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Abstract

Prompt tuning (PT) offers a cost-effective al-
ternative to fine-tuning large-scale pre-trained
language models (PLMs), requiring only a few
parameters in soft prompt tokens added be-
fore the input text. However, existing PT ap-
proaches face two significant issues: (i) They
overlook intrinsic semantic associations be-
tween soft prompt tokens, leading to high dis-
creteness and limited interactions, thus reduc-
ing the model’s comprehension and effective-
ness in complex tasks. (ii) Due to the com-
plexity of downstream tasks, long soft prompt
is necessitated to improve performance, but
prompt length correlates positively with mem-
ory usage and computational costs. Achieving
high efficiency and performance remains an on-
going challenge. To address these issues, we
propose a novel Low-pAraMeters Prompt Tun-
ing (LAMP) method, which leverages prompt
decomposition and compressed outer product.
Specifically, the prompt decomposition mod-
ule employs Truncated SVD to reduce training
parameters and significantly lower the dimen-
sionality of the soft prompt parameter space. It
then utilizes a compressed outer product mod-
ule to facilitate multiple interactions among
prompt tokens, exploring their intrinsic asso-
ciations to enhance knowledge representation.
Finally, LAMP uses average pooling to reduce
memory usage and training/inference time. Ex-
tensive experiments across six architectures
and eight datasets demonstrate that LAMP out-
performs state-of-the-art PT-based and LoRA-
based methods in performance and efficiency.

1 Introduction

Pre-trained language models (PLMs) possess pow-
erful learning capabilities to extract complex fea-
tures and patterns from vast amounts of data (De-
vlin et al., 2019; Radford et al., 2019). In recent

*The first two authors contributed equally.
†Corresponding author.

Figure 1: (a) and (b) show the t-SNE clustering visu-
alizations of the original prompt tuning prompts after
training on the MultiRC and COPA datasets using the
T5-Base model. Source prompt tokens are initialized
from sampled vocabulary and length is set to 100.

years, as the scale of large PLMs has rapidly ex-
panded, computational costs have surged dramati-
cally (Lan et al., 2024). Although full fine-tuning
parameters of PLMs yields satisfactory results, it
has become impractical, e.g., PaLM has 540B pa-
rameters and requires 6144 TPU v4 chips to train
for 1200 hours (Chowdhery et al., 2023).

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods attempt to bridge this gap by achieving perfor-
mance comparable to full fine-tuning with minimal
computational resources and time costs (Houlsby
et al., 2019; Hu et al., 2021; Lester et al., 2021).
Among these methods, prompt tuning (PT) stands
out for its efficiency and flexibility. It freezes the
model parameters and exclusively trains the soft
prompt tokens attached to the model’s input, de-
livering performance on par with full fine-tuning
(Lester et al., 2021; Xiao et al., 2023; Razdaibied-
ina et al., 2023; Lan et al., 2024). Notably, PT’s
trainable parameters are much lower than other
PEFT methods (e.g., Adapter (Houlsby et al., 2019)
and LoRA (Hu et al., 2021)) and do not grow expo-
nentially as the scale of PLMs.

Although these methods provide undeniable con-
tributions, existing PT-based methods still suffer
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Figure 2: (a) Average performance on the T5 mod-
els across the SuperGLUE benchmark. (b) Impact of
prompt length on performance and trainable parameters
in the WiC dataset of the SuperGLUE benchmark.

from two main challenges: First, in various tasks,
PT initialization methods exhibit high discreteness,
lacking exploration of the intrinsic semantic as-
sociations between tokens. The two mainstream
prompt initialization methods—random initializa-
tion and initialization from sampled vocabulary
(i.e., the 5,000 most common tokens)—help the
model explore a broader parameter space during
training. The sample vocabulary initialization, in
particular, is widely utilized in pre-training for
transfer learning (Vu et al., 2022; Asai et al., 2022)
and multi-task learning (Wang et al., 2022; Zhong
et al., 2024) due to its more informative nature.
Nevertheless, as shown in Figure 1, we found that
although this informative initialization provides
prompt tokens with rich knowledge, these tokens
remain isolated without establishing semantic con-
nections after training. In NLP tasks, intrinsic se-
mantic associations form the context and meaning
of language, helping models better understand and
represent complex language structures (Mikolov
et al., 2013; Devlin et al., 2019; Vaswani et al.,
2017). Prompt tokens leverage semantic knowl-
edge to guide PLMs in producing outputs that bet-
ter meet task requirements. Clearly, this intrinsic
semantic association is essential for PT. This high
discreteness overlooks capturing intrinsic semantic
associations among soft prompt tokens, limiting
the model’s knowledge representation capabilities.
Second, although PT does not require training the
parameters of PLMs, adding soft prompts increases
the total length of input embeddings. Figure 2 re-
veals the relationship between computational cost,
trainable parameters, and prompt length. Previous
research has shown that a long prompt 100 yields
optimal PT performance, enabling PLMs to adapt
to complex downstream tasks (Lester et al., 2021;
Razdaibiedina et al., 2023; Xiao et al., 2023). How-

ever, such a length renders PT inefficient. This in-
efficiency stems from the inherent high complexity
of PLMs (e.g., the quadratic complexity of Trans-
formers) (Vaswani et al., 2017) and the fact that the
storage of gradients and optimizer states is closely
related to the number of trainable parameters (Guo
et al., 2021). While some approaches (Xiao et al.,
2023; Shi and Lipani, 2024; Lan et al., 2024) at-
tempt to optimize standard PT, they still struggle
with inefficiency and suboptimal performance.

