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Abstract

Large language models (LLMs) demonstrate
impressive capabilities in mathematical reason-
ing. However, despite these achievements, cur-
rent evaluations are mostly limited to specific
mathematical topics, and it remains unclear
whether LLMs are genuinely engaging in rea-
soning. To address these gaps, we present the
Mathematical Topics Tree (MaTT) benchmark,
a challenging and structured benchmark that
offers 1,958 questions across a wide array of
mathematical subjects, each paired with a de-
tailed hierarchical chain of topics. Upon as-
sessing different LLMs using the MaTT bench-
mark, we find that GPT-4 achieved a mere
54% accuracy in a multiple-choice scenario.
Interestingly, even when employing Chain-of-
Thought prompting, we observe mostly no no-
table improvement. Moreover, LLMs accuracy
dramatically reduced by up to 24.2 percentage
point when the questions were presented with-
out providing choices. Further detailed analy-
sis of the LLMs’ performance across a range
of topics showed significant discrepancy even
for closely related subtopics within the same
general mathematical area. In an effort to pin-
point the reasons behind LLMs performances,
we conducted a manual evaluation of the com-
pleteness and correctness of the explanations
generated by GPT-4 when choices were avail-
able. Surprisingly, we find that in only 53.3%
of the instances where the model provided a
correct answer, the accompanying explanations
were deemed complete and accurate, i.e., the
model engaged in genuine reasoning1.

1 Introduction

Large Language Models (LLMs) have increasingly
demonstrated remarkable capabilities as mathemat-
ical reasoners, underscoring their potential in com-
plex problem-solving domains (Chowdhery et al.,
2022; Touvron et al., 2023; OpenAI, 2023; Team

1We release our datasets and code at https://github.
com/arashgholami/MaTT

et al., 2023). Recent studies have shown that LLMs,
when applied to mathematical problems, can ex-
hibit a high degree of reasoning ability, often align-
ing with or even surpassing human-level perfor-
mance in certain contexts. This proficiency in math-
ematical reasoning is further enhanced by inno-
vative techniques such as Chain-of-Thought (Wei
et al., 2022), Tree-of-Thought (Yao et al., 2024),
and Self-Verification (Weng et al., 2022), empha-
sizing on the importance of the procedural steps in
solving a mathematical problems.

Despite these advancements, several critical gaps
persist in our understanding of LLMs’ mathemat-
ical reasoning capabilities. Firstly, it remains un-
clear which specific areas of mathematics LLMs
excel or falter in, as comprehensive evaluations
across diverse mathematical domains are lacking.
Secondly, distinguishing between instances where
LLMs rely on memorization versus genuine rea-
soning is challenging, raising questions about the
depth of their understanding. Thirdly, the influence
of multiple-choice formats on LLM behavior is not
well understood, suggesting that models’ perfor-
mance might be affected by the structure of the
questions posed. These gaps underscore the neces-
sity for a more robust benchmark that facilitates
a holistic evaluation of LLMs, enabling us to dis-
sect their strengths, weaknesses, and the nuances
of their problem-solving strategies.

In this paper, we developed the Mathematical
Topics Tree (MaTT) benchmark by initially lever-
aging Wikipedia’s “Lists of mathematics topics”2

to identify key areas in mathematics, resulting in
twelve major topics that span both pure and ap-
plied mathematics. This was followed by extract-
ing important reference books for each topic from
Wikipedia to build a detailed topical tree. We then
further refine the benchmark by using the books’

2https://en.wikipedia.org/wiki/Lists_of_
mathematics_topics
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Figure 1: Overview of Mathematical Topics Tree (MaTT) benchmark, a challenging and structured benchmark that
presents questions spanning a diverse range of mathematical subjects, each associated with a detailed hierarchical
structure of topics.

tables of contents to structure a comprehensive tree
reflecting the hierarchical organization of mathe-
matical knowledge. Upon completing the topic
tree, we extracted questions from the subsections
of these books, and gathered them under leaf nodes.
Finally, we pair each question with multiple-choice
options, enhancing the benchmark’s utility for eval-
uating mathematical understanding. An illustration
of MaTT is depicted in Figure 1.

After developing MaTT, we evaluate the mathe-
matical reasoning capabilities of various LLMs,
including commercial models OpenAI o1-mini,
GPT-4 (OpenAI, 2023) and ChatGPT (Kocoń et al.,
2023) (turbo versions), alongside the open-source
LLMs, Llama3.1-70B (Touvron et al., 2023) and
Mistral (Jiang et al., 2023). Notably, GPT-4
achieved only 54% accuracy in a multiple-choice
format. Furthermore, the use of Chain-of-Thought
prompting mostly did not enhance LLMs’ perfor-
mance, underscoring the benchmark’s complexity
and suggesting that mere step-by-step reasoning
might be insufficient. Also, When questions were
presented without multiple-choice options, LLMs
accuracy dropped by up to 24.2 points. Our anal-
ysis also revealed notable discrepancies in perfor-
mance across topics, showing inconsistent abilities
even within related subtopics of the same mathe-
matical domain.

