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Abstract

Recent advancements in large language models
(LLM) capable of processing extremely long
texts highlight the need for a dedicated evalu-
ation benchmark to assess their long-context
capabilities. However, existing methods, like
the needle-in-a-haystack test, do not effectively
assess whether these models fully utilize con-
textual information, raising concerns about the
reliability of current evaluation techniques. To
thoroughly examine the effectiveness of exist-
ing benchmarks, we introduce a new metric
called information coverage (IC), which quanti-
fies the proportion of the input context nec-
essary for answering queries. Our findings
indicate that current benchmarks exhibit low
IC; although the input context may be exten-
sive, the actual usable context is often limited.
To address this, we present ETHIC, a novel
benchmark designed to assess LLMs’ ability
to leverage the entire context. Our bench-
mark comprises 1,986 test instances spanning
four long-context tasks with high IC scores
in the domains of books, debates, medicine,
and law. Our evaluations reveal significant
performance drops in contemporary LLMs,
highlighting a critical challenge in managing
long contexts. Our benchmark is available at
https://github.com/dmis-lab/ETHIC.

1 Introduction

The field of natural language processing (NLP) has
made remarkable progress in developing models
that can manage much longer texts. While earlier
Transformer-based models (Vaswani, 2017) could
only process 512 tokens at a time (Kenton and
Toutanova, 2019; Raffel et al., 2020), modern large
language models (LLM) have achieved a signifi-
cant breakthrough, now capable of handling doc-
uments with up to two million tokens (Reid et al.,
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Example: 
Who were the individuals 
involved in the incident on 
April 3, 2022?

Low-IC Tasks

Example: 
List every unique character 
name that appears in the 
context.

High-IC Tasks (Ours)

Figure 1: The variation in model performance with the
level of information coverage (IC). Unlike low-IC tasks,
which focus on specific parts of the input context, our
benchmark features new high-IC tasks that demand the
full utilization of all available information, posing a
significant challenge for long-context models.

2024). In light of these advancements, recent ef-
forts have focused on establishing benchmarks and
tasks specifically designed to evaluate the perfor-
mance of these long-context models (Shaham et al.,
2023; Hsieh et al., 2024).

However, current long-context benchmarks of-
ten face challenges in assessing whether models
are fully utilizing the information available in the
provided context. One common research method,
known as the needle-in-a-haystack test (Kamradt,
2023), aims to identify a specific piece of informa-
tion within a lengthy context. However, excelling
in these tasks does not guarantee that the model has
effectively processed all the available information.
Since the relevant information typically constitutes
only a small portion of the entire text, much of the
surrounding content is often irrelevant to the query.
While several datasets have proposed tasks involv-
ing multiple key pieces of information scattered
throughout the provided context (Dong et al., 2024;
Li et al., 2024; Wang et al., 2024b), they still do
not fully encompass the entire context. This raises
concerns about whether models are adequately eval-
uated on their ability to fully incorporate the entire
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context length (Goldman et al., 2024).
To this end, we propose ETHIC, a suite of

long-context tasks specifically designed to assess
whether LLMs can fully utilize the provided infor-
mation. Our benchmark encompasses four distinct
domains: books, debates, medicine, and law, each
containing a set of tasks that require the use of all
relevant information in the context to arrive at a so-
lution. To measure this capability, we introduce the
concept of information coverage (IC), which quan-
tifies the proportion of the input context required
to answer a query. Figure 1 shows that model per-
formance significantly declines for high-IC tasks
in our benchmark compared to low-IC tasks, even
when the same input contexts are used.

We evaluated the latest LLMs that support at
least 128k tokens, along with several training-free
methods using our benchmark. Our findings re-
vealed that recent models perform poorly across
all tasks and domains, even when utilizing recent
frameworks proposed for efficient long-context pro-
cessing (Xiao et al., 2024b,a; Qian et al., 2024).
This highlights a significant challenge for high-IC
tasks and the need for further research in this area.
We also conducted detailed analyses, comparing
the performance gap between our task and tradi-
tional low-IC tasks, as well as identifying which
parts of the input context the models typically fail
to address. In summary, our contributions include:

• We introduce a new metric called information
coverage (IC) to measure the proportion of
input context required to answer a query.

• We propose ETHIC, the first benchmark of
its kind, designed to assess whether LLMs can
fully process the provided information. Our
benchmark requires a higher IC than existing
benchmarks, which presents a new challenge
for the latest LLMs.

• We conduct a comprehensive analysis of how
LLMs perform in high-IC tasks, establishing
a foundation for future research on the devel-
opment of advanced long-context models.

2 Preliminaries

In this section, we provide an overview of recent
long-context LLMs and the benchmarks currently
used to evaluate them (see Sections 2.1 and 2.2).
We also present a formal description of information
coverage and explain how our benchmark differs

from existing ones, emphasizing the new aspects
of LLMs that we aim to evaluate (see Section 2.3).