To address the aforementioned challenges,
we propose a novel efficient and effective
low-parameters prompt tuning (LAMP) method
through prompt decomposition and compressed
outer product. Our motivation stems from the soft
prompt exhibiting high dispersion and the “intrin-
sic rank" (Aghajanyan et al., 2021; Hu et al., 2021)
in PEFT, which indicates that model fine-tuning
can occur in a low intrinsic dimensionality space.
Specifically, LAMP first employs Truncated singu-
lar value decomposition (SVD) with its inherent
structure—two low-dimensional singular vectors
and singular values—to transform the loosely re-
lated semantic knowledge in PT tokens into a more
structured and interrelated form, while simultane-
ously reducing trainable parameters. It then aggre-
gates the semantic knowledge from the Truncated
SVD and leverages the compressed outer product to
enable multi-level interactions of intrinsic seman-
tics, enhancing the model’s knowledge representa-
tion. Finally, LAMP reduces computational load by
applying average pooling, which does not increase
training parameters. Figure 2 demonstrates that the
longer the prompt length, the more significant the
reduction in computational cost and memory usage
achieved by LAMP.

The main contributions of this paper are:

• Our empirical study reveals that tokens in soft
prompts exhibit high dispersion during training,
lacking inherent semantic interactions among to-
kens to assist the model in comprehending and
handling complex tasks, thereby limiting the
model’s knowledge representation capability.

• We propose a novel low-parameter prompt tun-
ing (abbreviated as LAMP) method that captures
potential semantic interactions between prompt
tokens through prompt decomposition and com-
pressed outer product. LAMP achieves robust
performance while significantly reducing compu-
tational costs (e.g., training time, memory usage,
and trainable parameters).
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• We comprehensively evaluated LAMP on the
SuperGLUE benchmark. Experimental results
demonstrate that LAMP outperforms other state-
of-the-art PT methods and remains effective in
few-shot scenarios. Notably, on the T5-11B
model, LAMP improved performance by 5.59%
compared to the vanilla PT while also increasing
inference speed by 31%, reducing trainable pa-
rameters by 91.21%, shortening training time by
23.64%, and lowering memory usage by 24.49%.

2 Method

2.1 Preliminaries

Prompt Tuning. PT can maintain parameter ef-
ficiency as model size scales. This approach en-
sures that trainable parameters does not increase
dramatically with model expansion, making it a
preferred choice for many applications (Shi and Li-
pani, 2024; Lan et al., 2024). Let labelled training
data (X,Y ) = {xi,yi}Ni=1 for one target task T ,
the number of training data is N . The total param-
eters of PLM is Θ and each input text is xi. The
embedding of xi is represented as Ei ∈ Rm×d,
where m is maximum sequence length and d is
the dimension of input embedding. The target
prompt P ∈ Rl×d is initialized, with l as the
hyper-parameter determining the length of the soft
prompt. This prompt is then concatenated with
the fixed embedding Ei ∈ Rm×d. Ei remains un-
changed during gradient updates in training, result-
ing in a new input embedding [P;Ei] ∈ R(l+m)×d.
The formulation for the target task is as follows:

Lp = −
∑

i

logP (yi| [P;Ei] ; Θ) (1)

where Lp is a loss function only optimized with
the prompt P. P (·) is maximizing the conditional
probability of PT. The overall structure of PT is
shown in Figure 3(a).

2.2 LAMP: Low-parameters Prompt Tuning
Prompt initialization. We initialize the source
soft prompt P from sampled vocabulary (Lester
et al., 2021; Vu et al., 2022; Razdaibiedina et al.,
2023; Asai et al., 2022), a strategy that embeds
more semantic richness and prior knowledge than
mere random initialization. Inadequate initializa-
tion can result in the discovery of suboptimal local
minima, thus impairing the model’s generalization
capabilities.

Prompt decomposition. Our innovative motiva-
tion stems from two aspects: (1) Soft prompt to-
kens exhibit high dispersion (as shown in Figure 1),
neglecting the knowledge interactions between to-
kens; (2) Soft prompt also exhibit low "intrinsic
rank" behavior (Xiao et al., 2023). Inspired by
these findings and the core idea of Truncated SVD
(Hansen, 1987), we employ Truncated SVD to re-
duce training parameters by decomposing the soft
prompt P ∈ Rl×d. The original SVD of P is for-
mulated as follows:

P = Udiag(Q)V⊤ (2)

where U ∈ Rl×min(l,d), V ∈ Rd×min(l,d) are
the singular vectors with orthogonal columns, U
and V transforms highly dispersed tokens from
the original PT into interrelated representations.
Q ∈ Rmin(l,d) comprises the singular values ar-
ranged in descending order (the larger the singular
value, the more information it contains). The oper-
ation diag(Q) converts Q into a diagonal matrix,
and V ⊤ represents the transpose of V.
Prompt reconstruction. We define the soft
prompt’s low "intrinsic rank" as r and select
the top-r singular values, Q[:r], which contain
a rich amount of information arranged in de-
scending order. The remaining singular values,
Q[r:], are discarded and do not participate in train-
ing/inference. Consequently, as the Q dimension
changes, singular values and vectors are redefined
as

{
U[:r] ∈ Rl×r,Q[:r] ∈ Rr,V[:r] ∈ Rd×r

}
. We

can approximate the original information by stor-
ing only r (where r ≪ d) singular values and
their corresponding low-parameters singular vec-
tors, achieving parameter compression, which is
also why LAMP adopts Truncated SVD.

The trainable parameters are now reduced from
‘l × d’ to ‘l × r + r + r × d’. In experiments, we
provide a detailed explanation of hyperparameter
r and its impact on model performance. For in-
stance, on the Llama2-7B (Touvron et al., 2023),
when the prompt length increases from 100 to
500, traditional PT requires training 2,048k pa-
rameters, whereas our method, LAMP, only re-
quires training (500× 8 + 8 + 8× 4096 = 36.8k)
parameters. LAMP’s advantage becomes more
pronounced with longer prompt lengths or larger
model scales, as it significantly reduces the com-
putational cost by decreasing trainable parameters.
LAMP has established a solid foundation for PT-
based methods to excel across various domains.
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Figure 3: (a) Conventional prompt tuning (Lester et al., 2021). (b) The overview of our proposed LAMP. It decom-
poses the vanilla prompt to construct a new low-dimensional prompt, captures the intrinsic semantic associations
between prompt tokens, and finally reduces computational costs through average pooling.