To understand the underlying causes of the
LLMs’ inadequate performance and their inconsis-
tent results across various topics, we did a detailed
evaluation of the explanations provided by GPT-
4. Surprisingly, we observe that only in 53.3% of
cases where the models answered correctly, the ex-

planations were also complete, i.e., GPT-4 engaged
in genuine reasoning. These cases were typically
associated with simpler or more well-known ques-
tions that required only a few straightforward steps
to resolve. For more complex questions demand-
ing either more number of steps, complicated cal-
culations, or creative/intelligent problem-solving,
GPT-4 often failed, resorting to tactics like choice
engineering, unsupported theorems, circular rea-
soning, or memorization instead of true reasoning.

2 MATT: Mathematical Topics Tree
Benchmark

In recent years, LLMs have shown remarkable abil-
ities in mathematical reasoning. Yet, their prowess
is not fully understood due to the narrow focus of
current benchmarks, which typically concentrate
on specific mathematical areas. This limitation hin-
ders our understanding of the depth and breadth
of LLMs’ reasoning capabilities. There’s a press-
ing need for more comprehensive mathematical
benchmarks that cover a wider array of topics and
offer deeper insights into the models’ reasoning
processes. Such benchmarks would not only chal-
lenge the models across a broader mathematical
spectrum but also can help with better understand-
ing the nuances of how and where these models
apply reasoning.

To address this gap, we create the Mathemati-
cal Topics Tree (MaTT) benchmark. We start by
harnessing the “Lists of mathematics topics” avail-
able on Wikipedia as a foundational resource. This
exploration was crucial for identifying the spec-
trum of mathematical knowledge we aimed to en-
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compass. Extracting the list of mathematics topics
from Wikipedia, we identified twelve principal top-
ics that comprehensively encapsulate the breadth of
pure and applied mathematics. Then, for each topic,
we extracted one or few key reference books listed
on their respective Wikipedia pages. The topics
and their corresponding resources are as follows:
for pure math we consider Algebra (Meyer, 2023;
Herstein, 1991; McGee, 2002), Calculus and Anal-
ysis (Stewart, 2012), Number Theory (Niven et al.,
1991), Combinatorics (Bóna, 2002), Geometry and
Topology (Coxeter, 1969; Coxeter and Greitzer,
1967; Engelking, 1989), and Logic (Mendelson,
2009). In applied math we have Game Theory
(Osborne and Rubinstein, 1994), Probability (Ti-
jms, 2012, 2017), Operations Research (Hillier and
Lieberman, 2015), Differential Equations (Boyce
et al., 2021), Statistics (Hogg et al., 2013), and In-
formation Theory and Signal Processing (Cover,
1999; Proakis, 2007).

Next, we used the tables of contents from se-
lected reference books to structure the MaTT top-
ical tree, mapping the hierarchy of topics and
subtopics to create a comprehensive graph of math-
ematical domains. The final step in the creation of
MaTT involved a detailed extraction of questions
from the sections of the reference books, gathering
them under the leaf nodes within our topic tree. For
each question identified, we then crafted multiple-
choice options to facilitate an objective assessment
framework. To generate the options, we selected
choices that closely resembled the actual answer,
such as those with similar numerical values, those
attain by omitting a step from the proof, or those
presenting alternative combinations. For instance,
if the correct answer was “A & B”, we included “A
or B” as one of the possible choices. We provide
an illustration of MaTT in Figure 1.

To create the MaTT benchmark, the process in-
volved the following steps: (1) The authors of the
paper manually extracted questions and answers
from reference books. (2) Another author, inde-
pendent from the one who extracted the question,
reviewed and rechecked the correctness of the ques-
tion and its answer, revising it if necessary to ensure
the quality of the benchmark. During the review
process, we observe that around 95% of the ques-
tions showed agreement between annotators, requir-
ing no further revisions. This exhaustive process
collectively took the authors more than 300 hours
to complete, underscoring the dedication involved
in the MaTT dataset creation.

The statistical overview of the MaTT benchmark
is detailed in Table 1. The benchmark comprises
1,958 examples, meticulously curated across 12 dis-
tinct mathematical topics that span the breadth of
pure and applied mathematics. In assembling these
questions, we aimed to ensure a broad yet consis-
tent spectrum of difficulty across all topics. To
ensure difficulty consistency across various mathe-
matical topics, we anchored our selection process
to standardized undergraduate/graduate-level cur-
ricula commonly adopted by leading universities.
By referencing syllabi and textbooks from compa-
rable degree programs, we maintained a uniform
educational framework. This approach allowed us
to align the complexity of questions with the ex-
pected proficiency of students at the same academic
level, regardless of the specific mathematical do-
main. Consequently, each topic’s difficulty was
calibrated to match the overall academic standard,
promoting consistency throughout the benchmark.

Moreover, we strategically curated a diverse mix
of problem types—ranging from computational ex-
ercises to proof-based questions and applied sce-
narios—across all mathematical topics. By bal-
ancing the cognitive demands required to solve
these problems, we achieved a uniform difficulty
level. This methodological diversity ensured that
each topic was evaluated on similar grounds, pre-
venting any particular area from being inherently
easier or more challenging due to the nature of its
questions. Finally, while extracting questions, we
exclude questions that are overly popular/simplis-
tic or had their responses provided in the books
immediately following them to mitigate the risk of
data contamination.