2.1 Long-Context LLMs
Pre-training LLMs on long contexts requires signif-
icant computational resources. Early open-source
models, such as LLaMA (Touvron et al., 2023a),
could manage input lengths of about 2K tokens,
while LLaMA 2 (Touvron et al., 2023b) increased
this limit to 4K tokens. Even commercial mod-
els like GPT-3.5 initially supported input lengths
of 16K tokens. More recent models have vastly
improved these capabilities, now supporting input
lengths that range from 128K (Dubey et al., 2024)
to two million tokens (Reid et al., 2024). However,
the techniques employed to achieve this efficiency,
along with the actual amount of input that models
can effectively utilize, remain largely disclosed.

Several fine-tuning techniques have been ex-
plored to effectively extend the context window of
pre-trained LLMs (Zhu et al., 2023; Chen et al.,
2024; Peng et al., 2024). For instance, Chen
et al. (2023) noted that simply training a model
on longer contexts is both computationally inten-
sive and often ineffective. They proposed a posi-
tion interpolation method as a more efficient solu-
tion. Furthermore, approaches to extend the context
window during inference—without requiring addi-
tional training—have also been investigated (Jin
et al., 2024; Xiao et al., 2024a,b; Han et al., 2024).

2.2 Long-Context Benchmarks
Researchers have been evaluating how well long-
context LLMs handle extensive text. A com-
mon approach is the needle-in-a-haystack (NIAH)
task, where the goal is to locate key informa-
tion (the “needle”) within a large volume of text
(the “haystack”) (Kamradt, 2023; Mohtashami and
Jaggi, 2023). Some studies manipulate the num-
ber of needles and the haystack’s length to in-
crease the complexity (Hsieh et al., 2024; Song
et al., 2024). Additionally, several studies have
adapted traditional NLP tasks–such as retrieval,
single-document QA, and summarization–to serve
as long-context evaluation scenarios (Shaham et al.,
2023; An et al., 2024; Bai et al., 2024; Zhang et al.,
2024). Some benchmarks target long-dependency
or multi-hop reasoning and distribute information
throughout the context (Dong et al., 2024; Li et al.,
2024; Wang et al., 2024b). However, these bench-
marks often utilize contexts in which a significant
portion of the text is irrelevant to the query, and
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Benchmark Newly
Curated

Input Text
Structure

Document
Relevance

Information
Coverage (%)

NIAH (Kamradt, 2023) Yes Multi Low N/A
RULER (Hsieh et al., 2024) Partial Multi Low N/A
Counting-Stars (Song et al., 2024) Yes Multi Low N/A

ZeroSCROLLS (Shaham et al., 2023) No Single & Multi High 56.1
L-Eval (An et al., 2024) Partial Single & Multi High 35.4
InfiniteBench (Zhang et al., 2024) Yes Multi Mixed 16.5
BAMBOO (Dong et al., 2024) Yes Single High 41.4
Loong (Wang et al., 2024b) Yes Multi High 14.4
LooGLE (Li et al., 2024) Yes Single High 9.6

ETHIC (Ours) Yes Single & Multi High 91.0

Table 1: Comparison of existing long-context benchmarks and our dataset. “Newly Curated” indicates whether
the input text and queries/instructions are reused from existing datasets or newly created. “Input Text Structure”
specifies whether the input context consists of a single document or multiple documents. “Document Relevance”
assesses whether the different documents in multi-document tasks are unrelated and noisy, or if they are connected
and coherent. “Information Coverage” quantifies the amount of information within the input context that is necessary
to answer the query. Note that information coverage is marked as "N/A" if the proportion of required information
varies depending on custom settings. Please refer to Sections 2 and 3 for information on the datasets.

only a small segment contains useful information.
Consequently, they do not fully assess how well
LLMs understand and integrate different parts of
the given context.

In contrast, our benchmark requires models to
make extensive use of the provided context. To
measure the necessary amount of information, we
introduce a metric called information coverage,
which is explained in detail in Section 2.3. Ta-
ble 1 illustrates the differences between existing
benchmarks and our proposed benchmark.

2.3 Information Coverage
Let D = {(Ci,qi ai)}Ni=1 be a dataset, where Ci, qi,
and ai represent the i-th input long context, query,
and output (answer), respectively. The input con-
text can be a single document, such as a book, or a
collection of related documents, like a set of papers
on a similar research topic. We omit the subscript
i for simplicity. We divide the input context into
chunks, each with a length of up to 512, denoted
as {c1, . . . , cT }. For each data example, we calcu-
late the IC score by using an evaluator model to
determine whether each text chunk is (potentially)
necessary for answering the query, as follows:

s(C,q) =
1

T

T∑

j=1

M(cj ,q), (1)

where s is the IC scoring function, q is the query,
and M represents the evaluator model that returns
1 if the text chunk should be taken into account and
0 otherwise. The IC score for the entire dataset is

calculated as the average of all individual IC scores
from the examples. We used GPT-4o as the evalua-
tor because of its higher consistency compared to
other models. Please refer to Appendix A for the
detailed prompt.

A few concurrent studies have also sought to
establish the criteria for evaluating long-context
LLMs. Goldman et al. (2024) defined the aspect
of “scope” as “how much necessary information is
there to find?”, which is similar to our definition.
However, they did not provide a specific metric and
systematically evaluate existing benchmarks. In
contrast, we present a novel approach for measur-
ing the quantity of information, marking the first
time this has been done in this area.

