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Abstract

Natural Language Processing research has be-
come increasingly concerned with understand-
ing data quality and complexity at the instance
level. Instance-level complexity scores can be
used for tasks such as filtering out noisy ob-
servations and subsampling informative exam-
ples. However, there exists a diverse taxonomy
of complexity metrics that can be used for a
classification task, making metric selection it-
self difficult. We empirically examine the re-
lationship between these metrics and find that
simply storing training loss provides similar
complexity rankings as other more computa-
tionally intensive techniques. Metric similarity
allows us to subsample data with higher ag-
gregate complexity along several metrics using
a single a priori available meta-feature. Fur-
ther, this choice of complexity metric does not
impact demographic fairness in downstream
predictions. We encourage researchers to care-
fully consider metric availability and similarity,
as using the wrong metric or sampling strategy
may hurt performance.

1 Introduction

Understanding data complexity at the instance-
level has become increasingly important in Natural
Language Processing (NLP) and machine learning
(ML). Recent work has shown that model perfor-
mance can be improved through dataset curation,
curriculum learning, and in-context learning tech-
niques (Smith et al., 2014; Toneva et al., 2019; Shen
and Sanghavi, 2019; Lu et al., 2023). To perform
these techniques, researchers need some measure-
ment of data complexity taken at the instance-level
to logically filter or order data observations.

NLP tasks are particularly well-suited for study-
ing this area due to the complexity of language
and its impact on classification results (Ethayarajh
et al., 2022; Gururangan et al., 2018; Hahn et al.,
2021). Indeed, these complexity-based techniques
are increasingly being used for data filtering and

re-weighting in NLP tasks including text classi-
fication, text generation, and question answering
(Rodriguez et al., 2021; Lalor et al., 2019; Soviany
et al., 2022).

Due to its close connection to misclassification
rate, instance complexity also has important impli-
cations for how we think about bias and fairness
(Lorena et al., 2024). Prediction differences across
subgroups have the potential to increase harm for
underprivileged groups in certain systems (e.g., hir-
ing decisions and facial recognition, Li et al., 2023;
Lorena et al., 2024). Bias can exist in data, algo-
rithms, and prediction outputs; addressing fairness
across the ML pipeline can mitigate harm (Pessach
and Shmueli, 2022; Lalor et al., 2024).

Any technique that alters the training data risks
amplifying algorithmic bias (Zhao et al., 2018;
Blodgett et al., 2020). If a selected complexity
metric disproportionately removes data from cer-
tain protected subgroups, this under-representation
bias will be captured by the model. Within the
current Large Language Model (LLM) paradigm,
the addition of complexity-based techniques risks
exacerbating existing data biases from pretraining
data content (Li et al., 2020; Abid et al., 2021),
human annotation (Kirk et al., 2023; Gururangan
et al., 2018), and user feedback (Qiu et al., 2022).

Prior work proposed a taxonomy of data com-
plexity for classification tasks (Lorena et al., 2024).
However, it is not always clear to researchers which
metric they should use to leverage instance-level
complexity in their experimental design (Paiva
etal., 2021; Martinez-Plumed et al., 2019). Metrics
are available at different points of the learning pro-
cess (e.g., data preprocessing, embedding, training,
etc.) and require varying amounts of computation.

To address this gap, we seek to understand how
different instance-level complexity metrics relate
to one another and if there is any overlap in their
measurement. We train a pool of text classifiers,
compute a diverse set of complexity metrics, and
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Figure 1: Classification complexity taxonomy tree introduced in Lorena et al. (2024) with our modifications. Note
that in this paper we focus on the instance-level, i.e., the right-hand-side of the tree.

examine how these complexity metrics correlate
across different classification tasks. We also ap-
ply a naive a priori subsampling strategy using
a complexity metric available before model train-
ing to examine whether including more complex
observations might improve performance.

Our contributions in this work are: (i) an ex-
tended taxonomy of complexity, as well as a com-
plexity analysis of various techniques; (ii) an em-
pirical examination of the relationships between
different complexity metrics across models and de-
pendent variables; (iii) an examination of the com-
bination of complexity and fairness when consider-
ing data complexity split by demographic groups.'

The rest of the paper is organized as follows.
Section 2 reviews work related to instance-level
complexity and the taxonomy we extend. We ex-
plain these updates in Section 3 along with the
representative metrics used in our experiments in
Section 4. We discuss findings in Section 5 be-
fore offering concluding remarks in Section 6 and
limitations in Section 7.

2 Related Work

Research has long sought to quantify the complex-
ity of text sequences using linguistic measures such
as syntactic dependence and semantic entropy (Gib-

!Code and data available at https://github.com/
nd-hal/instance-complexity-metrics.

son, 1998; Hale, 2001). Instance-level complexity
has remained an NLP problem with the rise of com-
putational techniques concerned with which text
sequences are harder to learn (Zhao et al., 2022;
Zhang et al., 2022; Hahn et al., 2021; Cai et al.,
2024). In this section, we begin with a broad view
of complexity in ML and refine our focus to NLP
applications and an applicable taxonomy of com-
plexity for these tasks.

2.1 Instance Complexity Overview

Complexity literature covers the analysis of both
dataset-level and instance-level complexity (Smith
etal., 2014; Lorena et al., 2024). Especially in NLP,
analysis of dataset-level quality allows for prioriti-
zation of certain tasks, benchmarks, and classifiers
within the Common Task Framework commonly
used for evaluating NLP methods (Ho and Basu,
2002; Donoho, 2017). On the other hand, assign-
ing complexity scores at the instance-level allows
researchers to identify problematic instances to be
filtered (e.g., outliers, annotation artifacts) and in-
formative instances to prioritize.

A priori filtering of outliers — i.e., before train-
ing — can improve performance and generalizabil-
ity through denoising the data in the data curation
paradigm (Smith and Martinez, 2011; Hodge and
Austin, 2004). Specifically in NLP tasks such as
question answering and machine translation, stud-
ies have used human-centered complexity metrics
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to identify annotation artifacts, which are prob-
lematic instances resulting from faulty patterns in
responses or data labeling from crowd workers (Gu-
rurangan et al., 2018; Rondeau and Hazen, 2018).
Theory-driven techniques such as Item Response
Theory and information theory learn estimates for
identifying artifacts and measuring fairness (Lalor
et al., 2019; Martinez-Plumed et al., 2019; Etha-
yarajh et al., 2022).

