
able for the mechanism to be only a subsystem
or a component. Furthermore, it is acceptable for
an explanation to be partial with respect to the
mechanism. In other words, the explanation may
provide specific insight into the mechanism with-
out fully explaining every aspect and functionality.
For example, a scientist who wishes to validate a
hypothesis might only be interested in the impact
of one concept (e.g., how tone impacts the popu-
larity of social media content (Tan et al., 2014)).
The idea of not providing a complete explanation is
also grounded in the philosophy, psychology, and
cognitive science literature. For instance, Miller
(2017) advocates that explanations can be selec-
tive (humans select a few salient causes instead
of a complete causal chain when explaining) and
contrastive (Explanations should answer Why P
instead of Q? rather than Why P?).

C.2 What are Understandable Terms?

Understandable terms:
The level of abstraction of the states in the
mechanism we explain.

Note that in our description states can be either
fully specified or abstracted to some extent. For
example, if the input state is the text, then the inter-
pretability method may consider the entire text, but
it may also consider abstractions of the text, such
as its summary or a list of concepts conveyed in the
text. This also holds for the output state. For exam-
ple, in probing methods (see §B.2), a classifier is
trained to predict a property (often a linguistic prop-
erty) from the representations of a particular layer
of the model to provide insights into the knowledge
encoded in model representations (Belinkov, 2022).
Accordingly, the input-representations mechanism
we explain is the part of the model that transforms
input data into the probed layer’s representations,
and the output state of the mechanism (the rep-
resentations) is abstracted to a property. For our
convenience, we henceforth use the terminology
of a state for describing a fully specified state or
an abstracted state, remembering that a state may
have several different possible abstractions.

The degree of “understandable terms”, the level
of abstraction, or the form of cognitive chunks

Para. Mech. Scope Access.

Agreements 92% 93% 81% 92%

Disagreements with
unknowns

12% 29% 69% 62%

Agreements without
unknowns

93% 95% 92% 97%

Table 4: Agreement statistics between human and
LLM annotations of different characteristics: Paradigm,
Mechanism, Scope and Accessibility. The first row
presents the portion (in percentages) of agreements. The
second row presents the portion of disagreements that in-
volve an ‘unknown’ annotation (e.g., the LLM annotated
the method scope as unknown, but sufficient domain
knowledge could infer it.) within the disagreements.
The third row presents the portion of agreements, ex-
cluding disagreements involving unknowns. Additional
statistics: 96% of the papers annotated as relevant by
the LLM were indeed relevant. 98% of the Field annota-
tions were correct. 100% of the Causal-based property
and of the LLM field (whether the paper employs an
LLM, see Table 3) annotations were correct.

(Doshi-Velez and Kim (2017) define them to be
the basic unit of an explanation) depends on the
stakeholder and their specific needs, as they are
the ones who utilize the explanation. This involves
considering their level of expertise and familiarity
with NLP models. For example, mechanistic in-
terpretability methods (see §B.3) aim to explain
states of internal components like neurons, target-
ing developers (Bereska and Gavves, 2024). While
these terms are unsuitable for end-users, they can
meet the “understandable” criterion for develop-
ers, even without abstractions.

D Additional Analysis Details

Retrieval: We retrieved tens of thousands of
NLP interpretability papers using the Semantic
Scholar API and by searching queries such as
NLP interpretability (a full list of queries
is provided in Box D.1). We kept only pa-
pers whose titles or abstracts contained at least
one NLP keyword (e.g., NLP, LLM, BERT; see
Box D.2) and one interpretability keyword (e.g.,
interpretability, XAI, explanation; see
Box D.3). This search and selection process
yielded 14,676 papers.

Annotation and Filtering: For determining
the relevancy of the papers and annotating
them, we employed an LLM (gemini-1.5-
pro-preview-0514) and used the zero-shot
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prompt provided in Box D.4. We asked the LLM
to determine the relevance of the paper, its field,
the paradigm of the interpretability method, the
mechanism being explained, the scope and acces-
sibility of the method, and whether it is causal-
based. Additionally, we asked the LLM to write a
one-sentence summary of the paper and explain its
paradigm annotation. The LLM was also instructed
to explicitly extract the names of the interpretabil-
ity methods employed in the paper. We generated
three responses (in a JSON format with LLM an-
notations) for each paper and determined the final
annotation of each question by the majority vote.
After relevancy filtering, 2,009 papers remained.

Correction: We then sampled and examined a
subset of 20 annotated papers. Following this,
we decided to apply some automatic rules to fix
the annotations: (1) We merged the ‘computer sci-
ence’ field with the ‘NLP’ field; (2) For the mecha-
nism annotation, we replaced internal components
with ‘internal-internal’, and representations with
‘input-internal’; (3) Many of the scope annotations
were ‘unknown’. In these cases, we replaced ‘un-
known’ with ‘local’ for feature attributions and
natural language explanation paradigms and with
‘global’ for probing, diagnostic sets, and mechanis-
tic interpretability paradigms; (4) We replaced ‘un-
known’ values of the accessibility annotations with
‘model-specific’ for the SHAP/LIME, probing and
mechanistic interpretability paradigms, and with
‘model-agnostic’ for the diagnostic sets paradigm.
(5) Initially, we instructed the LLM to determine
whether an LLM was employed in the paper. How-
ever, it frequently misclassified models such as
BERT as LLMs. To improve accuracy, we instead
searched the abstracts for specific keywords such
as LLM, GPT4, ChatGPT, Gemini, Llama; (6)
Since 2024 is not over, we adjusted the publication
year of the papers such that each year spans from
June of the previous year to the following June.