3 ETHIC

In this section, we outline the document collection
process (see Section 3.1) and the task construction
process (see Section 3.2) in detail. Additionally,
we describe the label annotation process for each
task in Section 3.3.

3.1 Corpus Selection

We selected four popular domains and gathered
publicly available documents online without li-
cense restrictions for research purposes: books,
debates, medicine, and law. The first two domains
are used for single-document settings, while the
latter two are for multi-document settings.

Books Book-sourced corpora have been widely
used across various benchmarks (Kočiský et al.,
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<Section 1>
The Secretary of State introduced the 
Animal Welfare Bill, which aims to 
ban the export of pig, sheep, and...

<Section 2>
Ruth Jones welcomed the Bill but 
criticized the Government for the 
delay in introducing, noting that...
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its focus on improving animal welfare 
by reducing the stress and ...

<Section 4>
Tim Farron supported the Bill but 
expressed disappointment that it 
didn’t include previously promised...
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{“Emma and Naomi, Philip's mother and 
wife, are deeply troubled by his decision to 
abandon his work...”}

…

…

{“Emma Downes receives a letter from her 
son Philip, who informs her that he will be 
returning home due to...”}

{“Naomi's behavior changes as she becomes 
aware of Philip's growing detachment...”}

{“Philip's illness, which is actually typhoid, 
becomes a source of concern for Emma...”}
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(d) Attributing

figure 2

Figure 2: Overall description of ETHIC. Our benchmark includes four tasks: (a) the recalling task involves
identifying specific types of entities in the text, (b) the summarizing task involves writing a summary for each
section of the input, (c) the organizing task involves arranging mixed contents in the correct order, and (d) the
attributing task focuses on identifying the underlying point of view within medical studies or legal documents.

2018; Kryscinski et al., 2022; Chang et al., 2024).
We collected 100 English books from Project
Gutenberg,1 all of which are no longer under copy-
right as of 2024.

Debates We collected 229 debate transcripts
from Hansard online,2 which provides up-to-date
records of debates held in the UK Parliament. Par-
liamentary debates cover a wide range of subjects,
including political issues and legislative proposals.
We manually selected debates by filtering out those
that are either short (fewer than 10k tokens) or not
considered debates, such as maiden speeches.

Medicine We collected 230 samples from the
test set of MSˆ2 (DeYoung et al., 2021), a multi-
document summarization dataset in which each
sample comprises relevant medical abstracts used
for systematic reviews. We excluded any samples
with fewer than 10K tokens.

Law We gathered legal cases using the API from
CourtListener3, which provides up-to-date legal
documents for research purposes. We grouped each
target case with up to 15 related cases that cite it,
resulting in a total of 103 samples.

3.2 Task Construction

When designing tasks, we prioritized two key as-
pects: (1) maximizing the use of the provided con-
text and (2) ensuring they are grounded in well-

1https://www.gutenberg.org
2https://hansard.parliament.uk/
3https://www.courtlistener.com

defined categorization standards. By emphasizing
these criteria, we enhanced the clarity and effec-
tiveness of our benchmark, distinguishing it from
existing long-context benchmarks. To achieve this,
we drew on insights from Anderson et al. (2000),
an authoritative source in the education field that
provides a systematic approach to classifying ed-
ucational objectives. From this framework, we
adopted the following three distinct cognitive cat-
egories that align with our goals. (i) Remember:
this cognitive process involves retrieving relevant
information from the provided context in its origi-
nal form. It serves as a crucial step for addressing
more complex tasks that require integrating the
knowledge gained during this process. (ii) Under-
stand: this category involves constructing meaning
by interpreting and making sense of the knowledge
obtained from the provided context. (iii) Analyze:
this process entails breaking down the provided
context into its constituent parts and examining
their relationships. Based on these categories, we
developed four tasks–recalling, summarizing, orga-
nizing, and attributing–each corresponding to one
of the three categories. Figure 2 illustrates the four
tasks included in ETHIC.

Recalling In this task, models should retrieve all
specific types of entity mentions from the input
context, similar to the named entity recognition
task (Sang and De Meulder, 2003). This includes
identifying character names from books, names of
individuals from debates, numbers of patients or
populations from medical studies, and legal refer-
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Task Cognitive
Process Domain # Instances # Avg. Tokens Information

Coverage (%)

Recalling Remember Books 100 76,812 93.8
Debates 229 28,524 82.1
Medicine (†) 230 29,037 86.6
Law (†) 103 59,938 85.4

Summarizing Understand Books 100 76,893 92.3
Debates 229 28,598 97.7
Medicine (†) 230 29,065 91.7
Law (†) 103 59,970 98.1

Organizing Analyze Books 100 94,403 74.4
Debates 229 35,751 87.7

Attributing Analyze Medicine (†) 230 29,166 97.5
Law (†) 103 56,905 82.5

Table 2: A summary of our dataset construction. ETHIC covers four domains—books, debates, medicine, and
law—with a total of 1,986 test instances. In the medicine and law domains (marked with †), the inputs consist of
multiple documents, while the inputs in the books and debates domains consist of a single long document. We
randomly sampled 50 instances per domain and task to report information coverage.

ences from legal cases, all of which consistently
appear throughout the document. To eliminate am-
biguity in the answer format, models are guided to
return a list of single words or numbers only.

