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Abstract
Large Language Models (LLM) have become
a popular approach for implementing Retrieval-
Augmented Generation (RAG) systems, and
a significant amount of effort has been spent
on building good models and metrics. In spite
of increased recognition of the need for rig-
orous evaluation of RAG systems, few tools
exist that go beyond the creation of model out-
put and automatic calculation. We present IN-
SPECTORRAGET, an introspection platform
for performing a comprehensive analysis of
the quality of RAG system output. INSPEC-
TORRAGET allows the user to analyze aggre-
gate and instance-level performance of RAG
systems, using both human and algorithmic
metrics as well as annotator quality. INSPEC-
TORRAGET is suitable for multiple use cases
and is available publicly to the community1.
A live instance of the platform is available at
https://ibm.biz/InspectorRAGet.

1 Introduction

The recent advances in Large Language Models
(LLMs) have led to an explosion of research on
Retrieval-Augmented Generation (RAG): combin-
ing generative LLMs with data retrieval to provide
responses grounded on authoritative document col-
lections (Lewis et al., 2020). RAG systems have
been deployed in diverse domains (see (Gao et al.,
2024) for a recent survey).

There has been increased recognition of the im-
portance of RAG evaluation (Longpre et al., 2024).
This consists of 1) designing, 2) running, and 3)
analyzing experiments (see Section 2). The re-
search community has mainly limited analyzing
to aggregate metrics via benchmark datasets (Liu
et al., 2023; Chen et al., 2023), evaluation metrics
(Es et al., 2023) as well as evaluation frameworks
(such as RAGAs (Es et al., 2023) and ARES (Saad-
Falcon et al., 2023)).

For any input (e.g., a question), a RAG system
runs a retriever and passes the input and retrieved

passages to a generator. This RAG output can then
be evaluated on a variety of metrics. The output
is affected by variations in retriever and generator
models as well as different model configurations.
Improving system performance requires actionable
analysis of these variations, specific to RAG. We
present a platform for performing a comprehensive
analysis of the quality of RAG output:

Holistic analysis: End-to-end analysis of RAG
system performance involves aggregate evaluations
along several dimensions and configurations, en-
abling continuous benchmarking of models and
datasets (Gehrmann et al., 2022). A comprehen-
sive set of RAG evaluation metrics comprises al-
gorithmic scores, LLM judges (Es et al., 2023)
and human judgements, and our platform enables
comparison and correlation analysis to create a full
picture of performance.

Quality analysis of all aspects of a RAG ex-
periment: While most evaluation works focus on
the quality of model outputs, it is important to also
analyze the quality of all other aspects of a RAG ex-
periment. These include (a) the annotator behavior
(e.g. inter-annotator agreement and underperform-
ing annotators) (b) the effectiveness of evaluation
metrics at modeling the desired functionality (e.g.,
faithfulness to context(s)), and (c) the RAG-specific
properties of the employed dataset (e.g., relevant
passages and question attributes). This analysis can
be used to improve the experiment as well as pro-
viding context for the interpretation of the results.

Error analysis through instance-level inspec-
tion: Actionable error analysis for RAG requires
going beyond the typical aggregate-level statistics
into inspection of individual instances. This is es-
sential for developers to identify the source of unde-
sirable output, correct erroneous reference answers,
clarify ambiguous instances, and form hypotheses
for model improvement.

Currently, these analyses can only be done piece-
meal, requiring the manual examination of eval-
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Figure 1: RAG evaluation life cycle. Evaluations of the RAG output are analyzed using INSPECTORRAGET.

uation output using various ad-hoc data process-
ing scripts and spreadsheet tools which are not
sustainable, lack re-usability, and are difficult to
interpret. We provide the first platform with end-
to-end capabilities for thorough RAG analysis, an
undersupported aspect of RAG system develop-
ment intended for researchers, model developers,
and stakeholders. Our contributions are as follows:

1. We present INSPECTORRAGET, a rich interac-
tive platform for performing a comprehensive
analysis of RAG system output quality.

2. We evaluate INSPECTORRAGET on its ability
to yield concrete and actionable insights on two
use cases, on both new and existing datasets.