Beyond fixed measures of static complex-
ity, NLP leaderboards increasingly consider dy-
namic complexity, which is calculated across
epochs (Swayamdipta et al., 2020; Rodriguez et al.,
2021). Since model-based complexity scoring is
computationally intensive, re-weighting and dy-
namic filtering are often accomplished via the cur-
rent value of the loss function in the curriculum
learning paradigm. Complex instances have also
been conceptualized as providing lower informa-
tion to the model or being forgotten in later epochs
(Toneva et al., 2019; Ethayarajh et al., 2022). How-
ever, most instance-level complexity measures for
NLP come from naive linguistic heuristics such as
sentence length or number of conjunctions, which
are known a priori before training (Soviany et al.,
2022; Zhang et al., 2018).

2.2 Instance Complexity Taxonomy

Recent work has presented a taxonomy of data com-
plexity for classification tasks, where complexity
is defined as “the difficulty level in predictive prob-
lems” (Lorena et al., 2024). We take the framework
from Figure 1 of Lorena et al. (2024) and focus on
the right side of the tree, which considers instance-
level metrics; we refer to this as Instance Complex-
ity or simply “complexity.” Here complexity refers
to intrinsic characteristics (i.e., meta-features) of
an instance that increase its likelihood of being mis-
classified. In this work, “complexity” will serve
as a superset for all other related terms such as
“hard,” “difficult,” and “challenging.” Further, we
extend their taxonomy for our Figure 1 above to
(1) make a distinction for the dynamic nature of
certain instance hardness metrics and (2) include
earlier literature on inter-class boundary distance.

3 Instance Complexity Revisited

Next, we describe our literature search and the
corresponding updates to the taxonomy of Lorena
et al. (2024). We explain each metric from the
updated taxonomy used in our experiment.

3.1 Literature Search

To identify papers, we conducted a review of the lit-
erature for work dealing specifically with instance-
level complexity. We first identified a set of seed
papers, including the Lorena et al. (2024) taxon-
omy we extend, its foundational work (Smith et al.,
2014), and work also dealing with complexity met-
rics (Ho and Basu, 2002; Soviany et al., 2022). We
examined the references of these seed papers and
collected 30 metrics from n = 39 papers related
to Instance-level complexity. We focus our anal-
ysis on 7 representative metrics; a full list is in
Appendix A for reference.

3.2 Updates to the Taxonomy

Our first change reflects the hierarchical nature of
the taxonomy’s “Instance Hardness” category (in
the lower middle of Figure 1). Here, certain metrics
vary across each epoch and require aggregation to
the model-level. These dynamic metrics (e.g., Loss)
are still “Model-based” as they result from training,
but should be considered separately from static
hardness metrics, which are calculated once at the
model-level for the entire training process.

Secondly, classification datasets often generate
class variables from transformations of real-valued
variables (e.g., Abbasi et al., 2021). This score can
be seen as the result of a dimensionality reduction
from the real-valued variable to the classification
class, but should not be on the “Model-based” side
of the taxonomy tree in Figure 1 as it is unrelated to
any trained ML model. Instead these measurements
fall into “Hardness meta-features” and are intrinsic
characteristics of the data. Our intuition that scores
closer to a median split should be considered to be
more challenging is supported by earlier SVM and
neighborhood literature in Section 3.4.

Our updated taxonomy can be found in Figure
1, with proposed modifications in dashed boxes.
Below we describe each metric in detail. Metrics
colored blue and marked with a 1} symbol are posi-
tively correlated with complexity, while those col-
ored red and marked with a |} symbol are negatively
correlated to complexity. For example, higher IRT
1+ values indicate higher complexity for instances,
while higher PVI |} values show lower complexity.

3.3 Model-based

3.3.1 Static

PyHard (PH) {} Instance Hardness theory con-
tends that the hardness of a given instance is rel-
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ative to both the model used to classify it and the
complexity of other items in the dataset (Smith
et al., 2014). The PyHard algorithm uses instance
space analysis to sample only informative meta-
features and efficiently generate a single output
probability of misclassification (PH) from a pool of
seven diverse classifiers (Paiva et al., 2021). Com-
plete computation details can be found in Appendix
D, but a higher PH value indicates that an instance
has a higher probability of being misclassified:

PH£<<$i7yi>> =1- wﬂjgp(yz‘\% 95 (t, 04))

Here L refers to a pool of diverse learners and
g;(t, ) is the complete set of learning algorithms
and their hyperparameters. While the literature rec-
ognizes several hardness meta-features for different
dimensions of PH (e.g., k-disagreeing neighbors,
local set cardinality, etc.), we only consider explic-
itly this aggregate probability of misclassification
(Smith et al., 2014; Arruda et al., 2020; Lorena
et al., 2024).

Times Forgotten (TF) {} Forgotten examples are
instances which are classified correctly in earlier
epochs but misclassified at some later epoch in the
training process (Toneva et al., 2019). These in-
stances which are more frequently forgotten are
considered to be more complex; we can sum for-
getting events across epochs:

B |E|
TF=3 > f(yilwi)
e=1k=e+1

Here f(@/l’xZ) = ]l(yi,e = yi,e) A l(gi,ﬁ»k 7é
Yi e+k) indicates a forgetting event at epoch e + k.

Item Response Theory (IRT) ¢ Item Response
Theory (IRT) has become increasingly popular,
and we increasingly see IRT concepts used in the
evaluation of NLP models and datasets (Martinez-
Plumed et al., 2016; Rodriguez et al., 2021; Lalor
et al., 2016). In a one-parameter (1PL) IRT model,
the difficulty b of a given item can be considered
as the point on the ability scale § where the prob-
ability of any subject providing a correct answer
is p(y = 1) = 0.5. Difficulty is estimated from
a dataset of graded correct/incorrect responses to
questions across subjects to best fit each item’s
Item Characteristic Curve:
1
ply=110.0) = ;7=

Thus, a core principle of IRT is its assumption
that the proficiency of a classifier is a function of

the level of hard instances it can solve. Work has
been done to scale this IRT parameter estimation
to larger numbers of items via Bayesian estimation
procedures, so ML applications of IRT can fully
take advantage of large text datasets (Natesan et al.,
2016; Wu et al., 2020; Lalor and Rodriguez, 2023).