Summarizing This task requires the model to
summarize and rephrase the key ideas from the
given context. While current LLMs are known to
excel at traditional summarization tasks (Pu et al.,
2023), evaluating this ability under long-context
settings remains a challenge (Wu et al., 2024). We
extended the existing summarization task to a high-
IC setting. Instead of summarizing the long context
all at once, we divided it into smaller text chunks
and required models to summarize each chunk indi-
vidually (e.g., sections in books). This encourages
models to capture essential information from each
section without missing important details.

Organizing In this task, models are provided
with the entire context along with summaries of
each chunk in a random order. Models should then
rearrange these summaries into their original se-
quence. The output consists of the document IDs
in the correct order. Conventional tasks generally
require filling in missing parts in the correct or-
der (Wang et al., 2024a) or reordering a limited
number of information chunks (Dong et al., 2024),
all of which can be solved by attending to specific
areas instead of the entire context. Our task pre-
vents these potential bypasses by instructing mod-
els to organize summary chunks that altogether
represent the entire context. This task applies only
to the single-document setting.

Attributing Unlike the organizing task, this task
applies only to the multi-document setting. Models
are tasked with inferring the underlying point of
view within the given context. In the medicine do-
main, models receive a set of abstracts used in the
same systematic review, along with a “background”
paragraph. The background section is taken from a
different target review, and some of these abstracts
are also referenced in that review. The models must
then identify the IDs of the medical abstracts that
were included in the target review. For the law do-
main, we first grouped multiple pages from each
legal case into segments. Models are given a tar-
get case, along with a set of segments from other
cases that cite the target case. Note that the specific
citations are masked using a citation mark. Mod-
els must go over each segment and check whether
the context surrounding each citation mark aligns
with the target case. Overall, this task involves ac-
tively integrating information from each document
and understanding the reasoning behind citing a
particular study or case.

3.3 Annotation Process

This section provides details of our annotation pro-
cess for each task, except for the summarizing task,
where we adopted a reference-free method to eval-
uate the generated summaries (Liu et al., 2023a).
Table 2 provides a summary of our benchmark.

Recalling Since annotating long contexts all at
once can reduce accuracy, we processed each con-
text by dividing it into smaller chunks (up to 1,024
tokens). We used GPT-4o to annotate each small
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chunk, and merged the labels without duplicates to
obtain the final label set for the full input document.
We initially instructed GPT-4o to review its own
answers, but empirically found that this process
often led the model to misjudge correct answers as
incorrect. We manually reviewed the accuracy of
the model’s annotations by examining 100 chunk-
label pairs from each domain and found that they
were highly accurate (see Appendix E for details).

Organizing Generating labels for this task in-
volves generating multiple summary chunks from
the original context and shuffling them into random
orders. Using the same small chunks used when
annotating the recalling task, we prompted GPT-4o
to briefly summarize each chunk with up to five
sentences, and then we randomly shuffled them.

Attributing For the medical domain, each sam-
ple (i.e., a set of medical abstracts used in the same
systematic review) was inspected to identify the
PMIDs of abstracts that were also included in an-
other sample, which became the label set. If mul-
tiple samples contained overlapping abstracts, we
chose the one with the highest overlap. If no ab-
stract was used in any other sample, we randomly
selected background paragraphs, and the label set
was labeled as “none.” For the law domain, each
sample included one target case and multiple citing
cases. We first generated a summary of the target
case using GPT-4o. Then, for each page of a citing
case, the model was instructed to identify all spans
referring to the target case based on its title and
summary. Any spans referring to the target case
were replaced with target citation markers (“[TAR-
GET CITATION]”), while references to other cases
were replaced with generic citation markers (“[CI-
TATION]”). Finally, we grouped pages into seg-
ments, identified the segment IDs containing target
citation markers, and replaced every target citation
marker with a generic citation marker.

4 Experiments

In this section, we outline different metrics used to
evaluate each task (see Section 4.1). We introduce
baseline models and methods in Section 4.2, and
provide the results in Section 4.3.

4.1 Metrics
For the recalling task, we used the F1 score to eval-
uate how well the predicted entities matched the
ground truth. For the summarizing task, we fol-
lowed the approach of Wu et al. (2024), prompting

GPT-4o to rate the generated summaries on con-
sistency, relevance, and faithfulness, using a scale
from 1 to 5. The final score was calculated by
multiplying the probability by the assigned score,
similar to the method used by Liu et al. (2023b).
For the organizing task, we found that models can
hardly obtain any scores when evaluated using Ex-
act Match. Therefore, we used Longest Common
Subsequence (LCS), which measures the propor-
tion of the longest matching subsequence between
the prediction and the ground truth, relative to the
total sequence length. The subsequences do not
need to be consecutive. Lastly, for the attributing
task, we used the F1 score to compare the predicted
document IDs with the ground truth.