Compressed outer product. Although using Trun-
cated SVD to reduce the trainable parameters in
prompt tuning is promising, directly applying dot
products on the decomposed singular values and
vectors can only partially capture the intrinsic as-
sociations between tokens. Specifically, dot prod-
ucts’ inherent linear nature limits their ability to
fully express the more complex, nonlinear interac-
tions among prompt tokens. Considering that outer
products can mine richer and more complex high-
order interactions, we utilize the compressed outer
product to further explore the intrinsic semantic
associations between tokens in prompt tuning.

Firstly, we utilize the dot product of singular val-
ues and singular vectors as the initialization input
for the compressed outer product module:

M = U[:r] diag
(
Q[:r]

)
∈ Rl×r, (3)

I = diag
(
Q[:r]

)
V⊤

[:r] ∈ Rr×d. (4)

This approach enables an initial aggregation of
knowledge features between tokens, which helps to
effectively represent and explore the underlying se-
mantic knowledge associations. Due to compressed
outer product can maintains the high-order struc-
ture while facilitating multiple layers of intrinsic
semantic interactions. This approach effectively re-
stores and enhances the complex information struc-
tures that might be lost in Truncated SVD, thereby
enriching the knowledge representation capabilities
of prompt tokens. The compressed outer product is
formulated as follows:

C =

r∑

i=1

M[:,i] ⊗ I[i,:] ∈ Rl×d (5)

where M[:,i] is the i-th column vector of M, I[i,:] is
the i-th row vector of I, ⊗ denotes the outer product

of two vectors. C ∈ Rl×d is the resultant prompt
after summing all the outer products. The intro-
duction of compressed outer products enhances the
representational power of prompt tuning. This ap-
proach enables the soft prompt to more effectively
adapt to different downstream tasks through deep
interactions between prompt tokens.

While introducing compressed outer product
does not create new trainable parameters, it does en-
tail a slight increase in computational overhead due
to its engagement in more complex higher-order
interactions. Additionally, given the transformers’
quadratic complexity, the prompt’s length is propor-
tional to the training duration. We consider employ-
ing average pooling operation to reduce training
time:

P′
i,j =

1

p

p−1∑

k=0

Ci∗p+k,j (6)

P′
i,j represents the elements of the tensor P′ ∈

Rl/p×d after averaging pooling. This operation
effectively compresses the l elements along the
first dimension into l/p. It is also noteworthy that
we explored a self-attention pooling strategy to
dynamically filter prompt tokens in Appendix A.1;
however, this strategy was not very effective and
introduced additional trainable parameters.

2.3 Training and Inference

Only the parameters of U[:r] ∈ Rl×r, Q[:r] ∈ Rr,
and V[:r] ∈ Rd×r are optimized during the train-
ing process, while the backbone model (i.e., Θ and
Ei) remained frozen as Figure 3(b). The recon-
structed prompt P′ is inserted before the input text

4409



embeddings. By P′, Eq.1 is displaced by:

LPT = −
∑

i

logP (yi|[P′;Ei]; Θ) (7)

where [P′;Ei] ∈ R(l/p+m)×d is a input embedding
of PLMs through the connection of P′ and Ei.

3 Experiments

In this section, we will answer these key research
questions by conduct extensive experiments: RQ1:
How does our LAMP performance compare with
other SOTA baselines across different model scales
and datasets? RQ2: How do few-shot adaptability
and hyper-parameters optimization influence the
LAMP? RQ3: How will the feature space of the
soft prompt change after considering the intrinsic
semantic associations between tokens?

3.1 Evaluation Datasets and Metrics

Evaluation Datasets: Building upon prior stud-
ies in prompt tuning (Xiao et al., 2023), we em-
ploy eight NLP tasks from the SuperGLUE (Wang
et al., 2019) and GLUE (Wang et al., 2018) bench-
mark and conduct multi-aspect experiments to eval-
uate the high efficiency and effectiveness of LAMP.
The SuperGLUE benchmark includes more com-
plex and challenging tasks among eight datasets
than GLUE (Wang et al., 2018): CB (De Marn-
effe et al., 2019), WSC (Levesque et al., 2012),
COPA (Roemmele et al., 2011), RTE (Giampic-
colo et al., 2007), WiC (Pilehvar and Camacho-
Collados, 2019), BoolQ (Clark et al., 2019), Mul-
tiRC (Khashabi et al., 2018) and ReCoRD (Zhang
et al., 2018). MNLI (Williams et al., 2018), QNLI
(Rajpurkar et al., 2016), SST-2 (Socher et al., 2013)
and MRPC(Bill, 2005) in GLUE benchmark. More
details about datasets in Appendix A.2.
Metrics: Consistent with previous work (Razdai-
biedina et al., 2023; Xiao et al., 2023), the evalu-
ation metric is F1 for MultiRC and ReCoRD, the
evaluation metric is Accuracy for other tasks.

3.2 Baselines and Models

We compare LAMP with the following baseline
approaches: Full Fine-tuning, which updates all
parameters of PLMs; PT-based methods, where
PT (Lester et al., 2021) inserts trainable continuous
vectors, known as soft prompt, before the model’s
input, and its most advanced variants include Resid-
ual PT (Razdaibiedina et al., 2023), DePT (Shi and
Lipani, 2024), EPT (Lan et al., 2024) and DPT

(Xiao et al., 2023); LoRA-based methods include
PiSSA (Meng et al., 2024), rsLoRA (Kalajdzievski,
2023), LoRA+ (Hayou et al., 2024), DoRA (Liu
et al., 2024) and LoRA-GA (Wang et al., 2024)
. More details about Baselines can be found in
Appendix A.3.