3.3.2 Dynamic

Pointwise v-Information (PVI) || Pointwise v-
Information (PVI) provides an information theo-
retic perspective on complexity by viewing the dif-
ficulty of a given instance as its lack of v-usable
information, which considers the accessibility of
Shannon mutual information between an encrypted
input X and an output Y (Xu et al., 2020; Shan-
non, 2001). Ethayarajh et al. (2022) extend v-
information from dataset complexity to instance-
level complexity with PVI:

PVI(z; — y;) = —logy H,(Y') + logy H, (Y| X)

Here H,(y;) = E[—logg (yi|x;)] is obtained
from the primary model ¢ and H,(y;) =
E[—logg(yi|@)] represents a “null model” g
trained on null string inputs &.

PVI requires a second “null model” of the same
parameterization to be trained, but with the input X
variable converted to an empty string to remove all
information from the input variable that might aid
the prediction of the output Y. Instances with lower
PVI have been empirically validated as harder for
human annotators to classify (Swayamdipta et al.,
2020; Ethayarajh et al., 2022).

Loss {f The instance hardness literature has also
explicitly considered loss as a proxy for instance-
level complexity. Han et al. (2018) “selects its
small-loss instances as the useful knowledge” dur-
ing model training, where “useful” refers to gener-
alizable patterns across instances in the dataset.

Loss(yilz:) = yilogp(y:) + (1 — y:) log (1 - p(yz‘))

Thus, the loss literature suggests deep neural net-
works will learn easier and correct labels in earlier
epochs before they become able to learn noisy or
incorrect labels, and often employs dynamic sub-
sampling or re-weighting (Arazo et al., 2019; Shen
and Sanghavi, 2019). Items with higher prior loss
are more likely to be misclassified in later epochs —
as they were misclassified earlier.

3.4 Hardness meta-features

Boundary Distance (BD) || BD was originally
considered in the SVM literature (Tong and Koller,
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Category Metric Computational Cost
. PVI O(n x |E|)+ O(1)
Dynamic Loss o)
. PH O(n x |L]) +O(1)
Static TF o(l)
IRT IRT O(n x |Elrr) + O(1)
Hardness BD 0(1)
Meta-features SL o(1)

Table 1: Complexity metrics and computational costs.

2001; Brinker, 2003). It can be seen as “the dif-
ficulty in separating the data points into their ex-
pected classes.” This complexity increases as the
distance between a given point and the classifica-
tion boundary shrinks (Lorena et al., 2024).

BD(yi,c) = |y: - yi,c|
Here y refers to the class boundary between class
¢ € C and its nearest neighboring class c*.

We note that BD can be calculated a priori in
the dataset and consequently does not vary across
models or epochs for a dependent variable. Con-
sideration of boundary points with high BD has
led to the development of sampling techniques to
increase the presence of minority classes (Walms-
ley et al., 2018; Chatzimparmpas et al., 2023; Xie
et al., 2023) and ensemble learning methods which
can adaptively select the classifier that best fits the
hardness of the instance (Dantas et al., 2019; Souza
etal., 2019).

Sentence Length (SL) ff Due to the structured
nature of language data, NLP studies typically
leverage a priori linguistic features as a proxy
for complexity (Soviany et al., 2022; Zhang et al.,
2018). The most efficient and popular linguistic
heuristic is sentence length, which is a simple count
of the number of tokens in the input sequence:

SL(zi) = [l
As sentence length grows (1) the number of
possible grammatical parsing trees grows expo-
nentially and (2) the chance of simple classifiers

correctly guessing linguistic heuristics plummets
(Spitkovsky et al., 2009).

4 Experiment

Having defined our metrics, we empirically exam-
ined their relationships through a text classification
task. We trained 220 models on 2 different subsam-
pled train sets across 5 dependent variables, com-
puting and storing all aforementioned complexity

metrics. We then analyzed metric correlation as
well as model performance and fairness on a held
out set to determine patterns and differences.

A roadmap of the experimental procedure can be
found in Figure 2. We consider “metric availability”
to be a binary indication of whether a metric can be
computed before or after model training begins. We
note that equations for added computational cost
indicate the additional runtime needed to generate
each metric on top of the standard training pipeline.

4.1 Data

We consider five tasks across two datasets. For
the first four tasks, we use the FairPsych NLP
dataset of human-generated text responses with
corresponding latent variable scores concerning a
participant’s Anxiety, Numeracy, Subjective Liter-
acy, and Trust in Physicians (Abbasi et al., 2021).
The target variable is a real-valued score — i.e., av-
erage of multi-item responses, scaled between 0-1
— binarized for classification via median split.

Our fifth task is a separate depression detection
task of transcribed speech from a clinical interview
dataset with binary labels of Depression vs. Con-
trol provided by a clinical professional (Cotes et al.,
2022). All data statistics and splits for all 5 tasks
can be found in Appendix C and examples can be
found in Appendix B.

4.2 Model Training and Storage

We chose three base neural network architectures
as well as two transformer language models to train
classifiers with varying hyperparameters. For each
dependent variable, we trained 6 Feedforward Neu-
ral Networks (FFNs), 6 Convolutional Neural Net-
works (CNNs), and 6 Long-Short Term Memory
networks (LSTMs). We fixed the learning rate at
le-3 and vary the number of layers, nodes, and fil-
ters (when applicable). We also include 2 BERT
and 2 RoBERTa models with learning rates of 3e-5
and 3e-6 (Devlin et al., 2019; Liu et al., 2019).
Thus, we trained 22 models on 2 possible train
splits (i.e., “hard” and “random”) across 5 depen-
dent variables such that our entire model population
included 220 models. We trained models for 15
epochs with an Adam optimizer using stochastic
gradient descent and stored instance outputs and
losses every epoch, which are sufficient statistics
for most metrics.”

Further details on computational considerations and train-
ing can be found in Appendices D and E, respectively.
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Figure 2: Experimental process diagram including the availability and added computational cost of each complexity
metric calculation. Note that metrics available a priori / before model training are contained in the dotted box.

