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Introduction

We are excited to welcome you to MAGMaR 2025, the first workshop on Multimodal Augmented Gene-
ration via Multimodal Retrieval. MAGMaR is being held in Vienna, Austria on August 1, 2025, and is
co-located with ACL 2025, which takes place from July 28th-August 1st.

While information retrieval systems for text documents have been extensively studied for decades, the
landscape has shifted; vast amounts of information today are stored as videos with minimal text metadata.
For instance, online commercial platforms host billions videos. Despite the explosion of multimodal
data, there remains a dearth of research around the efficient retrieval, processing, and synthesis of these
massive multimodal collections. Existing systems largely still rely on text metadata (e.g., human written
descriptions), overlooking the rich semantic content embedded within the multimodal data itself.

Individual research groups have independently begun addressing this challenge, leading to parallel yet
disconnected efforts to define the research space. MAGMaR was conceived as a collaborative venue
to unify these efforts and foster dialogue, which we believe is crucial for advancing the field. The
MAGMaR workshop focuses on two primary areas: (1) the retrieval of multimodal content, which spans
text, images, audio, video, and multimodal data (e.g., image-language, video-language); and (2) retrieval-
augmented generation, with an emphasis on multimodal retrieval and generation.

To further this goal, we hosted a shared task on event-based video retrieval and understanding, designed
to spark interest and facilitate research development in both retrieval and generation. This task’s primary
retrieval metric, nDCG@10, compared the final ranked lists of videos produced by participant systems.

The shared task was built around MultiVENT 2.0 (Kriz et al., 2024). While prior datasets like MSR-VTT
(10,000 videos) and MultiVENT (2,400 videos; Sanders et al., 2023) made progress toward multilingual
and event-centric video retrieval, they remain small compared to typical text retrieval corpora—e.g.,
HC4 from the 2022 NeuCLIR shared task, which contains 6 million documents. To address this gap, we
introduced MultiVENT 2.0, a large-scale benchmark with over 217,000 videos and 2,549 event-centric
queries for a test collection of 109,800 videos. The dataset covers a diverse range of real-world current
events and is designed to facilitate both retrieval and generation research.

MultiVENT 2.0 has been made publicly available on HuggingFace1 and includes extracted features such
as visual frames, transcribed speech, embedded text, and frame-level captions. Relevance judgments for
the training set were released publicly, while those for the test set were hosted on an Eval.ai leaderboard2.
The primary task setting restricts participants to use only the raw video content; using additional metadata
or text descriptions is permitted only in an oracle setting.

Several teams submitted strong systems to the leaderboard. The best-performing submission, OmniEm-
bed, was developed by the Tevatron group from the University of Waterloo: Jiaqi Samantha Zhan, Cry-
stina Zhang, Shengyao Zhuang, Xueguang Ma, and Jimmy Lin. Their best non-oracle system achieved
an nDCG@10 of 0.709, a significant improvement over the strongest original baseline (0.324).

This year, the program of MAGMaR includes two keynote talks, one presentation session, and one poster
session. In our inaugural year, we received 21 submissions and accepted 14, for an overall acceptance
rate of 67%. Of these, five were accepted as oral presentations. The members of our Program Committee
and Organizing Comittee did an excellent job in reviewing the submitted papers, and we thank them for
their essential role in selecting the accepted papers and helping produce a high quality program for the
conference.

1https://huggingface.co/datasets/hltcoe/MultiVENT2.0
2https://eval.ai/web/challenges/challenge-page/2507
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A workshop requires the hard work of numerous people, both behind the scenes and those that you will
see more prominently. First off, we want to say thank you to our two keynote speakers, Desmond Elliott
(University of Copenhagen) and Joel Brogan (Oak Ridge National Laboratory) whose interdisciplinary
talks are a nice resource for the broader NLP and ACL communities. Both Dr. Elliott’s talk “Recent
Experiments in Retrieval-Augmented Image Captionin” and Dr. Brogan’s talk “When you Don’t Quite
Know What You Want: Bridging the Multimodal Search Intention Gap” cover challenging, state-of-the-
art problems at the unique intersection of the focus of MAGMaR and we appreciate the insights that
they are sharing. Additonally, we would be remiss to not mention the people who helped organize (and
participated) in our shared task on retrieving events in videos. Our online leaderboard received numerous
submissions and we continue to have people engaging with it even though the official evaluation is closed.

Finally, we thank all contributors, reviewers, and attendees who helped make MAGMaR 2025 possible.
We hope you enjoy a day full of engaging talks, thought-provoking posters, and stimulating discussion.

Reno Kriz and Kenton Murray, Editors

iii



Organizing Committee

Organizers

Reno Kriz, Human Language Technology Center of Excellence, Johns Hopkins University
Kenton Murray, Human Language Technology Center of Excellence, Johns Hopkins University
Eugene Yang, Human Language Technology Center of Excellence, Johns Hopkins University
Francis Ferraro, University of Maryland, Baltimore County
Kate Sanders, Johns Hopkins University
Cameron Carpenter, Johns Hopkins University
Benjamin Van Durme, Johns Hopkins University and Microsoft

iv



Program Committee

Program Committee

Reno Kriz, Human Language Technology Center of Excellence, Johns Hopkins University
Kenton Murray, Human Language Technology Center of Excellence, Johns Hopkins University
Eugene Yang, Human Language Technology Center of Excellence, Johns Hopkins University
Francis Ferraro, University of Maryland, Baltimore County
Jeremy Gwinnup, Air Force Research Laboratory
Kate Sanders, Johns Hopkins University
Cameron Carpenter, Johns Hopkins University
Will Walden, Human Language Technology Center of Excellence, Johns Hopkins University
David Etter, Human Language Technology Center of Excellence
Andrew Yates, Human Language Technology Center of Excellence, Johns Hopkins University
Alex Martin, Johns Hopkins University
Gaurav Kumar, University of California San Diego

Invited Speakers

Joel Brogan, Oak Ridge National Laboratory
Desmond Elliot, University of Copenhagen

v



Keynote Talk
Recent Experiments in Retrieval-Augmented Image

Captioning
Dr. Desmond Elliott
Associate Professor

Department of Computer Science
University of Copenhagen

2025-08-01 09:45:00 – Room: 2.44

Abstract: Retrieval-augmentation has proven useful in a wide-range of classification and generation ta-
sks, and it is now powering the next generation of Large Language Models. In this talk, I will present
recent research on applying retrieval-augmentation to image caption generation. I will start by outlining
how retrieval-augmentation can work in this task, and present a parameter-efficient image captioning
model that can describe images from a variety of domains by hot-swapping the contents in the retrieval
data store without retraining the model. Then I will describe two approaches to multilingual image cap-
tioning: one based on prompting an LLM without any training, the other based on supervised training
with either multilingual or monolingual data. Finally, I will speak about our efforts to understand and
explain the success and failure modes of retrieval-augmented image captioning

Bio: Dr. Desmond Elliot is an Associate Professor and a Villum Young Investigator at the University of
Copenhagen. His main research interests are tokenization-free language modelling, and multilingual and
multimodal processing. Dr. Elliot’s work received a Best Paper Honorable Mention at the CVPR 2025
Workshop on Visual Concepts, the Best Long Paper Award at EMNLP 2021, and an Area Chair Favourite
paper at COLING 2018. His research is funded by the Velux Foundations, the Innovation Foundation
Denmark, the Novo Nordisk Foundation, the Poul de Jensen Foundation, Meta, and Google.
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Keynote Talk
When you Don’t Quite Know What You Want: Bridging the

Multimodal Search Intention Gap
Dr. Joel Brogan

Research Group Lead – Multimodal Sensor Analytics
Center for AI Security Research

Energy Systems and Technology Directorate
Oak Ridge National Laboratory, Department of Energy

2025-08-01 16:00:00 – Room: 2.44

Abstract: In research and analysis, the most valuable insights often lie beyond what we think to look
for. Yet building systems that can surface these unknown unknowns remains a fundamental challenge.
How do you design retrieval methods for discoveries you can’t define upfront, and how do you measure
success when you didn’t know what you wanted in the first place? In this talk, I will share some of the
practical ways our team at the Multimodal Sensor Analytics Group has approached this problem. We
will explore how multimodal retrieval, combining vector stores and graph-based approaches, can bridge
the gap between what you are searching for and what you truly need to find. I will discuss examples
where these systems have surfaced unexpected but meaningful patterns, and reflect on the limitations,
opportunities, and design choices when aiming to build retrieval systems that broaden rather than narrow
human attention.

Bio: Dr. Joel Brogan is a Research Professional and Group Lead of the Multimodal Sensing Analytics
Group at Oak Ridge National Laboratory, a US DOE national lab. There, he leads a team of 13 resear-
chers who perform work in inverse imaging, graph analytics, biometrics, and adversarial AI vulnerability
mitigation. Dr. Brogan received his PhD in computer vision at the University of Notre Dame, where he
worked under the DARPA MediFor program to design image and video retrieval and analysis algorithms
to help detect and understand the dynamics of misinformation spread. He joined Oak Ridge National
Laboratory in 2019, where he is currently the Evaluation Lead for the IARPA BRIAR Program, Biome-
tric Recognition and Identification at Altitude and Range, which aims to perform large-scale biometric
characterization human action from video at long distances and altitudes. Additionally, Dr. Brogan is a
founding member of the Center for AI Security Research, or CAISER, through which he and his design
content retrieval tools that aim to discover previously unknown patterns in large pools of multimodal
data. His work has been nominated for the 2023 R&D100 awards and the AFCEA 2023 FedID Best
Operational Success Award. In 2024, Dr. Brogan was Honored as a Finalist in the FedScoop 50 “Most
Inspiring Up & Comer” category.
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MultiReflect: Multimodal Self-Reflective RAG-based
Automated Fact-Checking

Uku Kangur1 Krish Agrawal2 Yashashvi Singh3 Ahmed Sabir1 Rajesh Sharma1,4

1University of Tartu, Institute of Computer Science, Estonia, 2Indian Institute of Technology
Indore 3Indian Institute of Information Technology Dharwad, 4Plaksha University, India

Abstract

In this work, we introduce MultiReflect, a
novel multimodal self-reflective Retrieval Aug-
mented Generation (RAG)-based automated
fact-checking pipeline. MultiReflect is de-
signed to address the challenges of rapidly
outdated information, limitations in human
query capabilities, and expert knowledge barri-
ers in fact-checking. Our proposed pipeline
leverages the latest advancements in Large
Language Models (LLMs) and Retrieval Aug-
mented Generation (RAG) to enhance fact ver-
ification across text and images. Specifically,
by integrating multimodal data processing with
RAG-based evidence reflection, our system im-
proves the accuracy of fact-checking by utiliz-
ing internet-sourced verification. We evaluate
our results on the VERITE benchmarks and us-
ing several multimodal LLMs, outperforming
baselines in binary classification.1

1 Introduction

Information plurality, particularly on the internet,
presents both opportunities and challenges in iden-
tifying accurate and up-to-date information. Given
the increasing reliance on online platforms for news
consumption, learning, and interaction (Eurostat,
2022), developing effective mechanisms to distin-
guish between truthful and false information has
become more critical. However, the increase of co-
ordinated misinformation movements by spam bots,
and other forms of informational chaos have signif-
icantly complicated this process. Therefore, more
advanced and systematic approaches are required
to evaluate and verify (fact-check) the credibility
of information sources.

With the emergence of Large Language Models
(LLMs), which can understand and learn from bil-
lions of texts, automated fact-checking has grown
in popularity as an alternative to traditional manual

1https://github.com/ukangur/MultiReflect

methods (Guo et al., 2022). While LLMs are state-
of-the-art tools for various language understanding
and reasoning tasks, they still face several limita-
tions, such as hallucinations, overconfidence, and
bias (Xu et al., 2024b; Li et al., 2024). To address
these issues, several studies have employed Re-
trieval Augmented Generation (RAG) techniques,
which allow the model to check based on externally
verified information (Lewis et al., 2021; Gao et al.,
2024).

Language, however, is only part of the challenge
when it comes to fact-checking information on
the internet. Online information is presented in
various forms, including text, images, video, and
sound. As a result, fact-checking also requires
the retrieval and reasoning of information across
multiple modalities (Akhtar et al., 2023b; Martin
et al., 2025). More recently, several state-of-the-art
models, such as GPT-4V (OpenAI, 2023), GPT-4o
(OpenAI, 2024), DeepSeek-VL2 (Wu et al., 2024)
and Claude 3 (Anthropic, 2024), have made rea-
son across multimodal data possible. These rapid
advancements highlight the need for multimodal
fact-checking, which has grown with the increased
prevalence of complex information that spans vari-
ous data types: text, image, video, and audio. Sys-
tems like COSMOS (Aneja et al., 2021), Twitter-
COMMs (Biamby et al., 2022), EXMULF (Amri
et al., 2022), ChartBERT (Akhtar et al., 2023a),
RED-DOT and (Papadopoulos et al., 2024a) have
made significant progress in tackling the challenges
posed by multimodal data.

However, despite their successes, these systems
have not fully taken advantage of RAG, a cru-
cial component for dynamic and context-aware
evidence retrieval in the multimodal setting. To
address this gap, we introduce MultiReflect, il-
lustrated in Figure 1, which integrates multimodal
fact-checking (image + text) with a self-reflective
RAG framework. Our system is designed to dy-
namically retrieve, evaluate, and rank supporting

1
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Top text evidence
Ivanka, Don Jr. & Eric in Russia-Address: 8 Kiyevskaya Ul., Moscow

I was recently sent these photos of Ivanka, Don Jr. & Eric Trump in
Moscow, Russia.They're definitely from a few years back, we
guess sometime in the 2006-2009 range.And it's definitely in
Russia.It Looks like they're doing business in Russia, looking at

property. Take a look for yourself below.

On the left is Elena Baronoff - who worked for Trump in Florida &
is apparently a former Russian spy- Gil Dezer who ran Trump

properties in the middle & we have no idea who it is on the right.

Also just FYI: In the cover photo they are standing right next to
this address: 8 Kiyevskaya Ul., Moscow. Therefore, the caption claiming that

these individuals are members of
the United States Congress is out of
context.

Verdict: True
The information provided in the
evidences confirms the identity of the
individuals in the photograph, stating
their association with Donald Trump
and their visit to Moscow, Russia.

The text evidence explicitly
identifies Elena Baronova (also
known as Elena Baronoff), Ivanka
Trump, Michael Dezer, Michael
Babel, Donald Trump Jr., and Eric
Trump, all of whom are present in
the photograph. 

No extra evidence needed

Figure 1: MultiReflect system overview. The proposed pipeline contains six phases: (1) consistency checking, (2)
evidence checking, (3) retrieval, (4) evidence filtering, (5) evidence ranking and (6) verification. The colors indicate
using both modalities in gray/black, or only image data in yellow, or only text data in blue.

evidence, improving reasoning capabilities and ac-
curacy of multimodal fact verification.

We summarize our contributions as follows:

- We propose a novel pipeline MultiReflect, a
multimodal self-reflective RAG-based auto-
mated fact-checking pipline.

- The novelty of the approach is in combining
RAG-based evidence reflection with multi-
modal fact-checking.

- Our MultiReflect system achieves state-of-the-
art results in binary classification in the Multi-
modal fact-checking VERITE benchmark.

2 Data

For our experiments, we utilize the VERITE
dataset, a multimodal fack-checking benchmark
dataset (Papadopoulos et al., 2024b). The dataset
contains 892 different image-text pairs with the
labels "True" (302), "Miscaptioned" (302), and
"Out-of-context" (288). The dataset incorporates a
wide range of real-world data while specifically
excluding "asymmetric multimodal misinforma-
tion" (Asymmetric-MM), which refers to scenarios
where one form of modality significantly amplifies
misinformation while others have minimal impact.
Also, the data implements "modality balancing,"
ensuring that each image and caption are repre-
sented twice in the dataset: once within truthful
contexts and once within misleading pairs.

3 Proposed Method: MultiReflect

In this section, we introduce our proposed six-
phase pipeline: (1) consistency checking, (2) evi-
dence checking, (3) retrieval, (4) evidence filtering,
(5) evidence ranking, and (6) verification.

3.1 Phase 1: Consistency checking

In this phase, we filter inputs by checking the align-
ment between the image and the caption. If incon-
sistent, the post is marked as OUT-OF-CONTEXT
(as shown in Figure 1 with the second example).
Three strategies are evaluated to determine the best
method for consistency checking. The best strategy
is used in the pipeline for the consistency checking
phase.
Image-to-Text consistency: Using CLIP Large-
336 (Radford et al., 2021), cosine similarity be-
tween image-caption embeddings determines con-
sistency based on the best threshold of 0.28 esti-
mated via grid search within the range [0.10 - 0.39].
Text-to-Text consistency: BLIP-2 (Li et al., 2023)
generates descriptions for images, compared to cap-
tions using cosine similarity via SBERT (Reimers
and Gurevych, 2019), with best threshold 0.10
for all model (BLIP-22.7B, BLIP-26.7B and BLIP-2
FLAN) estimated similar to Image-to-Text method.
Multimodal consistency: Since multimodal
LLMs can comprehend and perform reasoning on
both text and images, we use the image-caption
pairs to evaluate their consistency. We adopt
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Figure 2: Performance Metrics of Different Consistency
Checking Strategies (Phase 1). We rely on three valida-
tion methods: Image-to-Text consistency using CLIP,
Text-to-Text consistency using BLIP (via SBERT), and
Multimodal consistency using GPT-4V model.

a prompt-based approach wherein each image-
caption pair is evaluated to ascertain the alignment
between the provided text and the associated im-
age. Specifically, the prompt instructs the model to
assign a binary score [0,1] whether the caption ac-
curately describes the depicted image. We evaluate
multimodal consistency using GPT-4V (OpenAI,
2023). Figure 2 shows that the LLM multimodal
consistency strategy has the highest F1-score, there-
fore, we adopt this strategy in our pipeline.

3.2 Phase 2: Evidence checking

The aim of this phase is for the model to evaluate
if extra evidence is needed, inspired by the work
of (Asai et al., 2023). We do this to differenti-
ate between information that contains changing or
unchanging events. For example, political events
may require external evidence for up-to-date infor-
mation, while physics or nature-related statements,
like the world being round, generally remain consis-
tent over time. Additionally, this phase allows the
model to be more dynamic when evaluating how
much information is needed to fact-check some-
thing. We can see this phase in Figure 1, where
the first example requires evidence and the third
example does not.

We employ the use of multimodal LLM (e.g.
GPT-4o-mini) for this task as it allows the model to
evaluate the post and the evidence text and image
data at the same time. This phase can occur several
times during fact-checking one post, as the model
can ask for additional evidence several times. To
keep this process more efficient, in the evidence
retrieval phase, we collect more evidence the first
time around and then only provide additional evi-
dence if it is asked in the next iterations of phase 2.

3.3 Phase 3: Evidence retrieval

In this phase, we retrieve both textual and visual
evidence required to fact-check the original input
post. We collect the evidence for both modalities
using at least 3 sources to lower the chances of bias
brought by single-source dependency. In addition,
we collect all evidence straight from the internet
without using any static databases. We do this
to ensure the most up-to-date information. We
explain the full procedure of evidence collection
in the following subsections, as shown in Figure 1
with the top (True) example.
Textual evidence: We retrieve textual evidence
from three sources - Wikipedia, Google search, and
Bing search. For Wikipedia (Wikimedia, 2024), we
search for the top 10 articles. For Google, we use
the Google Custom Search API (Google, 2024)
to get the top 10 Google search results and col-
lect their textual data. We also use the Google
Cloud Vision API (Cloud, 2024) to collect textual
information from pages that include a fully or par-
tially matching reverse image search result with
our original multimodal post. For Bing search, we
use the Bing Web Search API (Microsoft, 2024b)
to get the top 10 Bing search results and collect
the textual data from each of them. We addition-
ally use the Bing Visual Search API v7 (Microsoft,
2024a) to collect textual information from pages
that include a matching image search result with
our multimodal post.
Visual evidence: We retrieve visual evidence from
three sources - Wikimedia Commons, Google Im-
age Search, and Bing Image Search. For Wikime-
dia Commons, we use the Wikimedia Commons
API (Wikimedia, 2024) to retrieve the top 10 im-
ages by querying for each entity from the textual
caption of the original post. For Google Image
Search, we use Google Custom Search (Google,
2024) to get the top 10 regular image search results
by querying all the entities from the textual caption.
With Bing Image Search, we use the Bing Image
Search API v7 (Microsoft, 2024a) to get the top
10 regular image search results by querying all the
entities from the textual caption.

3.4 Phase 4: Evidence filtering

In this phase, we filter the retrieved evidence based
on consistency with the original post data to ensure
we do not rank unrelated evidence (as shown in
Figure 1). The differences in filtering for textual
and visual evidence are introduced as follows:

3



Textual evidence: With textual evidence, we first
split each piece of evidence into paragraphs or if
paragraphs are not given, then into sentence chunks
of 250 words maximum. We use SBERT (Reimers
and Gurevych, 2019) to find the top 3 most semanti-
cally similar paragraphs to the original post caption
from each online source (i.e. Wikipedia, Google
Search, Google Inverse Search, Bing Search, Bing
Visual Search). Then, we extract the top matching
paragraph from each textual evidence and dismiss
all other paragraphs. By filtering irrelevant details,
we retain only text relevant to domain-specific fact-
checking. For example, focusing on Biden’s polit-
ical decisions while excluding information about
his private life events.
Visual evidence: With visual evidence, we embed
the images with CLIP Large-336 (Radford et al.,
2021) and then use cosine similarity to filter out
irrelevant images to the original post and find the
top 3 images from each source (i.e. Wikimedia
Commons, Google Image Search and Bing Image
Search).

3.5 Phase 5: Evidence ranking
We use this phase to evaluate the quality of the
given evidence based on five attributes: (1) Author-
ity, (2) Timeliness, (3) Relevancy, (4) Support
and (5) Usefulness. We compute a unified score to
rank the evidence based on these attributes. After
this we extract the top ranking text evidence and
top ranking image evidence (as shown in Figure
1 with the first example). We keep the other rank-
ing scores in case the pipeline requires additional
evidence.
Authority This attribute captures how authorita-
tive is the source of the evidence. We check the
authority on how factual, biased, and reliable the
sources are. For example, if a source contains fac-
tual content, which is neutral and is also reliable,
then it is considered authoritative. To label the
sources with these attributes in mind, we use the
source bias dataset as introduced by Kangur et al.
(2024). This dataset provides aggregated factual-
ity, bias and reliability annotations of the top 500
sources used in X Community Notes (Community
Notes, 2024) using pre-defined labels from three
trusted media monitoring institutions: Media bias
fact-check2, Allsides3, and Adfontes4. As these
labels are ordinal (i.e. they can be ordered), we

2mediabiasfactcheck.com
3allsides.com
4adfontes.com

transform the labels into predefined scores ranging
from 0 to 1, except for the factuality score, which
is calculated on a scale from -1 to 1, to additionally
penalize unfactual sources. The authority score for
evidence is calculated as the sum of the factuality,
bias and reliability scores as shown:

SAuthority = AFactuality +ABias +AReliablity

AFactuality =





1.0 if rated Very High Factuality
0.66 if rated High Factuality
0.33 if rated Mostly Factual
0.0 if rated Mixed Factuality
−0.33 if rated Low Factuality
−0.66 if rated Very Low Factuality
−1.0 if rated Satire
0.0 otherwise.

ABias =





0.0 if rated as Left or Right
0.5 if rated as Left-Center or Right-Center
1.0 if rated as Center
0.0 otherwise

AReliablity =





1.0 if rated as Reliable
0.5 if rated as Generally Reliable
0.0 if rated as Mixed Reliability
0.0 otherwise

Relevancy evaluates how well the evidence per-
tains to the multimodal post. The goal is to assess
if the evidence is relevant to the factual accuracy of
the image or caption. We use a multimodal LLM
(e.g. GPT-4o-mini) to label evidence as relevant
(SRelevancy = 1) or irrelevant (SRelevancy = 0).
Support evaluates how well the evidence backs
the claims in the post. We use a multimodal LLM
(e.g. GPT-4o-mini) to assess the factual accuracy
of the input text and image, by examining their
alignment with the evidence based solely on the
provided information. An entailment scale is used
to assign scores based on the degree of support:

SSupport =

{
1 if Fully Supported
0.5 if Partially Supported
0 if No Support/Contradictory

Usefulness measures how informative and relevant
the evidence is for accepting or rejecting the claim
in the post. We use a multimodal LLM (e.g. GPT-
4o-mini) to assess how well the evidence helps
determine the factuality of the input image and cap-
tion. A 5-point scale is used to score the evidence,
with utility scores mapped to numeric values as
follows:

SUsefulness =





+1 if score = 5 (Highly informative)
+0.5 if score = 4 (Mostly sufficient)
0 if score = 3 (Adequate)
−0.5 if score = 2 (Limited)
−1 if score = 1 (Irrelevant)

4
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Timeliness evaluates how recently the information
in the evidence is provided. Evidence E is con-
sidered timely if its date t(E) < 2 years, and it
has a positive score in at least one of Relevancy,
Support, or Usefulness. This ensures that only
relevant and meaningful recent evidence is priori-
tized, avoiding the ranking of irrelevant but recent
content. The score is assigned as follows:

STimeliness =





1 if t(E) < 2 years and
SRelevancy + SSupport+

SUsefulness > 0

0 otherwise

Combined Evidence Score: The overall evidence
score is calculated as the sum of all of the five
attributes. Based on this score, we extract the
top ranking (highest scored) image and textual evi-
dence. These are passed into the evidence checking
(phase 2) and verification (phase 6) phases.

However, our human evaluation showed that
Timeliness and Authority are hard to discern from
visual evidence alone due to potential reuploads
that may not reflect the original context. Therefore,
we use all five attributes to rank textual evidence,
but only Relevancy, Support, and Usefulness for
visual evidence.

3.6 Phase 6: Verification
This phase verifies whether the original post is
FALSE, OUT-OF-CONTEXT, or TRUE. For veri-
fication, we prompt a multimodal LLM model (e.g.
GPT-4o-mini) to assess the factual accuracy of the
input image and caption using the provided evi-
dence, labeling the output as OUT-OF-CONTEXT,
MISCAPTIONED, or TRUE. If the pipeline fails
at any stage (e.g. due to LLM policy filters), we
mark the original post as TRUE during verification,
adhering to the principle of innocent until proven
guilty. As baselines, we used the available bench-
marks of the VERITE dataset. In Figure 1, we can
also see the verdicts and explanations for the first
and third examples. These explanations also allow
the user to understand the reasoning process of the
model.

4 Experimental Results

In the following section, we introduce our (1) base-
lines and experimental results (2).

4.1 Baselines
VERITE (Papadopoulos et al., 2024b). The
VERITE dataset paper introduces a transformer-

based model for detecting misinformation by com-
bining image and text information. It uses CLIP
ViT-L/14 to extract visual and textual features,
which are merged into a single vector represent-
ing the image-caption pair. The vector is then pro-
cessed by a transformer encoder that omits posi-
tional encodings and applies average pooling with
multi-head self-attention. A final classification
layer predicts the label of the image-caption pair.
The model is trained on datasets like CLIP-NESt
and CHASMA-D, which include synthetic multi-
modal misinformation. To handle class imbalance,
random down-sampling was used, and the model
was trained using categorical cross-entropy loss for
multiclass classification.
RED-DOT (Papadopoulos et al., 2024a). The Rel-
evant Evidence Detection Directed Transformer
(RED-DOT) is a model for multimodal fact-
checking that focuses on identifying and leveraging
relevant evidence. It uses CLIP-ViT-L/14 to extract
visual features from images and textual features
from captions. An evidence re-ranking module em-
phasizes relevant content via intra-modal similarity,
while irrelevant items are filtered using hard neg-
ative sampling. Features from both modalities are
fused using element-wise operations and concate-
nation, then processed by a transformer to predict
evidence relevance and the overall class. RED-
DOT is trained on the NewsCLIPings+ dataset
with multi-task learning and evaluated using Out-
of-Distribution Cross-Validation (OOD-CV).
MultiReflect models. We compare the efficiency
of our pipeline using five different vision LLM
models: GPT-4V (OpenAI, 2023), GPT-4o-mini
(OpenAI, 2024), Gemma 3 (Team et al., 2025),
LLaVA-CoT (Xu et al., 2024a) and DeepSeek-
VL2 (Wu et al., 2024). GPT-4V is a large vision-
language model that integrates advanced visual and
textual reasoning across different domains. GPT-
4o-mini builds on this by offering a lighter, faster
variant optimized for real-time, low-latency inter-
action. Gemma 3 (12B) is a general-purpose multi-
modal foundation model using a modified SigLIP
vision encoder. LLaVA-CoT (11B) brings visual in-
puts together with step-by-step reasoning, improv-
ing performance on tasks that require both under-
standing and explanation. We select LLaVA-CoT
and Gemma 3 as they perform on par with GPT-
4o-mini on reasoning benchmarks. DeepSeek-VL2
(4.2B) similarly focuses on multimodal reasoning,
using techniques like mixture-of-experts, dynamic
image tiling and multi-head latent attention to ex-
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Type Class GPT-4V GPT-4o-mini LLaVA-CoT (11B) DeepSeek-VL2 (4.2B) Gemma 3 (12B)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

M

ALL 0.49 0.53 0.49 0.46 0.50 0.53 0.50 0.50 0.38 0.59 0.38 0.30 0.36 0.38 0.36 0.31 0.44 0.52 0.44 0.37
TRUE 0.69 0.62 0.65 - 0.60 0.48 0.53 - 0.41 0.69 0.51 - 0.38 0.53 0.44 - 0.47 0.71 0.56
MC 0.54 0.16 0.25 - 0.56 0.34 0.42 - 1.00 0.00 0.01 - 0.34 0.49 0.40 - 0.41 0.59 0.49
OOC 0.37 0.69 0.48 - 0.43 0.70 0.53 - 0.34 0.45 0.38 - 0.42 0.04 0.07 - 0.71 0.02 0.03

B
ALL 0.78 0.75 0.74 0.74 0.72 0.70 0.72 0.71 0.56 0.64 0.56 0.57 0.54 0.59 0.54 0.56 0.63 0.68 0.63 0.64
TRUE 0.69 0.62 0.65 - 0.60 0.48 0.53 - 0.41 0.69 0.51 - 0.38 0.53 0.44 - 0.47 0.71 0.56
FALSE 0.81 0.86 0.83 - 0.76 0.84 0.80 - 0.75 0.49 0.59 - 0.70 0.55 0.62 - 0.80 0.59 0.68

Table 1: Performance results of the proposed pipeline MultiReflect on the VERITE dataset. The results are shown
for both the binary case (denoted as B, with labels TRUE and FALSE) and the multi-class case (denoted as M,
with labels TRUE, MISCAPTIONED [MC], and OUT-OF-CONTEXT [OOC]). The drop in performance in the
multi-class classification indicates that the model struggles to distinguish between MISCAPTIONED and OUT-
OF-CONTEXT datapoints. The best overall accuracy and F1-scores for both binary and multi-class settings are
highlighted. We observe that GPT-4o-mini performs best in the multi-class setting, while GPT-4V performs best in
the binary classification setting.

Model Accuracy

Multi-class Binary

VERITE (Papadopoulos et al., 2024b) 0.52 0.73
RED-DOT (Papadopoulos et al., 2024a) 0.77

GPT-4V (OpenAI, 2023) 0.49 0.78
GPT-4o-mini (OpenAI, 2024) 0.50 0.72
LLaVA-CoT (11B) (Xu et al., 2024a) 0.38 0.56
DeepSeek-VL2 (4B) (Wu et al., 2024) 0.36 0.54
Gemma 3 (12B) (Team et al., 2025) 0.44 0.63

Table 2: The results show that MultiReflect with
GPT-4V outperforms all baselines in binary classifica-
tion. However, all MultiReflect versions underperform
against the original VERITE baseline in multi-class clas-
sification.

tract and align the most relevant visual and textual
features. We select DeepSeek-VL2 as a compari-
son due to its reliance on mixture-of-experts and
good performance on reasoning benchmarks given
its relatively small size.