We aim to explore a high-performance PEFT
method that minimizes trainable parameters. Train-
able parameters are a crucial factor in our se-
lection of baselines; hence, methods with more
significant trainable parameters and modifying the
transformer layers are not included as baselines
for comparison. Such as Adapter (Houlsby et al.,
2019) (prompt length is 100, 76.8k vs. 1.9M for
T5-base) and its variant methods. Notably, EPT
(Lan et al., 2024) has demonstrated superior per-
formance compared to these PEFT methods. Fur-
thermore, Xprompt (Ma et al., 2022) underwent
rewinding training, and transfer learning (Vu et al.,
2022; Asai et al., 2022) and multi-task learning
(Wang et al., 2022) require pre-training. These
methods are not directly comparable to LAMP.

3.2.1 Models Size
PT tends to underperform in smaller-scale models.
Thus, we conducted primary experiments employ-
ing three T5 model variants (Raffel et al., 2020)
(Small, 60M; Base, 220M; and Large, 770M) and
validated the effectiveness of LAMP using T5-11B
and Llama2-7B (Touvron et al., 2023).

3.3 Training Details

T5 model as the backbone for our experiments;
the hidden dimensions for the T5-base, T5-small,
and T5 large are 512, 768, and 1,024, respectively.
Following the experimental setup from Xiao et al.
(2023), we set the soft prompt length to 100, rank
r = 8 in Truncated SVD and batch size is 16. The
models are trained 100 epochs using the AdamW
(Loshchilov and Hutter, 2019) optimizer with an
initial learning rate of 0.3. We employ the double
quantization operation in QLoRA(Dettmers et al.,
2023) for T5-11B and Llama2-7B. Other training
details in Appendix A.4.

3.4 Overall Performance Comparison (RQ1)

Table 1 presents a comparison of LAMP against
baseline methods on the SuperGLUE benchmark
using various T5 model sizes. Notably, LAMP
requires the fewest training parameters and demon-
strates exceptional average performance across dif-
ferent scales of T5 models. LAMP outperforms
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Method Params.
CB WSC COPA RTE WiC BoolQ MultiRC ReCoRD Average
Acc. Acc. Acc. Acc. Acc. Acc. F1 F1 (%)

T5-Small
Fine-Tuning† 60M 89.28 67.94 59.00 72.56 68.18 77.06 66.98 55.64 69.58

Prompt Tuning 51K 71.43 59.62 58.33 66.91 63.95 66.12 63.31 50.11 62.47
Residual PT† 462K 72.02 63.14 56.66 67.02 60.96 73.35 65.12 53.08 63.91
DePT 51K 75.00 67.31 52.66 65.22 62.70 66.00 61.94 56.71 63.44
EPT 51K 78.57 67.31 55.66 71.01 67.39 69.17 64.46 54.14 65.96
DPT 6K 78.85 60.53 59.33 70.40 64.26 72.17 64.61 53.60 65.47

LAMP(ours) 5K 83.93 67.31 60.66 69.31 66.46 72.97 66.25 53.80 67.59

T5-Base
Fine-Tuning‡ 220M 91.70 81.70 60.00 84.50 69.30 82.30 76.90 80.90 78.41

Prompt Tuning 77K 78.57 61.54 55.00 67.63 62.38 77.00 72.37 71.32 68.27
Residual PT† 693K 77.37 67.94 56.66 81.70 66.87 80.00 72.11 72.21 71.86
DePT 77K 82.14 67.31 54.33 73.91 65.20 79.02 72.70 70.80 70.68
EPT 77K 85.71 67.31 56.00 78.99 67.71 79.14 72.62 71.15 72.33
DPT 9K 78.56 67.30 56.66 79.42 68.49 80.28 72.50 72.56 71.97

LAMP(ours) 7K 94.64 68.42 58.66 83.39 70.06 80.24 72.72 72.55 75.09

T5-Large
Fine-Tuning‡ 770M 94.30 88.50 87.00 90.60 73.50 88.30 85.40 89.20 87.10

Prompt Tuning 102K 82.35 65.38 57.33 88.45 70.69 84.28 76.37 74.36 74.90
Residual PT† 925K 73.21 70.50 62.66 88.92 72.25 85.04 76.46 84.36 76.67
DePT 102K 85.71 67.31 50.66 83.33 68.97 83.24 75.76 74.03 73.63
EPT 102K 89.29 68.30 54.00 86.33 71.79 84.77 76.62 73.94 75.63
DPT 11K 89.29 65.79 62.66 88.45 71.63 84.53 76.72 84.35 77.93

LAMP(ours) 9K 98.21 78.95 57.33 90.61 73.35 85.11 76.94 84.56 80.63

Table 1: For the performance comparison on the SuperGLUE benchmark, all experimental results are based on the
T5-Small, T5-Base, and T5-Large. All scores represent the mean across three runs using distinct random seeds.
† sourced from Xiao et al. (2023). ‡ sourced from Aribandi et al. (2021). The best result is marked in bold. The
second-highest result is indicated by an underline.

the original PT by 7.58%, 9.08%, and 7.11% on
T5-Small, T5-Base, and T5-Large, respectively.
Detailed information on the standard deviation of
LAMP can be found in Appendix A.5. LAMP’s per-
formance improvement is attributed to enhancing
the model’s knowledge representation by uncov-
ering the intrinsic semantic interactions between
soft prompt tokens. LAMP achieves outstanding
performance while significantly reducing training
parameters and computational costs.

From the perspective of trainable parameters,
LAMP and DPT are more efficient than other base-
lines; even though EPT outperforms DPT, EPT
requires more trainable parameters. LAMP clearly
outperforms DPT in several ways. First, DPT re-
lies on randomly generated initial prompts that
lack semantic richness, whereas LAMP leverages

sample vocabularies to better aid the model in un-
derstanding complex language structures. Addi-
tionally, while DPT reduces trainable parameters,
its prompt length remains at 100 when input into
model, leading to inefficiency. In contrast, LAMP
employs average pooling operations that neither
harm performance nor increase trainable param-
eters, making it an efficient and effective novel
prompt tuning method. LAMP demonstrates su-
perior performance and requires significantly
fewer training parameters than the latest LoRA-
based PEFT methods, with detailed results pro-
vided in Appendix A.6.