3 Experimental details

We assessed the performance of commercial
LLMs—OpenAI o1-mini, GPT-4 (OpenAI, 2023)
and ChatGPT (Kocoń et al., 2023) (turbo
versions)—alongside the open-source LLMs
Llama3.1-70B (Touvron et al., 2023) and Mistral
(Jiang et al., 2023) (Mistral-7B-Instruct-v0.2), us-
ing the MaTT benchmark. In our evaluation, we
structured the prompts to request that LLMs first
generate an explanation and then the final answer.
In the multiple-choice setting, we specifically di-
rected the models to select one of the provided
options (A, B, C, or D) as their final answer. Ad-
ditionally, for zero-shot chain-of-thought prompt-
ing, we appended “let’s think step by step” to the
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Topics # Nodes # Leaf # Qs # Avg leaf’s Qs

Pu
re

M
at

h

Algebra 69 49 120 2.45
Calculus and Analysis 137 115 517 4.50

Number Theory 37 31 126 4.06
Combinatorics 19 15 139 9.27

Geometry and Topology 93 81 159 1.96
Logic 23 18 35 1.94

A
pp

lie
d

M
at

h Game Theory 23 15 35 2.33
Probability 113 91 276 3.03

Operations Research 64 53 104 1.96
Differential Equations 70 60 157 2.62

Statistics 56 48 109 2.27
Information Theory and Signal Processing 69 50 181 3.62

All 772 625 1958 3.13

Table 1: Data Statistics of MaTT.

prompt. Examples of the prompts utilized in our
experiments are provided in the Appendix A.

4 Experiments

In this section, we begin with an analysis of
LLMs’ mathematical reasoning capabilities using
the MaTT benchmark. Subsequently, we exam-
ine the variation in model performance across dif-
ferent sub-topics. We then assess the effect of
choice availability by presenting MATT questions
to LLMs without multiple-choice options. Lastly,
we concentrate on GPT-4’s explanations, manually
annotating the level of reasoning in each expla-
nation and exploring the strategies employed by
GPT-4 to arrive at correct answers.

4.1 LLMs Performance on MaTT

We present the accuracy of LLMs on the MATT
benchmark across various topics in Table 2. The
performances of models are notably low (except for
o1-mini), with GPT-4 achieving only about 54% ac-
curacy and Mistral performing close to the random
choice selection. A detailed examination reveals
that Mistral often refuses to answer, claiming the
correct option is not listed, while other models try
to select the closest match or reason with the avail-
able choices when their answer is missing.

Additionally, there is a significant variance in
the accuracy levels of LLMs across different top-
ics, with gap as high as 41.2%, highlighting a
significant level of difference in understanding
and reasoning capability of LLMs across various
mathematical areas. Moreover, despite demonstrat-
ing strong performance on existing math bench-
marks, o1-mini shows room for improvement in
the multiple-choice setting of MaTT. Furthermore,
a breakdown of o1-mini’s performance by topic

reveals that it excels in areas requiring straight-
forward problem-solving steps, such as Algebra,
Calculus and Analysis, and Number Theory. How-
ever, it has more room for improvement in topics
demanding higher levels of creativity, such as Com-
binatorics, Logic, and Game Theory. Additionally,
for topics like Operations Research, Statistics, In-
formation Theory and Signal Processing, we sus-
pect that o1-mini was trained on a smaller amount
of data, which may contribute to its lower perfor-
mance in these areas. Finally, we observe that zero-
shot CoT prompting mostly did not enhance model
performance, potentially due to the complexity of
the questions. Many of question in MaTT, require
intricate/numerous steps or necessitate intelligen-
t/creative thinking, which cannot be addressed by
merely following a few simple steps (For further
discussion on other reasoning/prompting strategies,
e.g, Program of Thought (Wang et al., 2022), refer
to Appendix C.). This observation raises questions
about the assumption that CoT prompting is ef-
fective in many reasoning tasks. Many available
evaluation benchmarks on reasoning tasks are de-
signed to be solved in a few straightforward steps
(Srivastava et al., 2022), whereas real-world reason-
ing often involves many steps and requires creative
problem-solving.

4.2 Per-Topic Break Down of LLMs
Performance

As highlighted in the previous section, the explo-
ration of LLMs’ capabilities in mathematical rea-
soning across a diverse array of topics or distinct
sub-topics within the same mathematical domain
remains significantly unexplored. We detail the
LLMs’ accuracy on sub-topics within the MATT
benchmark in Figures 2 for pure mathematics and
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Topics GPT-4 ChatGPT Mistral Llama3.1 o1-mini

w/o CoT w CoT w/o CoT w CoT w/o CoT w CoT w/o CoT w CoT w/o CoT

Pu
re

M
at

h

Algebra 71.1 73.6 45.5 52.1 33.9 39.7 65.8 69.2 89.7
Calculus 52.2 50.9 41.6 42.6 19.3 19.3 50.6 52.7 88.3

Number Theory 52.4 50.0 54.0 47.6 22.2 23.8 53.7 53.1 84.9
Combinatorics 52.1 55.6 45.1 40.8 21.8 19.0 51.4 50.6 73.1

Geometry 53.8 53.8 51.9 50.0 26.3 27.5 56.0 61.1 71.9
Logic 62.9 65.7 31.4 34.3 34.3 28.6 55.8 61.7 79.4

A
pp

lie
d

M
at

h Game Theory 40.0 40.0 31.4 45.7 14.3 20.0 54.2 48.5 48.5
Probability 50.5 46.2 36.5 37.9 20.2 17.6 54.3 54.3 75.0

OR 40.6 45.3 37.7 30.2 22.6 24.5 41.3 50.0 66.3
Differential 53.5 52.2 41.5 43.4 18.9 16.3 53.5 57.9 78.9

Statistics 63.3 59.6 56.9 52.3 28.4 23.9 66.9 72.4 77.9
Info and Signal 59.3 53.3 38.2 38.2 29.1 26.6 50.8 61.3 75.1

All 54.0 52.7 42.9 42.7 23.1 22.5 53.5 56.6 79.2

Table 2: Accuracy of LLMs over MaTT benchmark (for accuracy with confidence interval refer to Appendix B).