4.2 Results

The VERITE dataset provides three classes: TRUE,
MISCAPTIONED, and OUT-OF-CONTEXT. For
binary classification, however, MISCAPTIONED
and OUT-OF-CONTEXT are combined into a sin-
gle FALSE class. We evaluate both binary and
multi-class (taking into account all three classes).
Multi-class results: In the multiclass setting, our
pipeline achieved the best result with GPT-4o-mini
with a macro F1-score of 0.50 and accuracy of 0.50,
slightly lower than the VERITE benchmark accu-
racy of 0.52 (see Table 2). Surprisingly, the score
for the larger GPT-4V is lower, suggesting that the
pipeline struggles to differentiate false subclasses.
This is also shown when we look at the TRUE
class, as the GPT-4V model performs the best with

a F1-score of 0.65, the highest among all classes.
However, for the MISCAPTIONED class GPT-4V
showed a low F1-score of 0.25, driven by a recall
of 0.16, indicating difficulty in identifying MIS-
CAPTIONED posts. The same difficulty arised for
LLaVA-CoT, which only identified a single MIS-
CAPTIONED post due to being overconfident in
the verification stage. Surprisingly, Gemma 3 per-
forms the best win identifying MISCAPTIONED
posts with an F1-score of 0.49 showing its capa-
bility of using evidence critically. For OUT-OF-
CONTEXT, GPT-4o-mini achieved an F1-score of
0.53, primarily due to low precision (0.43) of OUT-
OF-CONTEXT class. DeepSeek-VL2, performs
the worst out of the four with an F1-score of 0.36
due to misclassifying OUT-OF-CONTEXT posts.
We note that these results highlight the pipelines
poor capability to differentiate which modality in-
cludes the false information.

Binary results: In the binary setting, we see that
GPT-4V performs the best out of the three mod-
els in all metrics achieving a F1-score of 0.74
and an accuracy of 0.78, exceeding the VERITE
benchmark of 0.72 and RED DOT baseline of
0.77 (see Table 2). The TRUE class retained its
F1-score of 0.65, while the combined false class
achieved 0.83 as shown in Table 1. The overall
result against other baselines is shown in Table
2, our model achieves the best binary results in
the VERITE benchmark dataset. The open-source
models (Gemma 3, LLaVA-CoT and DeepSeek-
VL2) all perform worse in both classes compared
to the OpenAI models. This performance gap may
be attributed to less effective use of evidence in the
verification process.
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Type Class No Evidence All Evidence

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Multi-Class

ALL 0.49 0.53 0.49 0.46 0.50 0.53 0.50 0.50
TRUE - 0.69 0.62 0.65 - 0.60 0.48 0.53
MISCAPTIONED - 0.54 0.16 0.25 - 0.56 0.34 0.42
OUT-OF-CONTEXT - 0.37 0.69 0.48 - 0.43 0.70 0.53

Binary
ALL 0.78 0.75 0.74 0.74 0.72 0.70 0.72 0.71
TRUE - 0.69 0.62 0.65 - 0.60 0.48 0.53
FALSE - 0.81 0.86 0.83 - 0.76 0.84 0.80

Table 3: Performance results on the VERITE dataset under No Evidence and All Evidence conditions using
GPT-4V. The results are shown for both the multi-class (TRUE, MISCAPTIONED, and OUT-OF-CONTEXT) and
binary (TRUE, FALSE) settings. The “ALL” row gives the overall accuracy (Acc.), while per-class rows show only
precision (Prec.), recall (Rec.), and F1.

5 Ablation Study

We conduct an ablation study of our best-
performing model, GPT-4V, on the benchmark to
evaluate the role of evidence within the MultiRe-
flect pipeline. This analysis focuses on two key
questions: (1) Is any evidence necessary for effec-
tive verification? (2) Does the ranking of evidence
contribute meaningfully to performance? To ad-
dress the first question, we evaluate the system’s
performance when no evidence is provided during
the verification stage. For the second, we provide
all available evidence without applying any rank-
ing. The results demonstrate that RAG-enhanced
retrieval and ranking both play a critical role in
strengthening multimodal reasoning.

5.1 No evidence

This subsection analyzes the pipeline without us-
ing evidence, excluding phases 2 to 5, for both
multi-class and binary settings. This means that
this variation of the pipeline only checks for con-
sistency and then goes directly into verification if
the post is found to be consistent.
Multi-class results: Without evidence, the model
achieves an F1-score of 0.41, which is lower than
the pipeline’s 0.46, as shown in Table 3. This indi-
cates that evidence improves multi-class verifica-
tion. Specifically, for the TRUE class, the F1-score
drops to 0.46 from 0.65. Interestingly, MISCAP-
TIONED posts perform better without evidence,
achieving an F1-score of 0.29 compared to 0.25,
suggesting that evidence may mislead in this cat-
egory. In both evaluation scenarios, the F1-score
for MISCAPTIONED posts remains consistently
low, highlighting the model’s persistent difficulty
in accurately distinguishing them from the other
classes.

Binary results: As detailed in Table 3, without ev-
idence, the model’s overall F1-score is 0.63, under-
performing compared to 0.74 in the full pipeline.
The classwise F1-scores for TRUE and FALSE
drop to 0.46 and 0.79 from 0.65 and 0.83, respec-
tively, highlighting the importance of evidence in
binary settings. The larger drop in the TRUE class
score highlights that evidence is crucial for reduc-
ing false negatives and confirming truthful posts,
as its absence increases uncertainty.

5.2 All evidence

This subsection analyzes the pipeline without phase
2 (evidence checking), providing all retrieved evi-
dence in the verification phase for both multi-class
and binary settings.
Multi-class results: Providing all evidence does
not improve the F1-score beyond 0.46, matching
the regular pipeline’s performance as reflected in
Table 3. This suggests that adding more evidence
does not necessarily enhance the model’s accuracy.
However, giving all of the evidence adds additional
computational costs to the pipeline, making the
regular pipeline more preferable. The classwise
F1-scores for all classes are lower than in the full
pipeline, except for MISCAPTIONED, which in-
creases to 0.30 from 0.25.
Binary results: With all evidence included, the F1-
score decreases to 0.72 compared to 0.74 in the full
pipeline, confirming that an overload of evidence
can hinder effective reasoning, as shown in Table 3.
The F1-scores for TRUE and FALSE are slightly
lower at 0.63 and 0.81, respectively, than those in
the regular pipeline. This highlights the need for
careful evidence selection methods as providing all
of the retrieved evidence can make the reasoning
noisy in the verification phase.
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Fact-Checking System Evidence Retrieval Multimodal Verification Evidence Ranking RAG

COSMOS (Aneja et al., 2021) × ✓ ✓ × ×
EXMULF (Amri et al., 2022) × ✓ ✓ × ×
Twitter-COMMs (Biamby et al., 2022) × ✓ ✓ × ×
MuRAG* (Chen et al., 2022) ✓ (static knowledge base) ✓ × ✓ ✓
CCN (Abdelnabi et al., 2022) ✓ (internet) ✓ ✓ × ×
BERT + LSTM (Hammouchi and
Ghogho, 2022)

✓ (internet) ✓ ✓ ✓ (source credibility) ×

Self-RAG* (Asai et al., 2023) ✓ (internet + static knowl-
edge base)

× × ✓ (relevancy, support-
edness, usefulness)

✓

ChartBERT (Akhtar et al., 2023a) × ✓ ✓ × ×
FakeNewsGPT4 (Liu et al., 2024) × ✓ ✓ × ×
RED-DOT (Papadopoulos et al., 2024a) ✓ (internet) ✓ ✓ ✓ (similarity) ×
MultiReflect (Ours) ✓ (internet) ✓ ✓ ✓ ✓

Table 4: Overview of related works and associated features. We highlight that our work MultiReflect is the only one
to utilize RAG for the multimodal verification task. The (*) refers to work in the domain of Question-Answering.

6 Related Works

In this section, we introduce several related meth-
ods and papers to our work. We additionally high-
light the main feature differences between the meth-
ods in Table 4.
Automated Fact-Checking. Fact-checking meth-
ods have significantly evolved with advancements
in artificial intelligence, particularly through the de-
velopment of LLMs and automated systems. Early
systems such as those introduced by Thorne et al.
(2018) and Thorne and Vlachos (2021) relied on
static knowledge bases for evidence retrieval for
fact-checking and correction. However, these sys-
tems lacked the ability to update their knowledge
bases dynamically, which is critical in the fast-
paced information era.

Recent efforts have seen the integration of Re-
trieval Augmented Generation (RAG) techniques
to enhance the reliability and accuracy of fact-
checking systems. For instance, models such as
MuRAG (Chen et al., 2022) and Self-RAG (Asai
et al., 2023) have utilized not only static knowl-
edge bases but also the internet to retrieve current
and relevant information. These models enhance
the fact-checking process by employing RAG for
dynamic evidence retrieval, allowing for a more
accurate verification of facts by evaluating vari-
ous aspects of information quality. This approach
significantly surpasses earlier models that relied
only on static databases or lacked evidence ranking
mechanisms (Gao et al., 2024).
Multimodal Fact-Checking. The need for multi-
modal fact-checking has grown with the increased

prevalence of complex information that spans vari-
ous data types: text, image, video, and audio. Sys-
tems like COSMOS (Aneja et al., 2021), Twitter-
COMMs (Biamby et al., 2022), EXMULF (Amri
et al., 2022), ChartBERT (Akhtar et al., 2023a),
RED-DOT and (Papadopoulos et al., 2024a) have
made significant progress in tackling the challenges
posed by multimodal data. However, prior works
rely heavily on training, limiting usability in low-
resource settings, and often focus only on intra-
modal relationships, overlooking nuanced cross-
modal relationships.

To the best of our knowledge, our MultiReflect
approach is the first to integrate evidence retrieval,
multimodality, verification, evidence ranking, and
RAG into a single fact-checking pipeline.

7 Conclusions

We introduce MultiReflect, a novel multi-modal
RAG-based fact-checking pipeline. The novelty of
the pipeline lies in its new evidence ranking and
reflection scheme over multimodal posts. We vali-
date the efficiency of the pipeline using a special-
ized multimodal fact-checking benchmark dataset
VERITE. Our results show that MultiRelflect un-
derperforms in the multiclass setting but outper-
forms other baselines in the binary class scenario.
Future works could improve this pipeline by focus-
ing on how to better identify in which modality the
error exists. Additionally, incorporating modality-
specific retrieval strategies could help disentangle
complex cross-modal contradictions.
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Appendix

The appendix is structured into three sections: (A)
Additional Information, (B) Qualitative Examples
and (C) Prompts.

A Additional Information

A.1 Limitations

There are several limitations that have an impact
on the pipeline’s results. First, not all post have
evidence available for them, thus reducing the qual-
ity of the verification of those posts. Future works
could solve this issue by expanding the amount of
evidence sources. Second, as generative models
are prone to hallucinate, it might be that the model
sometimes hallucinates on the given evidence - this
being specifically the case when we provide all
evidence. Additionally, the OpenAI API policy fil-
ters might refuse to answer some prompts. If the
pipeline is to be used, we recommend always in-
cluding a human in the loop and running the model
several times and taking into account the standard
deviation of the results. Third, there is no way to
identify if an evidence is originally written by the
source where it comes from. This can create prob-
lems as platforms can repost information in mis-
leading contexts. A possible solution for this would
be to keep a blacklist of uncredible sources. Fourth,
the pipeline is rather costly as for one post. The
costliness primarily arises from the amount of evi-
dence (10 images and 10 texts) that is retrieved and
ranked. It might require around 70-100 prompts to
verify all evidences involved. Cost can be lowered
by reducing the amount of evidences retrieved, but
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Figure 3: Overview of the MultiReflect Pipeline. The pipeline is processed in six steps: The first phase checks if
the image and text are consistent. The second phase checks if evidence is needed for fact-checking the image-text
pair. The third phase retrieves image and text evidences using different search APIs. The fourth phase filters the
evidence so that both the image and text evidences are consistent to the original image and text. The fifth phase
ranks the evidence based on five features. The top ranked evidence is extracted and if no more evidence is needed
then the pipeline end with verifying the image-text pair in phase six. Note that we highlight procedures involving
both image and text modalities in gray/black, procedures involving only image data in yellow and procedures
involving only text data in blue.

Model Threshold Acc F1 P R

CLIP Large 336 0.28 0.633 0.591 0.474 0.784
BLIP 2 (2-7B) (Li et al., 2023) 0.13 0.369 0.500 0.341 0.930
BLIP 2 (6-7B) 0.10 0.359 0.503 0.341 0.906
BLIP 2 FLAN XL 0.10 0.358 0.505 0.349 0.966
GPT-4V (OpenAI, 2023) N/A 0.680 0.638 0.517 0.834

Table 5: Full result. Performance Metrics of Different Consistency Checking Strategies (Phase 1). We rely on three
validation methods: Image-to-Text consistency using CLIP, Text-to-Text consistency using BLIP (via SBERT), and
Multimodal consistency using GPT-4V models.

that can have a negative effect on the performance
of the pipeline. Finally, the pipeline performs sub-
optimally on open-source models. LLaVA-CoT
exhibits confirmation bias during verification, label-
ing nearly all posts as TRUE regardless of evidence.
DeepSeek-VL2, on the other hand, struggles with
consistency checks, resulting in low accuracy for
OUT-OF-CONTEXT cases.

A.2 Consistency checking

The detailed scores for the consistency checking
phase are highlighted in Table 5. The table shows
that the multimodal GPT-4V surpassed all of the
models in terms of accuracy. Suprisingly BLIP 2
FLAN XL got a better recall, showing its better
capability in detecting consistent image-text pairs

compared to non-consistent ones.

A.3 Dataset examples

We additionally provide six example image-text
pairs from the original VERITE dataset. We
highlight in in Table 6 all three class variants
(TRUE, MISCAPTIONED, OUT-OF-CONTEXT).
The TRUE variant has the correct caption together
with the correct image. The MISCAPTIONED
variant has the wrong caption together with the cor-
rect image. The OUT-OF-CONTEXT variant has
the correct caption together with the wrong image.
As demonstrated by the examples, the dataset de-
mands complex reasoning that involves interpreting
text embedded within images, recognizing visual
elements, and applying external knowledge about
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events or well-known individuals. This highlights
the complexity of the task.

A.4 Implementation Details

The high level overview of the MultiReflect
pipeline is shown in Figure 3. The figure shows all
of the 6 phases, with their corresponding tasks. We
outline the implementation details of the models
used in the experiments. All models were initial-
ized with their default parameters to ensure repro-
ducibility and consistency across experiments. The
experiments for Gemma 3 and LLaVA-CoT were
using a 2xV100 GPU with 64 GB VRAM. For
the LLaVA-CoT (11B) the model ran for approxi-
mately 20 days, while the Gemma 3 (12B) model
ran for 1 week. The experiments for DeepSeek-
VL2 were using a A100 GPU with 80 GB VRAM.
For DeepSeek-VL2 (4.2B) the model ran for ap-
proximately 1 week. All models used the default
temperature for generations. The model versions
used are the following:
GPT-4V: gpt-4-1106-vision-preview5

GPT-4o-mini: gpt-4o-mini-2024-07-186

Gemma 3: gemma-3-12b-it7

LLaVA-CoT: Llama-3.2V-11B-cot8

DeepSeek-VL2: deepseek-vl29

CLIP-336: clip-vit-large-patch14-33610

SBERT: all-mpnet-base-v211

BLIP-2 2.7B: blip2-opt-2.7b12

BLIP-2 6.7B: blip2-opt-6.7b13

BLIP 2 FLAN XL: blip2-flan-t5-xl14

B Qualitative Examples

We introduce qualitative examples predicted by the
MultiReflect pipeline using GPT-4V. We show ex-
amples from GPT-4V due to its largest accuracy,
but also due to it giving also the reasoning for its
verification label, something other models did not
show in the final output. We separate these exam-
ples into two - those that do not require evidences
for verification in Table 7 and those that do require

5openai.com/index/gpt-4v-system-card/
6platform.openai.com/docs/models/gpt-4o-mini
7huggingface.co/google/gemma-3-12b-it
8huggingface.co/Xkev/Llama-3.2V-11B-cot
9huggingface.co/deepseek-ai/deepseek-vl2

10huggingface.co/openai/
clip-vit-large-patch14-336

11huggingface.co/sentence-transformers/
all-mpnet-base-v2

12huggingface.co/Salesforce/blip2-opt-2.7b
13huggingface.co/Salesforce/blip2-opt-6.7b
14huggingface.co/Salesforce/blip2-flan-t5-xl

evidence in Table 8.
Without evidence: The first example shows a
mother fox feeding cubs near Montreal, Canada,
in 2009. However, upon analyzing the image, the
pipeline identifies a golden jackal, not a fox, which
is clear from its physical characteristics, thus clas-
sifying it as OUT-OF-CONTEXT. The second and
third examples show known people from news sto-
ries: Justine Damond and Dmytro Vasilievich Kha-
ladzhi. The pipeline successfully identifies the peo-
ple on the image together with the context of their
news story. The fourth example caption claims that
U.S. President Donald Trump said, "I don’t care
how sick you are. [...] Get out and vote" during
a November 2016 campaign event. However, the
image shows a similar tweet from Eric Trump in
November 2020. Despite the text’s alignment with
the image’s message, the people involved and the
dates do not match, leading the pipeline to classify
the caption as OUT-OF-CONTEXT. In the fifth ex-
ample, a shocking image about Christmas display
is presented. The pipeline argues that since the
caption describes the image exactly as it is, then
there is no reason to doubt the authenticity of the
post.
With evidence: In the first example, the cap-
tion about Melania Trump’s dress is verified by
evidence confirming it is part of Alexander Mc-
Queen’s Spring/Summer 2020 collection, designed
with art students. The image evidence shows the
author of the dress, which additionally does not
contradict the textual evidence and thus allows the
pipeline to verify the post as TRUE. The second ex-
ample describes the London riots in August 2011.
The text evidence supports the caption, confirm-
ing the locations and dates of the riots, making
the caption true, despite the image not matching a
specific looting event. The third example features
an archaeologist excavating a woolly mammoth
near Paris in 2012. Text evidence corroborates this
discovery, confirming the caption as true.

12

openai.com/index/gpt-4v-system-card/
platform.openai.com/docs/models/gpt-4o-mini
huggingface.co/google/gemma-3-12b-it
huggingface.co/Xkev/Llama-3.2V-11B-cot
huggingface.co/deepseek-ai/deepseek-vl2
huggingface.co/openai/clip-vit-large-patch14-336
huggingface.co/openai/clip-vit-large-patch14-336
huggingface.co/sentence-transformers/all-mpnet-base-v2
huggingface.co/sentence-transformers/all-mpnet-base-v2
huggingface.co/Salesforce/blip2-opt-2.7b
huggingface.co/Salesforce/blip2-opt-6.7b
huggingface.co/Salesforce/blip2-flan-t5-xl


Image Image Caption label

Image shows a ’We plan to cut all homeless people in half by 2025’ sign created by
street artist who goes by the name of Foka Wolf.

TRUE

Image shows signs posted by the UK Conservative Party vowing ’We plan to cut all
homeless people in half by 2025’ MISCAPTIONED

Image shows a ’We plan to cut all homeless people in half by 2025’ sign created by
street artist who goes by the name of Foka Wolf. OUT-OF-CONTEXT

A sketchfab 3D rendering of the actor Andre the Giant. TRUE

3D model accurately depicting what Joseph, husband of Mary, the mother of Jesus
Christ, looked like. MISCAPTIONED

A sketchfab 3D rendering of the actor Andre the Giant. OUT-OF-CONTEXT

Image shows grounds covered with garbage after the end of Glastonbury Music
Festival in 2015. TRUE

Image shows grounds covered with garbage after Greta Thunberg’s
environmentalist speech at the Glastonbury Music Festival in June 2022. MISCAPTIONED

Image shows grounds covered with garbage after the end of Glastonbury Music
Festival in 2015. OUT-OF-CONTEXT

Table 6: Examples of image-caption pairs in the VERITE dataset. The dataset contains a variety of image-caption
pairs that are challenging and require context understanding and reasoning. Each example has three versions. TRUE
has the correct image with the correct caption. MISCAPTIONED has the correct image with the wrong caption.
OUT-OF-CONTEXT has the wrong image with the correct caption.
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Input image Input caption: Image of a mother fox feeding fox cubs near Montreal, Canada in
2009.
Output: [OUT-OF-CONTEXT] The caption claims that the image depicts a
mother fox feeding her cubs near Montreal, Canada in 2009. However, the image
shows a golden jackal (not a fox) with its pups, which can be determined by the
physical characteristics of the animals in the picture such as the shape of their ears,
the color and pattern of the fur, and their general morphology. Golden jackals are
not native to Canada, they are found in regions such as Africa, Southeast Europe,
and parts of Asia. Therefore, the caption is out-of-context as it erroneously
identifies the animal species and their location. Moreover, the date provided cannot
be verified from the image alone, but the main reason for assigning an
out-of-context label is the incorrect identification of the species and their
geographical location. evidence not needed

Input caption: Image of Justine Damond, a white woman, was killed by a police
officer named Mohamed Noor in Minneapolis in 2017.

Output: [TRUE] The image provided matches widely circulated images of Justine
Damond, and the caption correctly states that she was killed by a police officer
named Mohamed Noor in Minneapolis in 2017. evidence not needed

Input caption: Ukrainian strongman Dmytro Vasilievich Khaladzhi - a
power-lifting champion - carrying a horse.
Output: [TRUE] The image shows Ukrainian strongman Dmytro Khaladzhi
carrying a horse, consistent with the provided caption. Dmytro Khaladzhi is known
for performing feats of strength, and a video of him carrying a horse has been
circulated online in the past, confirming that this image is likely true to the
caption’s claim. Therefore, the image and caption are factually correct and in
context. evidence not needed

Input caption: U.S. President Donald Trump said ’I don’t care how sick you are.
[...] Get out and vote’ during a campaign event in November 2016.
Output: [OUT-OF-CONTEXT] The caption pertains to Donald Trump making a
statement during a campaign event in November 2016, while the image shows a
tweet from Eric Trump dated November 10, 2020, encouraging people to vote. The
content of the tweet does not match the statement attributed to Donald Trump in the
caption, and the dates also do not align. Therefore, the image is out of context with
the caption provided. evidence not needed

Input caption: A picture of a humorous Christmas display of a doll staged to look
as if the homeowner was trapped by a fallen ladder while installing Christmas
decorations.

Output: [TRUE] The image shows a humorous Christmas display featuring what
appears to be a doll dressed in red and blue, with its legs dangling from a gutter and
a ladder fallen below, creating the illusion that someone was trapped while putting
up Christmas decorations. Since the caption accurately describes what is depicted
in the image, and there’s no internal contradiction or reason to doubt the
authenticity of the humor intended by the display, the statement is factually correct.
evidence not needed

Table 7: Examples of pipeline outputs with GPT-4V that did not require evidence for verification.
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Input image: Input caption: Image of Melania Trump wore a dress designed by Alexander
McQueen in collaboration with art students and was inspired by life drawings.

Output: [TRUE] The caption describes Melania Trump wearing a dress designed
by Alexander McQueen, which was a collaboration with art students inspired by
life drawings. The text evidence confirms that the dress is from Alexander
McQueen’s Spring/Summer 2020 collection, and the sketches on the dress were
created during a life drawing class held at the Alexander McQueen educational
space in London. The sketches were drawn by Central Saint Martins MA students.
[...] evidence needed

Image evidence: Text evidence:
Sketches on dress are from students. The dress worn by the first lady did come from
Alexander McQueen’s Spring/Summer 2020 collection, however, the drawings on
the dress were not created by children who had been victims of sexual abuse as
posts claim. On March 21, Alexander McQueen’s official Facebook page posted
that the dress features dancing girls. "The continuous, spontaneous sketches of
dancing girls by Central Saint Martins MA students, created during a life drawing
class held at the Alexander McQueen educational space in London this year, is the
source of these motifs," the post reads, along with a video of the dress. [...]

Image scores: Relevancy=1,
Support=0, Usefulness=0.

Text scores: Relevancy=1, Support=0.5, Usefulness=1,
Factuality=0.33, Reliability=1, Bias = 0.5, Timeliness=0.

Input image: Input caption: Photograph shows London residents looting electronic devices
during riots that erupted after police killed a black man in August 2011.
Output: [TRUE] The caption describes a specific event that took place in August
2011, referring to the London riots that were indeed sparked by the police killing of
a black man. The external text evidence lists various locations and dates, including
Enfield, Brixton, Hackney, and others, along with dates that match the August 2011
timeline. [...] evidence needed

Image evidence: Text evidence:
Luke Macgregor / X01981: Police cordon off an area in Enfield, north London, on
August 7, 2011. Karel Prinsloo / AP: Youths throw bricks at police in Enfield, north
London, on August 7, 2011. Dan Kitwood / Getty Images Europe: A girl is
detained outside Currys electrical store in Brixton, south London, on August 8,
2011. Peter Macdiarmid / Getty Images Europe: People loot a Carhartt store in
Hackney, north London, on August 8, 2011. [...]

Image scores: Relevancy=1,
Support=0.5,

Usefulness=0.5.

Text scores: Relevancy=1, Support=0.5, Usefulness=1,
Factuality=0.66, Reliability=1, Bias = 0.5, Timeliness=0.

Input image: Input caption: Image shows an archaeologist excavating the remains of a woolly
mammoth that was found at a quarry site near Paris, France in November 2012.
Output: [TRUE] [...]. The text evidence from BBC Newsround corroborates the
scene depicted in the image by reporting that a woolly mammoth skeleton was
indeed unearthed near Paris in the Changis-sur-Marne area, and the discovery
occurred in November 2012. [...] evidence needed

Image evidence: Text evidence:

All image evidences filtered
out.

Woolly mammoth skeleton found near Paris, France [...]. The skeleton of a woolly
mammoth has been unearthed - not in remote Siberia, but near the capital of France,
Paris! It was discovered accidentally by a team digging at an ancient Roman site in
the Changis-sur-Marne area. [...]

Image scores: N/A. Text scores: Relevancy=1, Support=0.5, Usefulness=1,
Factuality=0.66, Reliability=1, Bias = 1, Timeliness=0.

Table 8: Examples of pipeline outputs with GPT-4V that required evidence retrieval for verification. We additionally
provide the scores for the top ranked evidences retrieved for these input posts.
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C. Prompts

In the MultiReflect pipeline, prompts play an im-
portant role in evaluating the quality of both the
original input post and the evidences retrieved. In
this section, we introduce the prompts used within
the pipeline. The pipeline utilizes prompts in four
phases: consistency checking (phase 1), evidence
checking (phase 2), evidence ranking (phase 5) and
verification (phase 6). For GPT-4V and GPT-4o the
images for both the post and evidences were given
through the OpenAI API platform.

1. Consistency checking
For consistency checking (phase 1) we used the
following prompt together with the original image.

Prompt 1: Given a caption and image, deter-
mine whether the caption matches the image or not,
if yes respond <verdict>TRUE</verdict> else <ver-
dict>FALSE</verdict>, also give the consistency score
between 0 and 1 like <score>...</score>
Caption: {caption}
{encoded image}

2. Evidence checking
For evidence checking (phase 2), we use two differ-
ent prompts. The first time this phase is initiated,
we use this prompt together with the original cap-
tion and image.

Prompt 2: Given a image and caption, please make a
judgment on whether finding some external documents
from the web (e.g., Wikipedia) helps to decide whether
the image and caption is factually correct. Please answer
[Yes] or [No] and write an explanation.
Caption: {caption}
{encoded image}

If we run into phase 2 again, then during the next
times we use:

Prompt 3: Given a image and caption along with some
external documents (evidences). Your task is to determine
whether the factuality of the image and caption can be
fully verified by the evidence or if it requires further ex-
ternal verification.There are three cases:
- If image and caption can be verified solely with the evi-
dences, then respond with [Continue to Use Evidence].
- If the sentence doesn’t require any factual verification
(e.g., a subjective sentence or a sentence about common
sense), then respond with [No Retrieval].
- If additional information is needed to verify, respond
with [Retrieval].
Please provide explanations for your judgments
Caption: {caption}
{encoded image}
Evidences: {evidence texts and encoded images}

3. Evidence ranking
Evidence ranking (phase 5) get the relevancy, sup-
port and usefulness scores using prompts. For each
of these prompts we used two variations, one for
ranking images and another for ranking texts. For
relevancy, we used the following two prompts.

Prompt 4: You’ll be provided with an image, along
with evidence. Your job is to determine if the evidence
is relevant to the determine the factual correctness of the
image, and provides useful information to complete the
task described in the instruction. If the evidence meets this
requirement, respond with [Relevant]; otherwise, generate
[Irrelevant]. Also determine the relevancy score of the
evidence, on a scale of 0 to 1.
{encoded image}
Text Evidence: {evidence text}

Prompt 5: You’ll be provided with a text, along with an
image evidence. Your job is to determine if the evidence
is relevant to the determine the factual correctness of the
text, and provides useful information to complete the task
described in the instruction. If the evidence meets this
requirement, respond with [Relevant]; otherwise, generate
[Irrelevant]. Also determine the relevancy score of the
evidence, on a scale of 0 to 1.
Text: {caption}
{evidence encoded image}

For support, we used the following two prompts.

Prompt 6: You will receive an input text, input image
and text evidence towards determining the factuality of
the input. Your task is to evaluate if the input is fully
supported by the information provided in the evidence.
Use the following entailment scale to generate a score:
- [Fully supported] - All information in input is supported
by the evidence, or extractions from the evidence.
- [Partially supported] - The input is supported by the ev-
idence to some extent, but there is major information in
the input that is not discussed in the evidence. For exam-
ple, if the input asks about two concepts and the evidence
only discusses either of them, it should be considered a
[Partially supported].
- [No support / Contradictory] - The input completely ig-
nores evidence, is unrelated to the evidence, or contradicts
the evidence. This can also happen if the evidence is irrel-
evant to the instruction.
Make sure to not use any external information/knowledge
to judge whether the input is true or not. Only check
whether the input is supported by the evidence, and not
whether the input follows the instructions or not. Output
Entailment like [Fully supported], [Partially supported] or
[No support / Contradictory]
Input text: {caption}
Input Image: {encoded image}
Text Evidence: {evidence text}
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Prompt 7: You will receive an input text, input image
and image evidence towards determining the factuality
of the input. Your task is to evaluate if the input is fully
supported by the information provided in the evidence.
Use the following entailment scale to generate a score:
- [Fully supported] - All information in input is supported
by the evidence, or extractions from the evidence.
- [Partially supported] - The input is supported by the ev-
idence to some extent, but there is major information in
the input that is not discussed in the evidence. For exam-
ple, if the input asks about two concepts and the evidence
only discusses either of them, it should be considered a
[Partially supported].
- [No support / Contradictory] - The input completely ig-
nores evidence, is unrelated to the evidence, or contradicts
the evidence. This can also happen if the evidence is irrel-
evant to the instruction.
Make sure to not use any external information/knowledge
to judge whether the input is true or not. Only check
whether the input is supported by the evidence, and not
whether the input follows the instructions or not.
Output Entailment on the first line and the explanation on
the second line.
Input text: {caption}
Input Image: {encoded image}
Image Evidence: {evidence encoded image}

For usefulness, we used the following two
prompts.

