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Abstract

Teaching large language models (LLMs) to
use tools for solving complex problems can
grant them human-like reasoning abilities.
ReAct and its variants are popular frame-
works for tool use in both single-agent and
multi-agent systems. To address issues like
error propagation and limited exploration in
ReAct, the Deep First Search Decision Tree
(DFSDT) was proposed, but it faces challenges
such as rollback instability, redundant context,
and premature termination in single-agent
settings. We introduce "Smurfs," a novel
multi-agent system (MAS) that enhances
DFSDT with a modular, context-efficient,
and training-free design. Smurfs surpasses
baseline methods in both the open-ended
StableToolBench and the closed-ended
HotpotQA tasks, reducing token usage by
60.9% compared to DFSDT and enabling
Mistral-7b to perform on par with GPT-4-
DFSDT. Extensive ablation studies confirm
the effectiveness of Smurfs’ core components,
offering valuable insights for the construction
and interpretation of MAS, and paving the way
for future exploration. We release the code at
https://github.com/FreedomIntelligence/Smurfs.

1 Introduction

The ability to manipulate tools for complex tasks
has long been considered a distinctive characteristic
of humans (Oakley and Museum, 1972; Ambrose,
2001). Can we extend this ability to today’s large
language models (LLMs), enabling them to utilize
multiple tools to perform complex tasks beyond
their inherent capabilities? If LLMs can use ex-
ternal tools to access knowledge or execute tasks
beyond their fixed language modeling capabilities,
we can shift the focus of LLM training towards
enhancing their reasoning and tool-use skills. This

*These authors contributed equally to this work.
BCorresponding author.

shift would allow tools to supplement what LLMs
should know or execute, thereby improving the
parameter efficiency of the LLMs.

Pass Rate ↑
(%)

Win Rate ↑
(%)

# of Tokens
per request ↓

# of Tokens
per query ↓

ReAct 44.4±1.1 base 1,424 6,479
DFSDT 55.4±2.0 60.4 1,743 20,714
Smurfs (ours) 57.4±1.1 62.4 459 8,096

Table 1: Comparison of token cost and performance
between tool planning methods over StableToolBench.
Existing methods, ReAct and DFSDT, have limitations
due to high token costs or poor performance. The results
are averaged over the subtasks within StableToolBench.

In previous multi-agent systems for tool plan-
ning, methods like Chain-of-Thought (CoT) (Wei
et al., 2023), ReAct (Yao et al., 2022), and the more
advanced DFSDT (Qin et al., 2024) have been pro-
posed to enhance LLMs’ ability to handle com-
plex multi-step tasks. However, these approaches
face notable limitations. ReAct has trouble in han-
dling error propagation and limited exploration.
DFSDT incorporates a rollback mechanism and
depth-first search approach to address limitations
of ReAct, but it suffers from instability when the
base model struggles with long-context reasoning.
It also introduces inefficiencies due to redundant
context handling and risks premature termination
when solving multi-step problems. These chal-
lenges highlight the need for further innovation to
better manage context and reasoning complexity in
multi-tool planning systems.

In this paper, we introduce ‘Smurfs’, an inno-
vative multi-agent system (MAS) framework in-
spired by the collaborative and versatile nature of
its namesake cartoon characters. The proposed
framework leverages enhanced DFSDT to perform
complex tool planning tasks without the need for
additional training. The effectiveness of Smurfs is
demonstrated through both open-ended and closed-
ended tool planning benchmark experiments (Guo
et al., 2024; Yang et al., 2018), where it consis-
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Figure 1: Demonstration of the whole process of the Smurfs framework.

tently outperforms baseline methods. An ablation
study, followed by a case study, further investigates
the reasons behind this effectiveness. These re-
sults establish a new state-of-the-art in the field and
provide concrete evidence of the advantages of a
multi-agent approach in enhancing LLM capabili-
ties.

The contributions of this paper can be summa-
rized as follows:

1. We introduce a highly modular, context-
efficient, and training-free MAS framework
that utilizes an enhanced DFSDT to improve
the tool planning capabilities of LLMs. Exper-
iments demonstrate the effectiveness of this
approach, which also proves to be more cost-
efficient compared to existing methods.

2. Through ablation studies, we uncover the un-
derlying factors contributing to the effective-
ness of the MAS framework, offering valuable
insights for future research.

2 Related Work

To augment LLMs to do multi-tool planning
for solving complex problems, previous work
has seen numerous attempts. Chain-of-Thought
(Wei et al., 2023) is the first to propose the
method of thought and answer chain reasoning.
ReAct (Yao et al., 2022) further introduce the
thought-action-observation format for tool chain
reasoning, leading to the development of various
multi-tool planning methods (Chen et al., 2023a;
Xu et al., 2023; Shinn et al., 2023). The latest work,

Deep First Search Decision Tree (DFSDT) (Qin
et al., 2024), is proposed to address the inherent
limitations of CoT and ReACT: (1) Error Propa-
gation: Error occurs at early stage of planning
will result in wrong answer in the end, but it can
only be identified until reaching the end of the
planning chain (2) Limited Exploration: Single
solution chain can’t explore the planning space
completely.

DFSDT is powerful in addressing multi-tool
planning problems. Its core concept involves
employing a depth-first search (DFS) approach
for multi-tool planning and backtracks whenever
an LLM think the solving process has entered a
wrong state (for more details, see Appendix B).
When a tool fails or is deemed inadequate for
solving the current problem, DFSDT backtracks to
the previous solution state and attempts to resolve
the issue using another solution plan. However,
three limitations are identified with the mechanism
of DFSDT:

Limit I: Instability of the Rollback Mechanism
The rollback mechanism in DFSDT is determined
by the model. The number of steps to roll back and
the selection of new tools after rollback are guided
using prompt containing the errors encountered in
the previous failed trajectory. When the model is
sufficiently robust, this rollback mechanism serves
as a highly flexible and efficient planning strategy.
However, when the model’s capability is insuffi-
cient, it will fail to execute the correct rollback
mechanism, i.e. retry the same error tools or roll
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back too far.

Limit II: Redundant Context In the process of
planning with DFSDT, each tool plan is generated
using the entire conversation history (including all
the thoughts, actions, action inputs and tool re-
sponses) as context. However, in reality, each step
of tool planning only requires a very small portion
of the relevant history for effective planning.

The context redundancy not only increases com-
putational overhead but also reduces the accuracy
of model inference due to the inclusion of irrele-
vant historical data. As highlighted by (Liu et al.,
2024), redundant context become particularly no-
ticeable in tasks requiring assimilation and process-
ing of large inputs, like verbose tool documents and
API responses. The situation worsens when LLMs
are supplemented with external information, such
as document retrieval or online searching (Petroni
et al., 2020; Ram et al., 2023; Mallen et al., 2022).
Although numerous language models capable of
handling larger contexts are emerging (Dai et al.,
2019; Dao et al., 2022), they often face significant
performance degradation when the important in-
formation is located at some positions (Liu et al.,
2024; Shi et al., 2023), which is known as the ‘lost-
in-the-middle’ problem.