3.5 Ablation Experiment Analysis (RQ2)

Few-shot adaptation. Following the few-shot ex-
perimental setup of Xiao et al. (2023), we randomly
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K-Shot

Model 8 16 32

Prompt Tuning 48.23 49.83 50.85
Residual PT 52.95 57.57 58.50

DePT 49.83 50.31 49.93
EPT 50.42 50.71 53.51
DPT 56.26 55.60 57.72

LAMP (ours) 57.21 58.14 59.25

Table 2: Few-shot adaptation results with k =
{8, 16, 32} on SuperGLUE benchmark.
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Figure 5: (a) and (b), the performance changes of dif-
ferent methods at various datasets on the T5-11B and
Llama2-7B. (c), the variation of training time and per-
formance in different average pooling blocks p.

sampled 8, 16, and 32 training examples. Table 2
presents the results of all baselines on the Super-
GLUE benchmark. All results are averaged over
three runs with different random seeds on the T5-
base model. We found that LAMP outperforms
other baselines on most datasets in the few-shot set-
ting, demonstrating its effectiveness. The few-shot
performance of various methods across different
datasets is detailed in Appendix A.7.
Sensitivity of Rank Size. The intrinsic rank r is
the primary factor influencing the total number of
trainable parameters in LAMP. We analyzed the

impact of r ∈ {4, 6, 8, 10, 12, 20} on LAMP per-
formance using the T5-base model on the CB and
BoolQ datasets within the SuperGLUE benchmark.
As shown in Figure 4(a) and Figure 4(b), despite
the minimal differences in trainable parameters of
LAMP and DPT across different r values, LAMP
consistently outperforms DPT and other baseline
methods in most scenarios. This demonstrates the
effectiveness of incorporating semantic knowledge
into LAMP. The details of how the intrinsic rank r
affects the changes in training parameters can be
found in the Appendix A.8.
Effect of Prompt Length. We conduct analyses
using the RTE and WiC datasets within the Super-
GLUE benchmark. To understand the impact of
prompt length on the LAMP’s performance, we
maintained an "intrinsic rank" r of 8 for the soft
prompt on the T5-Base model, varying the prompt
lengths ∈ {20, 100, 200}. Figure 4(c) and Fig-
ure 4(d) illustrates that LAMP consistently outper-
forms other baselines at prompt lengths of 20, 100,
and 200. LAMP achieves optimal performance
when the prompt length is set to 100, consistent
with previous findings that 100 is the optimal hy-
perparameter for prompt length (Lester et al., 2021;
Razdaibiedina et al., 2023). The experimental de-
tails of other datasets in the Appendix A.9.
Impact of Model Scale. Based on quantifica-
tion, we conducted experiments on T5-11B and
Llama2-7B using randomly selected datasets and
compared LAMP against baselines that initialize
prompts with semantic knowledge from samples.
As shown in Figure 5(a) and Figure 5(b), across
different model architectures with more than 7B
parameters (T5 with an encoder-decoder structure
and Llama2 with a decoder-only structure), LAMP
consistently helps models adapt to various down-
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Figure 6: The comparison of the dispersion of PT tokens on the MultiRC and COPA datasets before and after
considering the intrinsic semantic associations between soft prompt tokens on T5-Base.

stream tasks, achieving superior performance. The
experimental details of T5-3B can be found in the
Appendix A.10. Meanwhile, Appendix A.11 de-
tails the changes in training parameters and mem-
ory usage associated with the model scale.
Blocks of Average Pooling. Figure 5(c) illustrates
the changes in model training time and perfor-
mance on the SuperGLUE benchmark as the num-
ber of average pooling blocks increases. The larger
the pooling block p, the shorter the prompt length
input to the model, resulting in a more noticeable
reduction in training time. Furthermore, we were
pleasantly surprised to find that average pooling
had minimal impact on performance, yet it pro-
vided significant advantages for PT. This finding
offers a promising mentality for extending PT to
various domains.

3.6 Interpretability (RQ3)

Figure 6 compares general PT before (i.e., blue
points) and after (i.e., red points) extracting the in-
trinsic semantic associations between soft prompt
tokens on the MultiRC and COPA datasets. To
more intuitively reflect the discreteness of PT, we
did not standardize the dimensions for compari-
son. The more extensive the x and y-axis ranges,
the higher the degree of discreteness. The features
extracted by LAMP exhibit more distinct cluster-
ing, indicating LAMP’s superior ability to capture
and represent the intrinsic structure and patterns
of the data. By considering the interactions be-
tween prompt tokens, LAMP uncovers the intrinsic
semantic associations among tokens to enhance
knowledge representation. This enables PLMs to
better grasp the semantic content of textual data.
The comparative results of discreteness between
LAMP and original prompt tuning (PT) across
other datasets are detailed in Appendix A.12.

4 Related Work

Parameter-efficient Fine-tuning. Parameter-
efficient fine-tuning achieves strong results by train-
ing a small subset of parameters, thereby reduc-
ing computational costs and improving efficiency.
AdapterDrop (Rücklé et al., 2020) improves ef-
ficiency by removing unimportant adapters for a
given task in each layer of the Transformer. BitFit
(Zaken et al., 2021) only updates the bias terms
while freezing most of the pre-trained model’s pa-
rameters. LST (Sung et al., 2022) reduces train-
ing memory by running a small ladder network
alongside the pre-trained network. LoRA (Hu
et al., 2021) re-parameterizes incremental matrices
through simple low-rank decomposition. KronA
(Edalati et al., 2022) replaces the low-rank de-
composition in LoRA with Kronecker product de-
composition; PISSA (Meng et al., 2024) initial-
izes the low-rank matrices with the weights of the
pre-trained model, enhancing performance and ef-
ficiency. However, prompt tuning (Lester et al.,
2021) stands out from the rest by achieving good
results with training very few parameters.
Prompt-based Fine-tuning. Unlike other PEFT
methods, prompt-based fine-tuning methods sus-
tain a controlled increase in trainable parameters,
even with substantial model scaling. Prompt tuning
(Lester et al., 2021) only adds the soft prompt to
the input embedding layer of the model. DPT(Xiao
et al., 2023) employs a re-parameterization strat-
egy, using two low-rank matrices to replace the
original soft prompt. DPT relies solely on random
number generation for the soft prompt, resulting
in weaker generalization and higher sensitivity to
initialization. DePT(Shi and Lipani, 2024) decom-
poses the soft prompt into shorter prompts and
pairs of low-rank matrices, which are then used
to update the model’s weights. EPT (Lan et al.,
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2024) leverages multi-space projection and prompt
fusion to refine soft prompt knowledge, enhanc-
ing flexibility and balancing accuracy with com-
putational efficiency for diverse tasks. Neverthe-
less, these PT-based methods need more efficiency
and task-specific knowledge richness when dealing
with long soft prompt. LAMP provides the ability
to tailor prompts more precisely and effectively to
the specific requirements of various tasks.