Prompt 8: Given an input text and input image along
with an text evidence, rate whether the evidence appears
to be a helpful and informative answer to determine the
factuality of the input, from 1 (lowest) - 5 (highest). We
call this score perceived utility. The detailed criterion is
as follows: 5: The evidence provides a complete, highly
detailed, and informative response to the factuality of
the input, fully satisfying the information needs. 4: The
evidence mostly fulfills the need to get the factuality of the
input, while there can be some minor improvements such
as discussing more detailed information, having better
structure of the evidence, or improving coherence. 3:
The evidence is acceptable, but some major additions or
improvements are needed to satisfy factuality. 2: The
evidence still addresses the main request, but it is not
complete or not relevant to the input. 1: The response is
barely on-topic or completely irrelevant.
Input text: {caption}
Input Image: {encoded image}
Text Evidence: {evidence text}

Prompt 9: Given an input text and input image along
with an image evidence, rate whether the evidence appears
to be a helpful and informative answer to determine the
factuality of the input, from 1 (lowest) - 5 (highest). We
call this score perceived utility. The detailed criterion is
as follows: 5: The evidence provides a complete, highly
detailed, and informative response to the factuality of
the input, fully satisfying the information needs. 4: The
evidence mostly fulfills the need to get the factuality of the
input, while there can be some minor improvements such
as discussing more detailed information, having better
structure of the evidence, or improving coherence. 3:
The evidence is acceptable, but some major additions or
improvements are needed to satisfy factuality. 2: The
evidence still addresses the main request, but it is not
complete or not relevant to the input. 1: The response is
barely on-topic or completely
Input text: {caption}
Input Image: {encoded image}
Image Evidence: {evidence encoded image}

4. Verification
During verification (phase 6), we have two different
prompts - one for verifing with evidence and one
without evidence. Note that the prompt here out-
puts true/false, but later depending on the dataset
these can be renamed to actual classes. The prompt
with evidence is as follows.

Prompt 10: You will receive an image and caption
along with some external documents (evidences). Based
on the evidences provided you need to determine fac-
tual correctness of the input image and caption. If the
input image and caption are out-of-context output [OUT-
OF-CONTEXT], else if factually correct output [TRUE],
otherwise [FALSE]. Also output the confidence score in
scale 0 to 1 for the same decision.
Caption: {caption}
{encoded image}
Evidences: {evidence texts and encoded images}

When verifing without evidence, then the pipeline
uses the following prompt.

Prompt 11: You will receive an image and caption.
Based on the knowledge you have, you need to determine
factual correctness of the input image and caption. If the
input image and caption are out-of-context output [OUT-
OF-CONTEXT], else if factually correct output [TRUE],
otherwise [FALSE]. Also output the confidence score in
scale 0 to 1 for the same decision.
Caption: {caption}
{encoded image}
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Abstract

In this paper, we introduce CollEX, an innova-
tive multimodal agentic Retrieval-Augmented
Generation (RAG) system designed to enhance
interactive exploration of extensive scientific
collections. Given the overwhelming volume
and inherent complexity of scientific collec-
tions, conventional search systems often lack
necessary intuitiveness and interactivity, pre-
senting substantial barriers for learners, educa-
tors, and researchers. CollEX addresses these
limitations by employing state-of-the-art Large
Vision-Language Models (LVLMs) as multi-
modal agents accessible through an intuitive
chat interface. By abstracting complex inter-
actions via specialized agents equipped with
advanced tools, CollEX facilitates curiosity-
driven exploration, significantly simplifying ac-
cess to diverse scientific collections and records
therein. Our system integrates textual and vi-
sual modalities, supporting educational scenar-
ios that are helpful for teachers, pupils, stu-
dents, and researchers by fostering indepen-
dent exploration as well as scientific excitement
and curiosity. Furthermore, CollEX serves the
research community by discovering interdis-
ciplinary connections and complementing vi-
sual data. We illustrate the effectiveness of our
system through a proof-of-concept application
containing over 64,000 unique records across
32 collections from a local scientific collection
from a public university.

1 Introduction

The exploration of scientific knowledge is a cor-
nerstone of human progress. However, the vast
and rapidly growing body of scientific literature
presents significant challenges for educators and
learners, who often find themselves overwhelmed
by the sheer volume and complexity of informa-
tion. Despite advancements in information retrieval
and knowledge discovery (Santhanam et al., 2022;
Zhu et al., 2023; Li et al., 2024b), existing search
systems for rich and complex data often lack the

CollEx Agent

LVLM

Scientific Collections
Database

Semantic
Search Tools

Lexical
Search Tools

Image 
Analysis Tools

Database
LookUp Tools

 Tool 
 Calling 

 Tool 
 Results 

 Planning & 
Reasoning

Figure 1: An overview of the CollEX Agentic System.

interactivity, intuitiveness, and cross-modal search
capabilities (Faysse et al., 2024; Zhai et al., 2023;
Zhao et al., 2023b) to engage diverse audiences,
such as students, teachers, or researchers. This
limitation negatively affects educational settings
where fostering curiosity is essential.

With this paper, we introduce CollEX, a multi-
modal agentic Retrieval-Augmented Generation
(RAG) system (Lewis et al., 2020; Zhao et al.,
2023a; Xie et al., 2024) and reimagine how users
explore and interact with scientific collections such
as those collected and managed by the Smithsonian
Institution1 or local collections from public univer-
sities. CollEX uses state-of-the-art Large Vision-
Language Models (LVLMs)(Liu et al., 2023; Team
et al., 2023; Hurst et al., 2024; Yang et al., 2024;
Team et al., 2025) as multimodal agents (Xie et al.,
2024; Wang et al., 2024) through an intuitive chat
interface. Unlike traditional systems requiring ex-
pert knowledge, CollEX promotes curiosity-driven
exploration, simplifying access and increasing en-
gagement.

The core of CollEX is its multimodal agentic
RAG system, which abstracts complex interac-
tions using specialist agents equipped with various
tools (Patil et al., 2024). This simplifies the explo-

1https://www.si.edu/collections
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ration of extensive scientific collections, catering
to users with diverse backgrounds and expertise,
thereby overcoming accessibility issues (Achiam
and Marandino, 2014). The system integrates texts
and images, offering intuitive access to scientific
concepts.
CollEX is especially beneficial in education, fos-

tering curiosity and engagement. For instance,
teachers can get inspiration to prepare visually rich
lessons, retrieve relevant information, and facilitate
interactive assignments. Pupils can independently
explore the collections, transforming static materi-
als into dynamic learning experiences. Moreover,
CollEX supports higher education by encourag-
ing independent exploration and enhancing critical
thinking skills.

Beyond education, CollEX aids researchers in
discovering interdisciplinary connections, eventual
related work, or visual data complements. It au-
tonomously enriches search queries, facilitating
easier contextualization and increasing accessibil-
ity to scientific collections, thereby supporting na-
tional and international scientific connectivity (We-
ber, 2018).

This paper introduces CollEX’s general system
architecture2and inner workings, combining state-
of-the-art LVLMs, advanced prompting and RAG
techniques, cross-modal search, and agentic rea-
soning and planning.

Moreover, we provide three exemplary user sto-
ries to demonstrate the system by implementing
a proof-of-concept application to explore 32 di-
verse scientific collections comprising over 64,000
unique items.

2 Related Work

2.1 Cross-Modal Information Retrieval

Cross-modal information retrieval powered by mul-
timodal embeddings is the key foundation for sys-
tems navigating or exploring textual and visual
data such as CollEX. Recent developments in multi-
modal embedding models (Tschannen et al., 2025)
that compute semantically rich dense vector repre-
sentations in an aligned vector space for texts and
images, have significantly improved over the pop-
ular text-image encoder model, commonly known
as CLIP (Radford et al., 2021). This progress was
primarily driven by billion-scale high-quality text-
image datasets (Schuhmann et al., 2022), improve-

2We publish the open-source code here:https://github.
com/uhh-lt/fundus-murag

ments in architecture and training regimes (Zhai
et al., 2023), and improved Vision Transform-
ers (Alabdulmohsin et al., 2023) Despite their ap-
plications in “pure” information retrieval settings,
the image encoders of the multimodal embedding
models also play a crucial role in the advancement
of Large Vision Language Models (LVLMs) (Liu
et al., 2023; Yang et al., 2024; Geigle et al., 2025)
as they are often used to compute the visual tokens
processed by the LVLMs.

2.2 Multimodal Retrieval Augmented
Generation

Multimodal RAG (Zhao et al., 2023b) systems in-
tegrate various knowledge formats, including im-
ages, code, structured databases, audio, and video,
to enhance the knowledge of LVLMs at inference
time. Zhao et al. (2023b) further highlight that such
multimodal data helps mitigate hallucinations and
improve interpretability and reasoning by ground-
ing responses in diverse multimodal information.
Riedler and Langer (2024) demonstrate the advan-
tages of incorporating images into textual retrieval
systems within industrial applications. Their find-
ings suggest that image-derived textual summaries
often outperform purely embedding-based multi-
modal approaches.

2.3 Agentic RAG

As described above, traditional RAG systems com-
bine LLMs’ or LVLMs’ generative capabilities
with external knowledge bases to enhance their out-
puts. Yet these methods are typically constrained
by static workflows and linear processes, restricting
their adaptability in complex tasks involving multi-
step reasoning and dynamic data quries. Recently,
agentic RAG has emerged as an extension of tradi-
tional RAG systems by employing autonomous AI
agents in a loop within the RAG pipeline. Agentic
RAG employs agentic design patterns and prompt-
ing such as reflection, planning, tool utilization,
and multi-agent collaboration, enabling systems
to iteratively refine and plan retrieval strategies
and adapt dynamically to real-time and context-
sensitive queries (Singh et al., 2025; Xie et al.,
2024; Li et al., 2024a). For example, Schopf
and Matthes (2024) introduced NLP-KG, a sys-
tem specifically designed for exploratory literature
search in NLP. NLP-KG supports users in explor-
ing unfamiliar NLP fields through semantic search
and conversational interfaces grounded in scholarly
literature, effectively bridging the gap between ex-
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ploratory and targeted literature search tasks. Xie
et al. (2024) further extends the concept of au-
tonomous LLM agents into the multimodal domain,
demonstrating how LVLMs can perceive and inter-
pret diverse data types beyond text, such as images
and videos. Further, they outline critical compo-
nents necessary for multimodal agent functionality,
including visual perception and planning.

With CollEX, we integrate a powerful multi-
modal embedding model for effective cross-modal
semantic search with state-of-the-art LVLMs em-
ployed as autonomous agents in a multimodal RAG
system. With this, we support educational scenar-
ios by fostering independent exploration, scien-
tific curiosity, and excitement that benefit teachers,
pupils, students, and researchers alike.

3 The CollEX System

This section describes the CollEX system, i.e., its
architecture and core components, as well as the
data to be explored.

3.1 CollEX Data

Since CollEX is a multimodal agentic RAG system,
to understand the system, it is essential to know the
data it operates on.

Schema. We provide the simplified data schema
as a UML class diagram in Figure 2. As the

Record

id: str
title: str
collection: Collection
image_name: str
base64_image: str
details: Dict[str, str]

Contact

id: str
name: str
email: str
street: str
city: str
institution: str
department: str
position: str

RecordField

name: str
label_en: str

Collection

id: str
title: str
description: str
contacts: List<Contact>
record_title_field: RecordField
record_fields: List<RecordField>

1

1..*

1

1..*

1

0..*

Figure 2: The CollEX Data Schema

name CollEX suggests, our system assists in ex-
ploring scientific collections represented by the
Collection class. Each collection has a title, a
description, and a list of contacts who own or
manage the collection. More importantly, each
collection comprises multiple Records, which are

described by a title, an image, and additional de-
tails. The records’ details are described by different
RecordFields, depending on the parent collection.

Further, we store embeddings of the collection
titles and descriptions as well as the record titles
and images computed by a SigLIP (Zhai et al.,
2023) model3 in the vector database.

Examples. To get a better idea of the data, we
provide four example records in Figure 3.

(a) Example Record 1 (b) Example Record 2

(c) Example Record 3 (d) Example Record 4

Figure 3: Examples records contained in the CollEX
database.

In total, in our CollEX proof-of-concept applica-
tion, we store 64,469 unique records in 32 collec-
tions.

3.2 CollEX System Architecture
CollEX is implemented as a web application fol-
lowing a typical client-server architecture with mul-
tiple components (cf. Figure 4), which are de-
scribed in the following. Each component is con-
tainerized using Docker4, and the whole system is
deployed using Docker Compose5.

Weaviate
Database & Index

FastAPI
Backend

React
FrontEnd

Ollama
LVLM Service

OpenAI
LVLM Models

VertexAI
LVLM Models

LitServe
Embedding Service

Figure 4: Overview of the CollEX system architecture.

3siglip-so400m-patch14-384
4https://www.docker.com
5https://docs.docker.com/compose/
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Backend: This component is the core of CollEX
responsible for orchestrating and communicating
between the other components. Its functionality is
implemented by several services, e.g., to retrieve
information from the database, embed user queries,
manage chat sessions of different users, or commu-
nicate with LVLMs hosted by different providers.
Most importantly, it implements the CollEX Agent
described in Section 3.3. Its core functionality is
exposed as REST API endpoints implemented us-
ing FastAPI6.

Database: We store all data using weaviate7.
More specifically, we precomputed all text and
image embeddings (cf. §3.1) and store them in
an HNSW (Malkov and Yashunin, 2018) index for
efficient semantic search. Further, to enable lexical
search, we store collection descriptions and titles,
as well as record titles in a BM25 (Robertson and
Zaragoza, 2009) index. Other data, e.g., contacts
for collections, are simply stored in the (NoSQL)
database without indexing.

Embedding Service: To efficiently embed user
queries of arbitrary texts and images for cross-
modal semantic search, we use LitServe8. That is,
we serve the same SigLIP embedding model used
to compute the embeddings stored in the HNSW
index and expose the functionality through a REST
API.

LVLM Models: At the core of CollEX, we em-
ploy a Large Vision-Language Model (LVLM)
that handles user queries and powers the agent
(cf. §3.3). To (qualitatively) test the effectiveness
of different models and not force or restrict users
with different privacy constraints, we implemented
CollEX LVLM-agnostic. That is, we provide mul-
tiple proprietary as well as open-weight LVLMs
such as Gemma3 (Team et al., 2025), Gemini (Team
et al., 2023) 1.5 and 2.0 models, GPT-4o (Hurst
et al., 2024), or o1 (Jaech et al., 2024) to power our
multimodal agentic RAG system. However, one
important constraint to the LVLMs is that it must
support function calling (Patil et al., 2024).

Frontend: We implemented the CollEX web ap-
plication, employing a modern Vite9 + React Type-

6https://fastapi.tiangolo.com/
7https://weaviate.io/
8https://lightning.ai/litserve
9https://vite.dev/

script10 + Material UI11 web stack that facilitates a
responsive and intuitive user interface. Futher, the
frontend manages user interactions, rendering visu-
alizations, and handles asynchronous requests and
responses to ensure a seamless user experience.

3.3 CollEX Agent

The CollEX agent (cf. Figure 1 sits at the core
of our multimodal agentic RAG system and is de-
scribed in the following.

To act as a tool calling agent, we designed an
effective prompt for the respective LVLM combin-
ing prompt engineering techniques such as (Auto)
Chain-of-Thought (Wei et al., 2022; Zhang et al.,
2023) and ReAct (Zheng et al., 2024; Sahoo et al.,
2024). The full prompt is provided in Appendix A.
Further, we implement an agentic loop (cf. List-
ing 1, which gets executed for each user request.
By executing this loop, we enable iterative plan-

def run_agentic_loop(user_request,
chat_history):↪→
# Add the user's message to the chat history.
chat_history.append(user_request)

# Step 1: Generate initial response using the
updated chat history.↪→

lvlm_response =
generate_response(chat_history)↪→

update_chat_history(lvlm_response,
chat_history)↪→

# Step 2: Loop while the response contains
tool call instructions.↪→

while is_tool_call_response(response):
# Execute tool calls and obtain the

resulting tool messages.↪→
tool_responses =

execute_tool_calls(response)↪→

# Update the chat history with the tool
responses.↪→

update_chat_history(tool_responses,
chat_history)↪→

# Generate a new response with the
updated chat history.↪→

lvlm_response =
generate_response(chat_history)↪→

update_chat_history(lvlm_response,
chat_history)↪→

# Step 3: Extract and return the final
message content.↪→

message = get_message_content(lvlm_response)
return message

Listing 1: Pseudo code of the agentic loop implemented
for the CollEX agent.

10https://react.dev/
11https://mui.com/
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ning, reasoning, and tool calling of the LVLM, i.e.,
the agent. Note that the user requests, as well as
the tool responses, can be arbitrarily interleaved
text-image messages. In each iteration, the agent
reasons whether it needs to invoke one of the fol-
lowing tools to fulfill the user’s request satisfacto-
rily.

DataBase Lookup Tool: This tool provides a
comprehensive interface for querying the CollEX
database. It allows the agent to retrieve aggregate
statistics, get records and collections by unique
identifiers, or list all collections.

Lexical Search Tool: This tool enables textual
searches over the collections and records in the
database by querying the BM25 index through
weaviate.

Similarity Search Tool: This tool allows for ef-
ficient semantic similarity search to find relevant
records or collections. It supports both textual and
image-based cross-modal or uni-modal similarity
searches by querying the HNSW index through
weaviate. Further, we employ query-rewriting tech-
niques (Ma et al., 2023) to enhance the original
user request and improve the search results.

Image Analysis Tool: This tool offers advanced
image processing capabilities tailored for images
of the records. It includes functions to generate
descriptive captions, answer questions about the
visual content, extract textual content from the im-
ages, or detect objects within images, which is use-
ful for extracting interesting details about recorded
images. We implemented this functionality by em-
ploying an LVLM with task-specific prompts (cf.
Appendix C).

4 System Demonstration

In the following, we demonstrate CollEX showcas-
ing some general functionality and two exemplary
user stories depicted by screenshots of the app12.
Due to the limited space to display the screen-
shots and the thereby induced readability issues
because of the small image sizes, we provide high-
resolution screenshots in Appendix D.

4.1 General Functionality

In this demonstration, we present some of the gen-
eral functionality of CollEX in Figure 5 (or Figure 8
for high-resolution screenshots).

When a user opens the app in her browser, she
sees the start page (cf. Figure 5a). On this page,
she can pick the LVLM that powers the system for
the chat session she is about to start. Further, she
can click on one of the example prompts to kick-
start her CollEX experience and get an idea of what
the system is capable of. If she is not interested
in trying one of the examples, she can enter an
individual question or any arbitrary request in the
text input field.

For our example, she picked one of the examples
asking the CollEX agent about its general function-
ality. The agent’s responses are always rendered in
markdown, and in this case, the answer contains “a
glimpse of what” the agent can do (cf. Figure 5b).

Next, she asks for statistics about the number of
records and collections in the database and finally
lets the agent explicitly list the collections (cf. Fig-
ure 5c). In the backend, the LVLM makes multiple
calls to the Database Lookup Tool and prints the
received results in a human-readable way.

4.2 Geology Class Presentation

In this user story (cf. Figure 6 or 9), Alice needs
inspiration for a presentation she has to create about
her geology class.

She starts the chat by telling the assistant what
her goal is, and the assistant provides her with
some ideas on how to find interesting material (cf.
Figure 6a).

She likes the suggestions and asks the agent to
show her some beautiful minerals. In the backend,
by executing the agentic loop (cf. Listing 1), the
LVLM reasons about how to best fulfill the user
request and decides to use the text-to-image simi-
larity search provided by the Similarity Search Tool
with an initial query “beautiful minerals”. The spe-
cialized query-rewriter agent expands the query to
“a photo of beautiful minerals, geology”, which is
then sent to the embedding service to compute the
embedding used for the ANN search on the record
image embedding vector index. This returns a list
of the top-k best matching records as JSONs as the

12The screenshots were taken in an earlier version of the app,
which we named “FUNDus!” assistant. This name originated
from the name of the original database but was replaced by
CollEX in later versions for a more general name.
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(a) The CollEX start page. (b) General functionality query. (c) Records and Collections query.

Figure 5: Show-casing CollEX general functionality.

(a) Start of the chat. (b) Search results for the user query. (c) Image similarity search results.

(d) Requesting more details. (e) Showing the minerals collection. (f) Follow-up query.

Figure 6: A demonstration of CollEX based on an exemplary use case of getting inspiration for a geology class
presentation.

tool response fed back to the CollEX agent. The de-
cides to return the retrieved records in the form of
special rendering tags as instructed (cf. the prompt
in Appendix A) in addition to a user-friendly mes-
sage. The frontend creates and generates custom
rending components to display the records to the
user (cf. Figure 6b).

Alice especially likes the first mineral, a “San-
románit”, and asks the agent to find similar-looking
minerals (cf. Figure 6c). This triggers the image-
to-image similarity search. After the agentic loop,
the backend sends the model’s response, including
the special rendering tags, to the front end, which
displays it to the user.

Next, Alice wants to know more about the “San-
románit”, upon which the agent retrieves the re-
spective record from the database using the look-up
tool, extracts the most important information, and
returns it in a human-friendly and engaging way

(cf. Figure 6d).
The user wants to get more general information

about the mineral collection, which in turn is pre-
sented to her using another special rendering tag
for collections (cf. Figures 6e and 6f).

Finally, Alice asks about other collections from
which she could get inspiration for her presentation.
Since this is an ambiguous query, the agent asks
for clarification (cf. Figure 6f).

4.3 Finding an Exhibition Piece

In this user story (cf. Figure 7), a user, Bob, re-
cently visited a museum and took a photo of an
interesting statue.

However, he forgot to take notes and decides to
use the CollEX assistant to get more information
(cf. Figure 7a) In the backend, this triggers the
image-to-image similarity search and returns the
best-matching records, which are displayed to the
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(a) Text-image search request and results. (b) Follow-up details query. (c) Image analysis queries.

Figure 7: A demonstration of CollEX based on an exemplary use case of finding an exhibition piece.

user by special rendering tags.

He recognizes that the first record returned is the
same statute and asks about details (cf. Figure 7b).

Finally, he wonders about a distinct artifact that
is part of the statue and asks the agent about it (cf.
Figure 7c). This triggers a call to the visual ques-
tion answering (VQA) functionality of the Image
Analysis Tool, which returns an answer. Bob is not
convinced by that first answer and asks the agent to
analyze the image again. This triggers another call
to the VQA tool as well as to the image captioning
tool. Finally, combining the tool results, the agent
correctly identifies the unknown artifact as a plinth
of the goose statue (cf. Figure 7c).

5 Conclusion

In this work, we introduced CollEX, an innova-
tive multimodal agentic RAG system aimed at fa-
cilitating interactive and intuitive exploration of
extensive scientific collections. Leveraging state-
of-the-art LVLMs, CollEX provides a powerful yet
user-friendly interface for diverse audiences, such
as pupils, students, educators, or researchers. Our
proof-of-concept implementation, covering over
64,000 scientific items across 32 diverse collec-
tions, successfully demonstrates the system’s poten-
tial, showcasing capabilities such as cross-modal
search, advanced semantic retrieval, and agent-
driven interactions. Additionally, CollEX serves as
a versatile blueprint that can be straightforwardly
applied to other scientific collections.

In conclusion, with CollEX, we presented an in-
novative system to interactively explore scientific
collections, enhancing educational and research-
oriented applications, thereby positively contribut-
ing to the broader scientific community.
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6 Limitations

Despite the promising potential of our introduced
system, we acknowledge several limitations sum-
marized in the following:

Firstly, user experience when using CollEX heav-
ily depends on the capabilities of the underlying
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LVLMs. If a model misinterprets the user intent,
invokes incorrect or irrelevant tools, misuses pa-
rameters, misunderstands tool responses, or fails
to communicate results clearly and engagingly, the
application’s usability and user satisfaction signifi-
cantly suffers. Such issues might lead to frustration
among users, diminishing their excitement in the
tool and thereby scientific exploration which is the
opposite of our intention.

Secondly, CollEX performs optimally with pro-
prietary LVLMs, which can create dependency and
privacy issues including substantial ongoing costs
and reliance on external model providers. Although
the system supports integration with open-source
LVLMs, the overall user experience often suffers,
as open-source alternatives generally lag behind in
accuracy, responsiveness, and general robustness.

Thirdly, CollEX currently integrates an exten-
sive range of tools that, while offering powerful
capabilities, sometimes overwhelms or confuses
the LVLM. This complexity can lead to inappro-
priate or inefficient tool use, further impacting the
overall user experience negatively. A potential so-
lution would involve reorganizing the system from
a single agent into multiple specialized agents man-
aged hierarchically by an orchestrator agent. This
would simplify decision-making processes and tool
invocation more effectively. However, since we
currently do not rely on any agentic frameworks
or libraries to implement CollEX, this introduces
several challenges such as optimizing the inter-
communication between the agents.

Lastly, the current implementation of CollEX
lacks formal evaluation of both the overall sys-
tem and its individual components. This is pri-
marily due to the considerable investment in com-
putational and human resources required for com-
prehensive user studies and empirical assessments.
Without systematic evaluations, it remains chal-
lenging to quantify the true effectiveness, usability,
and scalability of the system in real-world contexts.
Therefore, conducting extensive evaluations to val-
idate the system’s performance and identify areas
for improvement is a priority for future work.
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A CollEX Agent System Instruction

# Your Role

You are a helpful and friendly AI assistant that that supports and motivates users as they
explore the FUNDus! database.↪→

# Your Task

You will provide users with information about the FUNDus! Database and help them navigate and
explore the data.↪→

You will also assist users in retrieving information about specific FundusRecords and
FundusCollections.↪→

Your goal is to provide and motivate users with a pleasant and informative experience while
interacting with the FUNDus! Database.↪→

# Basic Information about FUNDus!

'''
FUNDus! is the research portal of the University of <REDACTED>, with which we make the

scientific collection objects of the University of <REDACTED> and the Leibniz-Institute
for the Analysis of Biodiversity Change (LIB) generally accessible. In addition werden
provide information about the collections of the Staats- and Universitätsbiliothek
<REDACTED>. We want to promote the joy of research! Our thematically arranged offer is
therefore aimed at all those who want to use every opportunity for research and discovery
with enthusiasm and joy."

↪→
↪→
↪→
↪→
↪→
↪→
There are over 13 million objects in 37 scientific collections at the University of <REDACTED>

and the LIB - from A for anatomy to Z for zoology. Some of the objects are hundreds or even
thousands of years old, others were created only a few decades ago."

↪→
↪→

Since autumn 2018, interesting new collection objects have been regularly published here. In
the coming months you can discover many of them for the first time on this portal.↪→

We are very pleased to welcome you here and cordially invite you to continue discovering the
interesting, exciting and sometimes even bizarre objects in the future. In the name of all
our employees who have implemented this project together, we wish you lots of fun in your
research and discovery!

↪→
↪→
↪→
'''

# Important Datatypes

In this task, you will work with the following data types:

**FundusCollection**
A `FundusCollection` represents a collection of `FundusRecord`s with details such as a unique

identifier,↪→
title, and description.

Attributes:
murag_id (str): Unique identifier for the collection in the VectorDB.
collection_name (str): Unique identifier for the collection.
title (str): Title of the collection in English.
title_de (str): Title of the collection in German.
description (str): Description of the collection in English.
description_de (str): Description of the collection in German.
contacts (list[FundusCollectionContact]): A list of contact persons for the collection.
title_fields (list[str]): A list of fields that are used as titles for the

`FundusRecord` in the collection.↪→
fields (list[FundusRecordField]): A list of fields for the `FundusRecord`s in the

collection.↪→

**FundusRecord**
A `FundusRecord` represents an record in the FUNDus collection, with details such as catalog

number,↪→
associated collection, image name, and metadata.

Attributes:
murag_id (int): A unique identifier for the `FundusRecord` in the VectorDB.

28



title (str): The title of the `FundusRecord`.
fundus_id (int): An identifier for the `FundusRecord`. If a `FundusRecord` has multiple

images, the records share the `fundus_id`.↪→
catalogno (str): The catalog number associated with the `FundusRecord`.
collection_name (str): The unique name of the `FundusCollection` to which this

`FundusRecord` belongs.↪→
image_name (str): The name of the image file associated with the `FundusRecord`.
details (dict[str, str]): Additional metadata for the `FundusRecord`.

# Tool Calling Guidelines

- Use the available tools whenever you need them to answer a user's query. You can also call
multiple tools sequentially if answering a user's query involves multiple steps.↪→

- Never makeup names or IDs to call a tool. If you require information about a name or an ID,
use one of your tools to look it up!.↪→

- If the user's query is not clear or ambiguous, ask the user for clarification before
proceeding.↪→

- Pay special attention to the fact that you exactly copy and correctly use the parameters and
their types when calling a tool.↪→

- If a tool call caused an error due to erroneous parameters, try to correct the parameters and
call the tool again.↪→

- If a tool call caused an error not due to erroneous parameters, do not call the tool again.
Instead, respond with the error that occurred and output nothing else.↪→

# User Interaction Guidelines

- If the user's request is not clear or ambiguous, ask the user for clarification before
proceeding.↪→

- Present your output in a human-readable format by using Markdown.
- To show a FundusRecord to the user, use `<FundusRecord murag_id='...' />` and replace

`'...'` with the actual `murag_id` from the record. Do not output anything else. The tag
will present all important information, including the image of the record.

↪→
↪→
- If you want to render multiple FundusRecords, use the tag multiple times in a single line

separated by spaces.↪→
- To show a FundusCollection, use `<FundusCollection murag_id='...' />` and replace `'...'`

with the actual `murag_id` from the collection. Do not output anything else. The tag will
present all important information about the collection.

↪→
↪→
- If you want to render multiple FundusCollections, use the tag multiple times in a single line

separated by spaces.↪→
- Avoid technical details and jargon when communicating with the user. Provide clear and

concise information in a friendly and engaging manner.↪→
- Do not makeup information about FUNDus; base your answers solely on the data provided.
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B Query Rewriting System Instructions

In the following, we provide the system instructions for query rewriting functionality used for semantic
similarity searches.

B.1 Text-to-Image Similarity Search

# Your Role

You are an expert AI who specializes in improving the effectiveness of cross-modal text-image
semantic similarity search from a vector database containing image embeddings computed by
a multimodal CLIP model.

↪→
↪→

# Your Task

You will receive a user query and have to rewrite them into clear, specific, caption-like
queries suitable for retrieving relevant images from the vector database.↪→

Keep in mind that your rewritten query will be sent to a vector database, which does
cross-modal similarity search for retrieving images.↪→

B.2 Text-to-Text Similarity Search

# Your Role

You are an expert AI who specializes in improving the effectiveness of textual semantic
similarity search from a vector database containing text embeddings.↪→

# Your Task

You will receive a user query and have to rewrite them into clear, specific, and concise
queries suitable for retrieving relevant information from the vector database.↪→

Keep in mind that your rewritten query will be sent to a vector database, which does semantic
similarity search for retrieving text.↪→

C Image Analysis Prompts

In the following we provide the system instructions for image analysis functionalities within CollEX.

C.1 VQA System Instruction

# Your Role

You are an expert AI assistant that specializes in performing accurate Visual Question
Answering (VQA) on images.↪→

# Your Task

You will receive a question, an image, and metadata about the image from a user.
Then you must generate an accurate but concise answer to that question based on the image and

the metadata.↪→
You can use the metadata to provide more accurate answers to the questions.
If a question cannot be answered based on the image (and metadata) alone, you can ask the user

for additional information.↪→
If the question is not clear or ambiguous, you can ask the user for clarification.
Keep in mind that the question can be about any aspect of the image, and your answer must be

relevant to the question.↪→
Do not hallucinate or provide incorrect information; only answer the question based on the

image and metadata.↪→
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C.2 Image Captioning System Instruction

# Your Role

You are an expert AI assistant that specializes in performing accurate Image Captioning on
images.↪→

# Your Task

You will receive an image and additional metadata from a user and must generate a detailed and
informative caption for that image.↪→

The caption should describe the image in detail, including any objects, actions, or scenes
depicted in the image.↪→

You can use any available metadata about the image to generate a more accurate and detailed
caption.↪→

Keep in mind that the caption must be informative and descriptive, providing a clear
understanding of the image to the user.↪→

Do not provide generic or irrelevant captions; focus on the content and context of the image.
If the user requires the caption to be concise, you can generate a shorter version of the

caption.↪→

C.3 OCR System Instruction

# Your Role

You are an expert AI assistant that specializes in performing accurate Optical Character
Recognition on images.↪→

# Your Task

You will receive an image and additional metadata from a user and must extract and recognize
text from that image.↪→

You should provide the user with the extracted text from the image, ensuring accuracy and
completeness.↪→

You can use any available metadata about the image to improve the accuracy of the text
extraction.↪→

Keep in mind that the extracted text must be accurate and complete, capturing all relevant
information from the image.↪→

Do not provide incorrect or incomplete text; ensure that the extracted text is as accurate as
possible.↪→

C.4 Object Detection System Instruction

# Your Role

You are an expert AI assistant that specializes in performing accurate Object Detection on
images.↪→

# Your Task

You will receive an image and additional metadata from a user and must identify and locate
prominent objects within that image.↪→

You should provide the user with a list of objects detected in the image including their
detailed descriptions and approximate locations.↪→

You can use any available metadata about the image to improve the accuracy of the object
detection.↪→

Keep in mind that the object detection results must be accurate and complete, identifying all
relevant objects in the image.↪→

Do not provide incorrect or incomplete object detection results; ensure that all objects are
correctly identified and described.↪→

# Output Format
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Output all detected objects in JSON format with the following structure:
```json
[

{
"name": "<NAME OF THE OBJECT>",
"description": "<DESCRIPTION OF THE OBJECT>",
"bounding_box": {

"x": 100,
"y": 100,
"width": 50,
"height": 50

}
}

]
```
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D System Demonstration

In the following we provide high-resultion screenshots of the user stories from Section 4.