3 for applied mathematics, respectively. (We pro-
vide the performance breakdown of Llama3.1 and
o1-mini in Appendix D.)

These figures reveal that the models display vary-
ing levels of accuracy even within sub-topics of
the same main topic, emphasizing the differences
in their understanding and reasoning capabilities
even across closely related subjects. Notably, we
find that in certain sub-topics, such as applica-
tion of integration, parametric equations, quadratic
reciprocity, diophantine equation, duality theory,
non-linear programming, conditional probability,
continuous-time Markov chains, and basic statis-
tics, ChatGPT and Mistral outperform GPT-4. This
observation further underscores the significance of
going beyond the overall performance on high-level
topics and instead examining model performance
on a more granular level to understand their mathe-
matical reasoning skills comprehensively.

4.3 LLMs Performance without Providing
Choices

To delve deeper into the mathematical reason-
ing abilities of LLMs, we assessed their perfor-
mance on the MaTT benchmark without the aid of
multiple-choice options. We manually evaluated
the models’ accuracy on MaTT in the absence of
choices and provided the results in Table 3. The
findings indicate a substantial decrease in perfor-
mance, with GPT-4, ChatGPT, and Mistral loosing
29.4%, 56.4%, and 69.7% of the accuracy they
achieved when choices were available, respectively.
This significant decline underscores the models’
dependency on choices for deriving answers and
highlights their limitations in genuine mathemati-

cal reasoning. It also stresses the importance of not
solely relying on a single overall score to evaluate
LLMs’ reasoning capabilities. We provide more
detailed analysis on the impact of availability of
choices on LLMs prediction in Section 4.5.

4.4 Reasoning Level of the Explanations

To understand the reasons behind the poor perfor-
mance of LLMs without providing choices and
their varying accuracy across different topics, we
manually examined the completeness and accu-
racy of LLM-generated explanation for their pre-
dictions. Given GPT-4’s relatively superior per-
formance compared to other evaluated LLMs, our
analysis in this section is specifically focused on
the explanations generated by GPT-4. Our objec-
tive is to identify the percentage of explanations
in correctly predicted instances (when choices are
available) for each of the following categories: (1)
complete reasoning, where the explanation is thor-
ough and logical; (2) choice/weak reasoning, where
the model uses strategies such as leveraging the
given options or offers partial reasoning; and (3)
no/wrong reasoning, where the explanation is incor-
rect or missing, and the model reaches a conclusion
without justification. Additionally, we calculated
the percentage of instances (from all cases where
GPT-4 answered correctly with choices) in which
GPT-4, with no choice, still provided a correct an-
swer and delivered a complete explanation.

The results of our manual evaluation of expla-
nations for samples where GPT-4 (when choices
are available) predicts the correct answer are de-
tailed in Table 4. Remarkably, we found that only
53.3% of the explanations for correctly answered
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Figure 2: Per-topic breakdown for pure Math.
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Figure 3: Per-topic breakdown for applied Math.

questions were complete, i.e., GPT-4 engaged in
actual reasoning, highlighting a significant incon-
sistency in GPT-4’s actual reasoning abilities. Also,
we observe varying levels of explanation complete-
ness across different topics, which do not necessar-
ily correlate with GPT-4’s overall performance in
those topics. When comparing samples with com-
plete explanations both with and without choices,
we notice a significant gap, underscoring that the
presence of choices aids the model in better nav-
igating or recalling the reasoning process. Fur-
thermore, we note that GPT-4 genuinely engaged
in reasoning primarily for simpler or more well-
known questions that could be solved through a
few straightforward steps, whereas it struggled with
questions requiring more complex steps or creative
problem-solving, often resorting to different strate-
gies (we explore these strategies in more detail in
Section 4.5). This aligns with the observed limited
effectiveness of Chain-of-Thought prompting in
enhancing the performance of LLMs. We provide
more analysis on explanations in the Appendix E.

4.5 Observations from Explanations

Besides annotating the reasoning level of explana-
tions (as presented in Table 4), we also pinpoint
the strategies GPT-4 employs to arrive at correct
answers, which do not involve reasoning. We sum-
marise these strategies as follows:

Choice engineering refers to the strategy where
a model, such as GPT-4, manipulates or exploits the
available multiple-choice options to determine an
answer, rather than relying on a deep understanding
or genuine reasoning process. This can be divided
to the following cases:

• Choices use: In this case, GPT-4 directly uses
the choices and chooses the one matching the
question the best. For example, in linear pro-
gramming questions, despite GPT-4 without
choice could not answer any of the optimiza-
tion problems, when choices were available,
using this strategy, GPT-4 achieves a high per-
formance on those questions by simply choos-
ing the minimum or maximum values among
the choices.