Limit III: Premature Termination The termi-
nation mechanism set by DFSDT involves adding
a termination tool to the model’s selectable toolkit.
When the model selects this termination tool,
DFSDT stops and provides an answer. However,
in practical applications, this mechanism often pre-
maturely terminates when dealing with complex
problems requiring multi-step reasoning. We hy-
pothesize that this issue arises due to the redundant
interference of other tool information and history
information, which disrupts the model’s ability to
judge whether the original problem should be ter-
minated. Instead, the model focuses on whether
the current sub-problem requires termination, lead-
ing the mechanism to terminate after resolving the
sub-problem.

In conclusion, DFSDT relies highly on the base
model’s reasoning ability, especially long context
reasoning ability to make roll back decision, ter-
mination decision and tool choice decision at the
same time, which is a very difficult task even with
the most powerful LLM like GPT4 (Yuan et al.,
2024).

Multi-Agent System To address the limitations
inherent in DFSDT and to further enhance LLM’s
multi-tool planning capabilities, MAS has emerged
as a natural solution. Inspired by human social
division of labor and cooperation, MAS aim to
enable AI agents to accomplish more complex tasks
through the division of labor and collaboration. By
decomposing the task of DFSDT to multiple agents
and giving them only the information they need, we
can enable LLMs to use DFSDT more effectively
and more efficiently.

Method Multi-Agent Training Generality Reflection Planning
REACT (Yao et al., 2022) ✗ ✗ ✔ ✗ Iterative
Reflexion (Shinn et al., 2023) ✗ ✗ ✔ ✔ Iterative
Chameleon (Lu et al., 2023) ✗ ✗ ✔ ✗ Global
HuggingGPT (Shen et al., 2023) ✗ ✗ ✔ ✗ Global
BOLAA (Liu et al., 2023) ✔ ✗ ✔ ✗ Iterative
AgentVerse (Chen et al., 2023b) ✔ ✗ ✔ ✗ Iterative
FIREACT (Chen et al., 2023a) ✗ ✔ ✗ ✔ Iterative
DFSDT (Qin et al., 2024) ✗ ✔ ✗ ✗ Iterative
RESTGPT (Song et al., 2023) ✔ ✗ ✔ ✗ Iterative
Lumos (Yin et al., 2024) ✔ ✔ ✗ ✗ Iterative or Global
AutoAct (Qiao et al., 2024) ✔ ✔ ✗ ✔ Iterative
Smurfs (Ours) ✔ ✗ ✔ ✔ Iterative and Global

Table 2: Comparison of tool use systems.

Previous work on multi-agent system mainly fo-
cus on coding and society simulation area (Hong
et al., 2023; Qian et al., 2024; Park et al., 2023; Li
et al., 2023; Wu et al., 2023). For tool-use scenario,
most multi-agent systems still use the ReAct style
reasoning (Qiao et al., 2024; Chen et al., 2023b;
Yuan et al., 2024; Liu et al., 2023; Song et al.,
2023; Yin et al., 2024; Xu et al., 2023), only us-
ing multi-agent discussion and revision to increase
reasoning quality, which still inherits the limitation
of ReAct. Therefore, this paper aims to construct
a novel MAS framework to address the aforemen-
tioned limitations. Table 2 shows the difference
between different tool-use systems. More detailed
discussion can be seen in Appendix A.

Token Compression Token compression refers
to compressing tokens fed into LLMs while pre-
serving inference performance, thus reducing
computational overhead and mitigating the con-
straints imposed by long context limits. Previous
works (Mu et al., 2024; Fu et al., 2024) have ex-
plored token compression techniques, with a focus
on compressing token embeddings. In contrast,
Smurfs achieves context compression by filtering
the input context for each tool planning process.
Table 6 shows the detailed difference between dif-
ferent compression techniques.

In the future, these compression methods can be
used together in multi-tool planning scenarios to
achieve more efficient token compression. Each
agent’s system prompt could be compressed us-
ing gist tokens (Mu et al., 2024), tool descriptions
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could be managed with CAMPHOR’s compression
approach (Fu et al., 2024), and the context input by
each agent could be compressed using Smurfs.

3 Smurfs: MAS with Context Efficient
DFSDT

The Smurfs, the beloved cartoon characters, sym-
bolize unity and resourcefulness, and are good at
using tools to overcome any challenge they en-
counter.

3.1 Framework Overview

Figure 1 illustrates the entire workflow for the
Smurfs framework. Initially, the Planning Agent
identifies the user’s complex query and breaks it
down into manageable sub-tasks. Executor Agents
are then tasked with collecting task specific infor-
mation, utilizing access to external tools. Answer
Agent compiles the findings into a cohesive re-
sponse, which is subsequently verified by the Veri-
fier Agent to ensure accuracy and relevance.

By dividing tasks among different agents, each
agent can focus on a specific part of the task, ac-
cessing only the necessary history as context during
task execution, which effectively addresses the is-
sue of redundant context. The redesign of the
rollback mechanism to incorporate memory and
tool list rollback mechanisms addresses the insta-
bility of the rollback mechanism. Drawing on
the concept of least-to-most prompting (Zhou et al.,
2023), the original problem is first decomposed
into sub-problems for macro-level planning. Subse-
quently, Smurfs is used to solve each sub-problem
at the micro-level, with macro-level planning guid-
ing the micro-level planning, thereby resolving the
issue of premature termination.

In the rest of this section, the mechanism of the
system and the functions of each agent will be
detailed. More details of memory system can be
seen at Appendix C.

3.2 Agent Components

In this section, we introduce the two core compo-
nents of the Smurfs system:

Tools The tool documents about the tools that
Smurfs can utilize in the completion of a complex
task are denoted as D = {ni, di, pi}|d|i=1, where n
represents the tool name, d represents tool usage
description, p represents parameter description and
|d| represents the amount of the available tools. The

available tool list is denoted as τ = {ni, di}|τ |i=1. τt
denotes the tool list Smurfs can utilize at time t.

Memory The memory of the agent system at
time t is the history of the task-solving process
before t, denoted as M = (m1,m2, ...,mt−1) and
mi = (γi, ai), where mi represents memory ele-
ment at time i and γi, ai represents thought and
answer generated by the system at time i. There
are two types of memory in Smurfs: local mem-
ory and global memory. the local memory is used
to record the ongoing solution trajectory and to
generate the next action in the current trajectory.
The global memory, meanwhile, records all trajec-
tories and is used to generate the sub-problem’s
answer by combining all trajectory records when
the maximum number of retries is exceeded. This
local-global combined memory system ensures that
the planning of the current solution trajectory is not
influenced by the context of erroneous trajectories.
It also generates an answer that combines all tra-
jectories when the verifier agent cannot determine
task completion within the maximum number of
planned steps. This memory system ensures con-
text efficiency during the task-solving process.