4.3 Experimental Procedure

4.3.1 Subsampling

We took two different training splits of the same
dataset for each dependent variable. The “hard”
train set was a stratified sample of 50% of in-
stances with the highest BD. For the FairPsych
data, we calculate BD as the difference between
the true continuous variable value and the median
split. For the depression detection data, we calcu-
late BD as the Word Error Rate (WER) score be-
tween the automated transcription and the human
gold standard as an alternative form of BD —i.e.,
BD(i) = |0 — WER;| since the human transcrip-
tion error of every instance ¢ is zero. The “random”
train set was a random stratified sample of a similar
length from the entire distribution. We used BD
to identify hard examples because it is known a
priori — as opposed to e.g., Loss, which is only
known after training. There was approximately 45-
50% overlap between the hard and random sample
datasets, indicating a biased sample since the ex-
pected overlap from random draws would be 25%
(i.e., 0.5 = 0.25). We train our models (§4.2) with
both splits and evaluate on our held-out test set.

4.3.2 Fairness

We also consider fairness throughout the machine
learning pipeline. Lorena et al. (2024) recommends
measuring the difference between between pro-
tected and privileged demographic classes in their

respective distributions to ensure that instance-level
complexity is equally measured upstream (i.e., dur-
ing the representation phase before training) via
via Kullback-Leibler Divergence (KLD):

Dxr(pllg) = Xgex p(x)log (%)

where p and q are the respective distributions of the
protected and privileged classes.

Downstream fairness refers to prediction and
performance discrepancies of the trained models
and can be assessed via Disparate Impact (DI):

_ p(g=1]b)
DI = ti=tla)

for the probability p of predictions y of a feature
with privileged class a and protected class b.

For both KLD and DI, larger values give evi-
dence of fairness violations as they indicate more
difference between privileged and protected classes
(Lalor et al., 2024).

5 Results and Discussion

5.1 Complexity Difference by Train Set

Sampling on a single a priori available meta-
feature creates datasets that are complex across
several metrics. First, we examine how effec-
tive our BD split was in creating a difference in
means for each complexity metric. We show this
difference in complexity via a mean (M) difference
analysis of each complexity metric across depen-
dent variables and sampling strategies in Table 2.
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We don’t analyze the Anxiety task, as our sub-
sampling did not create an o = 0.05 significant
difference between the “hard” (M = 0.2544) and
the “random” (M = 0.2574) sets. Increases in BD
were significant for Numeracy (-0.1034, p < 0.01),
Subjective Literacy (-0.0510, p < 0.01), Trust in
Physicians (-0.1006, p < 0.01), and Word Error
Rate (-0.0331, p < 0.01). We also find significant
differences in means for Loss, TF, PH, and IRT Dif-
ficulty across the four FairPsych tasks, and for TF
and SL in the depression task. As we did not sam-
ple on these other complexity metrics, these results
indicate some shared information that allows BD
to create train sets of higher aggregate complexity
across several metrics in different branches of the
taxonomy.

FairPsych Interview

Anx.  Lit Num. Trust Depr.
IH 0.000 0.000 0.034* 0.032* 0.083*
IRT 0.043 0.358 1.200*  0.530 1.577*
Loss 0.001 0.006  0.063* 0.027* 0.093*
SL 099 0795 0.867 0907 -2.187
TF  0.159* 0.409* 0.599* 0.361* 0.688*
BD -0.004 -0.033* -0.051* -0.103* -0.101*
PVI 0.022 -0.007 0.087 0.104 0.153

Table 2: Mean difference of metrics from Hard vs. Ran-
dom subsampling on BD. *: p < 0.05, one-sided t-test
with Bonferroni adjustment for multiple tests.

5.2 Correlation Analysis

Loss shares some inherent complexity feature(s)
with several other metrics. In Figure 3, we show
the aggregate correlation of our complexity metrics
across all models and target variables, ordered by
rank from highest to lowest. The x-axis shows the
micro-averaged Spearman Correlation® between
each pair of metrics on the y-axis.

We note that Loss is present in 3 of the top
4 correlations, displaying some degree of related
ranking to all Model-based metrics in the taxon-
omy except for PVI. Loss correlates moderately
with TF (p = 0.4236) and IRT (p = 0.4289) as
well as weakly with PH (p = 0.3634), which in
turn correlate weakly with each other (p = 0.3331).
This weak correlation between Loss and PH in-
dicates the expected misclassification probability
from PH is overlapping with the simpler calculation
of the average Loss from the same model across
epochs. Similarly, there exists a weak correlation

3The computation process for these correlations can be
found in Appendix D.2

IRT : Loss
Loss : TF
PH : Loss
PH : IRT leq
IRT : TF lef
PH:TF fef
Loss : PVI Rl
PVI: SL e
PH : PVI Fe
TF: SL e
IRT : PVI o]
BD : SL [l
IRT : SL ol
PVI: TF e
BD: TF [l
PH : SL [
BD : IRT of
BD : PVI o
BD : Loss I+
Loss : SL I
BD : PH ol

-0.6 -0.3 0.0 0.3 0.6

Micro-averaged Spearman Correlation

color e Proportional to Complexity @ Inv. Prop. to Comp.

Figure 3: 95% CIs of Spearman Correlation averaged
across all 5 dependent variables, train sets, and models.
p = 0 marked by a dark red line. Thresholds for weak
(p = £0.2) and moderate (p = +0.4) correlations are
marked with light pink and orange lines, respectively.
This plot is shown as a pairplot in Appendix F and
broken down by task in Appendix G.

between the average Loss and the Difficulty values
estimated by a 1PL IRT model. This additional
IRT optimization problem is providing some of the
same information that we are already computing
in the model training process. Interestingly, PH
and IRT are weakly correlated as well — although
these optimizations are done in very different meth-
ods (i.e., empirical risk minimization vs. stochastic
variational inference).

This analysis suggests that we can capture a sub-
stantial portion of Model-based complexity by sim-
ply storing the training Loss as a high level proxy
for its shared complexity with PH, TF, and IRT
Difficulty. Simply storing loss values is also more
computationally-efficient and parsimonious than
more theoretical techniques such as PyHard or IRT.