• Deducing a plausible answer: In this strat-
egy, instead of actual reasoning, GPT-4 tries
to choose the answer by removing choices that
are not plausible answers for the question. For
a better understanding, consider the following
question: Generate X which has a beta distri-
bution with parameters α and β. GPT4’s An-
swer: “Option B incorrectly raises U1 and U2

to the powers of α and β, respectively. This
does not correspond to any standard method of
generating beta-distributed variables and does
not make intuitive sense in the context of the
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Topics GPT-4 ChatGPT Mistral

Pu
re

M
at

h

Algebra 63.6 (-7.5) 32.5 (-13.0) 16.9 (-17.0)
Calculus and Analysis 49.7 (-2.5) 23.1 (-18.5) 7.3 (-12.0)

Number Theory 26.5 (-25.9) 19.6 (-34.4) 6.3 (-15.9)
Combinatorics 43.4 (-8.7) 25.4 (-19.7) 6.6 (-15.2)

Geometry and Topology 40.8 (-13.0) 34.9 (-17.0) 10.9 (-15.4)
Logic 60.7 (-2.2) 17.9 (-13.5) 14.3 (-20.0)

A
pp

lie
d

M
at

h Game Theory 22.6 (-17.4) 22.6 (-8.8) 9.7 (-4.6)
Probability 32.8 (-17.7) 12.3 (-24.2) 6.3 (-13.9)

Operations Research 15.9 (-24.7) 6.9 (-30.8) 5.0 (-17.6)
Differential Equations 25.0 (-28.5) 8.3 (-33.2) 4.5 (-14.4)

Statistics 38.1 (-25.2) 12.3 (-44.6) 2.1 (-26.3)
Info and Signal 28.3 (-31.0) 12.1 (-26.1) 5.2 (-23.9)

All 38.1 (-15.9) 18.7 (-24.2) 7.0 (-16.1)

Table 3: LLMs accuracy in answering questions without providing choices. We demonstrate the decrease in LLMs’
performance when choices are not provided, compared to when they are, in red.

properties of the beta distribution... .”’ GPT-4
provides similar arguments for the other op-
tions and correctly derive the answer but with-
out any actually reasoning.

• Choice expert: GPT4 seems to have an un-
derstanding of how the choices are usually
made. For example consider this question:
what are the probabilities of events X and Y?
A)1/3,13/27 B)1/3,1/3 C)1/2,1/2 D)None of
them. GPT4 was only able to derive the prob-
ability of event X to be 1/3, and without any
reasoning claimed that probability of event Y
could not be 1/3, and then chose A. Note that
we also have the choice “None of them”.

• Middle ground rule: We observed that GPT4
tends to choose the middle ground if it cannot
find the correct answer. For example: what is
the expected duration of the game (which is
described in the question and is omitted here)?
GPT4’s answer: “Choices A) 16.519 and C)
22.955 seem more plausible, but without the
exact calculation or simulation, it’s challeng-
ing to pinpoint the exact expected duration.
However, B) 19.737 strikes a balance between
... Without the ability to perform a detailed
calculation, the most reasonable choice would
be: Answer: B) 19.737.”

Theorem Use refers to the strategy where a
model, such as GPT-4, utilizes a theorem or prop-
erty which is the actual and main challenging part
of the question. Therefore, by applying it directly,
it sidesteps complex derivations and reaches the so-
lution without explaining or proving why that is cor-
rect. In order to better grasp the idea, consider the

following question and answer from GPT4: What
is determinant of Vandermonde Matrix 3? GPT4’s
Answer: “The determinant of a Vandermonde ma-
trix is given by

∏
0≤i<j≤n(xj − xi).”

Circular reasoning is a logical fallacy in which
the conclusion of an argument is used as a premise
to support itself. This strategy is closely related
to hallucination (Huang et al., 2023) which can be
very challenging to detect. In these cases, the rea-
soning starts and ends at the same point, with the
argument essentially saying, “A is true because B
is true while B is true as A is true”. For example,
let us consider the following question: The Fermat
point of a triangle, is a point such that the sum of
the three distances from each of the three vertices
of the triangle to the point is the smallest possi-
ble. What is Fermat point for the triangle having
an angle ≥ 120? GPT4’s answer: “The Fermat
point is defined for the purpose of minimizing the
total distance from the three vertices of the trian-
gle to this point... When one of the angles of the
triangle is greater than or equal to 120 degrees, the
Fermat point coincides with the vertex of the tri-
angle that has the angle ≥ 120 degrees. This is
because, in such a case, positioning the point at
the obtuse-angled vertex minimizes the total dis-
tance from the point to the other vertices of the
triangle.” What GPT4 did was a prime example of
circular reasoning and in order to see why, let us
dig into it: let’s define the statements A=“triangle
having an angle ≥ 120”, B=“a vertex being a Fer-
mat point” and C=“a vertex minimizing the total
distance from the three vertices of the triangle”. B

3Vandermonde Matrix is a n× n matrix with coefficient
(xi)

j at the ith row and jth column for arbitrary values of xi.
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Topics Complete Choice/Weak No/Wrong No Choice Complete

Pu
re

M
at

h

Algebra 80.5 13.8 5.7 43.7
Calculus and Analysis 79.6 10.4 10.0 66.2

Number Theory 26.9 40.3 32.8 26.9
Combinatorics 33.3 45.3 21.3 30.7

Geometry and Topology 20.0 52.9 27.1 15.3
Logic 72.7 27.3 0.0 54.5

A
pp

lie
d

M
at

h Game Theory 28.6 35.7 35.7 21.4
Probability 40.0 37.9 22.1 32.1

Operations Research 21.4 28.6 50.0 16.7
Differential Equations 40.0 27.0 32.9 30.6