3.3 Macro Planning

Planning Agent The primary responsibility of
the Planning Agent is doing macro-level planning
through task decomposition to prevent premature
termination. The inference process of the Plan-
ning Agent is:

Plan P : (p1, p2, ...) = PA(q) (1)

Where pi represents sub-problem of the original
query q, PA represents the Planning Agent. After
the task decomposition, the agent system will use
Executor Agent, Answer Agent an Verifier Agent
to solve each sub-problem using DFSDT collabora-
tively in a sequential order. To utilize the answer of
the previous sub-problem when solving subsequent
sub-problem, the strategy known as least-to-most
prompting (Zhou et al., 2023) is used.

3.4 Subtask Solving Process

After introducing the function of plan agent, this
section outlines how the agents collaborate to solve
sub-tasks, as shown in Figure 2.

Stable Rollback To address the instability of
the rollback mechanism in DFSDT, we propose
a rollback mechanism based on rules. Whenever

3284



Executor Agent

Answer Agent

Verifier Agent

hint

tool call

answer

answer

Answer Agent

Tool response normally

Tool Error:Delete tool at this step

Next Step:
Reset tool list

Backtrack when 
tool list is empty

Won't restart

Reach max steps

Add history

Reject Accept

Tool Error: Restart this step

subtask local memory

global memory

tool list

Add history

Backtrack when 
tool list is empty

Figure 2: Details of the subtask-solving process of the Smurfs framework. The dotted line represents that the agent
can see the memory and the full line stands for operation.

an error occurs while using a tool τt,i at time t, the
tool list at t τt will pop τt,i out and reperform tool
selection and tool planning (ensuring that the faulty
tool is not selected again). If, at time t, the tool
list becomes empty, it signifies that after the sys-
tem choosing tool τt−1,j at time t-1, no subsequent
trajectory can solve the problem. In this case, the
agent system will roll back to time t-1, meaning
that the local memory M will pop out the memory
element mt−1 at time t-1, and the tool list at time
t-1 τt−1 will pop out tool τt−1,j . The agent system
will then set the time t=t-1 and continue planning.
This rule-based rollback mechanism, compared to
the original model-based rollback mechanism of
DFSDT, is less flexible and might reduce rollback
efficiency. However, it is more stable, ensuring
the correctness of deep first search and enabling
models with weaker capabilities to utilize DFSDT
on tool planning.

Executor Agent The Executor Agent is respon-
sible for choosing and executing the tools to solve
the sub-tasks. At each time t, the agent can invoke
one tool to tackle the given task:

γ = EA.gen_thought(p,M, τ, h) (2)

α = EA.choose_tool(p, γ, τ) (3)

β = EA.gen_arguments(p,M,D[α]) (4)

r = EA.call_tool(α, β) (5)

Where p is the sub-problem from Planning Agent,
h is the hint from the Verifier Agent, τ is the tool

list, M is local memory, D[α] means the tool doc-
ument of tool α. The agent, using the ReACT
format (Yao et al., 2022) to choose the tool and
arguments, then execute the tool. Noticed that each
inference process only uses the relevant part from
the local memory and tool list to reduce the con-
text redundancy. More detailed information of the
Executor Agent can be found in Figure 5.

Answer Agent To mitigate the performance
degradation caused by lengthy contexts, we intro-
duce the Answer Agent role, designed to extract
crucial content for each step and sub-problem:

Answer : a = AA(q, r,M) (6)

Where q is sub-problem from the Planning Agent, r
is response from the Executor Agent, M is the local
memory (or global memory if max retry reaches).
As the ‘lost-in-the-middle’ theory described in sec-
tion 1, retaining all information may not always
be beneficial, particularly in cases where the so-
lution path is challenging to discern. Therefore,
the primary role of the Answer Agent is to suc-
cinctly summarize the generated answers and tool
responses to maintain the memory efficiency.

Verifier Agent The Verifier Agent serves as an
early-stopping and reflection mechanism, allowing
for a balance between effectiveness and efficiency:

h, c = V A(q, a) (7)

Where q denotes the sub-problems from the Plan-
ning Agent, a denotes the answer from the answer
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Backbone Method
StableToolBench

I1-Inst. I1-Cat. I1-Tool. I2-Cat. I2-Inst. I3-Inst. Average
Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win

GPT-3.5 Turbo ReACT 41.6±1.2 / 48.4±0.5 / 52.5±0.5 / 52.2±1.0 / 31.6±1.2 / 39.9±2.0 / 44.4±1.1 /
GPT-3.5 Turbo DFSDT 54.1±1.0 64.4 60.1±0.0 61.4 59.9±1.7 53.8 60.9±0.9 62.9 52.8±3.7 66.0 44.3±4.8 54.1 55.4±2.0 60.4
GPT-3.5 Turbo Smurfs 60.3±1.5 65.0 67.0±1.0 69.9 60.3±1.3 54.4 54.3±0.4 63.7 42.6±1.6 64.2 60.1±1.0 57.4 57.4±1.1 62.4
Mistral-7B ReACT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mistral-7B DFSDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mistral-7B Smurfs 76.3±0.8 63.8 86.7±1.2 62.7 81.0±1.9 58.2 70.4±2.7 54.0 63.8±2.4 67.0 85.2±0.7 57.4 77.2±1.6 60.5
GPT-4 Turbo ReACT 41.1±1.5 60.1 53.2±1.3 62.1 42.2±1.1 48.1 50.0±0.7 57.3 38.7±0.8 65.1 37.7±1.3 47.5 43.8±1.1 56.7
GPT-4 Turbo DFSDT 52.7±1.4 69.9 58.2±0.9 66.0 59.7±1.2 58.2 59.3±0.7 62.1 52.2±2.3 67.9 61.5±1.8 65.6 57.3±1.4 65.0
GPT-4 Turbo Smurfs 59.3±1.4 71.2 73.3±1.3 72.5 67.4±0.7 69.6 66.7±1.9 73.4 55.5±1.4 66.0 70.5±0.0 72.1 65.5±1.1 70.8

Table 3: The open-end tool planning task evaluation on the StableToolBench benchmark (Guo et al., 2024). The
most effective approach is highlighted in bold, while the second-best is underlined. Win rate is calculated by
comparing each model with ChatGPT-ReACT. A win rate higher than 50% means the model performs better than
ChatGPT-ReACT.

agent, h and c denotes hint and check status respec-
tively. If check status generated is 0, that means the
Verifier Agent thinks the sub-problem isn’t com-
pleted, the system will add the thought and an-
swer of this time to the local and global memory,
set t=t+1 and continue the inference procedure.If
check status is 1, the sub-problems is thought to
be solved and the system will start to deal with the
next sub-problem.

4 Experiments

To evaluate both the effectiveness and efficiency of
the Smurfs framework, in thie section, we carried
out two multi-tool planning tasks: (1) an open-
ended task, StableToolBench (Guo et al., 2024),
and (2) a closed-ended task, HotpotQA (Yang et al.,
2018). In addition to these main experiments de-
signed to assess the entire framework, we con-
ducted an ablation studies followed by a case study
to test the capabilities of each component within
the multi-agent framework and investigate the un-
derlying reasons for its effectiveness.