4.2 Baselines

Long-Context Models We used the current best
LLMs that support a context window of over 128k
tokens on ETHIC. This included three powerful
proprietary models–Gemini Pro 1.5 (Reid et al.,
2024), GPT-4o, and GPT-4o mini (OpenAI, 2024)–
as well as open-source models such as Phi-3.5-
mini-instruct (Abdin et al., 2024), Qwen2.5-7B-
Instruct, Qwen2.5-72B-Instruct (Yang et al., 2024),
GLM4-9B-Chat (GLM et al., 2024), Llama-3.1-8B-
Instruct, and Llama-3.1-70B-Instruct (Dubey et al.,
2024). Gemini Pro 1.5 supports a length of 2M,
while the other models support up to 128K.

Training-Free Methods To investigate promis-
ing methods, we tested three training-free frame-
works specifically designed to efficiently manage
long input contexts. These frameworks can be ap-
plied to any LLM without modification; for our
experiments, we used Llama-3.1-8B-Instruct as the
backbone LLM. (1) StreamingLLM (Xiao et al.,
2024b) leverages the key-value caches of initial
tokens within the input context and a finite at-
tention window, capitalizing on the phenomenon
where the model’s attention heavily “sinks” into
these initial tokens. (2) InfLLM (Xiao et al.,
2024a) selects relevant token sequences from a
part of the input that is distant from the current to-
kens, and it combines these with the initial tokens
and local context. This method has proven effec-
tive in existing long-context benchmarks, includ-
ing InfiniteBench (Zhang et al., 2024) and Long-
Bench (Bai et al., 2024). (3) MemoRAG (Qian
et al., 2024) is a retrieval-augmented generation
(RAG) framework (Lewis et al., 2020) that con-
sists of a lightweight memory model and a more
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Model
Recalling Summarizing Organizing Attributing

F1 (%) Score (1-5) LCS (%) F1 (%)

Proprietary

Gemini Pro 1.5 (Reid et al., 2024) 69.1 2.9 54.5 39.4
GPT-4o (OpenAI, 2024) 49.5 3.1 39.0 41.3
GPT-4o mini (OpenAI, 2024) 32.3 2.7 21.7 30.5

Open-Source

Qwen2.5-72B-Instruct (Yang et al., 2024) 45.4 3.0 27.9 45.1
Llama-3.1-70B-Instruct (Dubey et al., 2024) 37.7 2.4 25.7 41.1

Qwen2.5-7B-Instruct (Yang et al., 2024) 14.3 2.7 19.0 24.2
Llama-3.1-8B-Instruct (Dubey et al., 2024) 18.0 2.3 20.2 28.8
GLM4-9B-Chat (GLM et al., 2024) 18.3 2.3 22.1 28.2
Phi-3.5-mini-instruct (3.8B) (Abdin et al., 2024) 11.7 2.2 15.9 25.9

Training-Free Methods (built upon Llama3.1-8B-Instruct)

StreamingLLM (Xiao et al., 2024b) 15.8 1.6 1.7 10.6
InfLLM (Xiao et al., 2024a) 17.0 1.8 13.8 12.7
MemoRAG (Qian et al., 2024) 16.8 1.7 22.1 16.7

Table 3: The performance of models and training-free methods on ETHIC. The best scores are highlighted in bold.
We used instruction-tuned versions of open-source models. Please refer to Section 4.1 for the details of the metrics.

resource-intensive answer generator. The mem-
ory model retrieves answers from a long-context
database, which the answer generator then uses as
clues to produce the final response.

4.3 Results

Table 3 shows the performance of models evalu-
ated on ETHIC. Both open-source and commercial
models demonstrated weak overall performance.
Noticeably, Gemini Pro 1.5 consistently outper-
formed GPT-4o in our benchmark. This may be
attributed to GPT-4o’s 128K context limit, which is
significantly lower than the 2M context capacity of
Gemini Pro 1.5. This result suggests that models
with superior long-context handling perform better
in our benchmark.

Among the four tasks, the performance gap be-
tween the models was most pronounced in the re-
calling task. Gemini Pro 1.5 achieved 69.1%, while
GPT-4o, the second-best model, scored 49.5%. The
lowest-performing model managed just 11.7%. De-
spite the recalling task involving straightforward re-
trieval queries, the models struggled as the volume
of information increased. In the summarizing task,
the models achieved only moderate performance,
which contrasts with the strong performance of
recent models in traditional summarization tasks.
Additionally, all models showed room for improve-
ment in both organizing and attributing tasks.

When we applied long-context encoding meth-
ods to Llama-3.1-8B-Instruct, there was no perfor-

mance improvement; in fact, overall performance
generally decreased. Although these methods have
been presented as effective for long-context tasks,
they demonstrated limitations in our high-IC tasks,
underscoring the need for further research.

5 Analysis

We conducted further analysis to better understand
the models’ limitations within our benchmark. We
used GPT-4o mini as the main model throughout
Sections 5.1 to 5.3, and all models for Section 5.4.

5.1 Comparison of Model Performance
Between Low-IC and High-IC Tasks

As illustrated in Figure 1, we observed that model
performance can vary significantly based on the
amount of information required to answer the query,
even when using the same input contexts. To ex-
plore this further, we constructed a set of low-
IC tasks, including traditional NLP tasks such as
single-document QA, multi-document QA, and
query-focused summarization (QFS). Specifically,
we extracted one or more chunks from the con-
texts in our benchmark and asked GPT-4o to gener-
ate queries and their corresponding answers. This
method followed a framework similar to that used
for developing our benchmark, ensuring high anno-
tation accuracy. Figure 3 shows the performance
was consistently better on low-IC tasks compared
to high-IC tasks. This highlights that, even when
tasks involve the same documents and similar cog-
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Figure 4: The performance with varied context lengths
on low- and high-IC tasks. We used the single-document
QA and recalling tasks from the books and debates
domains for low- and high-IC tasks, respectively.

nitive demands, information coverage is a key fac-
tor that significantly impacts model performance.