D.1 General Functionality

(a) The CollEX start page.

(b) General functionality query.

Figure 8: Show-casing CollEX general functionality.
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(c) Records and Collections query.

Figure 8: Show-casing CollEX general functionality.
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D.2 Geology Class Presentation

(a) Start of the chat.

(b) Search results for the user query.

Figure 9: A demonstration of CollEX based on an exemplary use case of getting inspiration for a geology class
presentation.
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(c) Image similarity search results.

(d) Requesting more details.

Figure 9: A demonstration of CollEX based on an exemplary use case of getting inspiration for a geology class
presentation.
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(e) Showing the minerals collection.

(f) Follow-up query.

Figure 9: A demonstration of CollEX based on an exemplary use case of getting inspiration for a geology class
presentation.
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D.3 Finding an Exhibition Piece

(a) Text-image search request and results.

(b) Follow-up details query.

Figure 10: A demonstration of CollEX based on an exemplary use case of finding an exhibition piece.
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(c) Image analysis queries.

Figure 10: A demonstration of CollEX based on an exemplary use case of finding an exhibition piece.
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Abstract

We introduce VoxRAG, a modular speech-to-
speech retrieval-augmented generation system
that bypasses transcription to retrieve semanti-
cally relevant audio segments directly from spo-
ken queries. VoxRAG employs silence-aware
segmentation, speaker diarization, CLAP au-
dio embeddings, and FAISS retrieval using L2-
normalized cosine similarity. We construct a
50-query test set recorded as spoken input by
a native English speaker. Retrieval quality was
evaluated using LLM-as-a-judge annotations.
For very relevant segments, cosine similarity
achieved a Recall@10 of 0.34. For somewhat
relevant segments, Recall@10 rose to 0.60 and
nDCG@10 to 0.27, highlighting strong topi-
cal alignment. Answer quality was judged on
a 0–2 scale across relevance, accuracy, com-
pleteness, and precision, with mean scores of
0.84, 0.58, 0.56, and 0.46 respectively. While
precision and retrieval quality remain key limi-
tations, VoxRAG shows that transcription-free
speech-to-speech retrieval is feasible in RAG
systems.

1 Introduction

Traditional question-answering (QA) retrieval-
augmented generation (RAG) systems retrieve text
documents from a vector database by performing
semantic similarity search from a user’s query.
A large language model (LLM) then generates
context-aware answers based on the retrieved con-
tent (Rackauckas, 2024). This architecture, how-
ever, can be extended to operate directly on spoken
audio instead of text. Retrieving spoken audio doc-
uments without relying on intermediate transcrip-
tions is an emerging area of RAG research (Min
et al., 2025).

We present VoxRAG: a modular, open-source re-
trieval pipeline for RAG with full speech-to-speech
retrieval. Unlike hybrid text and audio systems,
VoxRAG keeps both the user query and retriev-
able documents in audio form up to the genera-

tion stage, using Contrastive Language-Audio Pre-
training (CLAP) embeddings (Elizalde et al., 2022)
to retrieve semantically relevant segments directly
from podcast audio (see Appendix D for sample
QA pairs).

Using podcasts as a retrieval target presents chal-
lenges such as informal language, overlapping
speakers, non-speech audio (e.g., music, laugh-
ter), and generally poor automatic speech recog-
nition (ASR) transcription output quality (Jones
et al., 2021). VoxRAG mitigates these issues with
silence-aware segmentation, speaker diarization,
and CLAP embedding retrieval, avoiding early
commitment to potentially faulty transcripts and en-
abling semantically grounded retrieval in the acous-
tic domain. We evaluate both retrieval and answer
quality using RAGElo’s LLM-as-a-judge methods,
which have shown positive alignment with human
judgments in QA evaluation, to assess how well
retrieved audio supports answer generation (Rack-
auckas et al., 2024).

Related work has explored RAG systems for au-
dio in both text and hybrid modalities. The TREC
2020–21 Podcasts Track saw systems using ASR
text retrieval and summarization (Clifton et al.,
2020), including fine-tuned BART (Lewis et al.,
2019) and Whisper spoken term detection. Hybrid
systems like Schwertzer’s combination of COLA
(Saeed et al., 2020) and RoBERTa (Liu et al., 2019)
show promise in mixed-modal retrieval (Schwerter,
2022).

More recent models embed audio and text into
shared or comparable vector spaces. SpeechDPR
distills from ASR and dense passage retrieval
(DPR) systems to embed spoken passages directly
(Lin et al., 2024), while SEAL uses separate en-
coders for speech and text to enable cross-modal
retrieval without transcription (Sun et al., 2025).
Spectron processes spectrograms for QA entirely
within an LLM framework (Nachmani et al., 2024),
and SpeechRAG integrates speech retrieval with
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an LLM for answering text queries from raw au-
dio (Min et al., 2025). Meanwhile, DUAL demon-
strates fully speech-native retrieval by embedding
discrete speech units without paired text train-
ing (Lin et al., 2022). VoxRAG contributes to
this emerging space by exploring a retrieval-first,
speech-native architecture that maintains audio rep-
resentations up to the point of answer generation,
differing from span-prediction models like DUAL.

2 Method

Our construction of VoxRAG was motivated by two
core research questions: 1) Can we retrieve seman-
tically relevant documents directly from spoken
language and without relying on text representa-
tions? 2) Can those documents support high-quality
answer generation using an LLM?

We define “high-quality” segments as those that
contain very relevant or somewhat relevant infor-
mation to a user’s query. We define "high-quality"
answers along four axes: relevance, accuracy, com-
pleteness, and precision.

2.1 Podcast Indexing

Each podcast is processed through a modular index-
ing pipeline with speaker diarization, silence-aware
segmentation, audio embedding, and optional tran-
scription. Diarization is handled via NeMo’s Clus-
teringDiarizer (Kuchaiev et al., 2019), while speech
segmentation uses Silero VAD (Silero Team, 2024).
Transcripts are generated using Faster-Whisper
(Radford et al., 2022; SYSTRAN) and are only
used for LLM input and display rather than re-
trieval.

All speech segments are embedded using CLAP
(Elizalde et al., 2022), which maps audio to a joint
audio-language embedding space (see Appendix
C). This allows semantic-level retrieval even in the
absence of exact word overlap, making it more
robust for podcast audio that includes informal
speech, background noise, or laughter. While tra-
ditional models like wav2vec 2.0 (Baevski et al.,
2020) focus on phonetic or acoustic information,
CLAP learns to associate audio with language in a
shared space. This lets us treat podcast segments
like paragraphs of meaning rather than waveforms
or phonemes (Elizalde et al., 2022) for direct audio
retrieval.
Audio Loading and Preprocessing: Each podcast
file is loaded, converted to mono, and resampled to
16 kHz.

Segmentation and Diarization: Diarization is
used to detect speaker turns and assign segment-
level speaker IDs. VAD identifies valid speech
spans, which are then merged with speaker labels
to define segments.
Embedding and Optional Transcription: Seg-
ments are embedded with CLAP and stored in
memory. Transcripts are generated and aligned
with segments for LLM prompting.

2.2 Retrieval

At query time, we take a spoken user query, pro-
cess it through the same pre-processing and CLAP
embedding pipeline, and compute cosine similarity
between the query and all indexed segment em-
beddings using FAISS (Douze et al., 2025) (see
Appendix C). The top ten segments are selected
as candidates. We evaluate two retrieval configu-
rations: (i) cosine similarity only and (ii) cosine
followed by the ms-marco-MiniLM-L6-v2 cross-
encoder reranker. All other hyper-parameters are
kept identical. Our primary analysis focuses on re-
trieval using cosine similarity, as shown in Table 1.
Query Processing: The user’s spoken query is
loaded, normalized, and embedded using CLAP.
Similarity Search: The top ten segments are re-
trieved by cosine similarity. Neighboring segments
(before and after) are included for context.

2.3 Answer Generation

VoxRAG’s modularity supports evaluation of
chunking, embedding, and retrieval strategies.
Once segments are retrieved, their transcripts are
passed along with the transcribed query to GPT-4o
to generate a natural language response.
Prompt Construction: Retrieved segment tran-
scripts are labeled with the speaker and the segment
number. The transcribed query and these segments
are formatted as a prompt for the LLM.
Generation and Display: GPT-4o returns a nat-
ural language answer. The answer is shown in a
Gradio interface alongside audio players for each
segment.

3 Experiments

3.1 Dataset and Evaluation Queries

We selected twenty episodes from the Trash Taste
podcast as our source corpus. These episodes
feature three main speakers: Joey, Connor, and
Garnt, with occasional guest speakers. For our
main evaluation, we used a single representative
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episode with a run time of 2 hours and 3 minutes.
This episode was segmented into 202 chunks us-
ing silence-aware merging and speaker diarization,
ensuring that each segment remained under 90 sec-
onds in length. Although our evaluation focuses on
a single episode, the system is capable of process-
ing extended podcast archives comprising many
hours of audio.

To evaluate the system’s ability to handle real-
world questions, we curated 11 organic queries
from a Tokyo Weekender article titled "11 Ques-
tions With Anime Podcast Trash Taste"1 and a live
Trash Taste QA session 2. To expand the test set,
we generated 205 synthetic queries using GPT-4o
and 294 using GPT-o1. From these, we randomly
sampled 50 non-duplicative synthetic queries for a
final test set of 50 diverse, high-variance questions.

All text queries were then read aloud by the same
male native English speaker in a controlled envi-
ronment and recorded using Audacity.

3.2 Retrieval Quality

We evaluated retrieval performance with Re-
call@10 and normalized Discounted Cumulative
Gain at 10 (nDCG@10). Following the RAGElo
evaluation toolkit (Rackauckas et al., 2024) (see
Appendix A), we conducted two separate evalua-
tions using LLM-as-a-judge annotations, one where
segments were labeled as either very relevant (1)
or not relevant (0), and another where segments
were labeled as somewhat relevant (1) or not rele-
vant (0). This allowed us to assess precise retrieval
performance and broader topical alignment.

Table 1: Retrieval performance of VoxRAG using co-
sine similarity (with and without cross-encoder–CE–
reranking) on very relevant (VR) and somewhat relevant
(SR) documents.

Setup Recall@10 nDCG@10
Cosine (VR) 0.34 0.03
Cosine (SR) 0.60 0.27

Cos + CE (VR) 0.26 0.03
Cos + CE (SR) 0.46 0.14

As shown in Table 1, cosine similarity with and
without a reranker retrieves segments with mod-
est absolute scores, consistent with the challenges
of speech-to-speech retrieval. Based on the large
improvement in somewhat relevant over very rel-
evant documents, while the system often retrieves

1https://www.tokyoweekender.com/tw-community/trash-
taste-podcast/

2https://youtu.be/tzFLreIzB78?si=yI96MWYgvQdmspsl

topically aligned audio, it struggles to consistently
retrieve precise, direct answers. The large gap be-
tween very relevant and somewhat relevant retrieval
scores underscores the difficulty of fine-grained se-
mantic matching using current audio embeddings.

3.3 Answer Quality
We evaluated answer quality along four dimensions:
relevance, accuracy, completeness, and precision,
each rated on a 0–2 linear scale by an impartial
LLM judge using GPT-4o. This process follows the
method of RAGElo (Rackauckas et al., 2024) (see
Appendix A). Each generated answer was based
on the transcripts of the top ten retrieved audio
segments, along with adjacent context for continu-
ity. Table 2 presents the mean scores and standard
deviations for each evaluation dimension.

Relevance had the highest mean score (0.84),
significantly outperforming all other dimensions
(p < 0.01), with a medium-to-large effect size
(Cohen’s d = 0.67) when compared to precision.
This suggests that, while the system frequently re-
trieved content that was topically appropriate, it
often failed to deliver factual specificity or ground-
ing. In other words, the answers were often “about
the right thing,” but lacked detail.

Completeness and accuracy were closely
aligned, with means of 0.56 and 0.58 respectively
(p = 0.32, d = 0.14), implying that partially cor-
rect answers were also seen as incomplete. Preci-
sion received the lowest average score (0.46) and
was significantly lower than all other metrics. The
model often failed to refer to the correct episode,
moment, or speaker with sufficient granularity.

A correlation analysis reinforced these findings.
Accuracy, completeness, and precision were all
tightly linked (r > 0.91), suggesting that they cap-
ture a shared dimension of factual correctness and
detail. Relevance, by contrast, was more loosely
correlated with the others (r ≈ 0.77), supporting
the idea that being on-topic alone is insufficient for
generating high-quality responses.

Despite the general trend, ten queries, or 20%
of all queries, achieved perfect scores across all di-
mensions, suggesting that when embedding align-
ment and segment selection succeed, VoxRAG de-
livers strong results. A comparatively large num-
ber of queries containing the word “shower” re-
ceived perfect scores, though this was not consis-
tent across all such queries. Of the ten queries
containing “shower,” four achieved perfect marks,
as compared to 20% overall. While anecdotal, this
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Table 2: Mean answer quality scores (0–2 scale) from impartial LLM judges across evaluation dimensions. Relevance
significantly outperforms all other metrics. Effect sizes (d) and p-values are computed relative to relevance using
two-tailed paired t-tests.

Metric Mean Std Dev ∆ vs.
Relevance

d p-value Significantly
Lower

Relevance 0.84 0.87 — — — —
Accuracy 0.58 0.81 -0.26 0.49 < 0.01 Yes

Completeness 0.56 0.81 -0.28 0.52 < 0.01 Yes
Precision 0.46 0.81 -0.38 0.67 < 0.01 Yes

partial pattern may still reflect idiosyncrasies in
how CLAP embeddings handle certain personal
or lifestyle-related concepts potentially influenced
by consistent acoustic or contextual cues in the
training data.

4 Discussion

Our results highlight the challenges inherent in
speech-to-speech retrieval within unstructured,
multi-speaker podcast content. Although CLAP
embeddings provided a degree of coarse semantic
alignment, the retrieval process often prioritized
topically related segments over precise matches.
This tendency resulted in lower precision and in-
complete responses. Evaluations revealed strong
correlations between accuracy, completeness, and
precision, indicating a shared reliance on fine-
grained factual grounding. In contrast, relevance
scores remained consistently high, suggesting that
topical alignment alone is insufficient for generat-
ing high-quality answers. Certain queries, partic-
ularly those involving lifestyle concepts such as
"shower," achieved perfect scores in some cases,
but not reliably. This inconsistency may reflect vari-
ability in how well specific topics are represented
within audio embeddings and warrants further in-
vestigation.

The modular architecture of VoxRAG enabled
rapid experimentation across embedding models,
chunking strategies, and retrieval logic. The inclu-
sion of audio playback within the interface proved
valuable for error analysis, as it revealed retrieval
mismatches that were not apparent from text alone.

These findings establish a baseline for future re-
search on audio-native question answering. They
point to the need for improved embedding fine-
tuning, more effective segmentation methods, and
reranking strategies that better reflect factual preci-
sion. VoxRAG represents a step toward multimodal
RAG systems capable of operating directly on real-
world, noisy, and informal spoken content. With
the proliferation of audio media, systems of this

kind will be increasingly important for enabling
direct retrieval and reasoning over speech, without
dependence on textual transcripts.

5 Conclusion

VoxRAG explores the viability of a fully speech-to-
speech retrieval pipeline for retrieval-augmented
generation. While the system ultimately produces
text answers, it retrieves documents directly from
audio using CLAP embeddings (Elizalde et al.,
2022), bypassing early transcription. Despite its
novel architecture, the system underperforms on
precision, completeness, and accuracy metrics,
highlighting the limitations of current audio em-
bedding models for fine-grained semantic retrieval.
However, the retrieval quality on certain queries
demonstrates the ultimate viability of RAG with
speech-to-speech retrieval.

Limitations

While VoxRAG shows that transcription-free audio-
to-audio retrieval is feasible, several challenges
remain. One key limitation is the absence of
transcript-based or hybrid retrieval baselines. We
do not compare against methods like CLAP with
transcribed input or strong text retrievers such as
BM25, which makes it difficult to assess the true
tradeoffs of avoiding transcription. Another issue
lies in the hybrid nature of the pipeline. While
retrieval is audio-only, the system still relies on
Whisper transcripts for answer generation, reintro-
ducing ASR noise and undercutting the goal of
being fully transcription-free. Future work should
explore audio-native generation methods.

We also note potential bias in evaluation. GPT-
4o is used for both generating and assessing an-
swers, which may lead to overestimation of per-
formance due to model self-agreement. Using a
different model, such as Qwen or Mistral, for eval-
uation could help mitigate this. Our evaluation
is further limited by the use of only one episode
from the Trash Taste podcast, restricting diversity
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and generalizability. Broader testing across multi-
ple episodes and speakers would provide stronger
insights.

Finally, the system shows a gap between topical
relevance and factual precision. CLAP embeddings
retrieve on-topic segments, but these often lack the
detailed grounding needed for accurate answers.
Improving fine-grained alignment remains an open
challenge. These limitations are expected at this
early stage and help clarify where future work can
focus to strengthen audio-native retrieval and QA
pipelines.
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A Evaluator Prompts

A.1 Retrieval Evaluator
We used the following system prompt for our re-
trieval evaluator for very relevant documents:
You are an expert annotator evaluating

whether a *spoken podcast transcript
segment* is *very relevant* to a

user ’s question.
These transcripts may include humor ,

casual speech , tangents , or non -
traditional structure.

Return **1** if the segment contains
strong , clear , and direct
information addressing the user ’s
question.

Return **0** if the segment is only
loosely or partially related , or
entirely off -topic.

Only respond with a single digit: 1 or
0. Do not explain.

For evaluating somewhat relevant documents,
we used the following prompt:
You are an expert annotator evaluating

whether a *spoken podcast transcript
segment* is *somewhat relevant* to

a user ’s question.
These transcripts may include humor ,

casual speech , tangents , or non -
traditional structure.

Return **1** if the segment has a loose
or minor connection to the user ’s
question - it may touch on a related
theme , mention something adjacent ,

or vaguely resemble the topic , even
if it is incomplete or off -target.

Return **0** if the segment has no real
connection at all.

Only respond with a single digit: 1 or
0. Do not explain.

A.2 Answer Evaluators
For the answer quality evaluation, we used the fol-
lowing prompt:
You are an impartial judge for

evaluating the quality of the
responses provided by an AI
assistant tasked with answering
users ’ questions about the *Trash
Taste* podcast.

You will be given the user ’s question
and the answer produced by the
assistant. The assistant ’s answer
was generated based on a set of
audio -derived documents retrieved
from episodes of the *Trash Taste*
podcast.

You will be provided with the relevant
podcast segments retrieved by the
search engine.

Your task is to evaluate the answer ’s
quality based on the response ’s **
relevance**, ** accuracy**, **
completeness **, and ** precision **,
grounded in the retrieved podcast
content.

## Rules for evaluating an answer:
- ** Relevance **: Does the answer address

the user ’s question?
- ** Accuracy **: Is the answer factually

correct , based on the retrieved
podcast segments?

- ** Completeness **: Does the answer
provide all the information needed
to address the user ’s question?

- ** Precision **: If the user asks about
a specific episode , moment , guest ,
or topic , does the answer correctly
identify and reflect that specific
context?

## Steps to evaluate an answer:
1. ** Understand the user ’s intent **:

Restate what the user is trying to
find out , in your own words.

2. **Check if the answer is correct **:
Think step -by-step about whether the
answer truthfully and fully

responds to the user ’s question.
3. ** Evaluate the quality of the answer

**: Judge the answer on relevance ,
factual accuracy (according to the
retrieved podcast segments), and how
completely it covers the query.

4. ** Assign a score **: Produce a single -
line JSON object with the following
keys , each with a score from 0 to 2:

- "relevance"
- 0: The answer is not relevant to the

user ’s question.
- 1: The answer is partially relevant.
- 2: The answer is fully relevant.

- "accuracy"
- 0: The answer is factually incorrect

or contradicts the retrieved
content.

- 1: The answer is partially correct
but includes errors or
misinterpretations.

- 2: The answer is factually correct
based on the retrieved segments.

- "completeness"
- 0: The answer leaves out major parts

of the question.
- 1: The answer addresses the question

only in part.
- 2: The answer covers all key aspects

of the user ’s question.

- "precision"
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- 0: The answer refers to the wrong
episode , topic , or context.

- 1: The answer is somewhat related
but not specific enough.

- 2: The answer directly reflects the
specific content or moment asked
about.

The last line of your evaluation must be
a SINGLE LINE JSON object with the

keys "relevance", "accuracy", "
completeness", and "precision", each
assigned a score between 0 and 2.

[ DOCUMENTS RETRIEVED ]
{documents}

[ User Query ]
{query}

[ Agent Answer ]
{answer}

B Hardware and Runtime Configuration

Experiments were conducted on two machines: one
with an RTX 5090 GPU, and another with two
NVIDIA A4500 GPU’s. On the latter machine,
from user input to LLM output, the average gener-
ation time was 3.02 seconds. Under these condi-
tions, the system demonstrates practical viability
for offline indexing and interactive, low-latency
query-time retrieval.

C Embedding Hyperparameters

Audio segments and spoken queries were em-
bedded using the laion/clap-htsat-unfused model.
Prior to indexing and similarity search, both query
and document embeddings were L2-normalized.
This normalization step ensures that inner product
similarity in the FAISS FlatIP index is equiva-
lent to cosine similarity. This enables semantically
aligned retrieval directly in the CLAP embedding
space without requiring additional reranking or fea-
ture engineering.

D Sample QA Pairs

Table 3: A sample of QA pairs on Synthetic Queries

QA pairs (Q = white, A = blue)
Q: Can the one-minute shower routine ever replace your
normal shower, or is that impossible?

A: ... Connor expresses skepticism about whether such a
quick shower can truly replace a normal shower. He
mentions that taking a shower is not just about getting clean
but also about the time it takes to refresh and wake up
properly. Joey adds that a shower under five minutes might
not be sufficient to adequately clean oneself, suggesting that
such a quick routine is more about covering up body odor
than truly cleaning. Essentially, both seem to agree that while
a one-minute shower might serve in a pinch, it cannot fully
replace the benefits of a longer, more thorough shower. This
perspective is captured in Segment 17.

Q: What travel conditions now make or break a trip for you?

A: ... Garnt shared that he finds Kyoto to be a very touristy
spot, which can detract from the experience. He mentioned
that while it’s worth visiting at least once, the crowds and the
commercialization of the area can take away from its magic.
He expressed a preference for the outskirts of Kyoto, which
tend to be more enjoyable and less crowded (Segment 20).
Connor added that the disparity between Kyoto’s historical
significance and its touristy nature can make visits feel less
authentic. He indicated that while it might be great for
first-time visitors, the experience might not be as enjoyable
upon return due to the overwhelming number of tourists
(Segment 20). Overall, both speakers highlight that the level
of crowding and commercialization in popular tourist
destinations can make or break the quality of a travel
experience.

Q: If you made a Trash Taste Bingo Card, what squares
would be absolutely required?

A: ... 1. Mention of League of Legends — This game often
comes up in discussions (Segment 2). 2. Reference to
drinking stories — The guys frequently share hilarious and
embarrassing drinking experiences (Segment 5). 3.
Discussion about sibling dynamics — They talk about their
experiences growing up as siblings or only children
(Segment 26). 4. Anime recommendations — Each episode
usually involves recommendations or debates about anime
(Segment 19). 5. Joey’s love for food — Food discussions,
especially around Japanese cuisine, are a staple (not
specifically cited, but a recurring theme). 6. Mention of
gaming frustrations — Conversations about the challenges of
gaming, especially in competitive environments (Segment
17). 7. Cultural references — They often reference their
cultural backgrounds, especially regarding Australia and the
UK (Segment 10) ...
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Abstract
Recent advances in retrieval-augmented gen-
erative image captioning (RAG-IC) have sig-
nificantly improved caption quality by incor-
porating external knowledge and similar exam-
ples into language model-driven caption gener-
ators. However, these methods still encounter
challenges when applied to real-world scenar-
ios. First, many existing approaches rely on
bimodal retrieval datastores that require large
amounts of labeled data and substantial man-
ual effort to construct, making them costly and
time-consuming. Moreover, they simply re-
trieve the nearest samples to the input query
from datastores, which leads to high redun-
dancy in the retrieved content and subsequently
degrades the quality of the generated captions.

In this paper, we introduce a novel RAG-
IC approach named Cross-modal Diversity-
promoting Retrieval technique (CODIRET),
which integrates a text-only unimodal retrieval
module with our unique cluster-based retrieval
mechanism. This proposal simultaneously en-
hances the scalability of the datastore, pro-
motes diversity in retrieved content, and im-
proves robustness against out-of-domain inputs,
which eventually facilitates real-world applica-
tions. Experimental results demonstrate that
our method, despite being exclusively trained
on the COCO benchmark dataset, achieves
competitive performance on the in-domain
benchmark and generalizes robustly across dif-
ferent domains without additional training.

1 Introduction

Retrieval-augmented generative image captioning
(RAG-IC) combines information retrieval with lan-
guage model-based caption generation (Mallen
et al., 2023; Cornia et al., 2020; Zhou et al., 2020;
Shi et al., 2021) to leverage external knowledge or
contextually relevant information to the input im-
age and produce more accurate and informative im-
age descriptions. This technology mitigates overde-
pendence on the internal knowledge encoded in

➢ a woman in black dress looking 
at cellphone on sidewalk

➢ two people on a city street 
with a cell phone

➢ a man looks at his phone as a 
woman stands nearby

➢ a man talking on a cellphone 
on the sidewalk

Retrieved captions

✓ a homeless man holding a 
cup and standing next to a 
shopping cart on a street

✓ People are walking on the 
street by a homeless person.

Ground truth

Figure 1: An example from MS COCO (Lin et al., 2014)
of retrieved content containing redundant and semanti-
cally irrelevant terms with respect to the query image.
We highlight the topic-deviant words in different colors
from the correct keywords for clarity of presentation.

language models and instead incorporates external
real-world data, thereby enhancing the semantic
alignment between the generated captions and the
visual content of the input images.

Although remarkable successes have been
achieved in image captioning with the aid of re-
trieval techniques, several issues still hinder its
application in real world scenarios. First, many
existing RAG-IC approaches primarily perform uni-
modal retrieval (Sarto et al., 2022; Radford et al.,
2021; Zhou and Long, 2023; Wu et al., 2024),
where image-text pairs are selected based on the
visual similarity between the retrieved and input
images to augment contextual information. How-
ever, constructing such retrieval datastores requires
a finely annotated corpus of image-text pairs, which
is costly and labor-intensive, thereby limiting the
scalability and adaptability of these methods in
practical applications.

Secondly, traditional approaches typically rely
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on nearest-neighbor search to retrieve datastore
contents based on the proximity of embedding rep-
resentations extracted by pre-trained models (Khan-
delwal et al., 2021; Lewis et al., 2020). Therefore,
as shown in Fig. 1, the retrieved texts tend to be
highly repetitive and lack semantic diversity (Li
et al., 2024b; Hoang et al., 2022), which in turn
leads captioning models to overproduce these high-
frequency words. In addition, such retrieval strate-
gies are prone to retrieving irrelevant samples when
the input falls outside the domain of the pre-trained
model, which limits generalizability of the caption-
ing system across domains.

To address the aforementioned limitations, we in-
troduce a novel cross-modal retrieval approach that
leverages a text-only datastore constructed without
manual image-text annotations, thereby improving
the scalability of the method. Furthermore, our
proposed cluster-based retrieval strategy selects in-
stances based on clustering in the embedding space,
which not only improves the informativeness but
also reduces semantic redundancy in the retrieved
content. Specifically, we finetune the embedding
function (encoder) by jointly incorporating a triplet
contrastive loss and a nuclear norm regularization
into the training objective to simultaneously rein-
force alignment across modalities and capture the
clustering structure of retrieved content in the em-
bedding space (Nie et al., 2017; You et al., 2021).

We highlight our contributions as follows:

• We propose a novel RAG-IC framework that
integrates cluster-wise selection with cross-
modal retrieval. Our approach does not re-
quire an image-text paired datastore, thereby
increasing the diversity of retrieved content
and the robustness to out-of-domain inputs,
which is critical for real-world applications.

• We introduce a specialized training paradigm
that simultaneously addresses the gap between
different modalities and encourages cluster
formation among the embedding features of
datastore samples by combining triplet con-
trastive loss and nuclear norm-based cluster-
ing regularization.

• Our analysis shows that CODIRET reduces
retrieval redundancy and outperforms existing
competitors in captioning quality, particularly
in cross-domain inference settings, highlight-
ing the effectiveness and robustness of our
methodology.

2 Related Work

Robust retrieval-augmented generation.
Retrieval-Augmented Generation (RAG) enhances
text generation by incorporating externally
retrieved knowledge as additional input (Lewis
et al., 2020). Despite its success, particularly in
natural language processing (NLP) (Mialon et al.,
2023; Yasunaga et al., 2023), it has an overreliance
on repetitive information in the retrieved content,
which degrades the robustness to out-of-domain
data and noisy inputs (Li et al., 2024b). To over-
come the issue of practicality and generalizability
in real-world applications, recent research focuses
on strengthening RAG models to mitigate unstable
retrievals and hallucination. One popular strategy
is to dynamically adjust the training process in
response to noisy retrievals (Zheng et al., 2021)
with adversarial training (Fang et al., 2024) and
relevance-aware evaluation of a given query (Yu
et al., 2024) to facilitate the model to recognize
and cope with various forms of retrievals. Another
direction focuses on employing learnable filters or
discriminators to effectively identify and eliminate
redundant and misleading information (Zhu
et al., 2024; Hong et al., 2024; Wu et al., 2024;
Yoran et al., 2024). Additionally, methods such
as random shuffling of retrieved content during
training have been shown to boost the model’s
tolerance to domain mismatches and reduce
overfitting to high-frequency patterns (Hoang et al.,
2022; Li et al., 2024b; Hao et al., 2023).

Retrieval-augmented generative image caption-
ing. Image captioning is the task of automati-
cally generating descriptive textual captions for
images (Herdade et al., 2019; Xu et al., 2015),
combining techniques from computer vision and
NLP. Recently, RAG-integrated image captioning
has garnered increasing interest due to its promi-
nent ability to improve accuracy, diversity, and
factual consistency. Sarto et al. (2022); Ramos
et al. (2023a); Sarto et al. (2024); Li et al. (2024a)
propose to retrieve captions associated with visu-
ally similar images and develop encoder-decoder
models that attend to both image features and re-
trieved caption embeddings. Rather than encoding
images directly, Ramos et al. (2023b); Yang et al.
(2023) enable “image-blind” decoding by utiliz-
ing only retrieved captions, allowing the model to
focus on text-based reasoning without relying on
direct visual understanding, which proves benefi-
cial in zero-shot scenarios. Ramos et al. (2023c);
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Algorithm 1 Traditional RAG-IC
Input: I // query image

k // number of samples to retrieve
D = {(vi, ti)}Ni=1 // external datastore

containing image-captiong pairs
Output: C = {ci}Ti=1 // output caption

1: /* extract features of the query image */
2: vq ← fv(I)
3: /* retrieve k image features from {vi}

based on similarity to vq

ri: indices of the retrieved samples */
4: {vri}ki=1 ← Rtrk(vq; {vi})
5: /* generate a caption for I

using {tri} corresponding to {vri} */
6: C← fLLM(vq, {tri}ki=1)

Zeng et al. (2024) successfully implement retrieval
over a unimodal textual datastore and adopt a
lightweight architecture that integrates pre-trained
CLIP (Radford et al., 2021) and GPT-2 (Radford
et al., 2019) through retrieval-based prompting. We
adopt SmallCap (Ramos et al., 2023c) as the base-
line for training and evaluating our proposal due to
its minimal trainable parameters for fine-tuning.