5 Conclusions

In this work, we observed that soft prompt tokens
initialized randomly from the vocabulary lack in-
trinsic semantic associations to enhance knowl-
edge representation. Additionally, PT-based meth-
ods face challenges balancing knowledge rich-
ness and computational cost in different tasks.
Based on these issues, we approximate soft prompt
by proposing a Low-parameter Prompt Tuning
(LAMP) method, which utilizes two singular vec-
tors and singular values. LAMP facilitates seman-
tic knowledge interaction, allowing the soft prompt
to incorporate more task-specific knowledge. It can
serve as an efficient plugin for various PT-based
tasks. Experimental results across three model
scales (T5-Small, T5-Base, T5-Large) demonstrate
that LAMP achieves high effectiveness and robust-
ness with fewer trainable parameters.
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Limitations

While our method significantly reduces trainable
parameters in NLP, its potential applications ex-
tend far beyond this domain. Its evaluation in areas
beyond NLP and with other advanced large lan-
guage models remains a work in the future. While
our approach significantly reduces trainable param-
eters, further quantification of model parameters
will also be explored in future research. The in-
trinsic semantic interactions between soft prompt
tokens can be more effectively mined without in-
creasing the number of trainable parameters. In
future work, we will explore methods to enhance
knowledge representation for PT.
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A Appendix

A.1 Self-Attention Pooling

We propose utilizing a self-attention mechanism
for the pooling operation to allow the soft prompt
to adaptively assign different weights to prompt
tokens —emphasizing key tokens while ignoring
less important ones. The formula is expressed as

follows:

K = CWsa

Aweight = Softmax(K)

P′ = A⊤
weightC

(8)

where, Wsa ∈ Rd×l/p is a learnable initializa-
tion weight matrix, and Aweight ∈ Rl×l/p repre-
sents the attention weights. By applying Aweight

to C ∈ Rl×d, we achieve adaptive selection and
pooling operation of prompt tokens, resulting in
P′ ∈ Rl/p×d. The self-attention pooling oper-
ation introduces additional trainable parameters
Wsa ∈ Rd×l/p, and its performance is subopti-
mal. We hypothesize that this may be due to the
compressed outer product effectively capturing the
intrinsic semantic associations between prompt to-
kens. The dynamic weight assignment might dis-
rupt these previously captured associations.

A.2 Dataset Details

Table 3 provides detailed information on the 8
datasets we used in SuperGLUE benchmark. The
processing of all datasets follows the approach of
Xiao et al. (2023).

A.3 Baselines Details

Apart from full fine-tuning, due to the significant
advantages of PT, all other baselines are variants
based on PT. Descriptions of all PT-based base-
lines are as follows:

• Full Fine-tuning: Updating all model param-
eters in the T5-models (Raffel et al., 2020) on
each downstream task. It is the most funda-
mental method for comparing PEFT methods’
performance and trainable parameters.

• Prompt tuning (Lester et al., 2021): PT
stands out in the PEFT approaches because
it freezes the parameters of PLMs and only
trains the attached soft (continuous) prompt
vectors to the input text.

• Residual Prompt tuning (Razdaibiedina
et al., 2023): A PT-based variant (named
Res PT) that utilizes a residual network to
increase the flexibility of model selection for
soft prompt token representations and improve
the convergence rate.

• DePT (Shi and Lipani, 2024): Decomposing
the prompt into a shorter prompt and low-rank
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SuperGLUE Benchmark

Dataset #Train #Dev Type Domain #Metric

CB 250 56 Natural Language Inference various accuracy
WSC 259 104 Common Sense Reasoning fiction books accuracy
COPA 400 100 Question Answering blogs, etc. accuracy
RTE 2,490 277 Natural Language Inference News, Wikipedia accuracy
Wic 5,428 638 Word Sense Disambiguation lexical databases accuracy
BoolQ 9,427 3,270 Question Answering Wikipedia accuracy
MulticRC 27,243 4,848 Question Answering various F1
ReCoRD 100,730 10,000 Common Sense Reasoning news (CNN, Daily Mail) F1

MNLI 392,702 19,647 NLI various accuracy
QNLI 103,743 6,463 NLI Wikipedia accuracy
SST-2 66,349 1872 Sentiment Movie Reviews accuracy
MRPC 3,668 408 Paraphrase news accuracy

Table 3: The details of the 8 datasets in SuperGLUE benchmark utilized in our experiment.

Model Params. CB WSC COPA RTE WiC BoolQ MultiRC ReCoRD

T5-Small
LAMP_S 6K 1.54 2.26 0.47 0.78 0.71 0.23 1.12 0.25

T5-Base
LAMP_B 9K 0.84 2.15 1.25 0.51 0.34 0.13 0.32 0.05

T5-Large
LAMP_L 11K 1.37 2.48 0.47 0.31 0.29 0.07 0.08 0.07

Table 4: We report standard deviation of three runs for our method LAMP, where _S is T5-Small, _B is T5-Base
and _L is T5-Large.

matrix pairs to reduce training time. It uti-
lizes low-rank matrix pairs to update the input
embedding.