3. We open source the platform to the community1

and host it on HuggingFace2.

2 The RAG Evaluation Life Cycle

We briefly describe the life cycle of evaluating
RAG systems, and situating INSPECTORRAGET

within it, as shown in Figure 1. Evaluating RAG
systems involves three main steps:

(1) Design the evaluation experiment, which con-
sists of Models, Datasets, Metrics and Metric Eval-
uators, as defined below.
(2) Run the evaluation experiment and compute
the evaluation scores. This involves (a) generating
the model responses/output and (b) passing the
responses to the metric evaluators (algorithms or
humans) to produce instance-level scores.
(3) Analyze the experiment results to gain action-
able insights about the models, datasets, metrics,
annotation quality, etc.

2.1 INSPECTORRAGET for RAG Evaluation
INSPECTORRAGET focuses on the third step of the
RAG evaluation life cycle. To analyze an experi-
ment using the platform, users upload the standard-

1https://github.com/IBM/InspectorRAGet
2https://ibm.biz/InspectorRAGet

ized experiment results JSON file which contains
the following information:
• Datasets: The set of data instances included in
the experiment, each containing user input (e.g.,
question/conversation), contexts (e.g., passages),
and, optionally, reference responses.
• Model metadata: Name and description of the
RAG models that were evaluated.
• Metric metadata: Metadata about the metrics
on which model responses were evaluated. These
include metric name, type (i.e., algorithmic, LLM-
as-a-judge and human, such as crowd workers), and
scale (yes/no, Likert scale, numeric, etc.).
• Model output and Evaluation scores: The model
responses and evaluation scores for the models
along each metric on every data instance 3.

The platform and the experiment results file for-
mat have been designed in a model-agnostic and
metric-agnostic way to support analysis of diverse
evaluation experiments (see Appendix A).

Once provided with the input file, INSPECTOR-
RAGET validates it for errors (e.g., missing evalu-
ation scores) and augments it with additional statis-
tics (e.g. inter-annotator agreement for human eval-
uations). The augmented results power the plat-
form’s frontend: a visual analytics application that
enables users to interactively analyze and gain in-
sights on different aspects of the experiment.

Finally, to help users employ the platform as
part of the broader RAG evaluation life cycle we
also provide sample experiment runners, showing
how to run experiments using popular evaluation
frameworks and output the results in the format
expected by INSPECTORRAGET for analysis of ex-
periment results. Our experiment runners showcase
integrations with the Language Model Evaluation
Harness (Gao et al., 2023) and RAGAs (Es et al.,
2023) evaluation frameworks, as well as Hugging-
Face (Wolf et al., 2020) (see Appendix B).

3In case of multiple annotators per metric, such as when
multiple humans annotate a single response, multiple evalua-
tion scores are included: one per annotator.
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Figure 2: Illustration of INSPECTORRAGET’s core views and corresponding visualizations. Screenshots are drawn
from the RAG model performance use case, described in Section 4.1.

3 INSPECTORRAGET Platform

INSPECTORRAGET is a React web application
built with NextJS 13 framework4. We use the Car-
bon Design System5 for the user interface. The
experiment results are provided as a json input file
that is loaded on the platform. This enables our
platform to be lightweight; it can easily be run on
virtual machines or even personal laptops/desktops.
To enable privacy, INSPECTORRAGET is a state-
less application and does not retain any uploaded
datasets. INSPECTORRAGET’s frontend offers a
series of views (presented as separate tabs), each
tailored to a different aspect of the analysis process.
Excerpts of these views are shown in Figure 2. We

4https://react.dev, https://nextjs.org
5https://carbondesignsystem.com

describe each view along with hypotheses that can
be formed, analyses it enables, and insights which
may require further investigation.

3.1 Dataset Characteristics

The Dataset Characteristics view (Figure 2a) pro-
vides details regarding characteristics of the dataset
such as answerability (e.g. answerable, unanswer-
able, partial), question type (e.g. factoid, compara-
tive, explanation), and question length. These de-
tails can provide a quick snapshot of dataset trends,
outliers, and potential biases.