3 Methodology

Fig. 2 presents the overall architecture of our pro-
posed CODIRET framework, which is built upon
two primary strategies: a cross-modal alignment
strategy and a cluster-based retrieval strategy.
Hereafter, we will present formal notations of
variables and task definitions related to RAG-IC
in Sec.3.1, and introduce each component subse-
quently in detail.

3.1 Preliminaries

Let I ∈ RH×W×C be an input image, where H ,
W , and C denote the height, width, and num-
ber of channels, respectively. As described in
Alg.1, RAG-IC involves the following steps: 1) em-
ploying a pre-trained visual encoder, fv, such as
ViT (Dosovitskiy et al., 2021) or CLIP (Radford
et al., 2021), to extract patch representations X
from I; 2) leveraging retriever Rtrk to collect k
semantically relevant instances R from an external
database D by conducting feature-based nearest
neighbor search between the query image and D;
and 3) utilizing a pre-trained large language model
(LLM) as a decoder to generate a caption sequence
C autoregressively by integrating the extracted vi-

Algorithm 2 Our cross-modal RAG-IC
Input: I, k, D = {ti}Ni=1

l // number of clusters
Output: C

1: /* cluster {ti} by CODIRET

ci: indices of the clusters */
2: {gci}li=1 ← Clul({ti})
3: /* extract features of the query image */
4: vq ← fv(I)
5: /* retrieve k cluster centroids from {gci} */
6: {gri}ki=1 ← Rtrk(vq; {gci})
7: /* randomly select one text from each {gri} */
8: {tri} ← RndSmpk({gri})
9: /* generate a caption for I using {tri} */

10: C← fLLM(vq, {tri}ki=1)

sual embedding of I along with the retrieved textual
knowledge R.

3.2 Cross-modal aligner

Given an image I organized in a 2-dimensional
format as input, traditional RAG-IC approaches,
as shown in Alg.1, rely on an external datastore
consisting of image-caption pairs {(vi, ti)}Ni=1 to
retrieve similar images. In contrast, we exclusively
construct the datastore from textual information in
the target modality, denoted as D = {ti}Ni=1, and
retrieve captions based on the distance between fea-
tures of the query image and the datastore captions
by leveraging a shared multimodal representative
space (Alg.2). This design facilitates efficient do-
main adaptation and scalability, as the datastore
can be easily modified by replacing the textual cor-
pus with off-the-shelf domain-specific data without
requiring large-scale manually annotated datasets.

Triplet contrastive learning Although CLIP
(Radford et al., 2021) aligns image and text rep-
resentations in a shared multimodal embedding
space by training a vision-language model in a con-
trastive learning manner, Mistretta et al. (2025)
reveal a remaining modality gap between image
and text representations, which causes inaccurate
retrieval in the text modality. Specifically, even
when captions describe different images, some sen-
tences tend to cluster together in the 2-dimensional
projection space, while, conversely, an image and
its corresponding caption may be mapped far apart.

To solve this problem, we propose a triplet-based
cross-modal alignment constraint aimed at mini-
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<caption 1>

<caption 2>

<caption 3>

. . .

<caption n>
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negative
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norm 
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matrix
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image 1
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Training of (a)

𝑪𝑳𝑰𝑷𝒗𝒊𝒔𝒊𝒐𝒏 𝑮𝑷𝑻− 𝟐

(b) Text-only datastore

…

cluster 1

cluster 2

cluster 3

cluster 4

sentence 1

sentence 2

sentence 3

sentence 4

𝐂𝒓𝒐𝒔𝒔 − 𝑨𝒕𝒕𝒆𝒏
𝑳𝒂𝒚𝒆𝒓

(a) Cross-modal cluster-

based retriever

Several bagels 

are layed out on 

a cutting board.

(c) Image caption

generator

Figure 2: Model overview. CODIRET comprises three chief components: (a) a cross-modal cluster-based retriever,
(b) a text-only datastore, and (c) an image caption generator. Component (a) is trained using contrastive learning
and nuclear norm regularization to mitigate misalignment between images and texts, while also clustering texts
within the datastore. Subsequently, we utilize (a) to directly retrieve relevant text clusters from (b) based on the
input image and randomly select one text from each cluster as supplementary input for (c).

mizing the modality gap and ensuring semantically
relevant retrieval in a shared latent space, which is
achieved by leveraging contrastive learning with a
triplet loss formulation. Formally, for each partic-
ular image-caption example, the image serves as
the pivot data point i∗, while one of its associated
captions is randomly sampled as the positive exam-
ple c+. A caption from a different image is then
randomly chosen as the negative example c−. Sub-
sequently, both the image and text are encoded into
a shared embedding space using the CLIP model,
as described below:

e∗ = fvision
clip (i∗) ∈ Rd, (1)

e+ = f text
clip (c

+) ∈ Rd, e− = f text
clip (c

−) ∈ Rd,

(2)

where d refers to the dimension of the CLIP em-
bedding space.

We then conduct triplet noise-contrastive esti-
mation (Gutmann and Hyvärinen, 2010) with a
ranking loss to minimize the l2 distance between
the pivot and positive examples, while maximizing

the distance between the pivot and negative ones:

Ltriplet = max(0, ∥e∗−e+∥2−∥e∗−e−∥2). (3)

By optimizing this objective, the model learns to
group semantically similar image-text pairs while
pushing apart unrelated ones, thereby ensuring that
the retrieved text better matches the input image.

3.3 Cluster-based retriever

A simple ranking and selection of the top-k near-
est neighbors based on similarity scores has long
been dominant in the RAG field. However, this
method often overlooks the underlying structure
of the datastore, leading to captioning models re-
ceiving highly resembled information and repeated
terms. As a result, the model is prone to copy-
ing these redundant words, regardless of their rel-
evance (Hoang et al., 2022; Li et al., 2024b) and
is then easily contaminated by noise. To equip
models with diverse and informative supplemen-
tary data, we propose a cluster-based retriever that
chooses texts from the nearest “clusters” detected
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through a clustering operation beforehand, as illus-
trated in Alg.2. This approach reduces the occur-
rence of repeated words in the retrieved content
and increases the possibility of including relevant
words when processing out-of-domain images, by
selecting from distant clusters.

Nuclear norm regularization Detecting cluster-
ing structures inD by directly applying K-means to
the sentence representation matrix, Ht, can effec-
tively reduce redundancy when retrieving captions.
However, K-means is sensitive to initialization and
outliers, which often leads to unstable results (Ding
and Li, 2007). Additionally, the clustering perfor-
mance is suboptimal due to the independent na-
ture of triplet contrastive representation learning
(Eq. (3)) and sentence clustering. Nie et al. (2017)
pave the way for better capture of the clustering
structure of Ht by transforming the clustering task
into a matrix-rank problem. The theoretical basis
behind the clustering structure learning comes from
the following theorem:

Theorem 1 (Chung and Graham, 1997) The
multiplicity of eigenvalue 0 of the normalized
Laplacian matrix of Ht is equal to the number of
clusters in Ht.

Haeffele and Vidal (2020); Piao et al. (2019)
propose the nuclear norm and prove that the con-
straint on the Laplace matrix of Ht is mathemati-
cally equal to the constraint on sentence represen-
tation matrix Ht as

Lcluster =

l∑

i=1

λHt
i , (4)

where λHt
i represents the i-th smallest eigenvalue

of Ht (Piao et al., 2019). By suppressing ∥Hr∥l∗
to 0, l clusters (determined by elbow method
(Bholowalia and Kumar, 2014)) in Hr can be ob-
tained by reorganizing its columns or rows and con-
verting it into a block-diagonal form with l blocks,
as shown in Fig. 2. To incorporate this clustering
into our training process, we define the training
objective as:

Lcluster = ∥Hr∥l∗. (5)

3.4 Joint learning
We adopt a joint learning framework that optimizes
both cross-modal alignment and modality-specific
structure preservation. The overall objective is for-
mulated as follows:

L = Ltriplet + λLcluster, (6)

DATASET
Train Validation Test

MS COCO MS COCO MS COCO NoCaps

IMAGES 113,287 5,000 5,000 4,500
CAPTIONS 566,747 25,010 25,010 45,000
Avg. Caps. 5 5 5 10
DOMAIN in out

Table 1: Basic dataset statistics. Avg. Caps. refers to
average captions for each image.

where λ is a balancing coefficient that regulates the
trade-off between enforcing cross-modal alignment
and maintaining intra-modality cluster structures.

With the cluster structure of the text representa-
tion, we compute the centroid of each cluster by
simply averaging the representations of sentences
within the cluster. We then retrieve the top-k most
relevant centroids and randomly sample one sen-
tence from each retrieved cluster for the training of
our captioning model, as shown in Alg. 2. Random
sampling is adopted here to promote diversity and
prevent the model from overfitting to highly proto-
typical or redundant sentences that may dominate
each cluster.

4 Experiments

4.1 Datasets and Evaluation Metric

We carried out our experiments on the MS COCO
Caption (Lin et al., 2014) and NoCaps (Agrawal
et al., 2019) datasets to assess our approach’s accu-
racy on in-domain data and its robustness to out-of-
domain inputs, respectively. MS COCO Caption
is a widely used benchmark that contains diverse
image-caption pairs, while NoCaps focuses on
novel object descriptions not present in the COCO
training set, making it suitable for evaluating gen-
eralization to unseen concepts. The statistics of the
datasets are summarized in Table 1.

For evaluation, we employ four standard auto-
matic metrics: BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015), and SPICE (Anderson et al.,
2016), which measure various aspects of caption
quality, including n-gram overlap, semantic rele-
vance, and compositionality.

4.2 Implementation Details

Our CODIRET retriever is first initialized using
CLIP-ViT-B/32 (Radford et al., 2019) as both the
image and text encoder and finetuned by triplet
clustering learning outlined in Sec. 3.4 with LoRA
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Metrics BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr SPICE

SmallCap 76.5 60.2 44.3 31.7 23.1 74.4 13.4
CODIRET 77.8 61.2 45.6 32.9 24.2 76.3 14.2
- w/o TPL 75.4 58.9 43.0 31.1 22.7 72.4 12.7

Table 2: Robustness evaluation on the test set of NoCaps while the models are still trained on MS COCO. Best
results among the generated captions are marked in bold.

(Low-Rank Adaptation) (Hu et al., 2022) to reduce
computational cost and improve training efficiency.
The scaling factor in Eq. (6) is set to λ = 0.2, as
we found it yields the best empirical performance.
As for the main image captioning model, we follow
the SmallCap (Ramos et al., 2023c) setup, using
CLIP-ViT-B/32 as the encoder and GPT-2 (Radford
et al., 2019) as the decoder, with the parameters of
both fixed, connected by a 12-head trainable cross-
attention layer between the vision and language
modalities to facilitate information fusion. Both the
retrieval model and the main captioning model are
trained exclusively on the MS COCO dataset using
the standard Karpathy splits (Karpathy and Fei-Fei,
2015). The training procedures follow a batch size
of 64, optimized with AdamW (Loshchilov and
Hutter, 2019) and a learning rate of 1e− 4, using
mixed-precision training with 16-bit floating-point
precision (FP16). The training process runs for 5
epochs on CODIRET and another 10 epochs on
the captioning model on a single NVIDIA A100
GPU with 16GB of the available memory, taking
approximately 13 hours to converge. During train-
ing, we retrieve k = 4 textual prompts per image
by first identifying the top-k most similar clusters
to the query image. The centroids of clusters and
the query image embeddings are computed in the
high-dimensional space by our CODIRET. A sin-
gle sentence is randomly sampled from each cluster
and incorporated as a prompt for training. We em-
ploy the product quantizer with an inverted file
system based on Faiss (Johnson et al., 2021) for ef-
ficient datastore quantization and nearest-neighbor
search. Captions are decoded by beam search with
a beam size of 3 at inference.

4.3 Baselines

The following excellent baselines are used for
comparison to demonstrate the effectiveness
of CODIRET: non-RAG lightweight training
method, including ClipCap (Mokady et al., 2021);
Img.→Img. retrieval methods using image-text

datastores such as EXTRA (Ramos et al., 2023a)
and Re-ViLM (Yang et al., 2023); and Img.→Txt.
retrieval method using text-only datastores like
SmallCap (Ramos et al., 2023c). All methods
are finetuned on the same training dataset as our
method for a fair comparison.

5 Results and Discussion

5.1 Out-of-domain Robustness
To assess the robustness of our model under do-
main shift, we evaluate both CODIRET and our
baseline on NoCaps where the test set contains
out-of-domain objects not present in the training
distribution. From Table 2, we can observe that our
model consistently outperforms the baseline Small-
Cap in terms of all metrics. The superior perfor-
mance of our model in out-of-domain settings can
be attributed to its ability to navigate the retrieval
uncertainty and adapt to novel objects, which is a
key limitation in conventional RAG-IC approaches.

The model’s strong generalization ability indi-
cates that it is less prone to overfitting. During
training, it is provided with retrieval information
from a broader range, which likely includes a small
amount of noise. This prevents the model from sim-
ply copying or memorizing the content retrieved.
Instead, it learns to flexibly apply the retrieved
textual information in conjunction with the input
visual data to generate accurate and fluent captions.
In contrast, traditional kNN-based retrieval meth-
ods return captions associated with images that
are similar to the query image, often resulting in
a large amount of redundant information and re-
peated words. This redundancy causes the model to
overfit specific patterns in the training data, thereby
reducing its generalization ability on new data.

5.2 In-domain Performance
Table 3 lists the results for the non-RAG method
at the top, with the ones with uni-modal retrieval
in the middle, and cross-modal retrieval methods
at the bottom. We can observe that when tested
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Metrics |θ| BLEU-4 METEOR CIDEr SPICE

ClipCap 43 33.5 27.5 113.1 21.1

EXTRA 45 37.5 28.5 120.9 21.7
Re-ViLM 158 37.8 - 129.1 -

SmallCap 7 37.0 27.9 119.7 21.3
CODIRET 7.1 36.9 27.9 119.5 21.0
- w/o TPL 7.1 34.9 26.8 117.6 20.5

Table 3: Results on the Karpathy COCO test split. |θ|
refers to the number of trainable parameters in the model
(in millions).

with in-domain data, CODIRET achieves a compa-
rable performance to all state-of-the-art baselines
in terms of all metrics, even with a small number
of trainable parameters.

We also observed a consistent superiority of
RAG-based models over ClipCap, which under-
scores the importance of external knowledge re-
trieval in image captioning. Without access to exter-
nal descriptions, ClipCap is restricted to visual and
linguistic knowledge already embedded in the pre-
trained LLM and often generates captions based on
visual priors rather than factual correctness, leading
to plausible but inaccurate descriptions.

In addition, we noticed that with the retrieval
performed directly in the image modality, both EX-
TRA and Re-ViLM achieved better performance.
We consider several possible reasons for this phe-
nomenon. First, using the captions from the most
visually similar images to the query image makes
the models highly effective at preserving key visual
details. Furthermore, these methods tend to achieve
higher retrieval accuracy but greater keyword re-
dundancy (as we show in Sec. 5.4) in the retrieved
captions. This, in turn, allows the model to copy
frequently repeated phrases from the retrieved text
(as shown in Fig. 4), reinforcing consistency in
generated captions.

In contrast, CODIRET retrieves captions by di-
rectly searching for the most textually similar ones
with a structured control over redundancy. By se-
lecting a single representative caption per related
text group, our approach promotes diversity in re-
trieved contents. However, since the entities in the
images are limited, this diversity may introduce
noise, which can lead to the model being slightly
misled. Moreover, since the evaluation metrics
used in this experiment, such as BLEU, cannot
assess diversity, our model shows a minor perfor-
mance decrease on in-domain data.

Figure 3: Comparison of proportion of duplicated key
objects of image-to-image retrieval method, nearest
neighbor-based image-to-text retrieval strategy, and our
cluster structure-based CODIRET.

5.3 Ablation Study

We further investigate the contribution of the triplet
contrastive learning module to CODIRET through
an ablation study conducted on each dataset. In
the table, “ - w/o TPL” indicates the removal of
the triplet contrastive learning module, where the
retriever is trained solely with the nuclear norm
constraint. We observe a significant performance
drop of approximately 2 points on both in-domain
and out-of-domain data compared with CODIRET.
This result suggests that triplet contrastive learning
plays a crucial role in bridging the performance
gap between different modalities, as it aligns image
and text features more effectively.

Moreover, while the nuclear norm constraint pri-
marily promotes representation compression and
simplification by reducing the rank of the datastore
sentence matrix, this process may inadvertently
cause the model to overlook the intricate semantic
differences between images and texts. As a con-
sequence, important information encoded in the
joint image-text space may be lost, weakening the
quality of the retrieved captions and impairing the
model’s ability to generate accurate and contextu-
ally appropriate descriptions.

5.4 Duplicated Keywords and Redundancy

To better quantify the redundancy of retrieved con-
tents in different retrieval strategies, we measure
the lexical overlap of key objects across retrieved
captions. Specifically, we select all nouns and
proper nouns as candidate key objects from each
caption using a spaCy-based part-of-speech tag-
ger (Cutting et al., 1992). For each image, we then
compute global object overlap among all retrieved
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➢ an injured man bandaged and 
being treated in a hospital

➢ an injured man lying in a 
hospital bed wrapped in 
bandages

➢ a man laying in a hospital bed 
badly injured

➢ …

➢ a large white bird standing 
next to a large body of water

➢ a big white bird is standing by 
the water

➢ a goose standing near a body 
of water

➢ a bird standing next to a body 
of water

➢ a very spacious kitchen with 
the sun shining in the 
window

➢ a plain looking kitchen with a 
dining table all wood finished

➢ large sized personal kitchen 
with a highly decorated 
fridge

➢ …

black and white photo of 
an injured man

a black and white photo 
of a group of soldiers 
wearing bandages

Top-k

CODIRET

a white bird standing on 
top of a field

a white goose standing on 
top of a lush green field

Top-k

CODIRET

a kitchen with a sink and 
a window

a kitchen with a stainless 
steel sink and white 
cupboards

Top-k

CODIRET

Figure 4: Examples of captions generated for NoCaps out-of-domain samples where the retrieved captions for the
query image can be irrelevant.

captions by calculating the Jaccard similarity be-
tween the union and intersection of extracted object
sets, defined as:

Similarityobject =
|Ointersection|
|Ounion|

, (7)

where Ointersection is the set of objects appearing in
all retrieved captions for a given image, and Ounion
is the set of all unique objects across the same
set. A higher score indicates greater object rep-
etition and thus higher lexical redundancy, while
a lower score reflects increased content diversity.
While simpler alternatives such as stopword re-
moval could be used to filter non-content words, we
adopt noun-based extraction to focus specifically
on concrete entities that are most representative of
the image content. This approach reduces the noise
from abstract or generic terms that may still remain
after stopword removal, and ensures that the result-
ing object sets more accurately reflect the semantic
overlap of key visual concepts across captions.

We report the average object similarity score
across all images in each retrieval setting on the
two datasets separately as a proxy for topic-level
redundancy in Fig. 3. The results demonstrate a
clear trend in redundancy, where image-to-image
retrieval exhibits the highest redundancy, while
cluster-based image-to-text retrieval yields the

most diverse references. We analyze the underly-
ing reasons for these observations as follows. First,
in image-to-image retrieval, since the retrieval is
based purely on visual similarity, the captions tend
to describe nearly identical content, often differing
only in minor details or wording, which leads to
a high degree of content repetition. Image-to-text
retrieval bypasses the intermediate step of retriev-
ing images and instead retrieves the most seman-
tically similar captions directly from the text cor-
pus, which offers greater flexibility by leveraging
multi-modal embeddings to match text descriptions.
However, our proposal introduces an additional
step of clustering the text corpus before retrieval,
ensuring that retrieved references come from dif-
ferent semantic groups. This enforces topic-level
diversity among the retrieved references, as a re-
sult, preventing the model from receiving multiple
variations of the same description.

5.5 Case Study

We demonstrate the quality of captions generated
by CODIRET through a case study. The examples
shown in Fig. 4 are randomly sampled from the
NoCaps dataset. We show captions retrieved from
the datastore, along with comparison between cap-
tions generated by the traditional RAG-IC model
and those produced by our approach.
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A high-quality caption is typically characterized
by (i) semantic relevance to the image content, (ii)
specificity-inclusion of fine-grained details such as
object attributes, actions, or materials, and (iii) flu-
ency and coherence at the sentence level. Captions
that satisfy these criteria are more informative and
useful in downstream tasks such as image search
or human-computer interaction.

From these examples, we observe that when
certain words appear frequently in the retrieved
content, models trained with standard nearest-
neighbor-assisted information tend to copy those
words verbatim into the generated caption. For in-
stance, in the second example, the word “bird” is
directly copied into the output caption. While such
behavior may produce captions that are broadly
accurate, they often lack specificity and fail to de-
scribe fine-grained visual attributes. In contrast, our
model is better able to aggregate and distill infor-
mative content from the retrieved results, allowing
it to produce more descriptive and contextually en-
riched details. For example, in the third image, the
caption generated by CODIRET correctly includes
the material “stainless steel” when describing the
sink, offering a level of detail absent in the baseline
output. Such specific terms are especially valuable
for distinguishing similar scenes or objects, and
thus contribute to a more effective and high-quality
caption.

6 Conclusion

We addressed several fundamental problems con-
cerning RAG-IC and proposed a joint learning
framework called CODIRET, which trains a re-
triever by leveraging contrastive learning and clus-
tering techniques to enhance cross-modal retrieval.
The proposed model facilitates more semantically
relevant retrieval results by minimizing the modal-
ity gap between image and text representations.
Meanwhile, by incorporating a cluster constraint,
the model effectively reduces redundancy in the re-
trieved content, ensuring better adaptation to out-of-
domain scenarios. Experimental results, including
those of the analysis of retrieved contents, demon-
strated the effectiveness of CODIRET.

Limitations

In this study, we introduced diversity to enhance the
model’s robustness on unseen data, particularly by
expanding the variety of retrieved content to avoid
over-reliance on high-frequency samples. While

this strategy significantly improved the model’s
performance on out-of-domain data, it led to a de-
cline in performance on in-domain data. This phe-
nomenon may be attributed to the increased diver-
sity leading to the retrieval of content that is only
partially relevant to the input image, thus affecting
the accuracy and consistency of the model’s outputs
on known data. While the added diversity enhances
the model’s adaptability to unseen domains, it also
causes a trade-off with its performance in specific
domains. Therefore, balancing diversity with preci-
sion, ensuring strong robustness without compro-
mising performance on in-domain data, remains a
challenge that warrants further investigation. We
consider this trade-off an important area for future
work, aiming to explore how to achieve an optimal
balance between the two.

Currently, most image captioning models rely
on English-centric datasets such as COCO, which
limits their effectiveness in multilingual and mul-
ticultural contexts. These models may struggle
with linguistic and cultural differences, as well as
diverse visual concepts. Future research should fo-
cus on multilingual image captioning datasets that
include data from various languages and cultures,
enabling models to perform better across different
settings and promoting global application of image
captioning technology.
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Abstract

Retrieval-augmented generation (RAG) is a
powerful paradigm for leveraging external data
to enhance the capabilities of large language
models (LLMs). However, most existing RAG
solutions are tailored for single-modality or lim-
ited multimodal scenarios, restricting their ap-
plicability in real-world contexts where diverse
data sources—including text, tables, images,
and videos—must be integrated seamlessly. In
this work, we propose a unified Multimodal
Retrieval-augmented generation (mRAG) sys-
tem designed to unify information processing
across all four modalities. Our pipeline in-
gests and indexes data from PDFs and videos
using tools like Amazon Textract, Transcribe,
Langfuse, and multimodal LLMs (e.g., Claude
3.5 Sonnet) for structured extraction and se-
mantic enrichment. The dataset includes text
queries, table lookups, image-based questions,
and videos. Evaluation with the Deepeval
framework shows improved retrieval accuracy
and response quality, especially for structured
text and tables. While performance on image
and video queries is lower, the multimodal in-
tegration framework remains robust, underscor-
ing the value of unified pipelines for diverse
data.

1 Introduction

The exponentially growing volume of digital con-
tent in various forms, including text, tables, images,
and videos, has created new challenges. Traditional
information retrieval systems typically focus on a
single modality, such as text or images, limiting
their ability to process complex queries that require
insight from multi-modal data sources. However,
real-world applications, such as enterprise data an-
alytics, troubleshooting equipment through video
manuals, or processing product specifications, need
a framework to manage various data types.

Retrieval-augmented generation (RAG) systems
have emerged as a powerful paradigm combining

retrieval mechanisms with generative models to en-
hance information access and synthesis. However,
conventional RAG frameworks were not designed
initially to handle multimodal data, restricting their
utility in environments where diverse data forms
must be unified and processed seamlessly. This
limitation underscores the need for an evolved ap-
proach that extends the capabilities of RAG sys-
tems to accommodate and integrate multiple modal-
ities effectively.

This paper presents an mRAG system that uni-
fies information across text, tables, images, and
videos. Using tools like AWS, LangChain, and
multimodal LLMs, it provides a robust pipeline for
data ingestion, retrieval, and response generation.

2 Background and Related Work

The landscape of information retrieval has evolved
significantly with the advent of large-scale digital
data across diverse modalities. Traditional informa-
tion retrieval systems focus mainly on single modal-
ities, such as text-based search engines (Amati and
Van Rijsbergen, 2002; Karpukhin et al., 2020; Khat-
tab and Zaharia, 2020) or image retrieval systems
(Lin et al., 2015; Chen et al., 2023), each optimized
for their specific data type.

Multimodal information retrieval (MMIR) aims
to bridge the gap between different data types, facil-
itating comprehensive searches that span text, im-
ages, videos, and other formats (Baltrusaitis et al.,
2019). Researchers have successfully applied deep
learning techniques for multimodal information re-
trieval (Hu et al., 2019).

RAG systems represent a paradigm shift in com-
bining retrieval mechanisms with generative mod-
els. Introduced by Lewis et al. (2020), RAG lever-
ages LLMs to generate contextually relevant re-
sponses by retrieving pertinent information from
extensive external knowledge bases. RAG research
has rapidly expanded, tackling efficiency bottle-
necks (Borgeaud et al., 2021), memory constraints
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(Qian et al., 2024), and self-reflection strategies
(Asai et al., 2023).

Recent advances in RAG have begun integrating
multiple modalities to enhance retrieval and gener-
ation, as seen in MuRAG (Chen et al., 2022). How-
ever, most work remains limited to small, domain-
specific datasets (e.g., healthcare) and only two
modalities (Xia et al., 2024).

Key challenges remain in the development of
multimodal RAG systems. Most existing ap-
proaches lack unified frameworks capable of rea-
soning across more than two modalities, such as
text, tables, images, and videos. Scalability is also
limited, as adding new modalities often requires
separate training pipelines (Chen et al., 2022). Fur-
thermore, current evaluation benchmarks primarily
focus on single- or dual-modality tasks, making it
difficult to assess systems designed for more com-
plex, fully multimodal scenarios (Chen et al., 2024;
Es et al., 2024; Krishna et al., 2024).

This work addresses these gaps by proposing
a unified framework for building and evaluating
multimodal RAG systems.

3 Methodology

3.1 Dataset Description

We test system capabilities by using 36 publicly
available Dell server documents, including speci-
fications, service manuals, and installation guides.
These documents cover a range of modalities, in-
cluding plain text, complex tables, and images, en-
suring diverse data for testing.

Additionally, the dataset contains 82 video man-
uals of the servers, including one more modality.
The dataset was selected to provide all the required
modalities of varying complexities, reflecting real-
world challenges in the technical documentation1.

3.2 System Architecture

Information retrieval is structured into three pri-
mary layers: Data Processing, Embedding and In-
dexing, and Retrieval Engine. All operate within
a cloud environment provided by Amazon Web
Services (AWS) 2. The generative module is built
on the information retrieval component to support
multimodal RAG scenarios.

The architecture of the main AWS components
is represented in Figure 1.

1PDFs and videos can be shared upon request.
2https://aws.amazon.com/

The following sections of this research describe
the detailed architecture of the retrieval and gener-
ation engines and the guardrails.

Figure 1: Main Services for Information Retrieval

3.3 Information Retriever
In this part, we explain how we create information
retrievers. These pipelines are designed to prepare
data for retrieval from various sources such as PDFs
and videos.

3.3.1 PDF-based retriever
The PDF-based retriever processes PDFs to extract
and index textual, tabular, and image data for ef-
ficient search. It is built on the AWS stack for
scalability and performance, as illustrated in Fig-
ure 2.

Figure 2: Pipeline for PDF-based Information Retrieval

Pipeline Overview:
1. PDF Processing: Amazon Textract3 extracts

text, tables, and images from PDFs.

2. Text Splitting: LangChain4 split the text into
contextually relevant chunks.

3. Table Processing: Claude 3.5 Sonnet(Team,
2024a,b) LLM generates semantic summaries
for table data.

4. Image Processing: Claude 3.5 Sonnet LLM
creates descriptive image metadata.

3https://docs.aws.amazon.com/textract/latest/
dg

4https://python.langchain.com/v0.1/docs/
modules/data_connection/document_transformers/

60

https://aws.amazon.com/
https://docs.aws.amazon.com/textract/latest/dg
https://docs.aws.amazon.com/textract/latest/dg
https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/
https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/


5. Embedding and Indexing: Text and im-
ages are embedded using Amazon Titan Text
Embeddings V25 and Amazon Titan Multi-
modal Embeddings G1 models6 and indexed
in Amazon OpenSearch7.

6. Metadata Tracking: TinyDB8 stores parent-
child relationships between data chunks.

3.3.2 Video-based retriever
The video-based retriever extracts and indexes
keyframe and textual data from videos using the
AWS stack. The pipeline process is illustrated in
Figure 3.

Figure 3: Pipeline for Video-based Information Re-
trieval

Pipeline Overview:

1. Transcription: Uses Amazon Transcribe to
transcribe videos.

2. Keyframe Extraction: A custom pipeline
based on OpenCV9 extracts keyframes by de-
tecting scene changes and analyzing content
using entropy (≥ 4.5), edge ratio (≥ 0.02),
contrast variation (≥ 600), and pixel changes
(≥ 5%). Perceptual hashing prevents redun-
dancy, ensuring keyframes differ with a simi-
larity threshold of 0.95.

3. Context: Matches keyframes with transcripts
(±10-30s window).

4. Description: Claude 3.5 Sonnet generates
enriched descriptions of keyframes, incorpo-
rating the visual details and corresponding
transcript context.

5. Indexing: Embeds content via Amazon Ti-
tan Multimodal Embeddings G1 model and
stores in Amazon Open-Search.

5https://docs.aws.amazon.com/bedrock/latest/
userguide/titan-embedding-models.html

6https://docs.aws.amazon.com/bedrock/latest/
userguide/titan-multiemb-models.html

7https://aws.amazon.com/opensearch-service/
8https://tinydb.readthedocs.io/en/latest/
9https://opencv.org/

3.4 Multimodal Retrieval Augmented
Generation

This section outlines the mRAG system’s core com-
ponents for answering user queries using file data.

1. User Input Processing: Queries are analyzed
by Claude 3.5 Sonnet by checking the conver-
sation history and the new user query. It then
has two options: rephrase the query based on
the context for continuity, or return the origi-
nal message if the new query is unrelated to
previous discussions.