Statistics 43.5 40.6 15.9 34.8
Info and Signal 68.6 16.2 15.2 42.9

All 53.3 27.4 19.3 40.7

Table 4: Level of reasoning for explanations in instances where GPT-4’s answers were correct, when the choices
were available. We report the percentage of explanations with complete, choice/weak, or no/wrong reasoning. We
also present the percentage of explanations that exhibited complete reasoning when choices were not provided.

and C are equivalent by definition and A → B is
almost as hard as A → C. Here, GPT4 instead of
proving A → B asserts A → C without any proof,
and the concludes A → B. Not so surprisingly, we
observe that GPT-4 frequently uses this strategy in
Geometry and Topology, as shown by the high per-
centage of cases involving choice/weak reasoning
in Table 4.

Blind memorization refers to LLMs recalling
an answer without following the necessary steps
or reasoning to reach it. Let us further illustrate
this with following question: Find the expected
value of the distance between two points that are
chosen at random inside the unit square, unit circle,
and equilateral triangle with sides of unit length.
For the square, here is GPT4’s answer: “...The
exact solution to this problem involves a double
integral that accounts for the distances between all
pairs of points within the square. The calculation is
somewhat complex but well-documented in mathe-
matical literature. The correct answer, derived from
these calculations, is approximately 0.521.” For the
circle, here is GPT4’s answer: “...The exact solu-
tion to this problem involves complex calculus and
is not trivial to derive without advanced mathemati-
cal tools. However, it is known from mathematical
studies that the expected distance is approximately
128/(45π), which is about 0.905... .” Finally, for
the triangle, GPT4’s answered as follows: “...the
exact solution to this problem is not straightforward
and requires a detailed calculation that involves the
geometry of the equilateral triangle and the prop-
erties of distances within it...”. These examples
show how blind memorization prevents an LLM
from reasoning and answering somewhat similar

questions.

5 Related Work

As LLMs grow stronger, they exhibit significant
mathematical reasoning capabilities on existing
benchmarks. However, the scope of current evalu-
ation settings is restricted in terms of the breadth
of mathematical areas covered and fails to conclu-
sively determine whether these models genuinely
engage in reasoning or rely on alternate strategies.

Mathematical Benchmarks Previous research
primarily concentrated on developing benchmarks
for math word problems—mathematical problems
in the form of written description–which typically
require only a few steps to solve, often involving
basic arithmetic or elementary algebra (Ling et al.,
2017; Cobbe et al., 2021; Patel et al., 2021). Ad-
ditionally, the work in Mishra et al. (2022) intro-
duced a comprehensive mathematical reasoning
benchmark that encompasses 23 varied tasks across
four dimensions: mathematical abilities, language
format, language diversity, and external knowl-
edge. Furthermore, Zhang et al. (2023) presented
a multi-modal benchmark with a focus on geome-
try. The most relevant to our study are the MATH
(Hendrycks et al., 2021) and Theoremqa (Chen
et al., 2023) benchmarks. Despite providing math-
ematical questions on various topics, they have
a much narrower scope compared to our bench-
mark and did not provide a detailed topical break-
down for each question. Additionally, a recent
effort (Toshniwal et al., 2024) has begun to gener-
ate large-scale synthetic mathematical benchmarks
for instruction tuning of LLMs.
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LLMs and Math In recent years, LLMs have
shown notable achievements in mathematical rea-
soning (Srivastava et al., 2022; Liu et al., 2023).
These accomplishments are supported by methods
aimed at enhancing LLMs’ performance, predomi-
nantly through decomposed reasoning. Such strate-
gies, inspired by human problem-solving processes,
include providing step-by-step guidance (Wei et al.,
2022; Yao et al., 2024; Besta et al., 2023), em-
ploying verification mechanisms to enhance model
consistency and accuracy (Weng et al., 2022), and
incorporating complex strategies (Qi et al., 2023).

6 Conclusion

In this paper, we provide a comprehensive evalua-
tion on mathematical reasoning of LLMs. We cre-
ate the Mathematical Topics Tree (MaTT) bench-
mark, a systematically organized set of questions
covering a wide range of mathematical subjects
linked to a detailed topic hierarchy. Exploring
LLMs accuracy on MaTT, we observe their strug-
gle with a wide range of mathematical topics, par-
ticularly when deprived of multiple-choice options.
We also observe the discrepancy in LLMs’ per-
formance across various topics and the lack of
substantial improvement with Chain-of-Thought
prompting. To investigate the gaps in models per-
formances, we manually analysis their explanations
in answering the questions. We find that in only
53.3% of the instances where GPT-4 provided a cor-
rect answer, the accompanying explanations were
deemed complete. Further, we observe that mod-
els perform better on simpler problems but rely
on alternative strategies for complex ones. This
indicates a fundamental gap in LLMs’ ability to en-
gage in deep, creative, and complex mathematical
thinking. We will release code and data for MaTT.

7 Limitations

This study presents several limitations that should
be considered when interpreting the findings.
Firstly, our evaluation of mathematical reasoning
capabilities was conducted on only five widely
adopted LLMs using the MATT benchmark. This
limited selection of models may not fully repre-
sent the diverse capabilities of LLMs. Including a
wider range of models in future assessments could
provide a more comprehensive understanding of
LLMs’ mathematical reasoning across various ar-
chitectures and training paradigms.