Our Hardness meta-features (i.e., BD and SL)
are weakly correlated with other metrics in Figure
3, but BD is useful in sampling subsets that are sig-
nificantly different along several metrics in Table
2. For example, while BD and Loss might not rank
instances in exactly the same order, their relation-
ship can still be used to identify similarly complex
instances on aggregate. Future research should con-
sider whether a priori metrics can similarly span
the whole taxonomy as proxies for other metrics in
aggregate filtering or instance-level re-weighting.
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AUC Ability Acc.  F1 Score Age Sex Race Educ. Inc. ESL

Anxiety 0.001 0.027 -0.005 0.055 Anxiety BD 1.58 0.01 0.01 0.14 0.01 0.07

Literacy -0.056* -0.856 -0.034 -0.051 IH 2.11 0.02 0.01 0.37 0.03 0.22

Numeracy -0.034* -0.322 -0.008 0.052 IRT 2.22 0.02 0.02 0.25 0.02 0.15

Trust -0.050* -1.226* -0.038 -0.071 Loss 1.89 0.01 0.02 0.31 0.03 0.23

, - PVI 2.19 0.02 0.02 022 0.04 0.15

Depr. 0.019% -0044 -0013 -0.112 TF 185 0.03 002 033 002 0.15

SL 1.65 0.03 0.05 024 0.02 0.15

Tabﬁ 3(‘1 1]\3/[]§an glfferelr.lce m perf.ormgnce f(‘;r Rlandom Numeracy BD 147 0.01 0.08 0.19 0.02 0.06

V.S' .ar subsampling stra.tegles. tarred values are IH 173 003 0.05 052 0.02 0.15

significant at o = 0.05, two-sided t-test. IRT 175 0.04 0.14 059 0.02 0.11

Loss 1.93 0.04 0.13 0.62 0.03 0.12

PVI 2.37 0.04 0.14 0.74 0.03 0.15

. . TF 2.52 0.03 0.08 0.55 0.02 0.13

5.3 Performance Difference by Train Set SL 291 0.02 0.06 030 002 018

Subsampling on BD examples lowers model  [jeracy BD 193 0.02 002 042 001 0.12

AUC. We want to examine whether models that IH 180 0.03 001 032 0.02 0.14

saw more complex examples during the trainin IRT 175 0.02°0.020.25 002 0.17

comp p 1rng g Loss 1.38 0.02 0.02 031 0.02 0.15

process might perform better during inference. We PVI 124 0.03 0.02 029 0.02 0.07

measure test performance via several widely-used g (1)82 88% 88§ 8;; 883 8}%
ML metrics (i.e., Accuracy, AUC, and F1 Score) i i . i i i
Depr. BD 2.08 224 278 398 - -

as well as an Ability estimate provided by our 1PL
IRT model (Lalor et al., 2018). We display mean
difference of performance metrics between each
sampling strategy in Table 3 and overall perfor-
mance in Appendix H.

We see a significant difference in performance
for AUC, with almost all other performance metrics
not showing significant difference across subsam-
pling strategies. This AUC difference favors the
randomly sampled data in all but the depression
task. In short, training on more complex examples
is typically harder for downstream prediction.

Measuring upstream fairness is sensitive to
group imbalance. We note that model fairness
is an issue for certain demographics and depen-
dent variables, as shown both by our analysis of
disparate impact (DI) as well as the proposed met-
ric in Lorena et al. (2024) — which computes the
Kullback-Leibler Divergence (KLD) between the
protected group’s distribution and that of the priv-
ileged class. We find very similar distributions
of complexity metrics for Sex, Race, and Income
across dependent variables and complexity metrics,
with KLD scores near zero across complexity met-
rics and dependent variables in Table 4. However,
we notice a difference in complexity distributions
for Seniors age 55+ and on education level for in-
dividuals who did not finish high school. We note
that some of this divergence can be explained by
the imbalanced data (Feng et al., 2018; Furundzic
et al., 2017). The non-negative nature of KLD —
i.e., as an asymmetric distance measure — ensures
that it can only grow larger with distributional dif-

IH 038 038 0.13 055 - -
IRT 0.29 032 0.07 042 - -
Loss 0.13 0.10 0.09 0.21 - -
PVl 0.27 030 0.11 031 - -
TF 0.08 0.09 0.07 021 - -
SL 0.08 0.08 0.05 0.09 - -

Table 4: KLD between distributions of complexity val-
ues for the protected and privileged classes (larger val-
ues indicate greater difference). Explanation of missing
values in the table can be found in Appendix I.2.

ferences, and this difference will result from a lack
of coverage of the smaller distribution (Pan et al.,
2005; Hochbaum and Pathria, 1998). The lack of
coverage is likely related to the size of the protected
class for Age (1.93%) and Education (1.32%) being
very small in the FairPsych dataset. The depression
data displays some imbalance for Age (8.26%) and
Education (26.31%), but we also see large KLLD
values for the more balanced Race (36.00%) and
Sex (50.37%) demographics. Thus, our WER mea-
surement of BD is biased, which is consistent with
previous research on unequal performance of au-
tomated transcription methods (Koenecke et al.,
2020). Future research should be mindful of how
the choice of fairness metric impacts complexity
comparisons across demographic groups.

Subsampling on complexity does not impact
downstream fairness. In Figure 4, we examine
whether our sampling strategy impacts model fair-
ness as measured by DI confidence intervals — We
also note that the fairness literature considers DI
scores below 0.8 or above 1.2 — marked with red
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lines — to disproportionately affect predictions for
the protected class, so we bold any Cls that lie fully
outside these suggested thresholds (Lalor et al.,
2022). We note that none of our 95% CIs lie com-
pletely above 1.2 such that models do not predict
the protected class significantly more across demo-
graphics and dependent variables. Although sev-
eral CIs lie fully below 0.8 (e.g., Numeracy-Race,
Subjective Literacy-Income), there is only one sig-
nificant difference between Cls of different sam-
pling strategies (i.e., Depression-Age) so fairness
concerns also exist for models trained on random
data. Notably, in 17 out of the 27 cases presented
in Figure 4, the hard CIs are either smaller than
the random Cls, or comparable-sized but shifted
towards the center (i.e., indicating less disparate
impact). This is important from a risk management
perspective since both the extent of downstream
bias and its variance are key considerations. Thus,
we should not expect sampling on complexity to
systematically bias against protected groups.

Anxiety Literacy Numeracy
Racey B || e
R o | e | o)
% Trust Depression 04 08 12
éEJ ESL }_._( Ly
Inc. A }_-_f
Educ. 4 |_._|“
Race o |_._[‘
Sex F_‘|
pool |y
0‘4 0‘8 1‘2 0.4 0.8 1.2
Sample — Hard ---- Random

Figure 4: 95% Confidence Intervals for Disparate Im-
pact across demographics. All CIs overlap indicating no
significant difference at « = 0.05. Red values indicate
DI intervals fully below the “0.8 rule.” See Appendix
1.2 for information on missing values.