5.2 Effect of Context Length

We examined how model performance in our bench-
mark is affected by increasing context lengths. For
this analysis, we utilized recalling queries from the
book and debate domain corpora. Figure 4 illus-
trates a consistent decline in model performance
as the context length increased. This trend was
also evident in low-IC tasks, as shown in the fig-
ure; however, the drop in performance was more
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Figure 5: The effect of the position of information in the
summarizing task. The x-axis represents the position
of the chunks within the input context, while the y-axis
represents the total length of the input context. Blue
(red) chunks indicate summaries with high (low) scores.

pronounced in high-IC tasks compared to low-IC
tasks, highlighting their distinct characteristics.

5.3 Effect of Position of Information
A recent study demonstrated that when relevant
information is located in the middle of the input
sequence, both QA and retrieval performance sig-
nificantly declined (Liu et al., 2024). To investigate
whether a similar position-dependent phenomenon
occurs in our tasks, we visualized the model scores
for each chunk in the summarizing task. Figure 5
shows that the model effectively processed infor-
mation at the beginning of the provided context, but
performance decreased toward the end. For context
lengths ranging from 8K to 32K, the performance
in the middle sections was the lowest, which is con-
sistent with findings from Liu et al. (2024). When
the context length exceeds 32K, we consistently
observed a decline in performance as the context
length increased. This might occur because, during
decoding, the summaries of the later chunks are
influenced by the outputs from the earlier sections,
which increases the likelihood of errors in those
later parts. However, this does not imply that the
errors in the later sections are solely due to decod-
ing issues. The performance of the earlier sections
also decreased as the context length increased, sug-
gesting that the model had inherent limitations in
its ability to handle long-context encoding.

5.4 Error Analysis: Degeneration
Through a close examination of model responses,
we noticed that models mainly suffer from degener-
ation (Welleck et al., 2020; Holtzman et al., 2020;
Fu et al., 2021; Li et al., 2023), i.e. generation
of unreasonably repetitive texts. Following previ-
ous works, we used Rep-n and Rep-r to quantify
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Model
Recalling Summarizing

Rep-n (%) Rep-r (%)

Proprietary

Gemini Pro 1.5 27.9 43.0
GPT-4o 90.9 65.2
GPT-4o mini 69.8 53.8

Open-Source

Qwen2.5-72B-Instruct 87.3 61.0
Llama-3.1-70B-Instruct 70.7 67.7

Qwen2.5-7B-Instruct 82.9 65.5
Llama-3.1-8B-Instruct 76.8 66.0
GLM4-9B-Chat 89.9 63.6
Phi-3.5-mini-instruct 55.4 58.3

Table 4: Rep-n and Rep-r scores across different models
on the Recalling and Summarizing tasks. Please refer
to Appendix F for the details of the metrics.

this phenomenon across different models (see Ap-
pendix F for details of the metrics). Specifically,
we applied Rep-n on the Recalling task to account
for the portion of repeated n-grams, and Rep-r on
the Summarizing task to account for the portion of
repetitive summary snippets. As shown in Table 4,
all models exhibited severe degeneration issues
across both tasks. This indicates that tasks requir-
ing high information coverage adversely impacted
model behavior during generation, ultimately hin-
dering performance. Furthermore, notably high
repetition scores observed from models such as
GPT-4o indicates that degeneration remains a crit-
ical issue even for bigger models. Exploring dif-
ferent strategies to mitigate degeneration would be
crucial for improving model performance on tasks
that demand high information coverage.

6 Conclusion

In this study, we introduced ETHIC, a novel bench-
mark designed to evaluate LLMs’ ability to fully
process information in long-context settings. We
also introduced a new metric, information cover-
age (IC), to quantify how much of the provided
context is required to answer a query. Compared
to existing benchmarks, ETHIC has significantly
higher IC values, which underscores its unique
aspect. Our experiments revealed that current
commercial/open-source LLMs and long-context
encoding methods perform poorly on our bench-
mark, emphasizing the need for future research to
address long-context processing with high IC.

Limitations

We calculated the IC value for long contexts by
breaking them into smaller chunks and assessing
whether each chunk is necessary to answer the
given query. However, in cases requiring multi-hop
reasoning, some chunks may mislead the evalua-
tor into believing they do not directly contribute
to answering the query, even if they are crucial for
intermediate reasoning when connected to other
chunks. Consequently, the evaluator might over-
look the potential usefulness of these chunks when
evaluating them individually. While our study did
not thoroughly analyze this aspect, we encourage
future research to conduct additional analyses and
improvements in this area.

In Figure 4, we show that as the context length
increases, the performance of the models on our
benchmark significantly declines. This drop is
likely caused by a combination of difficulties in
encoding long contexts and decoding lengthy out-
put sequences. We have not analyzed these two
factors separately. In future work, we aim to de-
velop a more advanced evaluation framework that
either fixes the output length while increasing the
input context or maintains a constant input context
while increasing the output length.