• EPT (Lan et al., 2024): This method uti-
lizes multi-space projection and prompt fusion
modules to enhance the soft prompt knowl-
edge, making it more adaptable to various
downstream tasks while balancing accuracy
and efficiency.

• DPT (Xiao et al., 2023): A novel prompt
initialization method involves replacing the
prompt with two randomly initialized low-
dimensional matrices.

Descriptions of all LoRA-based baselines are as
follows:

• LoRA (Hu et al., 2021): A parameter-efficient
approach focuses on updating only the low-
rank matrices within the model.

• PiSSA (Meng et al., 2024): It performs Trun-
cated Singular Value Decomposition (SVD)
on the model’s weight matrix and uses the re-
sulting low-rank matrices as the initialization
for the low-rank matrices A and B.

• rsLoRA (Kalajdzievski, 2023): introduces a
new scaling factor to stabilize LoRA’s param-
eter scaling.

• LoRA+ (Hayou et al., 2024): It utilizes two
different learning rates to control the updates
of the low-rank matrices A and B.

• DoRA (Liu et al., 2024): It decomposes
the pre-trained weight into two components,
magnitude and direction, for fine-tuning.

• LoRA-GA (Wang et al., 2024): It aligns low-
rank gradient products with full fine-tuning
gradients at the first step.
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Model Param.
MNLI QNLI SST-2 MRPC Mean
393K 105K 67K 3.7K (%)

Fine-Tuning 220M 86.33 93.19 94.75 84.56 89.71
LoRA 3.8M 85.30 92.96 94.04 68.38 85.17
PiSSA 3.8M 85.75 93.15 94.07 76.31 87.32
rsLoRA 3.8M 85.73 93.12 94.19 52.86 81.48
LoRA+ 1.6M 85.81 93.14 93.85 74.43 86.81
DoRA 3.8M 85.67 93.04 94.04 68.08 85.21
LoRA-GA 3.8M 85.70 93.18 94.11 85.29 89.57

DEPT 76.8K 85.12 93.20 94.19 88.71 90.31
EPT 76.8K 85.63 93.15 94.21 89.20 90.55
DPT 9K 85.34 93.15 94.50 88.47 90.37

LAMP 7K 85.82 93.32 94.50 90.20 90.96

Table 5: The performance comparison between LAMP and the latest LoRA-based PEFT methods on the GLUE
benchmark, all experimental results are based on the T5-Base model. The LoRA-based baseline results are derived
from LoRA-GA (Wang et al., 2024).

A.4 Implementation Details

Weight decay of 1e−5, and the maximum sequence
length for the model is typically configured at 256.
LAMP is implemented by the Python library of
PyTorch 2.0.0 1, Huggingface Transformers 4.30.0
2. All of our experiments were conducted with 8
GPUs, with 48 GB memory each.

A.5 Standard Deviation

We present the standard deviation across three runs
for our method on T5-Small, T5-Base and T5-
Large. The outcomes are provided in Table 4.

A.6 Performance Comparison with LoRA
Variants

Table 5 presents a performance comparison be-
tween LAMP and LoRA, along with its variants
on the GLUE benchmark. LAMP outperforms
all other novel LoRA-based baselines. Notably,
LAMP requires significantly fewer trainable pa-
rameters than all baselines, representing a unique
advantage among PEFT methods.

A.7 Few-shot Adaptions Details

In Table 6, we present the results of all baseline
models across all SuperGLUE datasets, using T5-
Base as the benchmark. The subscripts represent
the standard deviation of our method LAMP across
different K-shot settings.

1https://pytorch.org/
2https://github.com/huggingface/transformers
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Figure 7: Trainable parameters with different intrinsic
ranks on the T5 models, where _S is T5-Small, _B is
T5-Base and _L is T5-Large.

A.8 Change in LAMP Parameters from
Intrinsic Rank

As shown in Figure 7, the impact of intrinsic rank
r ∈ {5, 10, 20, 50, 80, 100} on LAMP trainabel pa-
rameters is illustrated across T5 models (T5-Small,
T5-Base, and T5-Large). As r increases, LAMP’s
trainable parameters gradually approach that of the
vanilla PT. When all ranks in the Truncated SVD
are retained, the trainable parameters of PT are
fewer than those of LAMP. We downplay the im-
pact of prompt length on the number of trainable
parameters. The number of trainable parameters in
LAMP can be further reduced by adjusting r.

A.9 Impact of Rank Size and Prompt Length

As shown in Figure 8, we present the effects of
intrinsic rank and prompt length across various
datasets. The experimental results indicate that
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K-Shot Method
SuperGLUE

CB WSC COPA RTE WiC BoolQ MultiRC ReCoRD Average

8

PT 58.57 32.69 40.66 49.64 53.61 53.94 50.17 46.55 48.23
Res PT 60.55 28.95 55.00 47.29 44.51 61.35 57.78 68.13 52.95
DePT 61.43 36.69 56.66 48.92 51.72 47.83 47.45 47.94 49.83
EPT 57.14 42.31 45.33 51.80 50.47 53.39 56.91 46.04 50.42
DPT 62.50 39.47 55.66 56.68 50.00 62.17 60.12 63.49 56.26

LAMP 62.861.53 44.741.24 59.000.94 53.430.2 50.000.00 62.170.26 59.980.00 62.351.15 57.21

16

PT 57.14 32.69 44.00 51.08 53.29 58.10 56.02 46.34 49.83
Res PT 68.88 50.00 55.00 47.65 53.13 62.42 55.24 68.22 57.57
DePT 50.00 37.69 48.66 55.40 49.53 57.98 52.43 50.77 50.31
EPT 42.86 42.31 48.00 51.80 56.11 57.43 57.73 49.47 50.71
DPT 44.64 55.26 55.66 53.07 51.41 62.17 59.99 62.57 55.60