Verification: To verify the accuracy of the LLM
annotations, we randomly sampled another 100
papers, which one of the authors manually anno-
tated. The agreement statistics are presented in
Table 4. Note that many disagreements between hu-
man and LLM annotations involved an ‘unknown’
LLM annotation (the second row in Table 4 shows
the proportion of such disagreements among all
disagreements). For example, the LLM annotated
the method scope as unknown, but sufficient do-
main knowledge could infer it. When excluding

Paradigm NLP Outside
# % C # % C

Attributions 491 32.8 20.6 200 39.0 9.7
LIME/SHAP 65 4.3 7.4 49 9.6 4.8
Probing 168 11.2 17.9 32 6.2 19.6
Clustering 35 2.3 10.5 50 9.7 6.0
Mechanistic 167 11.2 27.3 9 1.8 8.6
Diagnostic 54 3.6 17.5 12 2.3 4.9
Adversarial 76 5.1 53.1 4 0.8 6.8
Counterfactuals 47 3.1 24.1 4 0.8 0.5
Lang. Expl. 222 14.8 13.2 77 15.0 4.7
Self-explain 98 6.6 15.7 25 4.9 3.6
Classic 9 0.6 0.6 13 2.5 1.5
Unknown 64 4.3 32.3 38 7.4 6.7

Total 1495 100% 20.9 514 100% 7.8

Table 5: Absolute numbers (#), proportions (%), and
average number of citations (C) of interpretability
paradigm papers by field (NLP and fields Outside NLP)
including all papers from 2015 to 2024.

unknown disagreements, over 92% of the anno-
tations for each question were correct. Exclud-
ing unknown disagreements when computing the
agreement statistics is reasonable since we exclude
‘unknown’ annotations in our analysis in §5.
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Box D.1: Queries for semanticscholar search

NLP interpretability, NLP model interpretability, LLM interpretability, LLMs interpretability,
language models interpretability, interpretability for NLP models, interpretability for NLP, in-
terpretability for LLMs, interpretability for language models, NLP explainability, NLP model
explainability, LLM explainability, language models explainability, explainability for NLP models,
explainability for NLP, explainability for LLMs, explainability for language models, explaining
NLP models, explaining LLMs, explaining language models, interpreting NLP models, inter-
preting LLMs, interpreting language models, NLP explanation, NLP model explanation, LLM
explanation, LLMs explanation, language models explanation, explanation for NLP models, ex-
planation for NLP, explanation for LLMs, explanation for language models, explanations for
NLP models, explanations for NLP, explanations for LLMs, explanations for language mod-
els, NLP interpretation, NLP model interpretation, LLM interpretation, LLMs interpretation,
language models interpretation, interpretation of NLP models, interpretation of LLMs, inter-
pretation fo language models, black box NLP, black box NLP model, black box NLP models,
black box LLM, black box LLMs, black box language models, black-box NLP, black-box NLP
model, black-box NLP models, black-box LLM, black-box LLMs, black-box language models,
white box NLP, white box NLP model, white box NLP models, white box LLM, white box
LLMs, white box language models, white-box NLP, white-box NLP model, white-box NLP
models, white-box LLM, white-box LLMs, white-box language models, NLP XAI, NLP model
XAI, NLP models XAI, LLM XAI, LLMs XAI, language models XAI, XAI for NLP models, XAI
for LLM, XAI for NLP, XAI for LLMs, XAI for language models, NLP explainable AI, LLM
explainable AI, LLMs explainable AI, language models explainable AI, explainable AI for NLP
models, explainable AI for LLM, explainable AI for NLP, explainable AI for LLMs, explainable AI
for language models, explainable NLP models, explainable LLM, explainable NLP, explainable
LLMs, explainable language models, interpretable AI for NLP models, interpretable AI for LLM,
interpretable AI for NLP, interpretable AI for LLMs, interpretable AI for language models, inter-
pretable NLP models, interpretable LLM, interpretable NLP, interpretable LLMs, interpretable
language models, NLP user trust, user trust in NLP, user trust in NLP models, user trust in
LLM, user trust in LLMs, user trust in language models, NLP transparency, NLP model trans-
parency, LLM transparency, LLMs transparency, language models transparency, transparency
of NLP models, transparency of LLMs, transparency of language models, transparent NLP,
transparent NLP models, transparent LLMs, transparent LLM, transparent language models,
trustworthy NLP models, trustworthy LLM, trustworthy NLP, trustworthy LLMs, trustworthy
language models, NLP understanding, NLP model understanding, LLM understanding, LLMs
understanding, language models understanding, accountability for NLP models, accountability
for LLM, accountability for NLP, accountability for LLMs, accountability for language models,
responsible AI for NLP models, responsible AI for LLM, responsible AI for NLP, responsible
AI for LLMs, responsible AI for language models, responsible NLP models, responsible LLM,
responsible NLP, responsible LLMs, responsible language models