6 Conclusion

We computed various complexity metrics for text
classification and analyzed their correlation across
dependent variables. These findings supported up-
dates to the current taxonomy on classification com-
plexity to consider metric availability and compu-
tational efficiency. We found that simply storing

training Loss captured similar complexity of com-
putationally intensive model-based metrics such
as IRT Difficulty and Instance Hardness. Further,
sampling on a single a priori available meta-feature
created datasets that were complex across separate
metrics. We only found one difference in upstream
fairness and no downstream impact from employ-
ing these complexity metrics in a sampling strategy.

7 Limitations

There are limitations that can inform future work
on instance-level complexity in NLP tasks. We
note that the updated taxonomy is by no means ex-
haustive and only applies to classification tasks. We
limit our empirical examination to the healthcare
setting, but future studies might compare complex-
ity relationships measured on text from other ap-
plied areas. While 4 of our tasks provide a ground-
truth latent continuous variable as a built-in Hard-
ness meta-feature (via BD), future research should
examine other BD measures from types of input
noise like WER, provided that they can be fairly
applied across demographics.

Recent work has also started to explore using
LLMs to facilitate instance hardness estimation.
Future work can further investigate the advantages
of LLMs in terms of potential efficiency and ro-
bustness gains (Lu et al., 2023; Saha et al., 2022).
While linguistics research may offer new Hardness
meta-features from further understanding of gram-
mar and syntax, we might also expect new com-
plexity metrics to arise in the Model-based section
of the taxonomy from new architectures and tech-
niques such as in-context learning (Lu et al., 2023;
Valmeekam et al., 2022), retrieval augmented gen-
eration (Jeong et al., 2024; Chen et al., 2024), or
graph learning (Wang et al., 2024). Our updates to
the taxonomy are not meant to be exhaustive, and
we encourage future research to continue exploring
the many facets of complexity.
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A Metric Literature Search

Table 5 lists the papers included as a result of our
literature search. Each representative metric used in
our experiment was chosen from a group of several
similar metrics provided in the “Related Metric”
column of the table.

B Data Example Instances

We provide example instances from each task in
Table 6. “Low” and “High” observations were ran-
domly sampled from the lower and upper quartiles,
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Complexity Class

Representative Metric

Related Metric

Hardness meta-features

Item Response Theory

Static Hardness

Dynamic Hardness

Boundary Distance (Ho and
Basu, 2002)

Sentence Length (Soviany et al.,
2022; Zhang et al., 2018)

IRT Difficulty (Martinez-
Plumed et al., 2019; Lalor et al.,
2018)
Instance Hardness (Smith et al.,
2014)

Times Forgotten (Toneva et al.,
2019)
Loss (Han et al., 2018; Arazo
et al., 2019; Shen and Sanghavi,
2019)

Pointwise v-Information (Etha-
yarajh et al., 2022)

SVM Margin (Malisiewicz et al., 2011; Tong and Koller, 2001;
Brinker, 2003)

Influence Functions (Koh and Liang, 2017)

k-Center (Sener and Savarese, 2018)

Outlier Detection Algorithms (Hodge and Austin, 2004)
Utterance Length (Amodei et al., 2016)

Word Rarity (Zhang et al., 2018)

Number of Coordinating Conjunctions (Kocmi and Bojar, 2017)
Sentence Nesting (Zaremba and Sutskever, 2014)

N/A

Representation Bias (Le Bras et al., 2020)

Eigenvector Density (Gong et al., 2021)

Vector Norm (Liu et al., 2020)

Neighborhood Instance Selection (Olvera-Lépez et al., 2010)
N/A

Confidence (Zhang et al., 2018; Swayamdipta et al., 2020; Saha
etal., 2022)

Area Under Cost Curve (Prudéncio and Castor, 2014)
Uncertainty (Joshi et al., 2009)

Variability (Chang et al., 2017; Swayamdipta et al., 2020)
Informativeness (Jafarpour et al., 2021)

Gradient (Ren et al., 2018)

Gradient-based Importance (Vodrahalli et al., 2018)
Informativeness (Jafarpour et al., 2021)

Information Theoretic (Zhang et al., 2020)

Shapley Values (Ghorbani and Zou, 2019)
In-context PVI (Lu et al., 2023)

Table 5: Metrics considered during the literature review along with their inclusion or similar metric

2566



respectively. We note that scores for the depres-
sion task are calculated from the Word Error Rate
(WER) between the Amazon Web Services (AWS)
automated translation and a human-transcribed
gold standard. Unlike the four FairPsych tasks,
there is no common prompt for the depression task
since data comes from unstructured conversation.

C Data Splits

For both datasets, we assign individuals randomly
to one of the train-random, train-hard, validation,
or testing splits on a 70-20-10% split. This split
is done before subsampling on BD such that the
“Rand.” and “Train” consist of half of this full train
set (i.e., 35% of the total dataset). While there is
overlap in individuals between train-random and
train-hard, none of these them appear in validation
or test data. Counts of individuals for each split
can be found in Table 7.

D Computational Considerations

D.1 Complexity Metrics

Since BD and SL are available a priori, we made
simple calculations from the input data. Loss was
generated via the model training process and re-
quired no further calculations. For TF, we counted
any time an incorrect instance was correct in the
previous epoch (Toneva et al., 2019). To calcu-
late PVI, we followed guidance from prior work
(Ethayarajh et al., 2022). Specifically, we trained
a “null model” identical to the primary model, but
with no text input (i.e., an empty string), incurring
an additional O(n x |E|) runtime for the second
model. PVI was then calculated from the differ-
ence in entropy between the output probabilities of
the primary model and those of the null model.

To calculate PH, we used the PyHard package
(Paiva et al., 2021) to compute a single instance
hardness statistic for each observation. PyHard
computes scores across seven diverse classifiers:
“Bagging, Gradient Boosting, Support Vector Ma-
chine (both linear and RBF kernels), Logistic Re-
gression, Multilayer Perceptron, and Random For-
est” and leverages instance space analysis (ISA),
an embedding technique that combines informa-
tion from meta-features and candidate algorithms
to generate the final aggregate score (Paiva et al.,
2021). Since PyHard only takes numerical data as
input, we encoded text documents as BERT embed-
dings (Devlin et al., 2019). There was still a rela-
tively high additional computational cost O(n) to

generate BERT embeddings and then a O(n x |L])
runtime to train the simple classifiers, where Py-
Hard’s default configuration uses an ensemble of
c = 7 classifiers on 5 fold cross-validation. The
wall-clock time on each dataset of NV ~ 4, 200 ob-
servations was typically 45 minutes to an hour for
each dependent variable.