3.2 Predictions Table

When analyzing an experiment, it helps to first see
a few examples of instances. INSPECTORRAGET’s
predictions view shows a table of all questions with
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the respective model responses (Figure 2b). This
view not only gets developers acquainted with the
experiment but also helps them spot patterns in
model responses (e.g., length, repetitions of text).

3.3 Performance Overview

After getting acquainted with the experiment, de-
velopers and stakeholders can get an overview of
the experiment results through the overall perfor-
mance view. This view shows the aggregate score
and ranking of each model for each evaluation met-
ric. This information is rendered both in tabular
form, as well as through a Radar chart with sepa-
rate tables/visualizations for human and algorith-
mic metrics (Figures 2c and 2d).

While designing this view, special attention was
given to quantifying the uncertainty present in hu-
man evaluations to avoid misinterpretation of the
results. Aggregate evaluation scores for human
metrics are shown along with (a) their standard de-
viation and (b) a visualization of inter-annotator
agreement (through sparkline charts). Despite its
resemblance to leaderboards (Zheng et al., 2023;
Hendrycks et al., 2021), the goal of this view is
not only to declare winners but to also make initial
observations that need to be further explored.

3.4 Model Behavior

After obtaining an overview of aggregate model
performance, one can drill down and inspect model
responses for individual instances through the
model behavior view. Users start the analysis by
filtering instances based on criteria, such as dataset
domain, whether a question is answerable, etc. The
view then shows a histogram of model scores for
all instances satisfying the filter (Figure 2e), as
well as a sortable table of the actual instances (Fig-
ure 2f). Upon selecting an instance, users see a
detailed view of the instance, including the con-
versation/question, context(s), the model responses
and their respective evaluation scores (Figure 2g).
Instance-level analysis is crucial for conducting er-
ror analysis and understanding the root causes of
issues observed in other views, as well as identify-
ing “I know it when I see it" types of issues. The
view also provides users with the functionality to
easily copy, flag or comment on instances.

3.5 Model Comparator

In addition to inspecting individual model re-
sponses, one can also analyze entire models. This is
enabled by the model comparator view, which for a

chosen pair of models and a metric, shows whether
the scores of the two models for the selected metric
are derived from the same distribution (Figure 2h).
This is shown both through a scatter plot, depict-
ing the scores of the two models for the metric,
as well as through the result of a statistical signifi-
cance test, computed using Fisher’s randomization
method (Smucker et al., 2007). Continuing the
support for instance-level analysis, the view also
allows one to drill down and inspect the instances
where two models received very similar/dissimilar
evaluation scores. This view can be useful for spot-
ting similarities and differences between models.

3.6 Metric Behavior

Similarly to comparing models, one can also com-
pare metrics. This is accomplished through the
metric behavior view, which shows the Spearman
correlation scores for each pair of metrics. This al-
lows developers to gain insights on metrics, such as
identifying whether an automatic metric correlates
well with human judgements or whether suppos-
edly orthogonal metrics correlate with each other
(see fluency and answer relevance in Figure 2i),
hinting at issues with metric definitions.

3.7 Annotator Behavior

Finally, when human evaluation is performed, it
is imperative to also analyze its quality. This is
enabled by the annotator behavior view, which con-
tains two types of visualizations related to annota-
tion quality: (a) Model-level visualizations that
show the annotator agreement when evaluating
each model (Figure 2j). These can help provide
insights on challenges that certain models pose
to human annotators (e.g., if humans had trouble
reaching agreement when evaluating certain mod-
els). (b) Annotator-level visualizations depicting
individual annotators’ performance. These include
a visualization of inter-annotator agreement (Fig-
ure 2k), computed using Cohen’s kappa (Cohen,
1960)), annotator contribution (i.e., how often an
annotator agreed with the majority) (Figure 2l), and
annotation time (not shown for space reasons). In-
sights drawn from this view can drive additional
analyses (e.g., to understand why annotators had
trouble annotating the responses of certain mod-
els) or changes to the experiment setting (e.g., give
feedback to individual annotators or improve the
annotation guidelines).
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Use Case Dataset Models Evaluation Metrics