4.1 Open-ended Task: StableToolBench

StableToolBench is a tool learning benchmark de-
rived from ToolBench (Qin et al., 2024), encom-
passing multi-step tool usage tasks across over
16,000 APIs. The benchmark employs two metrics
for evaluation: (1) Pass Rate measures the percent-
age of instructions successfully executed within
the allocated budget. (2) Win Rate represents the
preference selection by a ChatGPT evaluator when
presented with two solution paths.

Baselines Following the original paper that intro-
duced the benchmark, we adopt ReACT (CoT) (Wei
et al., 2023) and DFSDT (Touvron et al., 2023) as
baseline methods for comparison. Additionally, we
include the backbones used in the paper: gpt-3.5-

turbo-0613 (GPT-3.5 Turbo) (OpenAI) and gpt-4-
turbo-preview (GPT-4 Turbo). To explore the adapt-
ability of the tool-planning methods, we also in-
clude Mistral-7B-Instruct-v0.2 (Mistral-7B) (Jiang
et al., 2023) as one of the selected backbones in
our experiments.

Settings To minimize the influence of varying
tool APIs on experimental results, we conducted
all experiments using the same API cache (Guo
et al., 2024). For a fair comparison among the
candidate methods and to reduce variability, each
model was executed once and evaluated three times,
with results averaged. Other settings follow those
specified in the original benchmark paper.

Results Table 3 displays the results on Stable-
ToolBench. For the untrained LLM, Mistral-7B,
existing agent frameworks did not improve its per-
formance in tool planning tasks; Mistral-7B failed
these tasks when integrated with the ReACT and
DFSDT frameworks *. However, Smurfs exhibited
exceptional performance: when combined with
Mistral-7B, Smurfs achieved competitive scores
among the baselines. Through its task decomposi-
tion mechanism, Smurfs transforms long-context
tasks into simpler ones, enabling the untrained
model to effectively utilize external tools for man-
aging complex tasks. Regarding closed-source
models, specifically GPT4 in these experiments,
Smurfs also demonstrated outstanding performance
on the benchmark compared to other agent frame-
works and achieved state-of-the-art results on the
benchmark. Its high success rate suggests that
Smurfs is more effective at finding optimal solution
paths compared to ChatGPT.

*Experiment results show that Mistral-7B failed to cor-
rectly execute the ‘finish’ action during inference, resulting in
invalid responses.
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Further Analysis We conducted a detailed anal-
ysis of the token costs associated with each tool
planning method for the tasks, a critical evaluation
aspect for multihop reasoning tasks. As shown in
Table 1 (detailed in Appendix G), the average token
costs per question and API request are evaluated
for ReACT, DFSDT, and Smurfs on StableTool-
Bench. The analysis reveals that DFSDT generally
requires about 20,000 tokens per question, encom-
passing both prompt and completion tokens. This
is nearly three times the token cost compared to
ReACT and twice as much as Smurfs. Despite
this higher token cost, DFSDT does not demon-
strate commensurate effectiveness improvements
over other methods. These findings underscore the
cost-efficiency of the proposed MAS framework,
Smurfs, which not only reduces token expenditure
in solving multihop planning tasks but also delivers
outstanding performance in evaluations.

Backbone Method   Single-Agent

² Multi-Agent

HotpotQA
Easy Medium Hard All

GPT-3.5
Turbo

u   CoT 48.21 44.52 34.22 42.32
u   Zero-Shot Plan 50.71 45.17 38.23 44.70

Mistral-7B
Instruct-v0.2

u   CoT 33.70 22.38 22.14 26.07
u   ReAct 38.09 27.57 22.05 29.24
u   Chameleon 37.07 26.67 19.20 27.65
u   Reflexion 40.78 35.02 28.36 34.72
u ² BOLAA 40.86 32.11 22.36 31.78
u ² ReWOO 38.42 31.89 25.98 32.10
u ² Smurfs (ours) 45.94 40.74 30.72 39.13
v   FireAct 45.52 32.02 30.17 35.90
v ² AUTOACT 48.69 36.65 31.37 38.89

Llama-2
13B-chat

u   CoT 37.90 25.28 21.64 28.27
u   ReAct 28.68 22.15 21.69 24.17
u   Chameleon 40.01 25.39 22.82 29.41
u   Reflexion 44.43 37.50 28.17 36.70
u ² BOLAA 33.23 25.46 25.23 27.97
u ² ReWOO 30.09 24.01 21.13 25.08
u ² Smurfs (ours) 42.62 27.21 22.92 30.92
v   FireAct 45.83 38.94 26.06 36.94
v ² AUTOACT 47.29 41.27 32.92 40.49

Llama-2
70B-chat

u   CoT 45.37 36.33 32.27 37.99
u   ReAct 39.70 37.19 33.62 36.83
u   Chameleon 46.86 38.79 34.43 40.03
u   Reflexion 48.01 46.35 35.64 43.33
u ² BOLAA 46.44 37.29 33.49 39.07
u ² ReWOO 42.00 39.58 35.32 38.96
u ² Smurfs (ours) 52.86 50.77 44.87 49.50
v   FireAct 50.82 41.43 35.86 42.70
v ² AUTOACT 56.94 50.12 38.35 48.47

Table 4: The closed-end tool planning evaluation on
HotpotQA (Yang et al., 2018), with some results derived
from (Qiao et al., 2024). The most effective approach
for each group is highlighted in bold, while the second-
best is underlined. Methods marked with v require
model training.

4.2 Closed-ended Task: HotpotQA

Compared to open-ended tasks, closed-ended tasks
provide a more stable and robust evaluation. To this
end, we evaluate the methods on HotpotQA (Yang
et al., 2018) in addition to StableToolBench. Hot-

potQA is a multi-hop QA task that is challenging
due to the requirement for rich background knowl-
edge, with answers typically being short entities or
yes/no responses.

Baselines The compared baselines include CoT
(Wei et al., 2023), REACT(Yao et al., 2022),
Chameleon(Lu et al., 2023), Reflexion (Shinn
et al., 2023), BOLAA (Liu et al., 2023), ReWOO
(Xu et al., 2023), FIREACT (Chen et al., 2023a),
AutoAct(Qiao et al., 2024).

Settings and Metrics Following the settings in
(Qiao et al., 2024), we use open-source Llama-
2 models (Touvron et al., 2023) and Mistral-
7B (Jiang et al., 2023) as the backbones of each
agent to evaluate the performance of Smurfs. The
evaluation metrics is reward ∈ [0, 1], defined as
the F1 score grading between the prediction and
ground-truth answer. For more details about the
experiment, see Appendix D.

Results Smurfs, as an untrained MAS system,
not only comprehensively outperforms untrained
agents but also achieves and even surpasses the
accuracy of trained agents across most backbone
models. This sufficiently demonstrates that the
mechanism of smurfs ensures strong generalization
capabilities while maintaining high effectiveness.