Secondly, our methodology for assessing mod-

els’ reasoning capabilities heavily relied on analyz-
ing their self-generated explanations. While this ap-
proach allows us to gauge how models rationalize
their answers, it inherently carries potential biases
and inaccuracies. The explanations provided by
LLMs might not always accurately reflect the un-
derlying reasoning processes and could sometimes
be misleading or incomplete. More objective or
diverse methods of evaluation might be necessary
to gain a clearer and more accurate picture of how
LLMs process and solve mathematical problems.
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A Details of Prompts

Example prompts utilized for multiple-choice ques-
tion answering without and with CoT is provided in
prompts A.1 and A.2, respectively. Moreover, the
example prompt for answering questions without
choices is provided in the prompt A.3.

Example Prompt with Choices

Choose the answer to the question only from A,
B, C, and D choices, and express your reason.
Question: Find the smallest n that makes the
following statement correct: The vertices of
any planar graph can be properly colored with
n colors.
Choices: A) 4 B) 5 C) 6 D) None of them.
The output should be in the following format:
Explanation: <explanation>
Answer: —-

Example Prompt with Choices and CoT

Choose the answer to the question only from A,
B, C, and D choices, and express your reason.
Question: Find the smallest n that makes the
following statement correct: The vertices of
any planar graph can be properly colored with
n colors.
Choices: A) 4 B) 5 C) 6 D) None of them.
The output should be in the following format:
Explanation: <explanation>
Answer: —-
Let’s think step by step.

Example Prompt without Choices

Answer to the question, and express your reason.
Question: Find the smallest n that makes the
following statement correct: The vertices of
any planar graph can be properly colored with
n colors.
The output should be in the following format:
Explanation: <explanation>
Answer: —-

B Accuracy of LLMs over Matt
benchmark with Confidence Interval

In Table 5, we calculated a confidence interval
(CI) for each topic’s accuracy, assuming bench-
mark scores are Gaussian distributed, similar to the
previous works (Dubey et al., 2024).

CI = 1.96×
√

p(1− p)

n
(1)

where p is the observed benchmark score/accuracy
and n is number of samples/questions.

C Other Reasoning/Prompting Strategies

Program of Thought (PoT) is a prompting tech-
nique designed to enhance numerical reasoning
in large language models (LLMs) by integrating
code generation into the reasoning process. Un-
like Chain-of-Thought (CoT) prompting, where
the model performs all reasoning and computation
within natural language, PoT allows the model to
generate executable code (e.g., Python scripts) as
part of its output. This approach delegates com-
plex computations, iterations, and algorithmic tasks
to an external interpreter, thereby decoupling in-
tricate calculations from the reasoning steps. By
leveraging programming constructs, PoT aims to
overcome limitations of LLMs in handling arith-
metic operations, solving complex equations, and
performing extensive iterative processes that are
challenging to express and compute accurately in
plain text.

In addition to employing CoT, focusing on GPT-
4, we applied PoT prompting to several topics in
our MaTT benchmark. However, we observed that
for most problems in pure and applied mathematics,
breaking down a problem into the PoT format is as
challenging as solving the original problem itself.
Crafting a correct and efficient program requires a
deep understanding of the mathematical concepts
and the ability to translate them into algorithmic
procedures. This translation often demands the
same level of insight and problem-solving skills
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Topics GPT-4 ChatGPT Mistral Llama3.1 o1-mini