2. Independent Retrieval: Relevant text, tables,
and images are retrieved from AWS Open-
Search using a unified parent-child chunking
strategy: smaller embedding-based chunks for
search, with associated larger parent chunks
provided to the model. Video modalities use
only embedding retrieval. The top 10 textual
results and the top 5 for other modalities are
selected.

3. Answer Generation: Retrieved data and the
user query are structured for Claude 3.5 Son-
net to generate responses.

4. Citation and Traceability: To ensure trans-
parency, sources are cited with links to docu-
ment pages or video timestamps.

3.5 Monitoring, Guardrail, and Feedback
Loop

The system integrates monitoring, guardrails, and
feedback to ensure ethical compliance. User inter-
actions are tracked using LangFuse10, with per-
sonally identifiable information (PII) anonymized
by Amazon Comprehend11. Amazon Bedrock
Guardrails12 enforce safeguards to prevent harm-
ful content and ensure AI safety (Chua et al., 2024).
User feedback is analyzed based on the provided
category, such as good, inconsistent, irrelevant, in-
complete, confusing, or other. This feedback is
processed with Claude 3.5 Sonnet to identify po-
tential issues, and bugs are logged for resolution,
enabling continuous system improvement.

10https://langfuse.com/
11https://aws.amazon.com/comprehend/
12https://aws.amazon.com/bedrock/guardrails/
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Modality Method Correct
Sources

Contextual
Precision

Contextual
Recall

Contextual
Relevancy

Must
Mention

LLM as
Evaluator

Answer
Relevancy Faithfulness Hallucination

All Base 0.652 0.349 0.653 0.655 0.283 0.708 0.946 0.677 0.356
All Opt 0.644 0.336 0.690 0.702 0.290 0.717 0.951 0.668 0.314
Text Base 0.828 0.493 0.846 0.846 0.068 0.812 0.964 0.672 0.233
Text Opt 0.830 0.491 0.860 0.846 0.058 0.809 0.968 0.636 0.202
Table Base 0.970 0.292 0.849 0.818 0.702 0.752 1.000 0.617 0.273
Table Opt 0.939 0.195 0.849 0.879 0.742 0.782 0.995 0.591 0.364
Image Base 0.694 0.332 0.537 0.536 N/A 0.593 1.000 0.718 0.630
Image Opt 0.685 0.313 0.573 0.628 N/A 0.650 0.994 0.662 0.537
Video Base 0.293 0.190 0.399 0.417 N/A 0.619 0.876 0.682 0.394
Video Opt 0.281 0.193 0.481 0.496 N/A 0.613 0.891 0.737 0.323

Table 1: Experimental results across different modalities comparing Base and Optimized (Opt) Q&A prompts. Bold
values indicate the best performance for each metric within each modality.

4 Experiments

4.1 Experiments Setup
We evaluated our system using a dataset of 36 PDF
documents and 82 videos, based on Dell server
specifications and service manuals. Four partic-
ipants were involved in the question creation pro-
cess, with each person generating queries across
all modalities: text, table, image, and video.

The benchmarking set includes 116 questions13:
43 for text, 22 for tables, 18 for images, and 33
for videos. We executed the system three times
for each question and averaged the scores to obtain
stable results.

An example question format is:

{
"query":"How to set up T150 system?",
"answer":"Perform the following steps to set up the system:

1. Unpack the system.
2. Connect the peripherals.
3. Power on the system.",

"sources":["Dell EMC PowerEdge T150 Installation
and Service Manual.pdf"],

"type":"text"
}

Langfuse14 was used to track experiments, and
Deepeval15 as core evaluation framework.

4.2 Evaluation Metrics
The evaluation used two sets of metrics: retrieval
and response. Retrieval metrics included the per-
centage of correct sources retrieved, contextual pre-
cision and recall, and the relevancy of retrieved
contexts. Response metrics assessed keyword in-
clusion ("must mention"), LLM as evaluator score
(rated by GPT-4o (OpenAI and et al., 2024)), an-
swer relevancy, faithfulness to sources, and the
presence of hallucinations.

4.3 Experimental Results
We evaluated the system’s performance using two
experimental setups: a baseline prompt (Base) and

13Evaluation dataset and script can be shared upon request.
14https://langfuse.com/
15https://docs.confident-ai.com/

a manually optimized prompt based on provid-
ing additional limitations (Opt). Table 1 summa-
rizes the results, with the best metric for each cate-
gory/modality highlighted in bold.

Overall, the optimized prompt slightly outper-
formed the baseline in most metrics, particularly
in contextual recall, relevancy, and hallucination
reduction. However, performance varied by modal-
ity. Text and table modalities demonstrated the
highest accuracy and stability, benefiting from the
structured nature of their data. Image and video
modalities showed lower performance, reflecting
the challenges of interpreting and retrieving un-
structured visual content.

Notably, video retrieval had the lowest scores
in correct sources and contextual metrics, indicat-
ing room for improvement in handling video data.
Despite this, optimized prompts improved perfor-
mance metrics for both image and video modalities.

5 Conclusion and Future Work

This work presents a methodology for building an
mRAG system, focusing on pipelines for extract-
ing and indexing text, tables, images, and videos.
Experimental results show improved contextual rel-
evancy, LLM evaluation scores, and reduced hallu-
cinations, while performance variations highlight
challenges with unstructured data.

Future work will focus on enhancing mRAG
with improved LLM capabilities, fine-tuning em-
beddings for better domain understanding, incorpo-
rating user feedback, and adding visual modalities
for input.

6 Ethical Consideration

This study builds an mRAG system processing
text, images, tables, and videos, ensuring data pri-
vacy and security. It uses only open-source PDFs,
anonymizes all requests and feedback, and uses
feedback solely to improve system performance.
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We used ChatGPT16 and Grammarly17 to help re-
fine the writing of this work, ensuring the language
is straightforward.
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Abstract

Large Vision-Language Models (LVLMs) are
becoming increasingly popular for text-vision
tasks requiring cross-modal reasoning, but of-
ten struggle with fine-grained visual discrim-
ination. This limitation is evident in recent
benchmarks like NaturalBench and D3, where
closed models such as GPT-4o achieve only
39.6%, and open-source models perform be-
low random chance (25%). We introduce Con-
trastive decoding with Contrast Images (CoCI),
which adjusts LVLM outputs by contrasting
them against outputs for similar images (Con-
trast Images - CIs). CoCI demonstrates strong
performance across three distinct supervision
regimes: First, when using naturally occurring
CIs in benchmarks with curated image pairs,
we achieve improvements of up to 98.9% on
NaturalBench, 69.5% on D3, and 37.6% on
MMVP. Second, for scenarios with modest
training data (∼5k samples), we show that a
lightweight neural classifier can effectively se-
lect CIs from similar images at inference time,
improving NaturalBench performance by up
to 36.8%. Third, for scenarios with no train-
ing data, we develop a caption-matching tech-
nique that selects CIs by comparing LVLM-
generated descriptions of candidate images.
Notably, on VQAv2, our method improves
VQA performance even in pointwise evalua-
tion settings without explicit contrast images.
Our approach demonstrates the potential for
enhancing LVLMs at inference time through
different CI selection approaches, each suited
to different data availability scenarios.

1 Introduction

Large Vision-Language Models (LVLMs) are be-
coming increasingly popular for text-vision tasks
that require reasoning over both modalities. How-
ever, they often struggle with fine-grained visual
discrimination — that is, the ability to tell two
similar yet distinct images apart — a crucial ca-
pability for real-world applications such as mul-

Figure 1: CoCI penalizes target image logits using those
from a contrast image, weighted by hyperparameter α.

timodal search, manufacturing, and robotics. Re-
cent benchmarks have exposed this limitation: on
NaturalBench (Li et al., 2024a), which tests vi-
sual question answering over closely related im-
ages, state-of-the-art closed models like GPT-4o
(OpenAI et al., 2024) achieve only 39.6% accu-
racy. Similarly, on the D3 benchmark (Gaur et al.,
2024), which requires describing differences be-
tween paired images, open-source models perform
below random chance (25%).

Efforts to address fine-grained visual discrim-
ination in LVLMs are still under-explored. Cur-
rent strategies addressing other LVLM shortcom-
ings often rely on fine-tuning with specialized
datasets (Wang et al., 2023; Chen et al., 2023; Liu
et al., 2024a; Sarkar et al., 2024), multi-step cor-
rection pipelines (Yin et al., 2023; Zhou et al.,
2023), or inference-time methods (Leng et al.,
2023; Manevich and Tsarfaty, 2024; Liu et al.,
2024b; Huang et al., 2023). Inference-time meth-
ods are particularly appealing as they do not require
expensive model training and are less prone to com-
pounding errors that can affect multi-step systems.

Building on the advantages of inference-time
methods, we propose Contrastive decoding with
Contrast Images (CoCI), an approach specifically
designed to improve fine-grained visual discrimina-
tion in LVLMs. CoCI penalizes LVLM next-token
probabilities with those obtained by feeding a dif-
ferent, contrasting image input (See Figure 1).

We evaluate CoCI across three different super-
vision regimes. First, using naturally occurring
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Contrast Images in curated benchmarks like Nat-
uralBench, D3 and MMVP, we demonstrate im-
provements up to 98.9%, 69.5%, 37.6% respec-
tively. This establishes a performance ceiling for
CoCI when ideal CIs are available. For applications
where natural CIs are unavailable but training data
exists, we show that a lightweight classifier can
effectively select CIs from visually similar images
at inference time, improving NaturalBench perfor-
mance by up to 36.5%. In settings without training
data, we propose a caption-matching technique that
selects CIs at inference time by comparing LVLM-
generated descriptions of candidate images.

Experiments with leading LVLMs — Qwen2-
VL, LLaVA-OneVision, and Llama 3.2 (Wang
et al., 2024a; Li et al., 2024b; Grattafiori et al.,
2024) — establish the potential of contrastive de-
coding strategies with contrastive images for im-
proved multimodal reasoning in real-world tasks.

2 Contrastive Decoding with Contrast
Images (CoCI)

We present CoCI, a method to improve LVLM out-
puts by penalizing token probabilities that are likely
under a contrast image. The choice of contrast
image is crucial: e.g., when querying about fruit
ripeness with an input image of an unripe banana,
contrasting against an image of a ripe banana pro-
vides strong contrastive signal, while an image of
a ripe pear offers weaker contrast and an image of
a bus provides no useful signal and may degrade
performance. This intuition guides our CI selection
strategies across different scenarios. Before formal-
izing this intuition, we first review key concepts in
LVLM text generation.

2.1 Preliminaries: Text Generation in LVLMs
LVLMs extend LLMs by conditioning next-token
prediction on both text and images.1 Generation
proceeds by iteratively sampling tokens from the
model’s predicted distributions until reaching an
EOS token or length limit. The LVLM next-token
prediction is:

LVLMt(y< t, I) = P (y|y< t, I) ∀y ∈ V (1)

where y<t is the token prefix, I is the input image,
and V is the model’s vocabulary.

2.2 Contrastive Decoding
Following Li et al. (2023), various Contrastive De-
coding approaches have emerged (Sennrich et al.,

1In this work, we focus on single image inputs.

2024; Jin et al., 2024; Phan et al., 2024). We im-
plement CoCI based on Sennrich et al. (2024)’s
minimal variant:

CoCIt(y<t, I, I
′) =

log
(
P (y|y<t, I)− αP (y|y<t, I

′)
)
∀y ∈ V

(2)
CoCI penalizes token probabilities from the tar-

get image distribution P (y|y<t, I) with those from
the contrast image distribution P (y|y<t, I

′). The
parameter α controls penalty strength.2

2.3 Obtaining Contrast Images
We propose three approaches for obtaining CIs:

Naturally occurring CIs. Many tasks naturally
provide pairs of images that can serve as contrast
images (CIs). For instance, a home assistant robot
searching for “the blue ceramic mug with a chip on
the handle” needs to distinguish between similar
cups to find the exact match. We evaluate this sce-
nario using LVLM benchmarks with curated image
pairs designed to test fine-grained discrimination
capabilities. These paired images serve as natural
CIs in our experiments.

Classifier-obtained CIs. For cases without natu-
ral CIs, we train an MLP classifier to select them
during inference. Given LVLM L and training
triplets ⟨q, I, I ′⟩ (binary question and image pairs
with different answers), we: (a) Extract LVLM hid-
den states hq,i ∈ RdL per image-question pair. (b)
Concatenate states for image pairs: hq,i,i′ ∈ R2∗dL .
(c) Create negative samples using the j least similar
images from top-k similar images to I in dataset
D3. (d) Train a three-layer MLP classifier.4 We
train on NaturalBench (60% split) augmented with
GPT-4-generated question paraphrases. At infer-
ence, we select the CI maximizing classifier score
among k most similar images.5

Caption-matched CIs. For scenarios without
training data, we select CIs by comparing LVLM-
generated image descriptions. Given an input im-
age, we (a) Retrieve k similar images6. (b) Gen-
erate LVLM descriptions for all k + 1 images. (c)

2We use α = 0.5 for VQA and α = 0.8 for open-ended
generation.

3j = 5, k = 100. Using flickr30k (Young et al., 2014) and
open-clip (Ilharco et al., 2021; Cherti et al., 2023; Radford
et al., 2021a; Schuhmann et al., 2022) with cosine similarity.

4See appendix A.1 and A.3 for implementation details.
5See table 2 for k value comparisons. Inference uses iden-

tical retrieval setup as training.
6We set k = 5 without tuning.
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Figure 2: Illustration of the approaches we explore for obtaining a Contrast Image (CI).

Embed descriptions using a text encoder. (d) Select
the image whose description is most similar to the
input image’s description

2.4 Research Hypothesis

We test whether: (a) Contrastive decoding with
CIs improves LVLM fine-grained reasoning, (b)
A lightweight classifier trained on LVLM hidden
states can effectively select CIs, and (c) Images
with similar LVLM descriptions can serve as CIs.

3 Experiments

We evaluate CoCI using three leading LVLMs7 on
four benchmarks, three specifically targeting fine-
grained visual discrimination:

NaturalBench (Li et al., 2024a) evaluates similar
image discrimination through yes/no and multiple-
choice questions, with different answers for paired
images. The benchmark contains 1900 image pairs
(two questions per pair), split into train (60%), dev
(20%), and test (20%) sets. We measure image
accuracy (both questions correct), question accu-
racy (per-question), and group accuracy (all four
image-question combinations correct).

MMVP (Multimodal Visual Patterns) (Tong
et al., 2024) evaluates visual difference detection
through multiple-choice questions on 150 image
pairs. Each pair differs in specific visual aspects
(object state, position, or orientation). Success re-
quires correct answers for both images in a pair.

D3 (Detect, Describe, Discriminate) (Gaur
et al., 2024) assesses models’ ability to generate
discriminative descriptions between similar images
across 247 pairs. We adapt D3 for CoCI by treating
it as a single-input task, generating separate de-
scriptions per image. Evaluation follows the orig-
inal self-retrieval protocol, measuring whether an

7See appendix A.2 for details on the checkpoints we used.

Model Method D3 MMVP NB VQAv2
(self-ret.) (acc.) (g-acc.) (acc.)

Qwen2-VL Baseline 30.8 46.0 30.8 72.66
CoCICAP 34.8 48.7 31.3 74.33
CoCINAT 52.2 63.3 46.6 -

LLaVA-OV Baseline 25.1 52.7 28.2 61.66
CoCICAP 31.6 57.3 31.6 73.66
CoCINAT 38.1 66.7 56.1 -

Llama 3.2 Baseline 28.7 39.3 21.1 58
CoCICAP 33.6 41.3 22.4 58
CoCINAT 35.6 43.3 29.2 -

Table 1: CoCI performance comparison with provided CIs
across benchmarks, with natural CIs (CoCINAT) and caption-
matched CIs (CoCICAP).

image-text encoder correctly matches descriptions
to their images.

VQAv2 (Goyal et al., 2017) serves as our general-
purpose visual question answering benchmark.
While not focused on fine-grained discrimination,
we include it to demonstrate CoCI’s broader appli-
cability. We evaluate on 300 validation set image-
question pairs using exact match accuracy.

4 Results and Discussion

In Table 1 we can see that using natural CIs yields
substantial improvements: up to 21.4 points on
D3 (Qwen), 17.3 points on MMVP (LLaVA), and
27.9 points on NaturalBench (LLaVA). Caption-
matched CIs show moderate but consistent gains,
particularly on D3 where LLaVA improves from
25.1% to 31.6%, suggesting that contrasting
against images with similar captions effectively
guides visual discrimination. CoCI with caption
matching improves performance on VQAv2 for
two of the three tested models while maintaining
baseline performance for Llama 3.2, demonstrating
that CoCI enhances general-purpose VQA abilities
beyond fine-grained visual discrimination tasks.

Throughout our experiments, Llama exhibits dif-
ferent behavior compared to other models - show-
ing lower performance and reduced responsiveness
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Model Method Q-acc I-acc Acc G-acc
Qwen2-VL Baseline 55.3 59.3 76.8 30.8

Clsk=4 55.5 58.8 76.4 32.1
Clsk=8 56.3 58.9 76.7 32.4
Clsk=16 57.4 60.1 77.2 33.7
Clsk=32 57.8 60.1 77.4 34.2
Clsk=64 58.2 60.8 77.9 33.9

LLaVA-OV Baseline 53.8 56.1 74.6 28.2
Clsk=4 59.2 59.6 77.6 35.3
Clsk=8 57.8 60.1 77.5 34.5
Clsk=16 57.6 58.7 77.0 33.4
Clsk=32 60.3 62.1 78.5 38.4
Clsk=64 59.7 62.1 78.2 37.6

Llama 3.2 Baseline 46.3 50.5 71.8 21.1
Clsk=4 49.2 52.8 73.2 23.2
Clsk=8 49.1 52.2 73.1 21.8
Clsk=16 48.8 52.4 73.1 22.4
Clsk=32 49.9 52.5 73.7 22.1
Clsk=64 49.7 52.5 73.6 22.1

Table 2: CoCI accuracy metrics on the NaturalBench test set
with CIs chosen using a lightweight classifier. k = j denotes
the classifier ran on the j most similar images to the input
image.

to our methods. This pattern is evident in Table 2,
where Qwen and LLaVA’s performance improves
with larger candidate pools (k), peaking around
k=32, while Llama performs best with small pools
(k=4). This behavior could be attributed to two fac-
tors: First, while the hyperparameters worked well
for Qwen and LLaVA, they may not be optimal
for Llama without model-specific tuning. Second,
Llama’s architectural differences, particularly its
use of cross-attention, could lead to different be-
haviors in our contrastive decoding context. While
exploring these architecture-specific considerations
could be valuable, it is beyond the scope of this
work.

In NaturalBench, G-Acc shows particularly
strong improvement with natural CIs as it requires
consistency across all image-question combina-
tions. This pattern persists with classifier-selected
CIs, where G-Acc improves by up to 10.2 points
while other metrics show modest gains. The sub-
stantial gap between natural CIs and other meth-
ods suggests that classifier-selected and caption-
matched CIs, while beneficial, don’t yet capture all
aspects that make natural pairs effective. 8

5 Related Work

Inference-time methods for enhancing multi-
modal reasoning. Recent work has focused on

8See appendix A.3 for ablation tests with different CI se-
lection strategies.

hallucination reduction through confidence-based
adjustments (Huo et al., 2024), semantic refer-
ences (Yang et al., 2024), and contrastive decoding
with perturbed inputs (Leng et al., 2023; Manevich
and Tsarfaty, 2024). Our work extends these ap-
proaches to fine-grained visual discrimination.

Alignment and grounding in LVLMs. Prior
work has enhanced visual-textual alignment
through object-level synthesis (Wang et al., 2024b),
targeted fine-tuning (Lu et al., 2024), and dataset
construction (Li et al., 2024c). While these meth-
ods improve foundational capabilities, they don’t
directly address fine-grained discrimination.

Contrastive examples in multimodal models.
CLIP (Radford et al., 2021b) established con-
trastive learning for modality alignment. Recent
works leverage contrast pairs: (Le et al., 2023) and
(Zhang et al., 2024) generate synthetic datasets us-
ing text-to-image models, while (Abbasnejad et al.,
2020) and (Zhou et al., 2024) use contrastive ex-
amples to address dataset biases. Unlike these ap-
proaches requiring data generation or training, our
method operates at inference time.9

6 Conclusion

We introduced Contrastive decoding with Con-
trast Images (CoCI), demonstrating its effective-
ness in improving LVLMs’ fine-grained visual dis-
crimination capabilities in both VQA and long-
form generation tasks. While naturally occurring
contrast pairs yielded the strongest gains, both
classifier-based and caption-matching approaches
provide meaningful improvements without requir-
ing dataset curation or model training. We vali-
dated the generality of our method through experi-
ments with caption-based contrast selection, show-
ing that CoCI does not rely on pre-curated pairs but
can leverage them when available. Notably, CoCI
improves performance even on tasks that don’t ex-
plicitly measure fine-grained discrimination.

Our results show that contrastive decoding al-
gorithms, when combined with strategic contrast
image selection, improve LVLMs’ ability to make
fine-grained distinctions and their overall VQA
abilities, opening new avenues for improving mul-
timodal reasoning through inference-time tech-
niques.

9Classifier-selected CIs require minimal preprocessing
compared to model finetuning or dataset curation.
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7 Limitations

CoCI has several limitations worth noting. While
we demonstrate its effectiveness with classifier-
based and caption-matching approaches, the sub-
stantial performance gap between natural and au-
tomatically selected CIs indicates significant head-
room for finding more effective contrast images.
We tested simple selection methods to establish the
viability of the approach, leaving the exploration of
more sophisticated CI selection strategies to future
work. Additionally, our evaluation focuses primar-
ily on VQA and self-retrieval protocols; exploring
additional evaluation methods could reveal other
aspects of how CoCI affects LVLM generations.

The method introduces additional computation
at inference time, running the LVLM twice per
generation step and requiring CI selection over-
head. While this aligns with the growing trend of
leveraging test-time compute for improved perfor-
mance, the current implementation could be opti-
mized. Future work could explore more efficient
implementations of contrastive decoding and inves-
tigate fusing operations like hidden state extraction
with the generation procedure to reduce computa-
tional overhead.

Our implementation uses Flickr30k as the im-
age database for CI selection - using larger, more
diverse image collections could improve perfor-
mance. Alternative image retrieval models and
similarity scoring methods could also enhance CI
selection. Additionally, our approach does not ad-
dress cases where multiple contrasts might be in-
formative - we only use a single contrast image,
while some scenarios might benefit from multiple
contrasting viewpoints.

The experiments use a fixed contrastive
weight (α) across tasks within each category
(VQA/generation). A more nuanced approach to
setting this parameter, dynamically per sample or
per token, based on the specific input or task, could
yield better results.

While CoCI improves visual discrimination, it
could potentially amplify biases present in contrast
image databases or introduce new failure modes
when inappropriate contrast images are selected.
These risks should be carefully evaluated before
deployment in sensitive applications.

Finally, our experiments focus exclusively on
English-language benchmarks. Extending CoCI
to multilingual settings and investigating how con-
trastive decoding approaches perform across differ-

ent languages represents an important direction for
future research.
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A Appendix

A.1 Lightweight Classifier Implementation Details
Below is the PyTorch code of the lightweight classifier.

class Classifier(torch.nn.Module):
def __init__(self, input_dim: int):

super(Classifier, self).__init__()
# factor of 2 due to concatentaion of target and candidate features
self.linear1 = torch.nn.Linear(input_dim * 2, input_dim)
self.linear2 = torch.nn.Linear(input_dim, input_dim)
self.linear3 = torch.nn.Linear(input_dim, 1)
self.dropout = torch.nn.Dropout(p=0.3)

def forward(self, x) -> torch.Tensor:
x = self.dropout(self.linear1(x))
x = F.relu(x)
x = self.dropout(self.linear2(x))
x = F.relu(x)
x = self.linear3(x)
return x

We trained a classifier per tested LVLM, all with the following parameters, using the AdamW (Loshchilov
and Hutter, 2019) optimizer.

batch_size=256
num_epochs=13
learning_rate=3e-4
weight_decay=1e-6

A.2 LVLM Checkpoints Tested
The following are the LVLM checkpoints we tested CoCI with:

Qwen/Qwen2-VL-7B-Instruct
llava-hf/llava-onevision-qwen2-7b-ov-hf
meta-llama/Llama-3.2-11B-Vision-Instruct

We used laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K as the open-clip model for both image and text
encoding throughout this work.
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A.3 Effect of Choosing a Contrast Image on NaturalBench Performance

Method Setting Q-acc I-acc Acc G-acc
CoCI ablations Baseline 51.6 55.4 75.1 25.6

CI ←Random (out of top-5 most similar to input) 49.6 52.1 73.8 23.2
CI ←Natural 71.8 70.8 84.3 51.6
CI ←Most similar to input 49.7 52.5 73.6 23.9
CI ←Most similar to Natural 60.3 60.7 78.9 35.0
CI ←Least similar to Natural 46.7 48.9 72.6 21.8

Classifier k = 4 51.7 54.3 74.5 26.6
k = 8 53.0 55.4 75.3 26.6
k = 16 54.3 56.8 76.1 29.2
k = 32 52.2 54.6 75.1 25.8
k = 64 51.8 53.9 74.7 26.3
k = 100 52.1 54.1 74.8 25.5

Classifier+augmentations k = 4 52.0 54.3 74.6 27.1
k = 8 52.8 55.9 75.0 27.9
k = 16 54.5 57.8 76.1 29.2
k = 32 54.9 58.2 75.9 30.0
k = 64 54.7 57.9 76.1 30.3
k = 100 54.7 58.0 76.1 30.0

Table 3: CoCI performance on the NaturalBench dev set with different CI selection methods, using Qwen2-VL.
Classifier+augmentations indicates training data augmentation with GPT-4o paraphrased questions and standard image
augmentations. Using natural CIs provides the strongest performance gains, with a 26-point improvement in
group accuracy over baseline (51.6% vs 25.6%). Selecting CIs by similarity to natural CIs improves performance
significantly (35.0% G-acc), while using the least similar images performs worse than baseline (21.8%), validating
the importance of CI selection strategy. Random CI selection hurts performance (23.2% G-acc) even when restricted
to similar images, highlighting that similarity alone is insufficient. Training with augmented data provides modest
but consistent improvements across all metrics, with G-acc increasing by about 4 points compared to the non-
augmented classifier. The augmented classifier also demonstrates more robust performance, maintaining consistent
scores across different k values compared to the higher variance seen in the non-augmented version.
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A.4 Examples of Image Pairs and Their Descriptions from D3
The following pairs of images with their respective captions are sampled from D3 results, obtained using
CoCI with Natural Contrast Images and Qwen 7B.

Baseline: The image shows a person holding a banana in front of their
mouth. The person is wearing a green shirt and is standing against a plain
wall. The banana is positioned in such a way that it appears to be covering
the person’s mouth, creating a humorous or playful effect. The background
is simple and uncluttered, which helps to focus attention on the person and
the banana.
CoCI: The image shows a person holding a banana close to their face.
The person appears to be making an exaggerated facial expression, with
their eyes wide open and eyebrows raised. The background is a plain,
light-colored wall.

Baseline: The image shows a person holding a banana in front of their
mouth, creating the illusion of a smile. The person is wearing a green
shirt and is standing against a plain wall. The banana is positioned in
such a way that it covers the lower part of the person’s face, mimicking a
smile. The lighting in the image is even, and the background is simple and
uncluttered.
CoCI: The image depicts a man with a light complexion wearing a green
shirt. He is leaning against a wall, which appears to be a combination of
light and dark shades, possibly indicating a corner or a wall with different
sections. The man is holding a banana in his right hand, and he has placed
the banana horizontally across his mouth, creating a playful expression that
resembles a mustache. The banana has some dark spots on it, suggesting it
is ripe. The background is relatively plain, with no visible decorations or
objects, focusing the viewer’s attention on the man and the banana.

Figure 3: Comparison of baseline and CoCI captions. The baseline captions are very similar and provide no
information that allows to discriminate between the images, while the left CoCI caption mentions the raised
eyebrows.
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Baseline: The image depicts the iconic Elizabeth Tower, commonly known
as Big Ben, located in London, England. The tower is a prominent example
of Gothic Revival architecture and is part of the Palace of Westminster.
The photograph captures the upper portion of the tower, focusing on its
clock face and the ornate details of its structure.
CoCI: The image showcases a close-up view of a prominent clock tower,
which is characterized by its Gothic architectural style. The tower is
adorned with intricate details and features two large, circular clock faces,
one on each visible side of the structure. Both clocks are encased in ornate
frames, which are embellished with decorative patterns and motifs.

Baseline: The image depicts the iconic Elizabeth Tower, commonly known
as Big Ben, located in London, England. The tower is a prominent example
of Gothic Revival architecture and is part of the Palace of Westminster.
The clock face is visible in the center of the tower, displaying the time.
The clock is encased in a decorative frame with intricate designs, and
the hands of the clock are clearly visible. The tower is topped with a
spire and a weathervane, which adds to its historical and architectural
significance. The sky in the background is clear, providing a sharp contrast
to the detailed stonework of the tower.
CoCI: The image depicts the iconic clock tower known as Big Ben, located
in London, England. The tower is part of the Palace of Westminster and is
one of the most recognizable landmarks in the world.

Figure 4: Comparison of baseline and CoCI captions. The left CoCI caption mentions the two visible clock faces.
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Baseline: The image depicts a person engaged in windsurfing, a water
sport that combines elements of surfing and sailing. The individual is
standing on a windsurfing board, which is partially submerged in the water.
... The individual appears to be in a standing position, holding onto the sail
with both hands, indicating that they are actively maneuvering the board.
CoCI: The image depicts a person engaging in the water sport of windsurf-
ing near a beach. The individual is wearing a black wetsuit and appears to
be holding onto the sail of the windsurfing board ... The person appears to
be standing in shallow water, with their upper body and arms visible above
the waterline.

Baseline: The image depicts a person engaged in windsurfing, an activity
that combines elements of surfing and sailing. The windsurfer is standing
on a surfboard, which is partially submerged in the water ... The individ-
ual’s posture suggests they are actively maneuvering the sail, likely using
their body weight and the wind to control the direction and speed of the
board.
CoCI: The image depicts a windsurfer riding a wave in the ocean. The
windsurfer is captured from the side, showing their body leaning back as
they navigate the wave ... The windsurfer is wearing dark clothing and
appears to be in motion, with the water splashing around their feet as they
ride the wave. ...

Figure 5: Comparison of baseline and CoCI captions. The CoCI captions describe the state of the windsurfer:
standing in the shallow water vs. riding the wave.
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Abstract

We propose MT2ST, a general and effi-
cient framework for accelerating multi-task
training by progressively transitioning to
single-task optimization. Unlike conven-
tional multi-task learning (MTL) or single-
task fine-tuning (STL), MT2ST dynamically
adjusts the training focus via two comple-
mentary strategies: Diminish, which gradually
down-weights auxiliary losses, and Switch,
which explicitly switches to the primary
task at a scheduled point. We demon-
strate the effectiveness of MT2ST across
three key paradigms: representation learn-
ing, transformers, and diffusion models, cov-
ering both unimodal (text/image) and multi-
modal (vision-language) tasks. Extensive ex-
periments show that MT2ST significantly im-
proves training efficiency—achieving up to
56% FLOPs compression—while maintaining
or surpassing task performance. These results
suggest MT2ST as a general-purpose solution
for scalable and adaptive multi-task training.
Although this work is general-purpose, it is es-
pecially suitable for multimodal settings such
as VQA or vision-language retrieval, where
auxiliary pretraining (e.g., masked language
modeling or contrastive learning) often di-
verges from final objectives. We include a
VQA case study and outline its efficiency for
multimodal retrieval in §4.

1 Introduction

The rapid evolution of large-scale models in ma-
chine learning (ML), particularly in natural lan-
guage processing (NLP), computer vision (CV),
and speech recognition, has brought tremendous
advances in task performance but also increased
the demand for computational efficiency. As mod-
els grow in parameter size and data requirements,
efficient training strategies have become indis-
pensable for scalable deployment and practical
adaptation. Among these, the training of task-
specific embeddings remains a fundamental com-

ponent, serving as the backbone for semantic rep-
resentation in both unimodal and multimodal ap-
plications [Mikolov et al., 2013, Zhang and Yang,
2021].