Box D.2: NLP Keywords

nlp, language model, computatinal linguistics, language processing, llm, gpt, bert, llama

Box D.3: Interpretability Keywords

interpretability, explainability, explanation, interpretation, black box, blackbox, black-box, white
box, whitebox, white-box, xai, explainable, user trust, interpretable, transparency, trustworthy,
transparent, understanding, accountability
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Box D.4: LLM prompt for annotating abstracts

You will be provided with the title and abstract of a paper focused on NLP model interpretability.
Carefully read both the title and the abstract. Your task is to extract key information regarding *only* the
interpretability methods discussed in the paper.
Respond *only* in the JSON format below.
Please address the following questions and extract the specified information:

* "relevant" * - (bool) Determine if the paper is relevant if and only if an interpretability method is
used, presented or proposed in the paper. If the paper does not discuss interpretability methods or uses one
to explain results, the paper is not relevant. Answer true or false.

* "NLP research" * - (bool) Determine if the paper is related to NLP research, it can be that the
paper is about domains other than NLP (e.g., medicine, social science, natural science, etc...), but uses NLP
models with text input. Answer true or false.

* "LLM" * - (bool) Determine if an LLM is employed in the paper.

* "TL;DR interpretability method" * - (str) One sentence summarizing only the interpretability method used
in the paper.

* "field" * - (str) Identify the research field of the paper, select from these options:
- "general NLP", "computer science", "medicine", "psychology", "neuroscience", "education", "engineer-

ing", "economics", "natural science", "humanities", "social science"
* "paradigm explanation" * - (str) One sentence explaining the interpretability paradigm used in the paper
and justify your answer to the next question.

* "paradigm" * - (str) Select the paradigm of the interpretability method from the options below:
- "feature attributions": Measuring relevance or importance of each input feature (e.g., tokens or words),

including methods like perturbations, gradients, propagations, attention scores and attention visualizations.
- "LIME/SHAP": Training and applying a surrogate model such as LIME or SHAP.
- "probing": Training a classifier from model representations that predict properties or concepts, or aligning

model representations with signals (like brain activity).
- "clustering": Clustering the data with model representations or other clustering techniques such as Topic

Modeling.
- "mechanistic": Explaining the functionality of internal components like weights, neurons, layers, attention

heads, and circuits, using stimuli, activations, patching, scrubbing, logit lens, projections, etc.
- "diagnostic sets": Analyzing and evaluating the model using diagnostic sets, challenge sets, test suites, or

subsets of examples with a common property (e.g., gender, culture).
- "adversarial attacks": Generating adversarial attacks or writing adversarial prompts that break alignment.
- "counterfactuals": Generating counterfactuals, contrastive examples, concept counterfactuals, causal

matching and other causal-based methods.
- "natural language explanations": Providing natural language explanations, extractive or abstractive,

including rationales and chain-of-thoughts.
- "classic": Classic and traditional ML models like Logistic Regression, Linear Regression, Decision Trees,

Random Forest, XGBoost, SVM, HMM, KNN.
- "whitebox": Special model architectures, inherently explainable, that provide intrinsic explanations, such

as Concept Bottleneck, Neural Module Networks, Knowledge Graphs, KNN-based.
- "unknown": If it cannot be inferred from the title and abstract.

* "methods" * - (list) List the interpretability methods mentioned in the paper. Note that there
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might be more than one method.

* "explaining what" * - (str) Specify what the interpretability method explains in the model, does it
epxlain the whole model (input-output), input concepts (concept-output), representations, or internal
components. Select from the following options:

- "input-output", "concept-output", "representations", "word embeddings", "neurons", "layers", "attention
heads", "MLPs", "unknown"

* "causal" * - (bool) Determine if the abstract mentions the interpretability method is causal-based.
Answer true or false.

* "local or global" - (str) Determine if the explanation is global (general insights about the model or
the whole data) or local (explaining an individual example). Select from the following options:

- "global", "local", "both", "unknown"

* "specific or agnostic" - (str) Determine if the explanation is model-specific (requires access to the
model internals, or the interpretability method is trained using the explained model) or model-agnostic (does
not require access to the model internals). Select from the following options:

- "model-specific", "model-agnostic", "both", "unknown"

Answer format:
“ ‘json
{

"relevant": bool,
"NLP research": bool,
"LLM": bool,
"TL;DR interpretability method": str,
"field": str,
"paradigm explanation": str,
"paradigm": str,
"methods": list,
"explaining what": str,
"causal": bool,
"local or global": str,
"specific or agnostic": str

}
“ ‘

Title: [PAPER_TITLE]
Abstract: [PAPER_ABSTRACT]

Answer:
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