Observations indicate that the performance of
LLama-2-13b-chat on smurfs-related tasks is sub-
optimal, likely due to its limited capabilities in tool
arguments generation. Specifically, the primary
issue identified is that, when the Executor agent
successfully selects relevant tool, it tends to pro-
duce hallucination arguments that can’t be used
by the tools. This indicates that LLama-2-13b-
chat may need further training for usage of tools.
The experiment results may substantiate this view-
point, demonstrating that the untrained methods
of llama-2-13b-chat generally exhibit significantly
lower accuracy compared to the trained methods.
To provide further insight into the model’s perfor-
mance in the tool planning process, we manually
categorized the types of errors made by Smurfs on
the hotpotQA hard dataset in appendix E.

5 Ablation Study

5.1 Importance of each component in MAS

We performed an ablation study to investigate the
impact of each agent in our framework. We re-
moved each agent individually, except for the indis-
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Subtask 1

Answer:
Based on the Star Wars Characters
tool, some character details have
been provided. For example, Luke
Skywalker is a character with blond
hair and fair skin. C-3PO is
...However, to provide the precise
details you're interested in, the name
of the specific Star Wars character is
needed. Once the specific
character's name is provided, more
detailed information including their
name, hair color and skin color can
be presented.

Tool response:
[{'id': 1, 'mass': '77', 'name': 'Luke
Skywalker', 'gender': 'male', 'height':
'172', 'species': 'Human', 'eye_color':
'blue', ...}, ...]

Action input: {}

Action: get_all_characters

Subtask 1: 
Provide the details of a specific
Star Wars character, including...

Planner

Question: I'm planning a Star
Wars-themed cosplay event and
I want to gather information
about the characters. Can you
provide me with the details of a
specific character, including their
name, hair color, and skin color?
Additionally, suggest some OTT
platforms that offer Star Wars
movies for inspiration. 

Subtask 2: 
Suggest some OTT platforms
that offer Star Wars movies.

Subtask 2

Answer:
Based on the results from the API
tool, several Star Wars themed
movies and series were identified.
These include 'Disney Gallery: Star
Wars: The Book of Boba Fett'...
However, the specific OTT platforms
offering these movies were not
identified. Therefore, to find out
which OTT platform the Star Wars
movies are available on, you will
need to manually check these
platforms. Depending on your region
and subscription, availability may
also vary. 

Tool response:
[{'imdbid': 'tt19881256', 'genre':
['Documentary'], 'released': 2022,
'title': 'Disney Gallery: Star Wars:
The Book of Boba Fett', 'type':
'tvSeries'},...] 

Action input: {"title": "Star Wars"}

Action: search_for_ott_details Based on the information
provided, we have some details
about several Star Wars
characters. To name a few, we
have Luke Skywalker, who is a
character with blonde hair...Note
that these are general
descriptions, and for more specific
details about a particular
character, we would need the
name of that character. In terms of
finding inspiration from Star Wars
movies and series, we have
several options, such as 'Disney
Gallery: Star Wars: The Book of
Boba Fett',... However, we don't
have information on which OTT
platforms these movies and series
are offered. It would be best if you
manually check your preferred
OTT platforms as the availability
of these movies could vary
depending on your region and
subscription.

Final Answer

The details for the character 'Luke
Skywalker' are as follows:...For
your Star Wars-themed cosplay
event, Star Wars titles are
streaming on the following
platforms:\\n- Disney Gallery: Star
Wars: The Book of Boba Fett
(Documentary, 2022)\\n-
Doraemon the Movie: Nobita's
Little Star Wars 2021 (Action,
Adventure, Animation, 2022)\\n-
Star Wars Galactic Pals
(Animation, 2022)\\n- Revan: A
Star Wars Fan Film (Action,
Fantasy, Sci-Fi,
2022).\\n\\nPlease note that these
vary by region. You might want to
check them out for inspiration.
Enjoy your event!

Final AnswerAction 1

Tool response:
[{'id': 1, 'mass': '77', 'name': 'Luke
Skywalker', 'gender': 'male', 'height':
'172', 'species': 'Human', 'eye_color':
'blue', ...}, ...]

Action input: {}

Action: get_all_characters

Action 2

Tool response:
[{'imdbid': 'tt19881256', 'genre':
['Documentary'], 'released': 2022,
'title': 'Disney Gallery: Star Wars:
The Book of Boba Fett', 'type':
'tvSeries'},...] 

Action input: {"title": "Star Wars"}

Action: search_for_ott_details

Question

Question: I'm planning a Star
Wars-themed cosplay event and
I want to gather information
about the characters. Can you
provide me with the details of a
specific character, including their
name, hair color, and skin color?
Additionally, suggest some OTT
platforms that offer Star Wars
movies for inspiration. 

GPT4-
Smurfs

GPT4-
DFSDT

Figure 3: The illustration of how GPT4-Smurfs and GPT4-DFSDT solve long context problem. The two sub-
questions and their corresponding answers are marked in two colors.

I3-Inst.
Pass (%) Win (%)

GPT-3.5 Turbo with Smurfs 60.1±1.0 57.4
w/o Answer Agent 57.4±2.9 49.2
w/o Verifier Agent 54.1±2.7 42.6
w/o Planning Agent 35.5±3.3 42.6
w/o Planning & Verifier Agent 58.5±2.0 57.4

GPT-4 Turbo with Smurfs 70.5±1.0 72.1
w/o Answer Agent 82.2±2.5 72.1
w/o Verifier Agent 79.2±0.8 63.9
w/o Planning Agent 71.9±2.8 63.9
w/o Planning & Verifier Agent 79.8±2.8 67.2

Table 5: Ablation study on StableToolBench I3-Inst
subset to investigate the importance of each component
within the framework.

pensable Executor Agent, and compared the results
to the complete framework.

Settings (1) Verifier Agent Removal: With-
out Verifier Agent, the framework uses a generatl
DFSDT in each subtask, i.e. including a finish
tool into the tool library and deciding whether to
stop at tool choice step. (2) Answer Agent Re-
moval: Without Answer Agent, the framework
uses full tool response instead of the summary of
tool response in its memory. (3) Planning Agent
Removal: Without Planning Agent, the framework

uses Verifier Agent to decide whether the task is
completed. (4) Planning & Verifier Agent Re-
moval: Without Planning and Verifier Agent, the
only difference between Smurfs and DFSDT will
be the Answer Agent, i.e. including a finish tool
in the tool library, deciding whether to stop at tool
choice step and using summary of tool response in
its memory.

Results Table 5 shows the experiment result,
highlighting several key insights regarding the im-
pact of different components in the multi-agent
system.

First, the removal of any component generally re-
duces the win rate, highlighting each component’s
significance. Second, performance degradation
trends remain consistent: Eliminating the Answer
Agent has minimal impact, whereas removing the
Planning Agent causes the greatest decline. How-
ever, this does not imply the relative importance
of these agents but rather suggests that the Verifier-
Planning Agent workflow is more robust than the
Verifier-Answer Agent workflow.