RAG Model
Performance

CLAPNQ Llama-13B (Touvron et al., 2023), GPT-3.5
Turbo (Brown et al., 2020), Mistral (Jiang et al., 2023)

• Human: fluency, answer relevance, faith-
fulness, win-rate
• Algorithmic: Recall, Rouge, Bert-KPrec,
Answerability, Extractiveness, Length

LLM-as-
a-Judge
Performance

MT-
Bench

Alpaca-13B (Taori et al., 2023), Claude-v1 (Anthropic,
2023), GPT-3.5 (Brown et al., 2020), GPT-4 (OpenAI
et al., 2024), Vicuna-13B (Chiang et al., 2023)

• Human: Win-Rate
• Algorithmic: LLM-Judge GPT-4

Table 1: Evaluation settings for the use cases presented in this paper.

4 Evaluating INSPECTORRAGET

To showcase the value of INSPECTORRAGET, we
evaluate its ability to yield actionable insights on
two use cases: (1) Analyzing RAG Model Perfor-
mance: We collected human judgements of model
responses for a RAG dataset. This allows us to
show the full scope of our platform for comparing
human and algorithmic metrics as well as multiple
annotators. (2) Analyzing LLM-as-a-Judge Perfor-
mance: We use annotations comparing human and
LLM-as-a-judge on model output for multi-turn
question answering.

The experiment setting for each use case6 (e.g.
dataset, models, and evaluation metrics) is summa-
rized in Table 1. For each use case we describe the
discovered insights along with the Source views
used to identify them and propose possible Actions
for improving the RAG experience.

4.1 Analyzing RAG Model Performance

To illustrate the full capabilities of our platform
on RAG we performed our own manual evaluation
on CLAPNQ (Rosenthal et al., 2024), a long form
question answering dataset. We also explored Fine-
Grained ASQA (Stelmakh et al., 2022; Wu et al.,
2023) and InstructQA (Adlakha et al., 2023) as al-
ternative RAG model evaluations but both of these
evaluations did not provide enough details suitable
for analysis (e.g., missing model information and
incomplete human annotations).

CLAPNQ is built on the portion of the Natural
Questions dataset (Kwiatkowski et al., 2019) that
only has a long answer (gold passage) without an
extractive short answer. The responses in CLAPNQ

are grounded on the gold passage and must be con-
cise and complete. We ensure that every question
is evaluated by the same algorithmic metrics and
the same number of human evaluators (3 per ques-
tion). The human evaluation annotation task was

6The use cases are at ibm.biz/InspectorRAGet

completed on Appen7, a crowdsourcing platform
for collecting high-quality annotations. Each task
has a question, grounding passage, and multiple
randomly shown model responses for the annotator
to provide their evaluations. We asked annotators
to evaluate the answers on three metrics: fluency,
answer relevance, and faithfulness as commonly
used in the literature (Es et al., 2023; Chiang and
Lee, 2023). In addition, we also asked them to
perform a head-to-head comparison of all models
for win-rate. These annotations allow us to use
the platform to compare and draw insights from
the models, data, metrics, and annotators. We next
describe key insights we found using the platform.

Low Performance: It is clear that Llama is the
model least preferred by the annotators based on
win-rate. Its answers are somewhat faithful but
not relevant. It is also the only one that has lower
fluency for 29/100 tasks. Annotators did not like
the phrase “Sure I’d be happy to help” which was
used frequently by Llama. Llama answers are also
the longest and most extractive (which correlates
with high faithfulness). Source: Predictions, Per-
formance Overview, Model Behavior, Model Com-
parator Action: Propose to stakeholders to recon-
sider Llama as model of choice for this use case.

Algorithmic vs Human: Based on algorithmic
metrics Mistral is the worst, but it was considerably
preferred over Llama by human evaluators. We sus-
pect that this is because its responses are slightly
shorter, which biases Recall. Source: Performance
Overview. Action: Continue including human eval-
uation in future evaluation rounds, as it provides
different insights than algorithmic metrics.