Data contamination and leakage (Magar and
Schwartz, 2022; Xu et al., 2024) can lead to over-
estimating model performance and undermine the
reliability of benchmarks. Recent LLMs are trained
on extensive datasets during their pre-training
phase, but they do not specify which data was used.
Although we cannot guarantee that we have com-
pletely eliminated the possibility of data leakage
in our benchmark, we would like to emphasize the
steps we have taken to minimize it: (1) When select-
ing the book corpus, we chose data from sources
where licensing issues were resolved recently (in
2024). This reduces the risk of exposure compared
to books that were licensed long ago. (2) We only
collected debate transcripts and legal cases that
took place in late 2023 or early 2024. (3) In the
medical domain, we used only the test split of the
MSˆ2 dataset exclusively and did not incorporate
any data from the training split.
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A Details on Information Coverage

Below is the instruction used to measure IC.

You are given a passage and a query. The
given query originally requires a reader to
answer based on a longer context. This task
splits the long context into multiple small
passages, and aims to identify whether
a certain passage needs to be taken into
account in order to answer the query.

### Passage:
(Note: This passage is a small portion of the
original context, and may not be provided
in the format specified in the query.)
<passages>

### Query:
(Note: This query is for evaluation only.
DO NOT answer it yourself.)
<query>

### Score Rubrics:
0 : The passage is an unnecessary part of
the original context, which does not need to
be taken into account to answer the query.
1 : The passage is a necessary part of the
original context, which should be taken into
account to answer the query.

Follow the following format:

# Query Understanding : {{demonstrate a
clear understanding of the query and its re-
quirements}}
# Passage Understanding : {{demonstrate
a clear understanding of the passage, focus-
ing on how it relates to the query}}
# Assessment : {{demonstrate your assess-
ment based on the Score Rubrics provided
above}}
# Final Score : {{a single score only}}

B Details on Annotation Process

Below are the instructions used to evaluate models
across different tasks. Note that for the Recalling
task, the same instructions were used in the annota-
tion process, but with smaller chunks of text.

B.1 Recalling
B.1.1 Books

### Context:
<passages>

Now, respond to the instruction.
### Instruction:
List every unique character name that
appears in the context. Each name should
be a single word. Remove any titles
(e.g. Mr., Mrs., Captain, etc.) attached.
If a character is mentioned with a full
name, list each part of the name sepa-
rately. Use commas to separate each name.
If no such names are present, return "None".

Answer:

B.1.2 Debates

### Context:
<passages>

Now, respond to the instruction.
### Instruction:
List every real name that refers to a
person. Remove any titles (e.g. Mr.,
Mrs., Speaker, Lady, etc.) attached to a
name. If a person is mentioned with a
full name, list each part of the name sepa-
rately. Use commas to separate each name.
If no such names are present, return "None".

Answer:
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B.1.3 Medicine

### Context:
<passages>

Now, respond to the instruction.
### Instruction:
List every integer that refers to the count
of people (or a group of people) men-
tioned in the passage. Do not include
percentages, proportions, or integers related
to non-human entities. If an integer is
written in words, convert it to digits. Only
return integers, without explanations. Use
semicolons to separate each integer. Re-
turn "None" if no such integer is mentioned.

Answer:

B.1.4 Law

### Context:
<passages>

Now, respond to the instruction.
### Instruction:
List every number that appears directly
in the names of legal citations, includ-
ing case law numbers, volumes, series,
statutes, sections, or codes. Do not include
numbers that appear separately from the
full citation name, such as standalone
paragraph numbers. Remove any special
characters that appear with the numbers,
and return each number separately. Only
return the numbers, separated by semi-
colons, without explanations or details. If
no such numbers are present, return "None".

Answer:

B.2 Summarizing

### Context:
<passages>

Now, respond to the instruction.
### Instruction:
The context is split into <num_sections>
section(s). For each section, write a concise,
one-page summary. Prepend the appropri-
ate section header (e.g. <Section 1>) to the
summary, and use newlines if there are mul-
tiple sections to summarize. Only return the
summary, without additional explanations,
context, or commentary.

B.3 Organizing

### Context:
<passages>

Now, respond to the instruction.
### Instruction:
The following options summarize different
parts of the given context. Arrange the
options in the same order as the events
that appear in the context. Only enumerate
each option number surrounded by square
brackets, without explanations. Use
commas to separate your answer.

### Options:
<options>

Answer:

5510



B.4 Attributing
B.4.1 Medicine

### Context:
<passages>

Now, respond to the instruction.
### Instruction:
For each study, assess how the information
presented aligns with the selection criteria
for systematic reviews focused on clinical
outcomes, treatments, or healthcare inter-
ventions. Consider whether the study’s
methodology, findings, or broader impli-
cations contribute to the robustness of a
systematic review. Label its ID accordingly
under one of the following categories:
- "Core IDs": Studies that meet the nec-
essary criteria for inclusion in systematic
reviews due to their direct contribution to
clinical evidence or intervention outcomes.
- "Supplementary IDs": Studies that provide
additional insights, but may not meet the
primary inclusion criteria for systematic
reviews.