Third, the performance impact varies by model
capability. For GPT-3.5, the removal of the An-
swer Agent reduces both the pass and the win rates,
while for GPT-4, it preserves the win rate and im-
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proves the pass rate, probably due to the superior
long-text reasoning ability of GPT-4, which pro-
cesses additional tool response more effectively.
Removal of the Planning Agent significantly re-
duces the pass rate of GPT-3.5 but has a minimal
effect on GPT-4, suggesting that the GPT-4 Verifier
Agent is more robust. These findings may indi-
cate that more powerful models can compensate
for agent removal, sometimes even benefiting
from additional context, while weaker models
benefit more from complex workflow and com-
pressed context.

We also noticed an interesting phenomenon:
when only the Planning Agent is removed, the sys-
tem experiences a major decline in performance,
while removing the Verifier Agent in addition to
the Planning Agent improves performance again.
This may indicate that the Verifier Agent’s abil-
ity to pause tasks or provide next-step guidance is
suboptimal and requires further training.

In conclusion, our findings offer some insight
into the relationship between model capabilities
and multi-agent system performance. The optimal
number of agents and workflow may vary depend-
ing on the capacity of the model. We propose
the hypothesis that weaker models benefit more
from complex multi-agent systems and context
segmentation, while stronger models perform
better with comprehensive context and simpler
agent systems. To validate this hypothesis, more
extensive ablation studies are needed under a wider
range of models and constraints to explore the influ-
ence of different context structures and reasoning
workflows. We leave this investigation for future
work.

5.2 Case Study
As shown in Figure 3, although GPT4-DFSDT and
GPT4-Smurfs use the same tool calls to solve the
problem, GPT4-DFSDT only answers the first sub-
question correctly while GPT4-Smurfs answers
both sub-questions accurately. In the process of ad-
dressing the second sub-question, it is notable that
the tool response only mentions titles of film and
television products related to "Star Wars", without
addressing OTT platforms. GPT-4-DFSDT erro-
neously interprets these titles as responses to the
question, while GPT-4-Smurfs adeptly identifies
this discrepancy and provides a more appropriate
response. This case highlights that in situations
where tool responses are lengthy and questions are
complex, the single agent framework like DFSDT

may be susceptible to distractions from irrelevant
information, leading to erroneous answers. Con-
versely, the context-efficient Smurfs framework
demonstrates a reduced susceptibility to irrelevant
information, thereby generating more accurate an-
swers.

6 Conclusion

In this paper, we propose Smurfs, an innovative
MAS framework designed to enhance the tool-
planning capabilities of LLMs without requiring
additional training. Through extensive experiments
on both open-ended and closed-ended tool planning
benchmarks, Smurfs demonstrate its effectiveness
by consistently outperforming baseline methods.
Ablation study further provides deeper insights into
the impact of each agent in our framework. Based
on the ablation study, we propose a hypothesis
that can be further tested through more comprehen-
sive experiments in future research: weaker models
benefit more from complex multi-agent systems
and context segmentation, while stronger models
perform better with comprehensive context and
simpler agent systems. The findings not only ad-
vance the state-of-the-art in multi-tool planning
systems but also highlight the potential of modu-
lar, training-free frameworks for LLMs in various
practical applications.

Looking forward, future research could focus
on exploring Smurfs’ use in new domains, such
as facilitating the synthesis of high-quality multi-
tool planning data and enhancing the base model’s
reasoning and tool-use abilities, further advancing
the field of adaptive AI systems.

Limitations

Model Size Constraints: Due to computational
constraints, our experiments did not include larger
and more diverse types of LLMs. We believe this
would not affect the main observations of this pa-
per.

Agent Component Scale-Up: Although we se-
lected the most common and intuitive agent roles
for the proposed MAS, there are many possibili-
ties for researchers to explore. Investigating more
well-designed agent roles may help improve the
effectiveness of the agent system, and developing
automated methods to identify these roles could
facilitate effective scaling.

Acknowledging these limitations, future re-
search should aim to address these gaps to provide
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a more comprehensive understanding of the Smurfs
framework’s capabilities and potential areas for im-
provement.
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In conclusion, Smurfs stands out compared to ex-
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Flexibility Smurfs utilize enhanced version of
DFSDT, which intergrades global and iterative
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flexible in the planning process.

Adaptability Smurfs realize superior perfor-
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GPT, Lumos are tailored for specific downstream
task and need additional training to be used in other
scenario.
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ing, thus have the highest learning efficiency
among existing MAS. It only need query and tool
documentation from the user.
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Figure 4: Demonstration of the memory of the Smurfs framework.

To further illustrate these points, we conducted a
detailed comparison between Smurfs and two well-
known Multi-Agent Systems, highlighting their dif-
ferences and the adjustments required when learn-
ing out-of-box tasks.

CAMEL CAMEL (Li et al., 2023) is a com-
municative agent framework. It uses role-play
technique and inception-prompting technique to
achieve autonomous cooperation between agents.
CAMEL does not natively support tool use set-
tings. CAMEL is considered to perform poorly
when generalizing to new tasks (e.g., on the MATH
dataset (Wu et al., 2023)).

Autogen Autogen (Wu et al., 2023) is not de-
signed as an agent framework for any specific task
scenario. Instead, it provides a multi-agent conver-
sation framework that allows users to customize
agent characteristics and complete tasks through
discussions among different agents. Autogen ad-
dresses various problems not by employing a uni-
form workflow, but by allowing users to design
customized agents and workflows flexibly based
on their tasks.

Smurfs Smurfs is designed as a unified workflow
specifically for complex multi-tool planning sce-
narios. For different tasks, Smurfs only needs to
adjust the few-shot examples in the agent prompts
and provide documentation for the tools applicable
to the task, allowing Smurfs to generalize to other
task scenarios. Smurfs was initially designed for
the Stable-toolbench, which itself encompasses var-
ious types of tasks and has access to over 16,000
plugins. HotpotQA was subsequently introduced to
evaluate the performance of Smurfs on closed-end
tasks. When migrating from Stabletoolbench to
HotpotQA, only the few-shot examples in the plan-

ning agent prompts were modified, along with the
provision of plugin documentation for HotpotQA.
The rest of the system continued using the same uni-
fied framework as in Stabletoolbench. Experiment
results demonstrate that our untrained out-of-box
unified framework achieves and even surpasses per-
formance of agent systems specifically trained on
HotpotQA, such as Autoact and Fireact, showcas-
ing Smurfs’ flexibility in generalization.

B Details of DFSDT

DFSDT (Qin et al., 2024) gives control to the
model to stop and rollback the solution trajectory
by using Finish tool, thus addressing limitations of
ReACT. Finish tool has two parameters give an-
swer: model thinks the task is finished and decide
to give answer and give up and restart: model
thinks current trajectory can’t lead to correct an-
swer and decide to rollback.