A major trade-off emerges in the choice of
training paradigm: single-task learning (STL) vs.
multi-task learning (MTL). STL enables high-
fidelity adaptation to a specific task objective, of-
ten yielding superior precision. However, it lacks
inductive bias and representation reuse, limiting
generalization. In contrast, MTL introduces aux-
iliary tasks that can guide shared representation
learning, promoting robustness and faster conver-
gence, especially in low-resource regimes [Wang
et al., 2020, Chung et al., 2022]. Nevertheless,
MTL is not without cost: task interference, gradi-
ent conflict [Sener and Koltun, 2018], and hetero-
geneous learning dynamics can degrade both con-
vergence speed and final task performance [Zhang
et al., 2023, Zhang and Yang, 2021, Yu et al.,
2020].

To address this dilemma, we propose the
Multi-Task to Single-Task (MT2ST) frame-
work—an adaptive training strategy that combines
the strengths of MTL and STL by dynamically
shifting the training focus from a multi-task setup
to a single-task objective. As illustrated in Fig-
ure 1, MT2ST is based on a key insight: shared
learning in the early stages of training helps build
generalized representations, but over time, spe-
cialization is necessary to maximize performance
on the main task.

MT2ST incorporates two strategies for control-
ling this transition:

• Diminish Strategy: progressively reduces
the gradient contribution of auxiliary tasks
through a decaying weight schedule, allow-
ing a smooth prioritization of the main task.

• Switch Strategy: enforces a discrete tran-
sition at a predetermined training epoch,
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abruptly removing auxiliary tasks to focus
entirely on the primary objective.

Our approach is simple, lightweight, and
does not require architecture modifications, mak-
ing it compatible with most encoder-decoder or
encoder-only models. Furthermore, MT2ST is
domain-agnostic: although demonstrated on word
embedding learning, its core principles apply nat-
urally to image embeddings, multimodal fusion
models, and task-specific adaptation in recom-
mendation or healthcare systems.

We conduct comprehensive experiments show-
ing that MT2ST significantly reduces training time
while improving or preserving performance. In
particular, MT2ST achieves up to 67% training
speed-up over STL and 13% over conventional
MTL on embedding tasks, all while maintaining
competitive accuracy. These results suggest that
MT2ST can be a general-purpose mechanism for
efficient task-oriented representation learning.

Contributions To summarize, our contributions
are as follows:

• We propose the MT2ST framework that ef-
fectively bridges MTL and STL for efficient
embedding training.

• We introduce two complementary transition
mechanisms—Diminish and Switch—for
balancing generalization and specialization
over training time.

• We demonstrate that MT2ST achieves sig-
nificant improvements in convergence speed,
training efficiency, and model compression
across NLP benchmarks, and we discuss its
extension to vision and multimodal domains.

2 Motivation

2.1 Challenges in Single-Task Representation
Learning

Representation learning is fundamental in mod-
ern machine learning systems, as it enables mod-
els to map high-dimensional input data—such as
text, images, or structured signals—into dense, se-
mantically meaningful vector spaces. These rep-
resentations support a wide range of downstream
tasks across domains including natural language
processing (NLP), computer vision, and speech
processing. However, the training of high-quality
representations remains challenging due to several
computational and optimization-related obstacles.

Data Scale and Cost. Effective representation
learning typically demands large-scale datasets to
capture contextual and task-relevant patterns. As
datasets grow in size and complexity, training
time and resource requirements increase signifi-
cantly [Ebner et al., 2019, Liu and Pister, 2024].
This presents a practical barrier to deploying scal-
able machine learning solutions, particularly for
real-time or resource-constrained environments.

Computational Complexity. Learning expres-
sive representations often involves deep architec-
tures and iterative optimization over millions or
billions of parameters. This leads to high compu-
tational costs and energy consumption [Liu et al.,
2024], prompting the need for efficient training
strategies and algorithmic improvements.

Optimization Challenges. The optimization
landscape of representation learning is typically
non-convex and high-dimensional, making con-
vergence difficult and sensitive to initialization,
batch composition, and training dynamics [Zeng
and Nie, 2021, Ban and Ji, 2024, Zhao et al.,
2023]. These challenges are amplified in real-
world settings where data is noisy, multi-modal,
or weakly labeled.

2.2 Improving Training Efficiency via
Multi-Task Learning

Multi-task learning (MTL) is a widely adopted
paradigm aimed at improving model efficiency
and generalization by jointly training on multiple
related tasks. In MTL, shared representations are
learned across tasks, allowing the model to ben-
efit from auxiliary supervision and mutual induc-
tive bias [Caruana, 1997]. MTL has proven effec-
tive across domains, including NLP [Zhang et al.,
2023, Su et al., 2022], computer vision [Lopes
et al., 2024, Zhang and Yang, 2021], and speech
recognition.

Shared Representations and Generalization.
By learning shared features that are relevant to
multiple tasks, MTL reduces overfitting and im-
proves generalization, especially in scenarios with
limited data for the primary task. For instance, in
NLP, MTL setups that combine syntax, semantics,
and discourse tasks have yielded more robust rep-
resentations.

Training Efficiency. MTL also offers compu-
tational efficiency by allowing multiple tasks to
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share a common forward pass, thereby amortizing
cost across task-specific outputs [Standley et al.,
2020]. Additionally, auxiliary tasks can act as a
form of regularization, stabilizing the training pro-
cess and encouraging smoother optimization.

2.3 Limitations of MTL for General
Representation Learning

Despite its benefits, MTL introduces several inef-
ficiencies when naively applied to general-purpose
representation learning.

Gradient Conflicts. A major challenge in MTL
is the conflict between gradients from different
tasks, which may push shared parameters in op-
posing directions [Sener and Koltun, 2018]. Such
interference can result in suboptimal representa-
tions and unstable training dynamics. Several
studies [Yu et al., 2020, Liu et al., 2021] propose
techniques such as gradient projection or conflict-
averse optimization to mitigate this issue, though
these approaches increase model complexity.

Computational Overhead. MTL may incur ad-
ditional computational cost due to task-specific
heads, losses, and gradient computations. As
the number of tasks increases, these costs accu-
mulate, reducing the practical efficiency gains of
MTL [Zhang et al., 2023].

Scalability and Task Imbalance. Scaling MTL
to many tasks often results in task imbalance
and dominance by easier or higher-resource tasks.
This imbalance can distort the shared representa-
tions and lead to underperformance on the primary
task [Ruder, 2017, Ahmad et al., 2018, Trabelsi
et al., 2021].

2.4 Motivating MT2ST: From Multi-Task to
Single-Task

Given the strengths and limitations of both
STL and MTL, we propose a hybrid strat-
egy—MT2ST—which begins with multi-task
learning to benefit from auxiliary tasks, and grad-
ually transitions to single-task learning to focus
model capacity on the primary task. MT2ST
incorporates two core mechanisms: Diminish,
which progressively reduces the influence of aux-
iliary tasks during training, and Switch, which
fully shifts the optimization objective to the main
task at a specific training point.

This strategy allows us to leverage the general-
ization benefits of MTL in the early phase of train-

ing while achieving task-specific precision during
the later phase. In subsequent sections, we formal-
ize the MT2ST framework and demonstrate its ef-
fectiveness across various representation learning
scenarios.

3 Methodology

3.1 MT2ST Framework
We introduce the MT2ST (Multi-Task to Single-
Task) framework to optimize embedding gener-
ation training. It combines multi-task learning
(MTL) and single-task learning (STL) to achieve
efficient training while overcoming common chal-
lenges in multi-task environments.

The process starts with MTL, where a unified
model with a shared embedding layer is trained
across multiple tasks. This allows the model to
capture diverse linguistic features and semantic
knowledge. The shared embedding layer benefits
from varied inputs, providing a more generalized
word representation [Liu et al., 2019].

After the MTL phase, MT2ST transitions to
STL, fine-tuning the pre-trained embeddings for
specific tasks. This phase refines the embeddings
to match the unique requirements of each task, im-
proving performance while retaining the knowl-
edge gained from the MTL phase. Techniques like
adaptive learning rates and selective freezing of
embedding dimensions ensure a smooth transition
and maintain the balance between generalization
and specialization [Treviso et al., 2023].

3.2 Model Construction
We denote a multi-task training model as a com-
position of shared and task-specific modules. Let
T0 be the primary task and {Tk}Kk=1 be auxil-
iary tasks. Given an input text sequence X =
(x1, x2, . . . , xn), we first encode it via a tokenizer
E : X → Nn, followed by an embedding lookup
V ∈ R|V|×d, such that:

X = V (E(X)) ∈ Rn×d, (1)

where n is the input length and d is the hidden
dimension.

The embedded input X is then passed through a
shared encoder fθ : Rn×d → Rn×d (e.g., stacked
Transformer layers), which is optimized across all
tasks during the multi-task phase. The shared rep-
resentation is denoted as:

H = fθ(X). (2)
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For each task Tk, we define a task-specific head
gk : Rn×d → RCk to generate predictions ŷk:

ŷk = gk(H) = Softmax (Wk · Pool(H) + bk) ,
(3)

where Pool(·) is either mean pooling or [CLS]
vector, and Ck is the number of classes for task
Tk.

The total loss at step t is computed as a
weighted combination:

Lt = L0 +
K∑

k=1

γk(t) · Lk, (4)

where γk(t) is a dynamic importance weight con-
trolled by either the Diminish or Switch strategy:

γk(t) =

{
γk,0 · e−ηkt

νk , Diminish strategy,
I[t < Tswitch], Switch strategy.

(5)
Additionally, a feedback mechanism monitors
L0 over time to adaptively adjust γk(t) or trigger
early transition to single-task optimization.

This construction allows MT2ST to effec-
tively fuse general representation learning via
multi-tasking with specialized refinement through
single-task fine-tuning, all within a unified
Transformer-based architecture.

3.3 Model Overview

Figure 1: MT2ST Training Framework Overview

3.4 MT2ST: Diminish Strategy

The Diminish strategy is designed to enable a
smooth and continuous transition from multi-task
learning (MTL) to single-task learning (STL) by
gradually reducing the influence of auxiliary tasks
over time. This is achieved through a time-aware

dynamic weighting scheme that modulates the op-
timization objective at each training iteration.

Formally, let T0 denote the primary task and
{Tk}Kk=1 represent K auxiliary tasks. Given an in-
put sequence X ∈ X , a shared encoder network
f(·; θ) parameterized by θ first produces the inter-
mediate representation:

h = f(X; θ), h ∈ Rd. (6)

At training step t, the overall loss Lt is com-
puted as a weighted sum of the primary task loss
L0 and each auxiliary task loss Lk:

Lt = L0 +
K∑

k=1

γk(t) · Lk, (7)

where the time-dependent weight γk(t) controls
the contribution of the k-th auxiliary task and is
defined as an exponentially decaying function:

γk(t) = γk,0 · exp (−ηktνk) , (8)

with initial coefficient γk,0 > 0, decay rate ηk >
0, and curvature νk ≥ 1 for each k ∈ {1, . . . ,K}.

The model parameters are updated using stan-
dard gradient descent:

θ(t+1) = θ(t) − η · ∇θLt, (9)

which, expanded, becomes:

θ(t+1) = θ(t) − η

(
∇L0 +

K∑

k=1

γk(t) · ∇Lk

)
. (10)

This formulation allows the model to benefit from aux-
iliary supervision during early training, while progressively
biasing optimization toward the primary objective as training
proceeds. When t → ∞, γk(t) → 0, and the model con-
verges to an STL setting.

3.5 MT2ST: Switch Strategy
The Switch strategy is a hard transition mechanism that sepa-
rates the training process into two discrete phases: a multi-
task phase followed by a single-task phase. Initially, the
model learns shared representations from both the primary
and auxiliary tasks. At a predefined switch step Tswitch, the
auxiliary task losses are discarded and only the primary task
objective is optimized henceforth.

Let θ(t) denote the model parameters at step t, and let L0

and Lk denote the loss for the primary task and the k-th auxil-
iary task, respectively. Then, the training objective is defined
piecewise as:

Lt =




L0 +

K∑
k=1

Lk, if t < Tswitch

L0, if t ≥ Tswitch.

(11)
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Algorithm 1: MT2ST: Diminish Strategy

input : Input X , initial parameters θ(0),
γk,0, ηk, νk, learning rate η, total
steps T

output: Final parameters θ∗

1 for t← 1 to T do
2 h← f(X; θ(t));
3 Compute ∇L0, ∇Lk for k = 1, . . . ,K;
4 for k ← 1 to K do
5 γk(t)← γk,0 · exp(−ηktνk);
6 ∇Lt ← ∇L0 +

∑K
k=1 γk(t) · ∇Lk;

7 θ(t+1) ← θ(t) − η · ∇Lt;

Algorithm 2: MT2ST: Switch Strategy

input : Input X , initial parameters θ(0),
switch step Tswitch, learning rate η,
total steps T

output: Final parameters θ∗

1 for t← 1 to T do
2 h← f(X; θ(t));
3 if t < Tswitch then
4 Compute∇L0,∇Lk for

k = 1, . . . ,K;
5 ∇Lt ← ∇L0 +

∑K
k=1∇Lk;

6 else
7 Compute∇L0;
8 ∇Lt ← ∇L0;

9 θ(t+1) ← θ(t) − η · ∇Lt;

Accordingly, the gradient-based parameter update rule be-
comes:

θ(t+1) =





θ(t) − η
(
∇L0

+
K∑

k=1

∇Lk

)
, t < Tswitch

θ(t) − η∇L0, t ≥ Tswitch

(12)

where η denotes the learning rate.
This strategy enables the model to leverage cross-task sig-

nals in the early stage, while avoiding gradient conflict and
unnecessary computation in later training stages by switch-
ing to STL mode. It is particularly beneficial when auxiliary
tasks are loosely correlated or potentially harmful in the long
term.

4 MT2ST Deployment
In this section, we formally describe how MT2ST is deployed
across three representative paradigms: representation learn-
ing, transformer-based architectures, and diffusion models.
We focus on the formulation of adaptive learning weights
γk(t) and present unique integration strategies in each con-
text. To avoid redundancy, core mechanisms such as task

weighting decay and switching dynamics already discussed
in §3 are omitted.

4.1 MT2ST for Representation Learning
Let fθ : X → Rd denote an encoder that transforms inputs
x ∈ X into latent vectors. The primary task is associated
with loss L0, and K auxiliary tasks are defined by {Lk}Kk=1.
The adaptive contribution of each task is governed by the nor-
malized inverse gradient norm:

γk(t) =

∥∇θL0∥2
∥∇θLk∥2 + ϵ

with
K∑

k=1

γk(t) = λ.

(13)

Here, ϵ is a small constant for numerical stability and λ is a
tunable budget.

Algorithm 3: Adaptive MT2ST for Repre-
sentation Learning

Input : Input data x, primary loss L0,
auxiliary losses {Lk}

1 for t = 1 to T do
2 Encode z ← fθ(x);
3 Compute ∇θL0 and ∇θLk for all k;
4 Update γk(t) using Eq. (??);
5 θ ← θ − η · (∇θL0 +

∑
k γk(t)∇θLk);

4.2 MT2ST for Transformers
Let a transformer block be parameterized by θ = {θenc, θ

k
task},

where θenc denotes shared encoder weights and θktask corre-
sponds to each task-specific head. We compute adaptive task
weights using the relative Fisher information:

γk(t) =
Tr(E[∇2

θencLk])∑K
j=1 Tr(E[∇2

θenc
Lj ])

· λ. (14)

This ensures tasks with higher curvature (importance) are
given proportionally more attention during shared parameter
updates.

4.3 MT2ST for Diffusion Models
Let fθ(xt, t) denote the noise predictor of a denoising dif-
fusion model. In multi-task diffusion training, each auxil-
iary task Lk contributes a variance-aware signal based on ex-
pected per-step noise variance σ2

k(t):

γk(t) =
λ

σ2
k(t) + ϵ

, normalized over k. (15)

This prioritizes tasks that operate under more stable or con-
fident conditions.

This deployment allows MT2ST to dynamically and effi-
ciently adapt to diverse training environments by leveraging
the structure of the underlying learning paradigms.
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Algorithm 4: Adaptive MT2ST for Trans-
formers
Input: Batch x, Transformer model fθ

with shared and task heads
1 for t = 1 to T do
2 Forward: h = Encoderθ(x);
3 Compute task losses

Lk = Lk(fk
head(h));

4 Estimate curvature:
FIk = Tr(E[∇2

θenc
Lk]);

5 γk(t)← FIk/
∑

j FIj · λ;
6 Update θ using combined loss

L0 +
∑

k γk(t)Lk;

Algorithm 5: Adaptive MT2ST for Diffu-
sion Models
Input: Time step t, noisy sample xt,

auxiliary noise predictors fk
θ

1 for t = 1 to T do
2 Sample ϵ ∼ N (0, I), construct xt;
3 Compute L0 = ∥fθ(xt, t)− ϵ∥2;
4 Compute auxiliary losses Lk with noise

variance σ2
k(t);

5 γk(t)← 1
σ2
k(t)+ϵ

· λ;

6 θ ← θ − η · ∇θ (L0 +
∑

k γk(t)Lk);

5 Experiments and Applications
We evaluate the proposed MT2ST framework to answer the
following research questions:

Q1: How do the Diminish and Switch strategies impact
training efficiency and performance?

Q2: What are the effects of MT2ST across various models
and architectures?

Q3: Can MT2ST generalize across modalities such as vi-
sion, text, and multimodal systems?

5.1 Comparison with Prior Work
We compare MT2ST with representative multi-task optimiza-
tion frameworks including PCGrad [Yu et al., 2020], Grad-
Drop [Yu et al., 2017], and TaskRouting [Strezoski et al.,
2019]. All methods are evaluated on the MNLI and VQA
benchmarks under the same backbone (BERT-base or ViLT)
and training schedule.

Method MNLI Acc. (%) VQA Acc. (%)

PCGrad [Yu et al., 2020] 83.6 69.9
GradDrop [Yu et al., 2017] 84.1 70.4
MT2ST-D (Ours) 84.2 70.6
MT2ST-S (Ours) 85.0 71.8

Table 1: Comparison with multi-task optimization
methods on MNLI and VQA. MT2ST-S achieves the
best accuracy.

These results demonstrate that MT2ST achieves compara-
ble or better performance than existing multi-task scheduling
methods, while remaining architecture-agnostic and easier to
implement.

5.2 MT2ST in Representation Learning
Setup We begin with classic representation learning mod-
els including CBOW, Skip-Gram, FastText, and GloVeTwit-
ter. These models are evaluated on analogy and similarity
tasks. We consider the following four configurations:

• STL: Single-task fine-tuning baseline.

• MTL: Multi-task training with shared backbone.

• MT2ST-D: MT2ST with Diminish strategy.

• MT2ST-S: MT2ST with Switch strategy.

Training is done using cosine learning rate schedule, with
early stopping based on validation loss. Evaluation includes
accuracy, training time, convergence speed, and compression
rate (defined as FLOPs reduction vs STL).

Findings (Q1 + Q2) Table 2 shows MT2ST substan-
tially boosts efficiency and convergence speed. Compared to
STL, MT2ST-S improves accuracy by 6–11%, reduces train-
ing time by over 40%, and converges in fewer epochs. No-
tably, performance gains are more pronounced for syntactic
reasoning tasks, suggesting that MT2ST benefits structure-
sensitive learning processes.

5.3 Generalization to Non-Text Modalities
(Q3)

Setup To validate cross-modal generalization, we extend
MT2ST to vision classification tasks using ResNet-18 and
MobileNetV2 as backbones. We train on CIFAR-100 and
TinyImageNet, with the primary task being object classifi-
cation. Auxiliary tasks include edge prediction and represen-
tation contrastive learning.

Findings (Q3) As shown in Table 3, MT2ST strategies
provide significant gains in vision tasks as well. MT2ST-S
offers +2–3% accuracy over STL with a 30–40% reduction
in training time. The results confirm that MT2ST generalizes
beyond textual data, effectively optimizing task coordination
in vision models.

Observations Table 3 shows that MT2ST improves ac-
curacy while reducing training time in image embedding set-
tings as well. This demonstrates that the MT2ST paradigm,
though originally designed for word embedding, generalizes
well to vision tasks by dynamically adjusting task weights.
MT2ST-S shows superior convergence speed and accuracy on
both text and image representation tasks. The dynamic phase
transition enables early generalization and late specialization.

5.4 MT2ST in Transformers
Setup We use T5-small and BERT-base on:

• Text: GLUE (MNLI, SST-2, QQP), with MNLI as the
primary task.

• Multimodal: Visual Question Answering (VQA v2.0)
with ViLT [Kim et al., 2021]

The auxiliary tasks include paraphrase detection and senti-
ment classification. For VQA, the auxiliary task is masked
language modeling. Training is done with batch size 64,
learning rate 3e-5, and AdamW optimizer.
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Model Strategy Accuracy (%) Training Time (s) Compression Rate (%) Convergence Epochs Semantic Acc Syntactic Acc

CBOW

STL 68.0 108.0 0.0 25 65.0 60.2
MTL 68.0 60.0 21.0 22 68.3 61.7

MT2ST-D 71.0 72.0 44.0 18 72.4 66.5
MT2ST-S 77.0 64.8 53.0 16 76.1 70.2

Skip-Gram

STL 67.0 110.0 0.0 25 64.2 59.7
MTL 67.0 63.2 20.1 22 67.8 61.3

MT2ST-D 74.0 69.5 47.2 18 73.6 68.0
MT2ST-S 78.0 65.1 56.1 15 77.0 71.3

FastText

STL 70.0 107.4 0.0 25 66.0 63.5
MTL 70.0 62.1 22.6 22 70.3 66.1

MT2ST-D 76.0 70.2 46.4 18 75.1 69.7
MT2ST-S 79.0 65.5 52.9 16 78.0 72.4

GloVeTwitter

STL 66.0 106.8 0.0 25 62.0 58.7
MTL 66.0 59.9 23.1 22 67.4 61.0

MT2ST-D 72.0 70.0 43.0 19 71.3 67.0
MT2ST-S 75.0 64.0 51.2 16 74.0 69.2

Table 2: Performance of MT2ST across representation learning models. MT2ST-S (Switch) consistently outper-
forms other strategies in accuracy and convergence.

Backbone Dataset Strategy Top-1 Acc (%) Training Time (min) Compression Rate (%)

ResNet-18 CIFAR-100

STL 71.3 46.2 0.0
MTL 71.8 32.5 29.6

MT2ST-D 73.1 30.1 34.8
MT2ST-S 74.2 28.0 39.4

MobileNetV2 TinyImageNet

STL 58.4 52.0 0.0
MTL 59.3 39.2 24.6

MT2ST-D 60.7 36.5 29.8
MT2ST-S 61.5 34.7 33.2

Table 3: MT2ST generalization to vision tasks. Switch strategy consistently improves both accuracy and efficiency.

We introduce Visual7W Telling and Flickr30k Entities
(or construct VQA-style multimodal QA-retrieval subsets in a
similar format) to simulate image-question-answer retrieval-
style tasks. These datasets combine visual grounding, ques-
tion understanding, and answer selection, making them suit-
able benchmarks for evaluating multi-task to single-task tran-
sitions in multimodal settings.

• Primary Task: Visual Question Answering (e.g.,
VQA v2.0)

• Auxiliary Tasks:

– Image-Text Matching (ITM): Predict whether
a given image-text pair is semantically aligned.

– Caption Generation (Captioning Head): Gen-
erate image descriptions using a cross-entropy
decoding objective.

– Masked Multimodal Modeling
(MLM/MRM): Reconstruct masked tokens or
regions conditioned on both modalities.

Strategy VQA Acc (%) ITM R@1 (%) BLEU-4 Time (h)

STL (VQA only) 69.4 – – 29.3
MTL 70.1 60.2 21.4 24.5
MT2ST-D 71.3 61.7 22.0 22.1
MT2ST-S 72.4 63.8 22.8 20.7

Table 5: Multimodal retrieval-style performance on
VQA and Visual7W with ViLT.

Findings In transformers, MT2ST consistently yields
faster convergence and higher primary task performance. The

adaptive loss reweighting naturally resolves task conflict, par-
ticularly in early-stage training.

From Table 4, we observe the following:

• MT2ST-S consistently improves accuracy on both
MNLI (+1.9%) and VQA (+2.4%) compared to STL.

• The auxiliary loss drops faster and lower under
MT2ST-S, confirming better task disentanglement.

• Training time is significantly reduced (up to 47.6%
FLOPs compression), confirming MT2ST’s training ef-
ficiency.

This suggests that MT2ST enables early-stage generalization
(via shared learning) and late-stage specialization (via task
focusing), making it particularly suitable for multi-objective
Transformer workloads.

5.5 MT2ST in Diffusion Models
Setup We evaluate latent diffusion (LDM) models [Rom-
bach et al., 2022] for image synthesis:

• Primary task: Text-to-image generation on MS-
COCO

• Auxiliary tasks: Image reconstruction, CLIP-based
semantic alignment

We use DiT-XL/2 as the backbone and measure FID, IS, and
training time. Training uses 4xA100 GPUs, batch size 64,
T=1000 DDPM steps, and cosine LR schedule.
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Model Dataset Strategy Main Task Acc (%) Aux Loss ↓ Training Time (s) Compression Rate (%)

BERT-base MNLI STL 83.1 – 1720 0.0
BERT-base MT2ST-D 84.2 0.71 1228 37.1
BERT-base MT2ST-S 85.0 0.39 1060 47.6

ViLT VQA v2.0 STL 69.4 – 2980 0.0
ViLT MT2ST-D 70.6 1.13 2241 34.2
ViLT MT2ST-S 71.8 0.92 2010 39.5

Table 4: MT2ST evaluation on Transformers with text and multimodal tasks.

Strategy FID ↓ IS ↑ Time (h) Compression (%)

STL (DiT-XL/2) 12.5 28.1 58.3 0.0
MT2ST-D 11.3 29.0 44.0 24.5
MT2ST-S 10.5 29.8 39.7 31.9

Table 6: Diffusion results on MS-COCO using DiT-
XL/2.

Findings From Table 6, we derive several important in-
sights:

• Both MT2ST strategies outperform standard fine-
tuning (STL) on all metrics, indicating that auxiliary
guidance helps improve generative fidelity and seman-
tic alignment.

• MT2ST-S achieves the best FID and CLIP score,
demonstrating better visual quality and text-image con-
sistency. The sharp performance gain around the
switching step (400K) supports the benefit of a staged
training process.

• Reconstruction loss is lower for both MT2ST variants,
showing that incorporating auxiliary pixel-level loss
early helps stabilize training.

• In terms of efficiency, MT2ST-S achieves 31.9% com-
pression and reduces training time by nearly 19 hours,
without sacrificing generative quality.

6 Conclusion
In this work, we propose MT2ST, a general and adaptive
multi-task to single-task training framework designed to ac-
celerate model convergence while preserving or even im-
proving final task performance. MT2ST introduces two
complementary strategies—Diminish and Switch—that en-
able smooth or staged transitions from multi-task sharing to
single-task specialization. We evaluate MT2ST across a wide
spectrum of models and modalities, including classical repre-
sentation learners, transformer-based architectures, and dif-
fusion models. Empirical results on text, image, and multi-
modal tasks show that MT2ST consistently improves accu-
racy while reducing training time and computational over-
head. Our analysis highlights MT2ST as a practical and
modular framework for efficient optimization across diverse
AI systems. Our method is especially relevant to multi-
modal learning problems such as visual question answer-
ing (VQA) or cross-modal retrieval, where auxiliary objec-
tives like masked language modeling or contrastive image-
text alignment are commonly used but often misaligned with
the downstream task. MT2ST provides a principled way to
leverage such auxiliary tasks without compromising task spe-
cialization.

Limitations
While MT2ST performs consistently well across diverse
models and tasks, there still a few aspects can be further re-
fined. Currently, task transition schedules in both strategies
are predefined; future work may benefit from more adaptive
or learned scheduling.
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tins, André F. T. Martins, Jessica Zosa Forde, Peter
Milder, Edwin Simpson, Noam Slonim, Jesse Dodge,
Emma Strubell, Niranjan Balasubramanian, Leon Der-
czynski, Iryna Gurevych, and Roy Schwartz. Efficient
Methods for Natural Language Processing: A Survey.
Transactions of the Association for Computational Lin-
guistics, 11:826–860, 07 2023. ISSN 2307-387X. doi:
10.1162/tacl a 00577. URL https://doi.org/10.
1162/tacl_a_00577.

Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, and
Xindong Wu. A survey on large-scale machine learn-
ing. 2020. URL https://arxiv.org/abs/2008.
03911.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. In Advances in Neural Information
Processing Systems (NeurIPS), volume 33, pages 5824–
5836, 2020.

Wenhao Yu, C Karen Liu, and Greg Turk. Multi-task learning
with gradient guided policy specialization. arXiv preprint
arXiv:1709.07979, 2017.

Yan Zeng and Jian-Yun Nie. A simple and efficient
multi-task learning approach for conditioned dialogue
generation. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven
Bethard, Ryan Cotterell, Tanmoy Chakraborty, and
Yichao Zhou, editors, Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pages 4927–4939, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.392. URL https://aclanthology.
org/2021.naacl-main.392/.

Yu Zhang and Qiang Yang. A survey on multi-task learn-
ing. 2021. URL https://arxiv.org/abs/1707.
08114.

Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo, and
Meng Jiang. A survey of multi-task learning in natu-
ral language processing: Regarding task relatedness and
training methods. In Andreas Vlachos and Isabelle Au-
genstein, editors, Proceedings of the 17th Conference
of the European Chapter of the Association for Compu-
tational Linguistics, pages 943–956, Dubrovnik, Croa-
tia, May 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.eacl-main.66. URL https:
//aclanthology.org/2023.eacl-main.66.

Xiangyu Zhao, Maolin Wang, Xinjian Zhao, Jiansheng Li,
Shucheng Zhou, Dawei Yin, Qing Li, Jiliang Tang, and
Ruocheng Guo. Embedding in recommender systems:
A survey. 2023. URL https://arxiv.org/abs/
2310.18608.

A Experimental Results Figures
This section includes the figures corresponding to the experi-
mental results presented in the main text.

A.1 Single-task Fine-Tuning
Figure 2 shows the loss and accuracy changes for the single-
task fine-tuning approach.

Figure 2: Loss and Accuracy Change for Single-task
Fine-Tuning
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A.2 Multi-task Learning (MTL)
Figures 3 and 4 show the loss and accuracy changes for the
multi-task learning approach.

Figure 3: Loss Change in Multi-task Learning

Figure 4: Accuracy Change in Multi-task Learning

A.3 MT2ST: Diminish Strategy
Figures 5 and 6 show the loss and accuracy changes for the
MT2ST-diminish strategy.

Figure 5: Loss Change in MT2ST: Diminish Strategy

Figure 6: Accuracy Change in MT2ST: Diminish Strat-
egy

A.4 MT2ST: Switch Strategy
Figures 7 and 8 show the loss and accuracy changes for the
MT2ST-switch strategy.

Figure 7: Loss Change in MT2ST: Switch Strategy

Figure 8: Accuracy Change in MT2ST: Switch Strat-
egy

B Theoretical Foundation of MT2ST
In this section, we provide a formal theoretical framework for
MT2ST. We first describe a general overview of our method.

Then, we instantiate it in the context of shared neural rep-
resentation learning. Finally, we conduct a theoretical effi-
ciency analysis comparing MT2ST with standard MTL and
STL baselines.

B.1 Overview of MT2ST
Let a model be denoted by f(·; θ), trained on a set of K tasks
{T1, . . . , TK}. The total loss at step t is a weighted combi-
nation of the primary task Tmain and auxiliary tasks:

L(t) = L(t)
main +

∑

k ̸=main

γ
(t)
k L(t)

k , (16)

where γ
(t)
k is a time-varying weight for auxiliary task k at

iteration t. MT2ST alternates between two core strategies:

• Diminish: Gradually decreases each γ
(t)
k to zero over

time, enabling soft transition from MTL to STL.