Dataset Inconsistencies: During the human
evaluation the reference responses (labeled Ref-
erence) were rated highest by the annotators which
shows that the dataset is of good quality. However,
the annotators disagree most on these responses.
Filtering to see specific instances of disagreement,

7https://www.appen.com/
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shows that the most disagreement is 25 cases of
Answer relevance. Opening up an example where
there was no agreement, shows a case of a tricky
question+answer which explains the disagreement.
Source: Performance Overview, Annotator Behav-
ior, Model Behavior. Action: Investigate whether
data inconsistencies should be improved or re-
moved, and if further annotator training is needed.

Data Types: It is also interesting to explore the
answerable and unanswerable splits separately. Ex-
amples of insights include finding examples where
an unanswerable question was answered by the
models and is faithful, which may indicate that
the question is actually answerable. One may also
search for unanswerable examples that are not faith-
ful to show that the model is coming up with an
answer from its own knowledge or is hallucinating.
Source: Performance Overview, Model Behavior,
Dataset Characteristics. Action: Performance can
differ due to question type, domain and other char-
acteristics. Provide model feedback to stakeholders
per dimension.

Metric correlations: Win rate is correlated
mostly with human metrics. This highlights the
importance of human evaluation. The algorithmic
metrics do not indicate which responses are pre-
ferred. Extractiveness and BertK-Precision is corre-
lated with faithfulness. This is expected as a faith-
ful model will have information extracted from the
passage either directly or reworded. The metric cor-
relation can be used to inspect why there are cases
with low extractiveness/BertK-Precision and high
faithfulness. This may highlight annotator confu-
sion. Source: Metric Behavior. Action: Perform
a human evaluation for accurate model preference.
Investigate possible annotator confusion.

4.2 Analyzing LLM-as-a-Judge Performance
There has been a significant uptick in the popular-
ity of LLMs as judges to evaluate the quality of
LLM responses in RAG settings, complemented
by active research in the efficacy of these judges
(Chiang and Lee, 2023; Shen et al., 2023). Our
platform also seamlessly supports analyzing the
performance of LLM-as-a-judge approaches, and
we illustrate this use case using MT-Bench (Zheng
et al., 2023), a dataset of 80 high quality multi-
turn questions. The MT-Bench authors compare
LLM-as-a-judge with humans by releasing human
judgments (provided by 58 experts) and algorith-
mic GPT-4 judgments on the MT-Bench dataset.

This INSPECTORRAGET use case is not cen-

tered around comparing model performance, but
rather judge performance. The MT-Bench authors
discuss several limitations of LLM-as-a-judge: po-
sitional bias, verbosity bias, self-enhancement bias
(judge favors its own model’s answers), and limited
reasoning ability (low reasoning and math capabil-
ity). They show that GPT-4 judge matches human
evaluation at over 80%. We expand on their in-
sights and introduce additional ones.

Self-Enhancement Bias: The expert annotators
tend to agree with each other and match GPT-4
closely on all models, but GPT-4 seems to prefer
responses from its own model. Source: Annota-
tor Behavior, Model Behavior. Action: Inform
stakeholders of the slight bias of GPT-4.

Verbosity Bias: Answer length is strongly cor-
related with win-rate. This is true for LLM-as-a-
judge and human annotators. Claude-v1, GPT-3.5,
and GPT-4 usually have the longer response and
win, while Llama and Alpaca rarely have the longer
response and usually lose. Source: Model Behav-
ior, Action: Analyze data and share with stake-
holders. Do the answers need to be long for these
questions? What is missing in the short responses?

Positional Bias: As hinted in the paper, the first
answer being favored is not as much of an issue
for GPT-4. We believe it also may be model depen-
dent. For instance Llama is always shown to GPT-4
first but also almost always loses and Claude-v1
is always shown second and always wins. Source:
Model Behavior, Action: Revisit evaluation design.
Investigate if there may be some unintentional bias
because these two models were never randomized.