To learn IRT difficulty with our dataset size
(N =~ 1,700), we leveraged the py-irt package
(Lalor and Rodriguez, 2023). We created a dichoto-
mous response matrix for each of our 176 models
and ran 8 IRT estimations for model ability and
item difficulty across the 2 train sets and 4 depen-
dent variables. Although the runtime complexity
for running the stochastic variational inference esti-
mation adds an extra O(n X |Er|), py-irt’s GPU-
accelerated training was accomplished in a wall-
clock time of less than a minute. We can visualize
model performance by model class and subsam-
pling strategy for each dependent variable in Table
8 in the appendices. This shows us variation in per-
formance across model types, ensuring variety in
predictions for our model-based instance hardness
classifications.

D.2 Spearman Correlations

We compared the instance-level correlations across
models and dependent variables. We emphasize
that our various complexity metrics are necessarily
calculated at different levels of hierarchy in the ex-
periment (Figure 1). Thus, calculations of Loss and
PVI — which are computed each epoch — are aver-
aged for a given model. While PH, TF, and IRT Dif-
ficulty are all calculated at the model-level, we also
note that BD is known a priori from the data such
that this metric exists at the dependent variable-
level and displays no variance across models. All
correlations are calculated at the instance-level and
results for models and dependent variables are com-
puted from micro-averaging instance-level correla-
tions. Lastly, we are considering Spearman Rank
Correlations since we are more concerned with the
rank / ordering of the instance IDs, especially since
the magnitude of some complexity metrics have no
unitary interpretation (e.g., BD, IRT Difficulty).

E Model Parameters and Training

For each dependent variable, we trained models by
grid searching the parameters in Table 9. We also
give the total possible size of each model as “Max.
Param.” and the average time to train all models for
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Task

Prompt

Quartile

Text

Score

Anxiety

Numeracy

Subjective Literacy

Trust in Physicians

In a few sentences, please describe what makes
you most anxious or worried visiting the doctor’s
office.

In a few sentences, please describe an experience
in your life that demonstrated your knowledge
of health or medical issues.

Regarding all the questions you just answered,
to what degree do you feel you have capacity
to obtain, process, and understand basic health
information and services needed to make ap-
propriate health decisions? Please explain you
answer in a few sentences.

In a few sentences, please explain the reasons
why you trust or distrust your primary care physi-
cian. If you do not have a primary care physician,
please answer in regard to doctors in general.

High

High

It depends on the doctor and the reason for the
visit. If T have to go to the gynecologist, it’s
stressful due to the extreme invasion of privacy.
I’m normally not anxious when going to my
primary care doctor, unless I have to provide a
blood sample. I have an extreme fear of needles.
Right now I have nothing to fear. I did get a
diagnosis of high blood pressure but that was
due to my job and then eventual termination of
said job. I'm also unhappy in my relationship so
that may caused a spike.

I have ran many marathons successfully and
taken care of all recovery that had to do with
it without any outside help.

I was recently told that I needed a root canal. I
was told why I needed one and the steps that are
taken to complete the procedure.

As aretired RN, I am well versed in the field of
healthcare. I am able to research any topics or
findings I am unfamiliar with and, I hold health
care providers accountable for the quality of care
they provide.

a little because some terms i dont know. all i
know is spina bifida and paralysis and water on
the brain is what i have.

My doctor has a great reputation with his pa-
tients. He’s been a great doctor and has treat-
ment effectively when other doctors have not
been successful. He makes sure I understand
everything before leaving his office.

In all honesty, I do not trust my doctor at all. It
seems as if most doctors in general mostly just
care about their own convenience and making
money. Even though the job itself is to help
people, to them it’s still just a job to them at the
end of the day.

0.9762

0.1429

1.0000

0.3571

0.9167

0.4278

0.9600

0.36

Depression

None / in-conversation

High
Low

quite a few bigger fears. Um
Um I am a school psychologist so work in the
schools, My father um

0.2506
0.1450

Table 6: Example text responses to question prompts from high and low scored individuals on multi-item scales
used for each dependent variable in the FairPsych and depression interview datasets (Cotes et al., 2022; Abbasi

etal., 2021).
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Dep. Var. Train Val. Test
Rand. Hard

Anxiety 2,938 2904 841 1,678

Numeracy 2,969 2,778 848 1,698

Literacy 2976 2,960 850 1,701

Trust 2,974 2,464 850 1,699

Depression 667 670 413 434

Table 7: Number of observations in each split across
dependent variables

AUC Acc. F1Score IRT

Anxiety FFN 60.27 56.37 66.91 1.58
CNN 63.02 59.05 60.52 1.93

LSTM 65.70 61.08 67.21 2.29

BERT 70.71 65.37 67.11 2.86

RoBERTa 71.18 65.85 70.30 2.83

Numeracy FFN 67.84 63.89 63.82 2.90
CNN 71.00 62.77 54.11 332

LSTM 69.96 64.60 64.48 3.58

BERT 75.92 68.31 68.35 4.19

RoBERTa 76.08 68.37 69.54 4.10

Literacy FFN 74.10 67.48 71.61 2.96
CNN 74.97 68.66 70.85 3.23

LSTM 75.99 69.90 71.77 3.48

BERT 79.16 72.01 73.07 3.70

RoBERTa 79.48 70.31 74.36 3.81

Trust FFN 78.73 72.10 70.31 4.00
CNN 76.49 70.45 66.06 3.67

LSTM 78.75 72.27 69.63 4.20

BERT 84.04 76.63 73.55 5.39

RoBERTa 84.69 76.33 75.27 5.45

Depression FFN 52.37 56.00 71.42 1.16
CNN 54.48 55.80 71.46 1.06

LSTM 56.06 56.00 70.58 1.30

BERT 55.15 55.60 71.46 0.84

RoBERTa 59.30 56.59 62.52 1.12

Table 8: Performance metrics by dependent variable
and model type. Performance levels are comparable for
FairPsych and clinical Depression benchmarks, even
while using a 50% subsample (Abbasi et al., 2021; Qin
et al., 2024).

a given dependent variable as “Total Wall Clock.”
All training was done on a University HTCon-
dor system and models trained on GPU are marked
with an asterisk. Beyond the 4 GPU hours above,
we note another 4 hours for training “null mod-
els” for PVI, another 1 hour for generating BERT
embeddings for PyHard, and another 1 minute for
running py-irt for a total of ~9 GPU hours.