w/o CoT w CoT w/o CoT w CoT w/o CoT w CoT w/o CoT w CoT w/o CoT

Pu
re

M
at

h

Algebra
71.1
±8.1

73.6
±7.9

45.5
±8.9

52.1
±8.9

33.9
±8.5

39.7
±8.8

65.8
±8.5

69.2
±8.3

89.7
±5.4

Calculus
52.2
±4.3

50.9
±4.3

41.6
±4.3

42.6
±4.3

19.3
±3.4

19.3
±3.4

50.6
±4.3

52.7
±4.3

88.3
±2.8

Number Theory
52.4
±8.7

50.0
±8.8

54.0
±8.7

47.6
±8.7

22.2
±7.3

23.8
±7.4

53.7
±8.7

53.1
±8.7

84.9
±6.3

Combinatorics
52.1
±8.3

55.6
±8.2

45.1
±8.3

40.8
±8.2

21.8
±6.9

19.0
±6.5

51.4
±8.3

50.6
±8.3

73.1
±7.4

Geometry
53.8
±7.8

53.8
±7.8

51.9
±7.8

50.0
±7.8

26.3
±6.8

27.5
±6.9

56.0
±7.7

61.1
±7.6

71.9
±7.0

Logic
62.9
±16.0

65.7
±15.7

31.4
±15.3

34.3
±15.7

34.3
±15.7

28.6
±15.0

55.8
±16.5

61.7
±16.1

79.4
±13.4

A
pp

lie
d

M
at

h

Game Theory
40.0
±16.2

40.0
±16.2

31.4
±15.3

45.7
±16.5

14.3
±11.6

20.0
±13.2

54.2
±16.5

48.5
±16.6

48.5
±16.6

Probability
50.5
±5.9

46.2
±5.9

36.5
±5.7

37.9
±5.7

20.2
±4.7

17.6
±4.5

54.3
±5.9

54.3
±5.9

75.0
±5.1

OR
40.6
±9.6

45.3
±9.7

37.7
±9.5

30.2
±9.1

22.6
±8.3

24.5
±8.5

41.3
±9.6

50.0
±9.8

66.3
±9.0

Differential
53.5
±7.8

52.2
±7.8

41.5
±7.7

43.4
±7.8

18.9
±6.1

16.3
±5.8

53.5
±7.8

57.9
±7.7

78.9
±6.2

Statistics
63.3
±9.2

59.6
±9.3

56.9
±9.4

52.3
±9.5

28.4
±8.4

23.9
±8.1

66.9
±9.0

72.4
±8.7

77.9
±8.4

Info and Signal
59.3
±7.2

53.3
±7.3

38.2
±6.9

38.2
±6.9

29.1
±6.5

26.6
±6.3

50.8
±7.3

61.3
±7.0

75.1
±6.2

All
54.0
±2.4

52.7
±2.4

42.9
±2.4

42.7
±2.4

23.1
±2.0

22.5
±2.0

53.5
±2.4

56.6
±2.4

79.2
±2.1

Table 5: Accuracy of LLMs over the MaTT benchmark with confidence intervals.

as directly finding the solution, which poses a sig-
nificant challenge for LLMs. Consequently, while
PoT has the potential to handle computational com-
plexity effectively, its benefits are limited when the
model struggles with the initial reasoning required
to generate appropriate code.

Moreover, we did not see any significant im-
provement in the multiple-choice accuracy when
using PoT, even in cases where converting the prob-
lem into PoT format is not inherently difficult. For
example, consider the following question: "A stick
is broken into n pieces at n-1 randomly chosen
points (n>2). What are the expected values of
the lengths of the shortest and longest segments?"
Translating the problem into Python code:

Listing 1: Python code to compute the expected lengths
of the shortest and longest segments when a stick of
length 1 is broken at n-1 random points.

import numpy as np

n = 5 # Example value for n > 2
num_trials = 100000
shortest_lengths = []
longest_lengths = []

for _ in range(num_trials):
break_points = np.sort(np.random

.uniform(0, 1, n - 1))
segments = np.diff ([0] +

break_points.tolist () + [1])

shortest_lengths.append(np.min(
segments))

longest_lengths.append(np.max(
segments))

expected_shortest = np.mean(
shortest_lengths)

expected_longest = np.mean(
longest_lengths)

print("Expected length of the
shortest segment:",
expected_shortest)

print("Expected length of the
longest segment:",
expected_longest)

We are not able to get the answer for general n
with the help of Program of Thought.

D Performance Breakdown of Llama3.1
and o1-mini

The performance comparison between o1-mini and
Llama3.1 models across topics under both Applied
and Pure Mathematics reveals a clear trend in favor
of o1-mini. In Pure Mathematics, o1-mini outper-
forms Llama3.1 in 35 out of 38 subtopics, with
Llama3.1 taking the lead in only 3 subtopics (Fig-
ure 4). Similarly, for Applied Mathematics, o1-
mini shows dominance in 44 out of 47 subtopics,
with Llama3.1 outperforming in just 3 cases (Fig-
ure 5). These results and Table 2 highlight the con-
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sistent superiority of o1-mini across the majority
of subtopics in both domains.

E Further Analysis on Explanations

To better understand the influence of choices and to
distinguish between instances where the model gen-
uinely engages in reasoning, we provided further
analysis in GPT-4 generated explanations. We aim
to identify the number of samples in which GPT-4
with choices gave a complete explanation, GPT-4
without choices provided a complete explanation,
and both scenarios resulted in complete explana-
tions (over all the questions in MaTT). The findings
are presented in Table 6. The result indicates that
in most topics, samples that had complete explana-
tions even without the availability of choices also
had complete explanations when GPT-4 was pro-
vided with choices. Furthermore, in some topics,
there is a meaningful difference in the percentage
of complete explanations between scenarios with
and without choices, emphasizing that the presence
of choices can aid models in better engaging with
or recalling the reasoning process.
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Figure 4: Overview of per topic breakdown for topics under Mathematics/Pure. In this Figure we can observe that
in the majority of subtopics (35 out of 38) o1-mini is outperforming Llama3.1, while in the rest of 3 out of 38
subtopics Llama3.1 is outperforming o1-mini.
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Figure 5: Overview of per topic breakdown for topics under Mathematics/Applied. In this Figure we can observe
that in the majority of subtopics (44 out of 47) o1-mini is outperforming Llama3.1, while in the rest of 3 out of 47
subtopics Llama3.1 is outperforming o1-mini.

Topics both Complete No Choice Complete With Choice Complete

Pu
re

M
at

h

Algebra 28.3 36.7 58.3
Calculus and Analysis 30.8 44.7 41.4

Number Theory 4.8 16.7 14.3
Combinatorics 6.5 20.1 18.0

Geometry and Topology 2.5 10.1 10.7
Logic 22.9 42.9 45.8

A
pp

lie
d

M
at

h Game Theory 8.6 11.4 11.4
Probability 13.4 19.9 20.3

Operations Research 4.8 10.6 8.7
Differential Equations 13.4 22.3 21.7

Statistics 19.3 24.8 27.5
Info and Signal 24.9 27.1 39.8

All 18.0 27.4 28.9

Table 6: Comparison on the completeness of explanations from GPT-4 when choices were provided versus when no
choices were given (this is over all the samples in MaTT).
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