### Background:
<background>

Now, label each study under the correct
category. Ensure that EVERY study is
labeled under at least one category. Use
square brackets to surround each ID,
without explanations, and separate them by
commas. Follow the following format.

- Core IDs:
- Supplementary IDs:

B.4.2 Law

### Context:
<passages>

Now, respond to the instruction.
### Instruction:
For the given context and target case,
assume that the [citation]s within the
context are replaced by the target case, and
categorize each SEGMENT based on how
the citations could assist in understanding
the segment:
- "Related Segments": Segments where the
"Target Case" provides a clear and direct
connection to the citation marks within
them, based on legal reasoning, evidence,
or laws, making it a valuable reference.
- "Supporting Segments": Segments where
the "Target Case" may provide some
indirect relevance to understanding the
context, but it does not have a direct
connection to the citation marks in terms of
legal reasoning, evidence, or laws.

### Target Case:
<target_case>

Now, label each SEGMENT under the
correct category. Ensure that EVERY
study is labeled under at least one category.
Use square brackets to surround each
SEGMENT, without explanations, and
separate them by commas. Follow the
following format.

- Related Segments:
- Supporting Segments:

C Performance per Domain

In Table A, we report the performance of models
and training-free methods for each domain.

D Implementation Details

All experiments were done using Nvidia A100
with 80GB memory. For inference, we used
vLLM (Kwon et al., 2023) for efficiency. We
adopted a greedy decoding strategy with tempera-
ture set to 0 and top_p set to 1.0.
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Model
Books Debates Medicine Law

Rec (%) Sum. Org (%) Rec. Sum. Org Rec. Sum. Att. Rec. Sum. Att.

Proprietary

Gemini Pro 1.5 (Reid et al., 2024) 61.8 2.3 38.6 75.4 2.9 62.3 79.2 3.3 30.8 39.5 2.5 38.1
GPT-4o (OpenAI, 2024) 54.4 2.1 30.2 69.6 3.2 42.8 44.4 3.6 30.4 11.7 2.6 55.7
GPT-4o mini (OpenAI, 2024) 48.6 1.7 14.5 43.0 2.9 24.9 23.4 3.3 22.4 12.5 2.0 42.0

Open-Source

Qwen2.5-72B-Instruct (Yang et al., 2024) 53.2 1.8 19.9 52.2 3.1 31.4 49.3 3.5 40.4 14.1 2.6 48.0
Llama-3.1-70B-Instruct (Dubey et al., 2024) 50.9 1.7 19.4 38.0 2.5 28.5 42.0 2.7 30.5 14.9 2.3 55.2

Llama-3.1-8B-Instruct (Dubey et al., 2024) 29.2 1.5 13.6 11.2 2.3 23.1 23.4 2.6 24.9 10.3 2.2 36.6
Phi-3.5-mini-instruct (Abdin et al., 2024) 13.9 1.4 7.8 1.0 2.4 19.5 21.2 2.3 24.7 13.2 1.9 17.5
GLM4-9B-Chat (GLM et al., 2024) 33.5 1.6 16.5 13.9 2.4 24.6 18.7 2.6 35.6 12.6 2.2 9.7
Qwen2.5-7B-Instruct (Yang et al., 2024) 21.4 1.4 14.8 1.5 2.8 20.8 28.2 3.4 29.6 5.2 2.3 4.7

Training-Free Methods (built upon Llama3.1-8B-Instruct)

StreamingLLM (Xiao et al., 2024b) 30.3 1.2 2.9 5.9 1.6 1.1 22.9 1.8 11.0 7.9 1.6 9.6
InfLLM (Xiao et al., 2024a) 29.1 1.2 5.9 9.5 1.8 17.2 23.6 2.1 12.4 6.9 1.7 13.5
MemoRAG (Qian et al., 2024) 29.8 1.2 15.7 10.4 1.8 25.0 25.9 1.8 17.9 7.9 1.9 14.0

Table A: Model performance per domain.

E Validation of Data Quality

To ensure the quality of labels generated by GPT-
4o, we randomly selected 100 samples from each
domain. The resulting annotations were evaluated
against GPT-4o-generated labels using the F1 score,
as shown in Table B.

Dataset F1(%)

Books 96.5
Debates 99.0

Medicine 96.8
Law 95.2

Table B: Comparison of F1 scores (%) between GPT-
generated labels and human-labeled data across different
datasets.

F Details on Degeneration Analysis

We used two metrics to measure degeneration:
Rep-n and Rep-r. Following the notations from Li
et al. (2023), each metric is calculated as follows:

Rep-n = 1.0− |UniqueNgrams(x, n)|
L− n+ 1

Rep-r =
1

L

∣∣∣
{
i |(xi = xj ∧ xi+1 = xj+1,∃j ̸= i)

∨ (xi = xk ∧ xi−1 = xk−1,∃k ̸= i)
}∣∣∣

where x, L, and n refers to the sentence, its
length, and the length of n-gram within the sen-
tence, respectively. Rep-n measures repetition
based on the portion of repeated n-grams, whereas
Rep-r quantifies repetition based on the portion of
repeated snippets measured by sentence length.
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