F Correlation Pairplot

In Figure 5, we include a pairplot of correlations
micro-averaged across tasks and data samples for
comparison with the confidence interval plot shown
in Figure 3.

G Complexity Metric Correlations by
Task

In Figure 6, we replicate the micro-averaged Spear-
man Correlations shown in Figure 3 but calculated
on subsamples of data from each dependent vari-
able / task. We order the metrics on the y-axis in
the same way as the in Figure 3’s aggregate results
to highlight variation within and across tasks but
similar overall trends, especially in the top four
large positive correlations seen in the main results
(i.e., IRT : Loss, Loss : TF, PH : Loss, and PH :
IRT).

H Performance Metric Distribution

Figure 7 plots the distributions of each performance
metric achieved by models across dependent vari-
ables. IRT Ability is min-max scaled to also fall
between 0 and 1 by subtracting the minimum value
and dividing by the range. This is done for the sake
of comparison with the other metrics on the same
range, and that the range for raw Ability scores is (-
2.67,5.45). Since IRT Ability scores typically fall
into a (-6, 6) range, we do not seem to be masking
any extreme outliers.

I Demographic Thresholds and Missing
Values

I.1 Population Thresholds

Aside from a few individuals who put null text
strings for one of the tasks, we should consider the
population of individuals to be almost entirely the
same across tasks for the FairPsych data. Thus, the
same individual might be in a different splits or
hardness subsample across tasks Even if dependent
variables were not assumed to be independent, we
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Model # Nodes # Layers # Filters Kernel Size Max. Param. Learn. Rate Total Wall Clock
FFN 64, 128 1,3,5 90,786 le-3 ~25 min.
CNN 1,3,5 16, 32 5 28,002 le-3 ~15 min.
LSTM 32,64 1,3,5 255,682 le-3 ~120 min.
BERT 110M  3e-5, 3e-6 ~25 min. *
RoBERTa 123M  3e-5, 3e-6 ~25 min. *

Table 9: Parameters and wall clock times for grid search used to the train models in this project. Stars indicate

models that had accelerated training on GPU.

BP Loss PVI TF PH IRT SL
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Figure 5: Pairplot of micro-correlations calculated across all dependent variables and samples. While lower plots
show linear scatter plots, the upper correlation values are Spearman Correlations to match the analysis in Figure 3.

Distributions are shown on the diagonals.
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Figure 6: Similar to Figure 3, we provide 95% ClIs of Spearman Correlation for each dependent variables micro-
averaged across train sets and models. Again, we mark p = 0 with a dark red line and include thresholds for weak
(p = £0.2) and moderate (p = +0.4) correlations as light pink and orange lines, respectively.
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Figure 7: Distribution of scores for common performance metrics achieved by models across each task. Note that
IRT Ability is min-max scaled between 0-1 for the sake of comparison.

use separate models for each task such that there
is no leakage if e.g., an individual ends up in the
train set for Numeracy and the test set for Anxi-
ety. Lastly, it is perfectly reasonable that some-
one might have e.g., borderline low Literacy and
very low Numeracy — both with respect to the me-
dian split. Thus, the former high BD value might
place the individual in train-hard for Literacy and
train-random for Numeracy. Moreover, some indi-
viduals might appear twice or not at all since the
subsampling is done randomly. Again, the separat-
ing models by task prevents leakage, but increases
demographic variation across data splits and tasks.

Since the clinical depression data only has one
task and a one-to-many mapping of individual to
document, we must split at the individual level. The
expensive nature of clinical interviews leaves us
with a dataset that is sparse with respect to both in-
dividuals and utterances. Thus, we have a smaller
population of individuals with fewer sources of
demographic variation across data splits. Addition-
ally, this study uses different a different sampling
procedure so certain demographic groups from
the FairPsych dataset are systematically missing
from the clinical depression data (e.g., English-as-
Second Language).

Due to these differences in data sampling proce-
dures, it is reasonable to consider all FairPsych
tasks and splits to be from one population and
the depression task to be from a different popula-

Demo. FairPsych Depression

Age > 65 >53

Sex Non-male Non-male

Race Non-White Non-White

Educ. < High school graduate < Some college or trade
/ vocational school

Inc. < $54,999 NA

ESL Yes NA

Table 10: Threshold values to be considered part of
the protected class in each dataset. Note that all cut-
off values are inclusive with directions indicated when
applicable.

tion. Examination of the distribution of Education
Level and Age lend further evidence to the exis-
tence of two separate populations. Therefore, we
consider different thresholds for what constitutes a
“protected group” in each population. We borrow
threshold values from Abbasi et al. (2021) for the
FairPsych data and propose reasonable cut-offs for
the clinical depression demographics. The criteria
for being in a protected group for each dataset can
be found in Table

1.2 Missing Values

Here, we explain the missing values in the
Kullback-Leibler Divergence (KLD) and Disparate
Impact (DI) calculations in Table 4 and Figure 4.
First, we note that the clinical depression dataset
does not provide Income data, so we lose this col-
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umn for KLD and DI. Further, it only considers
native English speakers, so we have no English-
as-Second-Language participants and again have
NA values for both KL. Divergence and DI. Sec-
ond, our upstream fairness measurement of KLD
is calculated from complexity measurements on
the entire datasets / populations, but downstream
results such as DI consider output predictions from
the deployed models. Thus, our populations are
reduced to the subsample of individuals randomly
assigned to the test / held-out sets.

We employ a 70-20-10 data split for both
datasets; see Appendix C above for an explana-
tion of data sampling procedures. Since there is a
one-to-one mapping between individuals and text
documents in the FairPsych data, the 10% split for
the test set still comprises 1,700 individuals for
each task. However, the depression dataset has a
one-to-many mapping of individuals to documents
and only has 40 individuals total in the dataset.
While we predict at the utterance / document-level,
data splits are done at the individual-level to pre-
vent leakage. Thus, the test set contains 434 docu-
ments but from only 6 different individuals and we
are unlikely to see individuals from an imbalanced
protected class appear in this data. Our small test
set does not have members of the protected class
for Education Level, so we cannot calculate down-
stream DI scores from the test set, despite having
upstream calculations of KLD on the entire dataset.
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