C Details of the Smurfs

Executor Agent Details As illustrated in Fig-
ure 5, given a sub-problem p, Executor Agent first
thinks about what to do this time, generates thought
γ according to p, local memory M, hint h from the
Verifier Agent and tool list at the current step τ .
Then it will choose action α to complete the sub-
problem using p, γ and τ . After that, parameters
of α are generated using p, local memory M and
tool description of the action D[α]. Tool is then
invoked to complete the task.

Memory Details As illustrated in Figure 4, there
are four kinds of memory in Smurfs. Local memory
stores thought-answer pairs of the current solution
trajectory, while global memory stores all history
solution trajectory (including those that is back-
tracked). Tool list only stores available tools’ name
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Compression
Method

Applicable Scenario Compressed Object Implementation

Gist Tokens (Mu
et al., 2024)

General scenarios Frequently used system
prompts

Training LLM to compress sys-
tem prompts, reducing token us-
age.

CAMPHOR (Fu
et al., 2024)

Tool use scenarios Tool descriptions Adopts a similar approach to gist
tokens, compressing each tool de-
scription into a single token, thus
reducing token cost.

Smurfs Complex multi-tool plan-
ning scenarios

Input context in tool plan-
ning

Operates on multi-tool planning
workflows, compressing the con-
text needed for each tool plan-
ning process.

Table 6: Comparison of Token Compression Methods

and its usage description, while tool doc stores all
detailed information about the tools including pa-
rameters details. Through using different kinds of
memory under different circumstances, Smurfs can
use DFSDT in a context efficient way.

Restart Mechanism Every time Smurfs generate
an intermediate output, a format checker is used
to check whether the output is of the expected for-
mat. If not, Smurfs will retry the same step until
reach retry limit or generate correct format output.
This mechanism is used in addition to the rollback
mechanism to handle the situation where the sys-
tem can generate correct content but fail to follow
the output format.

D Experiment Settings for Hotpot QA

Following settings in (Qiao et al., 2024), which
is randomly select 300 dev questions divided into
three levels for evaluation, with 100 questions in
each level. For tool library that can be used in
HotpotQA, see Table 7

E Error Analysis on HotpotQA

To provide further insight into the model perfor-
mance in the tool planning process, we manually
categorized the types of error made by Smurfs in
the hotpotQA hard dataset. Table 8 shows that
the most frequent errors committed by mistral-
7b Smurfs is tool argument fail, followed by bad
planning and answer miss. Smurfs do not make
tool choice errors and premature termination er-
rors. This shows that Smurfs actually alleviates
the premature termination problem, making the
tool choice process more robust. Additionally, we
note that a portion of the error samples are false
negatives which arise when the generated answers
differ in expression from the ground truth but are

equivalent in meaning. This highlights potential
directions for future improvements in Smurfs.

F Prompts for multi-agent
implementation

Prompts used by each agent and their example out-
puts are shown in Figure 6 to 12.

G Token Cost on StableToolBench
Evaluation

We analyzed the token cost for the StableTool-
Bench experiments. As shown in Table 9, the
total token cost for each subtask within the Sta-
bleToolBench is compared across three candidate
tool-planning methods. The data demonstrates that,
across all tasks from easy to hard, DFSDT con-
sistently incurs high token costs, while the other
two methods maintain relatively low token costs.
This verifies the context-efficiency of the proposed
method.
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Executor Agent

thought action action input
subtask

Executor Agent Executor Agent

hint

tool list tool doc

local memory

Figure 5: Details of the executor agent working process

Name Definition Usage
BingSearch BingSearch engine can search for

rich knowledge on the internet
based on keywords, which can
compensate for knowledge fal-
lacy and knowledge outdated.

BingSearch[query], which
searches the exact detailed query
on the Internet and returns the
relevant information to the query.
Be specific and precise with your
query to increase the chances
of getting relevant results. For
example, Bingsearch[popular
dog breeds in the United States]

Retrieve Retrieve additional background
knowledge crucial for tackling
complex problems. It is espe-
cially beneficial for specialized
domains like science and mathe-
matics, providing context for the
task

Retrieve[entity], which retrieves
the exact entity on Wikipedia and
returns the first paragraph if it ex-
ists. If not, it will return some
similar entities to retrieve. For
example, Retrieve[Milhouse]

Lookup A Lookup Tool returns the next
sentence containing the target
string in the page from the search
tool, simulating Ctrl+F function-
ality on the browser.

Lookup[keyword], which returns
the next sentence containing the
keyword in the last passage
successfully found by Retrieve
or BingSearch. For example,
Lookup[river].

Table 7: Tool library for HotpotQA.

Bad Planning Answer Miss Tool Wrong Tool Argument Fail False Negative Premature Termination Total Accuracy

Mistral-7b-Smurfs 11 7 0 28 12 0 0.42

Table 8: Error analysis for Smurfs on HotpotQA Hard.

Backbone Method
StableToolBench

I1-Inst. I1-Cat. I1-Tool. I2-Cat. I2-Inst. I3-Inst. Average
Total Avg. Total Avg. Total Avg. Total Avg. Total Avg. Total Avg. Total Avg.

GPT-3.5 Turbo ReACT 1,010,304 6,198 824,676 5,390 1,010,514 6,396 900,855 7,265 824,510 7,778 461,121 7,559 838,663 6,764
GPT-3.5 Turbo DFSDT 3,303,062 20,264 2,745,667 17,945 3,152,532 19,953 2,560,297 20,648 3,098,365 29,230 1,390,787 22,800 2,708,452 21,807
GPT-3.5 Turbo Smurfs 1,090,404 7,127 1,917,348 11,763 1,464,535 9,269 957,088 7,638 1,096,162 10,341 632,084 10,362 1,191,270 9,417

Table 9: Token costs for various candidate tool-planning methods on the StableToolBench benchmark (Guo et al.,
2024). ‘Total’ indicates the total number of tokens used to complete each subtask, including both prompt and
completion tokens. ‘Avg.’ represents the average number of tokens used per question within the subtasks. Higher
token counts imply greater costs for solving the same task.
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Planning Agent

Prompt:
You need to decompose a complex user’s question into some simple sub-tasks and let the model execute it step by step.
Please note that:
1. You should only decompose this complex user’s question into some simple sub-tasks which can be executed easily by
using a single tool.
2. Each simple subtask should be expressed into natural language.
3. Each subtask should contain the necessary information from the original question and should be complete, explicit and
self-consistent.
4. You must ONLY output in a parsible JSON format. An example output looks like:
”’
{"Tasks": ["Task 1", "Task 2", ...]}
”’

This is the user’s question: I’m planning a trip to Turkey and need information about postal codes in Istanbul.
Can you provide me with the postal code and district for Istanbul province with plate number 34? Additionally, I would like
to know if there are any transit agencies available in Istanbul. Please fetch their names and contact numbers.
Output: "Tasks": ["Find the postal codes and districts for plate number 34 in Istanbul.", "Search for transit agencies and their
contact numbers in Istanbul."]