5 Conclusion

We present INSPECTORRAGET, a publicly avail-
able8 platform to empower researchers, developers,
and stakeholders to gain a deeper understanding of
the strengths and limitations of RAG systems. It
includes aggregate-level and instance-level views
as well as capabilities to explore human and algo-
rithmic metrics and annotator behavior, allowing
for a more holistic analysis. Our evaluation shows
INSPECTORRAGET’s ability to yield concrete and
actionable insights on two pertinent use cases -
analyzing RAG model performance and LLM-as-a-
judge performance. We publicly release our plat-
form, input files used in this paper, and notebooks.
In the future, we will explore augmenting INSPEC-
TORRAGET to facilitate comprehensive pattern

8https://github.com/IBM/InspectorRAGet
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discovery, as well as extending its analytical capa-
bilities beyond RAG to other popular LLM tasks,
such as summarization and code generation.

6 Ethical Considerations

A key claim in our paper is to include human anno-
tations in the evaluation process. Human evaluation
is subjective and prone to errors. We expect even
the best annotators to make mistakes. We suggest
mitigating this by including multiple annotators per
question, but biases still may occur.

All proposed actions are based on evidence pro-
vided by the tool and considered to be our own
opinions for possible areas of improvement. Any
biases in the datasets may impact the analysis. The
platform is meant to be used as a means of drawing
conclusions and insights of RAG systems; it does
not create its own conclusions or insights.

We acknowledge that there are accessibility lim-
itations in the platform and we plan on providing
additional features to improve these limitations.
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A Experiment Results File Format

As INSPECTORRAGET is a web application, we
naturally gravitated towards adopting JSON as the
input format. Our prescribed structure for an exper-
iment results file is intuitive and strives to minimize
repetition of information.

The experiment result file can be broadly split
into six sections along their functional boundaries.
The first section captures general details about the
experiment, including its name, description, and
timestamp. The second and third sections describe
the sets of models and metrics used in the exper-
iment, respectively. The fourth and fifth sections
cover the dataset, in the form of a list of docu-
ments/passages that are used in the experiment and
a list of tasks, each representing a data instance,
which is composed of the user input (e.g., ques-
tion/conversation), references to the corresponding
documents/passages, and, optionally, a list of refer-
ence responses. Finally, the sixth section includes
information about the outcome of the evaluation,
in the form of the scores of the different evaluation
metrics for each task.

Note, that as part of the experiment results file,
one is not providing the implementation of the met-
rics and models used, but rather high-level meta-
data about them (e.g., the name of a metric and its
scale - e.g., yes/no, numeric - and the name of a
model) along with their outputs (i.e., the resulting
evaluation scores and model responses). This sepa-
ration of the evaluation experiment implementation
and run from the analysis of the results, allows
INSPECTORRAGET to be agnostic of the specific
models or metrics used, thus allowing the analysis
of diverse evaluation experiments.

A detailed description of the input format can be
found on our GitHub repository 9.

B Sample Experiment Runners

To help users employ INSPECTORRAGET as part
of the broader RAG evaluation life cycle, we have
also released sample experiment runners, showcas-
ing how to use INSPECTORRAGET in combination
with popular evaluation frameworks. Each exper-
iment runner is provided in the form of a Python
notebook, which demonstrates how to use the cor-
responding evaluation framework to run an eval-
uation experiment and transform its output to the
input format expected by INSPECTORRAGET for

9https://github.com/IBM/InspectorRAGet

an analysis of the evaluation results. As of this
writing, we have released notebooks demonstrat-
ing integrations of our platform with the following
popular frameworks:

• Language Model Evaluation Harness 10 (Gao
et al., 2023); a popular evaluation framework
used to evaluate LLMs on different tasks.

• RAGAs 11 (Es et al., 2023); a popular evalua-
tion framework specifically designed for the
evaluation of RAG systems through LLM-as-
a-judge techniques.

• HuggingFace 12 (Wolf et al., 2020), which
offers libraries and assets (incl. datasets, mod-
els, and metric evaluators) that can be used to
both create and evaluate RAG systems.

All experiment runners are available on the plat-
form’s GitHub repository.

10https://github.com/EleutherAI/
lm-evaluation-harness

11https://github.com/
explodinggradients/ragas

12https://huggingface.co
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