LAMP 62.212.66 47.372.48 59.001.89 54.510.85 54.230.59 62.290.06 59.880.01 70.720.44 58.14

32

PT 57.14 32.69 46.33 54.68 55.49 59.94 51.39 49.15 50.85
Res PT 69.21 47.37 58.66 51.99 53.34 63.09 56.15 68.15 58.50
DePT 53.57 32.69 52.33 50.36 52.98 58.72 49.89 48.91 49.93
EPT 67.85 40.38 56.33 51.80 55.80 60.12 49.74 46.05 53.51
DPT 62.50 52.63 55.00 53.79 52.35 62.17 59.95 63.34 57.72

LAMP 63.142.23 47.371.54 60.001.41 54.870.34 56.740.44 62.170.04 60.080.08 67.801.71 59.25

Table 6: Few-shot adaptation results (%) with k = {8, 16, 32} on SuperGLUE benchmark. All results are presented
as the average of three runs and subscripts indicate standard deviation, each with different random seeds on T5-Base.
The best result is marked in bold.

Method
T5-3B

PT DEPT EPT LAMP

MultiRC 78.00 77.95 78.51 78.83
WiC 71.16 71.16 73.67 74.92
RTE 91.31 92.75 92.75 93.48
BoolQ 87.22 87.65 87.89 87.83

Mean 81.93 82.38 83.21 83.77

Table 7: The performance changes of different methods
at various datasets on the T5-3B.

LAMP consistently performs strongly across dif-
ferent intrinsic ranks r and prompt lengths l.

A.10 Performance in T5-3B

For baseline selection, we similarly chose base-
lines initialized from sampled vocabulary. Table
7 shows that LAMP performs best on the T5-3B
model, further validating the importance of incor-
porating intrinsic semantic associations between
prompt tokens to enhance knowledge representa-
tion capacity.

A.11 Change in LAMP Parameters

A.11.1 Change in LAMP Parameters from
Model Size

With intrinsic rank r = 8, Figure 9 illustrates the
effect of model size on LAMP trainable parameters.
As the model size increases, trainable parameters in
original PT increases significantly, whereas LAMP
mitigates this issue. Table 8 shows that when the
prompt length l and intrinsic rank r remain con-
stant, the higher the model size, the more signifi-
cant the reduction in trainable parameters achieved
by LAMP. LAMP also mitigates the impact of the
hidden dimension on trainable parameters.

A.11.2 Variation of LAMP Parameters

Table 8 presents the variation of LAMP’s
trainable parameters with prompt length l ∈
{20, 100, 1000, 5000, 10000} with r = 8. The
longer the prompt length, the more LAMP down-
plays the impact of prompt length on trainable pa-
rameters, making LAMP’s advantages more evi-
dent. For instance, in the Llama2-7B model, when
the prompt length is set to 10,000, the number of

4419



2 0 1 0 0 2 0 0
7 0
7 5
8 0
8 5
9 0
9 5

Ac
cur

acy
C B

P r o m p t  L e n g t h

( a ) ( b )
P T R e s  P T D P T D e P T E P T L A M P

2 0 1 0 0 2 0 0
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9

Ac
cur

acy

C O P A

P r o m p t  L e n g t h P r o m p t  L e n g t h P r o m p t  L e n g t h4 6 8 1 0 1 2 2 06 6
6 8
7 0
7 2
7 4
7 6
7 8
8 0
8 2
8 4

Ac
cur

acy

( c )  R T E
P T R e s  P T D P T D e P T E P T O u r s

4 6 8 1 0 1 2 2 06 1
6 3
6 5
6 7
6 9
7 1

Ac
cur

acy

( d )  W i C

Figure 8: (a) and (b), performance of different baselines varies with the prompt length l ∈ {20, 100, 200} on the
CB and COPA datasets. (c) and (d), compare the performance of all baselines with the number of inherent ranks
r ∈ {4, 6, 8, 10, 12, 20} on the RTE and WiC datasets. All results represent the average of three runs conducted
with a different random seed.

Method
T5-Large Prompt Length Llama2-7B Prompt Length

20 100 1000 5000 10000 20 100 1000 5000 10000

#Trainable Params #Trainable Params

Full FT 0.7B 0.7B 0.7B 0.7B 0.7B 7B 7B 7B 7B 7B
PT 0.02M 0.1M 1.02M 5.12M 10.24M 0.08M 0.41M 4.10M 20.48M 40.96M

LAMP 0.008M 0.009M 0.016M 0.048M 0.088M 0.033M 0.034M 0.041M 0.073M 0.113M

Ratio 2.45 11.38 63.21 106.22 116.10 2.49 12.20 100.45 281.41 363.20

Table 8: Trainable parameters of different baselines varies with the prompt length. “Ratio" denotes the multiple of
trainable parameters in vanilla prompt tuning (PT) relative to LAMP.
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Figure 9: Trainable parameters with different model
size.

trainable parameters is reduced to just one-three-
hundred-sixtieth of the original PT, significantly
boosting computational efficiency. In summary, in-
fluenced by intrinsic rank r, prompt length l , and
model size, the LAMP’s efficiency compared to PT
and other PEFT methods can be further expanded.

A.11.3 Change in LAMP memory usage from
Model Size

We visualized the memory usage of LAMP across
different model scales, with the T5-11B results
reflecting quantization. As shown in Figure 10,

LAMP consistently has the lowest memory usage
and highest computational efficiency across various
model sizes.

A.12 Visualization of Intrinsic Semantic
Associations

We visualized the comparison of general PT be-
fore and after extracting the intrinsic semantic as-
sociations between soft prompt tokens on other
datasets within the SuperGLUE benchmark. Fig-
ure 11 shows that LAMP also exhibits apparent
clustering on these datasets, enhancing semantic
knowledge representation.
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Figure 10: Comparison of memory usage using different methods on various model scales. We leverage quantization
operation on T5-11B.

Figure 11: The comparison of the dispersion of PT tokens on the other datasets in SuperGLUE benchmark before
and after considering the intrinsic semantic associations between soft prompt tokens on T5-Base.
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