This is the user’s question: I recently moved to a new address and I need to update my information. Can you
retrieve my address details using the postal code 75094080? Additionally, I would like to know the companies that offer
shipping services.
Output: {"Tasks": ["retrieve the address details using the postal code 75094080", "search for companies that offer shipping
services to my address"]}

This is the user’s question: {question}

Output:

Example Output:
{"Tasks": ["Determine the postal code and district for Istanbul province with plate number 34.", "Find out if there are any

transit agencies in Istanbul.", "Get the names of the transit agencies in Istanbul.", "Obtain the contact numbers for the transit

agencies in Istanbul."] }

Figure 6: An example prompt for task decomposition in the framework.
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Tool Check

Prompt:
As a powerful language model, you’re equipped to answer user’s question with accumulated knowledge.
However, in some cases, you need to use external APIs to answer accurately.
Thus, you need to check whether the user’s question requires you to call an external API to solve it.
Here are some tips to help you check:
1. If the user’s question requires real-time information, since your knowledge base isn’t updated in real-time, any such
question will demand an API call.
2. If you need to obtain information (e.g., ID, name, phone number, geographical location, rank, etc.), you need to call the
database APIs if you are not sure.
3. If the question demand a database search or internet research to generate an answer, this is another situation where an API
call is necessary.
If need, please output ’YES’; If not, please output ’NO’
You need to give reasons first and then decide whether to keep it or not. You must only output in a parsible JSON format.
Two example outputs look like:
Example 1: {"Reason": "The reason why you think you do not need to call an external API to solve the user’s question",
"Choice": "No"}
Example 2: {"Reason": "The reason why you think you need to call an external API to solve the user’s question", "Choice":
"Yes"}
This is the user’s question:
{question}

Output:

Example Output:
{"Reason": "To determine the postal code and district for a specific location based on a plate number, we would typically

need to access a combination of databases, including vehicle registration databases and postal code databases. Since we do

not have direct access to these databases, we will need to call external APIs to retrieve this information. Therefore, the user’s

question requires an API call.", "Choice": "Yes"}

Figure 7: An example prompt for tool check in the framework.

Executor Agent: Thought

Prompt:
You need to analyse the previous execution history and generate your internal reasoning and thoughts on the task, and how
you plan to solve it based on the current attempts.

Do not output thought that is too long. Output in 2-3 sentences is OK.

This is the user’s task:
{task}

This is the Tool List:
{functions}

This is the previous execution history:
{messages}

This is the hint comes from the evaluator:
{hint}

Output:

Example Output:
Looking at the task, the user wants to find the postal codes and districts for the number plate 34 in Istanbul. I have a tool that

provides Turkish plates, and since Istanbul is in Turkey, this tool might provide the needed information. I will proceed to use

the ’Logistics:Turkey Postal Codes:il’ tool to accomplish the task.

Figure 8: An example prompt for tool check in the framework.
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Executor Agent: Action

Prompt:
This is the user’s question:
{question}
These are the tools you can select to solve the question:
Tool List:
{Tool_list}

Please note that:
1. You should only chooce one tool from the Tool List to solve this question.
2. You must ONLY output the ID of the tool and your reason for choosing it in a parsible JSON format. An example output
looks like:
”’
Example: {"ID": ID of the tool, "Reason": The reason for choosing the tool}
”’

Output:

Example Output:
{’ID’: ’1’, ’Reason’: ’This tool provides information about Turkish plates and postal codes, which can be applied to the given

task of finding the postal codes and districts for the number plate 34 in Istanbul.’}

Figure 9: An example prompt for action generation in the framework.

Executor Agent: Action Input

Prompt:
Given a user’s question and a API tool documentation, you need to output parameters according to the API tool documentation
to successfully call the API to solve the user’s question.
Please note that:
1. The Example in the API tool documentation can help you better understand the use of the API.
2. Ensure the parameters you output are correct. The output must contain the required parameters, and can contain the
optional parameters based on the question. If no paremters in the required parameters and optional parameters, just leave it as
{}
3. If the user’s question mentions other APIs, you should ONLY consider the API tool documentation I give and do not
consider other APIs.
4. The question may have dependencies on answers of other questions, so we will provide logs of previous questions and
answers for your reference.
5. You must ONLY output in a parsible JSON Format. The example output looks like:
”’
Example: {"keyword": "Artificial Intelligence", "language": "English"}
”’

There are logs of previous questions and answers:
previous_log

This is the current user’s question: question

This is API tool documentation: api_dic

Output:

Example Output:
{"il": 34}

Figure 10: An example prompt for action input generation in the framework.
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Answer Agent

Prompt:
You should answer the question based on the response output by the API tool.
Please note that:
1. Answer the question in natural language based on the API response reasonably and effectively.
2. The user cannot directly get API response, so you need to make full use of the response and give the information in the
response that can satisfy the user’s question in as much detail as possible.
3. Do not output answer that is too long. Output in 3-6 sentences is OK.

This is the user’s question:
{question}
This is the API response:
{call_result}

Output:

Example Output:
The postal codes and districts for the plate number 34 in Istanbul include: Adalar district with postal code 34975 for

Burgazada area, 34970 for Büyükada area, 34973 for Heybeliada area and 34977 for Kınalıada area. There is also the

Arnavutköy district with postal code 34275 for areas like Anadolu, Arnavutköy Merkez, İmrahor, İslambey, Mustafa Kemal

Paşa, Nenehatun, and Yavuz Selim. Another area in Arnavutköy district is Baklalı with postal code 34277.

Figure 11: An example prompt for Answer Agent in the framework.

Verifier Agent

Prompt:
An agent is trying to solve the query proposed by the user.
You need to evaluate whether the given query has been completed reasonably and accurately. If so, summarize the solution to
the user. If not, summarize the current progress, and propose what is missing.

You response contains following elements:
Speak: (your words to the agent if the task is pending, or a complete answer based on the full execution log to the user if the
task is finished)
Status: (0 or 1. 0 for pending and 1 for finished)

You must only output in a parsible JSON format. Two example outputs look like:
Example 1: {"Speak": "answer based on the full execution log to the user", "Status": "1"}
Example 2: {"Speak": "your words to the group if the task is pending", "Status": "0"}

This is the answer from the previous execution result:
{answer}

This is the original question: {question}

Output:

Example Output:
{"Speak": "The postal codes and districts for plate number 34 in Istanbul include: Adalar district with postal code 34975 for

Burgazada area, 34970 for Büyükada area, 34973 for Heybeliada area and 34977 for Kınalıada area. In addition, Arnavutköy

district has postal code 34275 for areas such as Anadolu, Arnavutköy Merkez, İmrahor, İslambey, Mustafa Kemal Paşa,

Nenehatun, and Yavuz Selim. Another part of Arnavutköy district, Baklalı, has the postal code 34277.", "Status": "1"}

Figure 12: An example prompt for Verifier Agent in the framework.
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