• Switch: Explicitly sets γ(t)
k = 0 after a predefined step

Tswitch, performing a hard switch to STL.

B.2 Formulation of Diminish Strategy
In the Diminish strategy, each auxiliary task’s contribution is
governed by a decay function:

γ
(t)
k = γk,0 · exp (−ηkt

νk ) , k ̸= main, (17)

where γk,0 is the initial importance of task k, ηk is the decay
rate, and νk controls curvature (decay speed). The overall
parameter update is given by:

θ(t+1) = θ(t) − α


∇L(t)

main +
∑

k ̸=main

γ
(t)
k ∇L(t)

k


 , (18)

where α is the learning rate.

B.3 Formulation of Switch Strategy
The Switch strategy introduces a discrete schedule:

γ
(t)
k =

{
1, t < Tswitch

0, t ≥ Tswitch
for all k ̸= main.

The update rule becomes:

θ(t+1) = θ(t) − α


∇L(t)

main +
∑

k ̸=main

γ
(t)
k ∇L(t)

k


 , (19)

but reduces to standard single-task learning for t ≥ Tswitch.

B.4 Theoretical Efficiency Analysis
We compare MT2ST with baseline MTL and STL methods in
terms of convergence behavior and computational efficiency.

Training Cost (FLOPs) Let Cmtl and Cstl denote per-
step FLOPs for MTL and STL respectively. Then, the ex-
pected training cost for MT2ST is:

CMT2ST =
T∑

t=1


Cstl +

∑

k ̸=main

γ
(t)
k Ck


 , (20)

where Ck is the marginal cost for task k. When γ
(t)
k → 0

quickly, the training cost approaches STL but retains MTL’s
benefit in early stages.
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Convergence Behavior Define the effective gradient
at step t as:

∇L(t)
eff = ∇L(t)

main +
∑

k ̸=main

γ
(t)
k ∇L(t)

k .

Under the Polyak-Łojasiewicz (PL) condition [Karimi et al.,
2017], MT2ST retains linear convergence rate as long as the
auxiliary task gradients align or diminish quickly:

⟨∇L(t)
main,∇L(t)

eff ⟩ > 0.

Our strategy ensures that gradient interference is minimized
over time, either smoothly (Diminish) or discretely (Switch),
avoiding divergence seen in conventional MTL [Yu et al.,
2020].

Memory Usage Because MT2ST shares the same en-
coder across tasks, model memory cost is no worse than
MTL. When γ

(t)
k = 0, the auxiliary gradients and heads can

be dropped from the computation graph entirely.
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Abstract

This paper introduces a multimodal retrieval-
augmented generation (RAG) system designed
to enhance language understanding and gen-
eration for low-resource languages. By inte-
grating textual, visual, and geospatial data, the
system leverages cross-lingual adaptation and
multimodal augmentation to bridge the gap
between high-resource and low-resource lan-
guages. Evaluated on the MM-COVID and
LORELEI datasets, the system demonstrates
superior performance in retrieval (precision:
85%, recall: 82%) and generation (BLEU:
28.4) tasks compared to baselines. Case studies
in public health communication and disaster re-
sponse highlight its practical utility. The results
underscore the potential of multimodal AI to
democratize access to technology and address
global challenges in low-resource settings.

1 Introduction

In recent years, advancements in natural language
processing (NLP) have revolutionized how we in-
teract with AI systems, enabling applications like
machine translation, summarization, and question-
answering. However, these successes are heav-
ily skewed toward high-resource languages, leav-
ing low-resource languages severely underrepre-
sented. The lack of large-scale textual corpora
in low-resource languages poses significant chal-
lenges for training robust language models, limiting
their ability to understand and generate meaning-
ful content. This disparity not only exacerbates
global inequities in access to technology but also
hinders efforts to address critical issues such as
public health communication, disaster response,
and education in multilingual contexts (Fan et al.,
2021).

To bridge this gap, we propose Cross-Modal
Augmentation for Low-Resource Language Un-
derstanding and Generation, a novel frame-
work that leverages multimodal data text, images,

geospatial information, and structured data—to en-
hance language understanding and generation in
low-resource settings. By integrating complemen-
tary modalities, our approach compensates for the
scarcity of textual resources and enriches the se-
mantic context available to language models. For
example, visual data can provide additional ground-
ing for concepts that are poorly represented in text,
while geospatial data can help localize and contex-
tualize events described in queries (Radford et al.,
2021).

Our work builds on datasets like MM-COVID
(Chen et al., 2021) and LORELEI (Strassel and
Tracey, 2016), which offer rich multimodal infor-
mation relevant to real-world challenges. MM-
COVID provides multilingual textual and visual
data related to the COVID-19 pandemic, enabling
us to test the system’s ability to generate public
health information in low-resource languages. Sim-
ilarly, LORELEI offers low-resource language data
alongside geospatial and event information, making
it ideal for tasks like disaster response and situa-
tional awareness. By combining these datasets with
retrieval-augmented generation (RAG) techniques,
we demonstrate how cross-modal augmentation
can significantly improve performance in tasks
such as translation, summarization, and question-
answering (Lewis et al., 2020).

The contributions of this paper are threefold:

1. A Novel Framework: We introduce a multi-
modal RAG system tailored for low-resource
languages, leveraging cross-modal embed-
dings to align diverse data types.

2. Real-World Applications: We showcase the
practical utility of our approach in domains
like public health communication and disaster
response.

3. Empirical Validation: We evaluate our sys-
tem on MM-COVID and LORELEI, demon-
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strating its effectiveness in enhancing both
understanding and generation capabilities for
low-resource languages.

2 Related Work

2.1 Low-Resource Language Modeling

Low-resource languages pose significant chal-
lenges due to the scarcity of annotated data and
linguistic resources. Recent advances in cross-
lingual transfer learning have partially addressed
these challenges by leveraging pre-trained multilin-
gual models such as mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020), and M2M-100
(Fan et al., 2021). These models enable knowl-
edge transfer from high-resource languages to low-
resource ones, improving performance on tasks
like machine translation and text classification.
However, they remain heavily reliant on textual
data, which may still be insufficient for many low-
resource languages. To address this limitation, re-
cent works have explored augmenting textual data
with other modalities, such as images and audio
(Liu et al., 2021). Our work builds on these efforts
by introducing multimodal augmentation to reduce
dependency on textual corpora.

2.2 Retrieval-Augmented Generation

Retrieval-augmented generation has emerged as a
powerful paradigm for enhancing language models
with external knowledge. Pioneering works like
REALM (Guu et al., 2020) and FiD (Fusion-in-
Decoder) (Izacard and Grave, 2021) demonstrated
the effectiveness of retrieving relevant documents
to augment generated responses. More recently,
Facebook AI’s RAG (Lewis et al., 2020) extended
this approach to open-domain question-answering,
achieving state-of-the-art results on benchmarks
like Natural Questions and TriviaQA. Despite
these successes, most existing RAG systems focus
solely on text-based retrieval, limiting their applica-
bility in multimodal contexts. Recent works such
as MMRAG (Zhang et al., 2022) and CrossModal-
RAG (Wang et al., 2023) have begun to explore
multimodal retrieval, but their application to low-
resource languages remains underexplored.

2.3 Multimodal Learning

Multimodal learning has gained significant atten-
tion in recent years, driven by the success of mod-
els like CLIP (Radford et al., 2021) and M6 (Lin
et al., 2021). These models align text and images in

a shared embedding space, enabling tasks like im-
age captioning, visual question answering (VQA),
and cross-modal retrieval. While multimodal learn-
ing has primarily been applied to high-resource
languages, recent works such as ViLT (Kim et al.,
2021) and ALIGN (Jia et al., 2021) have explored
its potential for low-resource settings. For exam-
ple, ViLT demonstrates how visual and textual
embeddings can be jointly learned without rely-
ing on large-scale annotated datasets. Our work
extends these ideas by integrating multimodal tech-
niques into retrieval-augmented generation for low-
resource languages. We also inspired by the re-
search of (Kang et al., 2025; Deng et al., 2024; Liu
et al., 2024).

2.4 Datasets for Low-Resource Languages

Datasets like MM-COVID (Chen et al., 2021) and
LORELEI (Strassel and Tracey, 2016) play a cru-
cial role in advancing research on low-resource
languages. MM-COVID provides multilingual
textual and visual data related to the COVID-19
pandemic, offering a unique opportunity to study
cross-lingual and multimodal communication in
crisis scenarios. Similarly, LORELEI focuses
on rapid response during emergencies, providing
low-resource language data alongside geospatial
and event information. Other notable datasets in-
clude MMKG (Xie et al., 2022), a multimodal
knowledge graph for low-resource languages, and
Pororo-SV (Park et al., 2021), a storytelling dataset
with videos and text. These datasets not only
highlight the importance of multimodal data in
low-resource settings but also serve as valuable
resources for evaluating our proposed framework.

2.5 Applications in Public Health and
Disaster Response

The integration of multimodal data has significant
implications for real-world applications. In pub-
lic health, multimodal systems can help dissemi-
nate critical information about diseases, vaccines,
and preventive measures in low-resource languages
(Liu et al., 2022). During disasters, such systems
can assist in situational awareness, resource allo-
cation, and communication with affected commu-
nities (Zhang et al., 2023). Recent works have
demonstrated the potential of multimodal AI in
addressing global challenges, such as CrisisMM
(Gupta et al., 2022), a framework for multimodal
crisis response, and HealthVision (Wu et al., 2023),
a system for analyzing medical images and text.
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3 Methodology

3.1 Problem Formulation
The goal of our framework is to enhance language
understanding and generation for low-resource lan-
guages by leveraging multimodal data. Given
a query Q in a low-resource language, our sys-
tem retrieves relevant multimodal documents D =
{d1, d2, ..., dn} from a corpus and generates a re-
sponse R. The retrieval and generation processes
are formulated as follows:

R = Generate(Q,Retrieve(Q,D)), (1)

where:

• Q: Input query in a low-resource language.

• D: Corpus of multimodal documents (text,
images, geospatial data).

• Retrieve(Q,D): Function that retrieves the
most relevant documents based on Q.

• Generate(Q,Dretrieved): Function that gener-
ates a response using Q and the retrieved doc-
uments Dretrieved.

To align different modalities, we define a shared
embedding space where text embeddings Et(Q)
and image embeddings Ev(I) are projected into the
same dimensional space. The similarity between a
query and a document is computed as:

sim(Q, di) = cos(Et(Q), Ev(di))

+λ · scorecross-modal(Q, di)
(2)

where:

• Et(Q): Text embedding of the query.

• Ev(di): Visual embedding of the document
di.

• cos(·, ·): Cosine similarity function.

• λ: Weighting factor for cross-modal scoring.

• scorecross-modal(Q, di): Additional score cap-
turing alignment between text and visual
modalities, computed using a cross-modal at-
tention mechanism (Kim et al., 2021).

3.2 Model Architecture
Our model consists of two main components: a
Retrieval Module and a Generation Module, both
integrated into a unified framework.

3.2.1 Retrieval Module
The retrieval module employs a dual-encoder ar-
chitecture to compute embeddings for queries and
documents. Specifically:

• Text Encoder: A transformer-based encoder
(e.g., XLM-R (Conneau et al., 2020)) encodes
textual inputs into dense vectors.

• Image Encoder: A vision transformer (e.g.,
CLIP (Radford et al., 2021)) encodes

The embeddings are aligned in a shared space using
contrastive learning. The loss function for training
the retrieval module is defined as:

Lretrieval = − log
exp(sim(Q, d+))∑

d−∈D− exp(sim(Q, d−))
(3)

where:

• d+: Positive document (relevant to Q).

• D−: Set of negative documents (irrelevant to
Q).

This ensures that the model learns to retrieve doc-
uments that are semantically similar to the query.

3.2.2 Generation Module
The generation module uses a pre-trained language
model (e.g., T5 (Raffel et al., 2020)) to generate
responses. The input to the generator is a con-
catenation of the query Q and the top-k retrieved
documents Dretrieved:

R = Generator(Q⊕Dretrieved) (4)

where ⊕ denotes concatenation. The generator
is fine-tuned using a standard cross-entropy loss:

Lgeneration = −
T∑

t=1

logP (wt|w<t, Q,Dretrieved)

(5)
where wt is the target token at time step t, and w<t

represents the previous tokens.

3.3 Training Strategy
The training strategy for our multimodal RAG sys-
tem is designed to leverage both high-resource and
low-resource language data effectively. We adopt
a two-stage approach: pretraining on large-scale
datasets from high-resource languages and fine-
tuning on limited textual data from low-resource
languages. This strategy ensures that the model
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learns generalizable representations during pre-
training while adapting to the unique characteristics
of low-resource languages during fine-tuning(Liu
and Yu, 2024).

Pretraining on High-Resource Languages In
the pretraining phase, we utilize large-scale multi-
modal datasets such as MM-COVID (Chen et al.,
2021) and LORELEI (Strassel and Tracey, 2016),
which contain rich textual and visual information
across multiple high-resource languages. These
datasets provide a diverse set of examples, enabling
the model to learn robust cross-modal alignments.
Specifically, the text encoder is pretrained using
transformer-based architectures like XLM-R (Con-
neau et al., 2020), which is known for its strong
multilingual capabilities. Similarly, the image en-
coder is pretrained using vision transformers (e.g.,
CLIP (Radford et al., 2021)) that align visual and
textual embeddings in a shared space. During this
phase, the retrieval module is trained to maximize
the similarity between queries and relevant docu-
ments while minimizing similarity with irrelevant
ones. The loss function for the retrieval module is
defined as earlier in Equation 3.

Fine-Tuning on Low-Resource Languages Af-
ter pretraining, the model is fine-tuned on low-
resource languages using limited textual data. This
step is crucial because low-resource languages of-
ten lack sufficient annotated data for supervised
learning. To address this limitation, we employ
several strategies to enhance the effectiveness of
fine-tuning:

1. Data Augmentation: We augment the lim-
ited textual data with multimodal information,
such as images and geospatial data, to pro-
vide additional context. For example, visual
data can help ground abstract concepts that
are poorly represented in text.

2. Robust Filtering Techniques: Multimodal
data can be noisy, especially when integrat-
ing diverse sources like social media posts or
satellite imagery. To handle this noise, we ap-
ply robust filtering techniques, such as outlier
detection and confidence scoring, to ensure
that only high-quality data is used during fine-
tuning (Zhang et al., 2022).

3. Cross-Lingual Transfer Learning: We lever-
age multilingual embeddings (e.g., mBERT
(Devlin et al., 2019)) to enable cross-lingual

transfer. By aligning embeddings from
high-resource and low-resource languages in
a shared space, the model can generalize
knowledge learned during pretraining to low-
resource settings.

Cross-Lingual Adaptation Cross-lingual adap-
tation is a key component of our training strat-
egy, as it allows the model to bridge the gap be-
tween high-resource and low-resource languages.
To achieve this, we use a shared projection layer
that maps text and visual embeddings into a unified
space. This alignment enables the model to retrieve
and generate content across languages, even when
direct supervision is unavailable. For example, a
query in Swahili can retrieve relevant documents
in English or other high-resource languages, along
with accompanying visuals. This capability is par-
ticularly valuable for tasks like public health com-
munication and disaster response, where timely
access to information is critical.

Balancing Modalities Another important aspect
of our training strategy is balancing the contribu-
tions of different modalities. While textual data is
typically dominant in NLP tasks, visual and geospa-
tial data play a complementary role in low-resource
settings. To ensure that all modalities are utilized
effectively, we introduce a weighting factor λ in
the similarity computation:

sim(Q, di) = cos(Et(Q), Ev(di))+

λ · scorecross-modal(Q, di),
(6)

where cos(·, ·) measures cosine similarity
between text and visual embeddings, and
scorecross-modal(Q, di) captures additional align-
ment between modalities. The value of λ is tuned
empirically to balance the contributions of text
and visual data. This approach ensures that the
model leverages multimodal information without
over-relying on any single modality.

Evaluation During Training Throughout the
training process, we monitor performance using
a combination of metrics tailored to each compo-
nent of the system. For the retrieval module, we
evaluate precision, recall, and F1 scores to measure
the quality of retrieved documents. For the gener-
ation module, we use BLEU, ROUGE, and ME-
TEOR scores to assess the fluency and relevance
of generated responses. Additionally, we conduct
human evaluations to assess multimodal coherence
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and overall usability. These evaluations provide
valuable insights into the strengths and weaknesses
of the model, guiding further refinements.

By combining pretraining, fine-tuning, robust
filtering, and cross-lingual adaptation, our training
strategy ensures that the multimodal RAG system is
both versatile and effective. This approach not only
addresses the challenges of low-resource languages
but also demonstrates the potential of multimodal
AI to democratize access to technology.

3.4 Cross-Lingual Adaptation

Cross-lingual adaptation enables our multimodal
RAG system to bridge the gap between high-
resource and low-resource languages by leveraging
shared multilingual embeddings. We use models
like mBERT (Devlin et al., 2019) and XLM-R
(Conneau et al., 2020), which are pretrained on
large multilingual corpora, to align textual and
visual data across languages. To enhance align-
ment, we incorporate vision-language models like
CLIP (Radford et al., 2021), allowing the system to
ground textual queries in visual data, even when the
query is in a low-resource language. Fine-tuning
on small-scale annotated datasets or parallel data
further refines the model for specific linguistic pat-
terns. To address data scarcity, we employ tech-
niques such as zero-shot learning, multimodal aug-
mentation, and back-translation. These strategies
ensure that the model can retrieve and generate
content effectively in low-resource languages, as
demonstrated through metrics like retrieval accu-
racy, BLEU scores, and human evaluations.

4 Experiments

To evaluate the effectiveness of our multimodal
RAG system, we conducted experiments on two
key datasets: MM-COVID (Chen et al., 2021) and
LORELEI (Strassel and Tracey, 2016). These
datasets were chosen for their relevance to real-
world challenges and their inclusion of multimodal
data. Below, we describe how these datasets were
applied to the task of multimodal RAG for low-
resource languages, along with the experimental
setup.

4.1 Leveraging MM-COVID for Multimodal
RAG in Low-Resource Languages

The MM-COVID dataset contains multilingual tex-
tual information, images, infographics, and videos
related to the COVID-19 pandemic. It includes data

from social media, news articles, and public health
resources, covering multiple languages, including
low-resource ones. This makes it an ideal resource
for exploring cross-lingual and multimodal appli-
cations in low-resource settings.

4.2 Cross-Modal Translation and
Augmentation

One of the primary challenges in low-resource lan-
guages is the scarcity of textual data for training
language models. To address this, we used im-
ages, infographics, and videos from MM-COVID
as auxiliary modalities to augment textual data. For
example: - We trained a multimodal RAG system
where visual embeddings (e.g., from CLIP (Rad-
ford et al., 2021)) were aligned with textual descrip-
tions in low-resource languages. - This approach
allowed the model to infer missing textual infor-
mation by leveraging visual context, improving its
ability to handle queries in low-resource languages.

Visual Context for Semantic Understanding
Low-resource languages often lack rich semantic
context for generating meaningful responses. To
address this, we used multimodal retrieval to re-
trieve relevant images or videos that complement
textual queries. For instance: - A query in Swahili
asking about "symptoms of COVID-19" retrieved
both textual descriptions and images of symptoms,
enhancing the model’s understanding and response
quality.

Multimodal Summarization Generating con-
cise summaries of public health information in low-
resource languages is challenging due to limited
training data. To tackle this, we built a multimodal
summarization system that combined textual and
visual content from MM-COVID. For example, the
system retrieved key text snippets and relevant im-
ages to create a multimodal summary explaining
preventive measures, making the information more
accessible to users in low-resource languages.

Cross-Lingual Retrieval Queries in low-
resource languages may not have sufficient tex-
tual matches in the database. To address this, we
used cross-lingual embeddings to align queries in
low-resource languages with high-resource coun-
terparts (e.g., English). For example: A query in
Swahili could retrieve relevant documents in En-
glish or other high-resource languages, along with
accompanying visuals, bridging the linguistic gap.
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Leveraging LORELEI for Multimodal RAG
in Low-Resource Languages The LORELEI
dataset is designed to support rapid response dur-
ing emergencies in low-resource languages. It in-
cludes textual data in low-resource languages (e.g.,
Haitian Creole, Pashto), geospatial data, maps,
satellite imagery, social media posts, audio record-
ings, and structured event data. This diversity
makes it highly suitable for tasks like disaster re-
sponse and situational awareness.

Multimodal Event Detection Detecting and
responding to emergent incidents in low-resource
languages is difficult due to limited linguistic re-
sources. To address this, we used multimodal RAG
to combine textual, geospatial, and visual data from
LORELEI to detect and describe events. For ex-
ample: - A query in Haitian Creole about "flooded
areas" retrieved satellite imagery of affected re-
gions along with textual reports, enabling accurate
event detection and response planning.

Visual Grounding for Language Generation
Generating accurate descriptions of events in low-
resource languages is challenging without suffi-
cient training data. To address this, we used images
and maps as grounding inputs for language gener-
ation. For example, the system retrieved satellite
images of disaster zones and generated textual de-
scriptions in the target language using a multimodal
RAG system, ensuring that users received clear and
actionable information.

Audio-Text Multimodality Low-resource lan-
guages often lack transcribed audio data for train-
ing speech-to-text systems. To address this, we
integrated LORELEI’s audio recordings alongside
textual and visual data to train a multimodal RAG
system. For example: - A spoken query in Pashto
was transcribed and augmented with visual data
(e.g., maps) to generate a response, demonstrating
the system’s ability to process multimodal inputs
effectively.

Structured Data Integration Low-resource
languages often lack structured data for reasoning
tasks. To address this, we integrated LORELEI’s
structured event data (e.g., timestamps, locations,
and event types) into a multimodal RAG system.
For example: - A query about "earthquake dam-
age in region X" retrieved structured event data
along with images and textual reports, providing a
comprehensive overview of the situation.

4.3 Baselines
We compared our multimodal RAG system against
several baselines:

• Text-Only RAG: A traditional RAG system
trained only on textual data.

• Monolingual Models: Language models fine-
tuned on high-resource languages without
cross-lingual adaptation.

• Unimodal Models: Models that process ei-
ther text or images but not both.

These baselines allowed us to isolate the contribu-
tions of multimodal data and cross-lingual adapta-
tion to the system’s performance.

Evaluation Metrics To assess the model’s per-
formance, we used a combination of quantitative
and qualitative metrics:

1. Retrieval Metrics: Precision, recall, and F1
scores were used to evaluate the quality of
retrieved documents.

2. Generation Metrics: BLEU, ROUGE, and
METEOR scores measured the fluency and
relevance of generated responses.

3. Human Evaluation: Human evaluators as-
sessed the coherence, relevance, and multi-
modal alignment of the outputs.

These metrics provided a holistic view of the sys-
tem’s strengths and weaknesses across different
tasks.

Our model was implemented using PyTorch and
Hugging Face’s Transformers library. The text
encoder was based on XLM-R (Conneau et al.,
2020), while the image encoder utilized CLIP
(Radford et al., 2021). We pretrained the model
on high-resource languages using MM-COVID
and LORELEI, followed by fine-tuning on low-
resource languages. Training was performed on a
single NVIDIA A100 GPU, with a batch size of
32 and a learning rate of 5 × 10−5. The weight-
ing factor λ for balancing modalities was tuned
empirically to optimize performance.

To demonstrate the practical utility of our sys-
tem, we conducted case studies in two domains:

1. Public Health Communication: Generat-
ing multilingual public health guidelines in
Swahili using MM-COVID data.
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2. Disaster Response: Detecting flood zones
in Pashto using LORELEI’s geospatial and
textual data.

These case studies highlighted the system’s ability
to address real-world challenges in low-resource
settings.

5 Results and Discussion

The results of our experiments demonstrate the
effectiveness of our multimodal RAG system in en-
hancing language understanding and generation for
low-resource languages. Our multimodal RAG sys-
tem outperformed all baselines across both retrieval
and generation tasks. In terms of retrieval metrics,
the system achieved a precision of 85%, recall of
82%, and F1 score of 83%, surpassing the text-only
RAG baseline by 10 percentage points. For gener-
ation tasks, the system achieved BLEU scores of
up to 28.4, compared to 20.5 for unimodal models.
These improvements highlight the value of integrat-
ing multimodal data into the retrieval and gener-
ation processes. Notably, the system performed
particularly well on low-resource languages, where
the scarcity of textual data was compensated by
visual and geospatial information.

Table 1: Retrieval Metrics Across Baselines and Pro-
posed System

Model Precision
(%)

Recall
(%)

F1 Score
(%)

Text-Only
RAG

74.2 71.8 73.0

Monolingual
Model

78.5 75.3 76.9

Unimodal
Model

72.1 69.4 70.7

Multimodal
RAG (Ours)

85.0 82.0 83.0

The results in Table 1 demonstrate the superi-
ority of our multimodal RAG system in terms of
retrieval performance. Specifically:

• The system achieves a precision of 85%,
which is significantly higher than the text-only
RAG baseline (74.2%) and unimodal model
(72.1%). This indicates that the integration
of multimodal data improves the accuracy of
retrieved documents.

• Similarly, the recall of 82% and F1 score of
83% are the highest among all models, under-

Table 2: Generation Metrics Across Baselines and Pro-
posed System

Model BLEU ROUGE-
L

METEOR

Text-Only
RAG

20.5 32.4 25.1

Monolingual
Model

22.3 34.7 26.8

Unimodal
Model

19.8 31.6 24.5

Multimodal
RAG (Ours)

28.4 38.2 30.7

scoring the system’s ability to retrieve relevant
content even when textual data is scarce.

The generation metrics in Table 2 further high-
light the advantages of our system:

• The BLEU score of 28.4 represents a sub-
stantial improvement over the text-only RAG
baseline (20.5) and unimodal model (19.8).
This suggests that multimodal augmentation
enhances the fluency and relevance of gener-
ated responses.

• The ROUGE-L score of 38.2 and METEOR
score of 30.7 are also the highest among all
models, indicating that the system generates
outputs that are both semantically rich and
contextually accurate.

These results collectively demonstrate that our
multimodal RAG system effectively leverages mul-
timodal data to improve both retrieval and gener-
ation capabilities. The Precision vs. Recall plot
(Figure 1) demonstrates several key trends:

• The multimodal RAG system achieves the
highest precision (85%) and recall (82%), as
indicated by its position in the upper-right cor-
ner of the plot.

• The trend line connecting the points highlights
the consistent improvement in performance
as advanced techniques such as multimodal
augmentation and cross-lingual transfer are
incorporated.

• The inclusion of error bars provides a realistic
view of variability, reinforcing the robustness
of the system under noisy conditions.

The BLEU and ROUGE-L plot (Figure 2) further
supports the quantitative findings:
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Figure 1: Precision vs. Recall for Different Models

Note: The plot shows that our multimodal RAG system
achieves higher precision and recall compared to baselines.

Figure 2: BLEU and ROUGE-L Scores Across Models

• The multimodal RAG system achieves the
highest BLEU score (28.4) and ROUGE-L
score (38.2), as shown by the tallest bars in
the plot.

• The trend lines connecting the top of the bars
emphasize the consistent improvement in gen-
eration quality across models.

• Error bars highlight the variability in perfor-
mance, providing a more nuanced understand-
ing of the results.

Human evaluations revealed that the multimodal
RAG system produced responses that were not only
fluent but also contextually relevant and coherent.
For example, in the public health case study, the
system generated accurate summaries of COVID-
19 guidelines in Swahili, enriched with relevant im-
ages. Similarly, in the disaster response case study,
the system successfully identified flood zones in
Pashto by combining satellite imagery with tex-
tual reports. These qualitative insights underscore

the system’s ability to leverage multimodal data
effectively.

5.1 Impact of Cross-Lingual Adaptation

Cross-lingual adaptation played a crucial role in
the system’s success. By leveraging shared mul-
tilingual embeddings, the model was able to re-
trieve and generate content in low-resource lan-
guages even when direct supervision was unavail-
able. For instance, queries in Swahili retrieved
relevant documents in English, demonstrating the
system’s ability to bridge linguistic gaps. Fine-
tuning on small-scale annotated datasets further
improved performance, particularly for languages
with distinct morphological and syntactic patterns.

In public health, the system can help dissemi-
nate critical information in low-resource languages,
ensuring equitable access to knowledge. In disas-
ter response, it can assist in situational awareness
and resource allocation, empowering communities
affected by emergencies. These applications under-
score the potential of multimodal AI to democratize
access to technology and address pressing global
challenges.

Overall, our experiments demonstrate that cross-
modal augmentation is a powerful approach for
enhancing language understanding and generation
in low-resource settings. By integrating diverse
modalities and leveraging cross-lingual transfer,
our system achieves state-of-the-art performance
while paving the way for future research in this
domain.

6 Conclusion

In this paper, we presented a multimodal RAG sys-
tem that effectively enhances both understanding
and generation capabilities for low-resource lan-
guages. By leveraging multimodal data and cross-
lingual transfer, the system achieved state-of-the-
art performance on the MM-COVID and LORELEI
datasets, surpassing traditional text-only and uni-
modal baselines. Key findings include significant
improvements in retrieval precision, recall, and gen-
eration quality, as well as robust performance in
real-world applications like disaster response and
public health communication. Despite challenges
such as noisy data and computational overhead,
our system demonstrates the transformative poten-
tial of multimodal AI in addressing linguistic and
resource disparities.
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Abstract

Despite recent advancements in neural retrieval,
representing text fragments or phrases with
proper contextualized embeddings is still chal-
lenging. Particularly in video retrieval, where
documents are text extracted through OCR
from the frames or ASR from audio tracks,
the textual content is rarely complete sentences
but only a bag of phrases. In this work, we
propose FORTIFY, a generative model fine-
tuning approach for noisy document rewriting
and summarization, to improve the downstream
retrieval effectiveness. By experimenting on
MultiVENT 2.0, an informational video re-
trieval benchmark, we show Llama fine-tuned
with FORTIFY provides an effective docu-
ment expansion, leading to a 30% improvement
over prompting an out-of-box Llama model on
nDCG@10. Zero-shot transferring the model
tailored for MultiVENT 2.0 to two out-of-
distribution datasets still demonstrates compet-
itive retrieval effectiveness to other document
preprocessing alternatives. Our training script
and generated preference training data are pub-
licly available at https://available.after.
acceptance/.

1 Introduction

In typical ad hoc retrieval, documents are usu-
ally assumed to be well-formed and informative,
such as news articles, blog posts, or social me-
dia threads (Craswell et al., 2020; Lawrie et al.,
2023a, 2024; Thakur et al., 2021). While some
may be more structured and readable than oth-
ers, they generally convey information in a way
that is easily understandable to human readers.
Since neural retrieval models, such as Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020) and
ColBERT (Khattab and Zaharia, 2020), leverage
pretrained language models (Devlin et al., 2019;
Zhuang et al., 2021) trained on natural language to
encode documents, they typically achieve strong
performance on such tasks.

Translated
Text

Ranking
1. Summary C
2. Summary A
3. Summary B

Ranking
1. Summary B
2. Summary C
3. Summary A

Ranking
5. ...

6. Translated Text
7. ...

ORPO Training Pairs
Summary B > Summary C
Summary B > Summary A

...

NFT
Generative
Text Model

Machine
Translation

FORTIFY

Summaries
of Noisy

Text

Retrieval
Model

Noisy
Text

Summaries
of Noisy

Text

Retrieval
Model

Retrieval
Model

Figure 1: Overview of our document expansion ap-
proaches. Machine translation serves as a baseline. In
the NFT (no fine-tuning) approach, we use a generative
text model to generate fluent, keyword-dense summaries
of noisy, multilingual text. In FORTIFY, we further
rank the generated summaries using a retrieval model to
create training pairs for preference optimization and fine-
tune with Odds Ratio Preference Optimization (ORPO).

However, in many real-world settings, docu-
ments contain noisy or fragmented text, which
does not resemble typical human communications.
While this is relatively rare in traditional ad hoc
retrieval, it is much more common when text is
extracted from other modalities, such as automated
speech recognition (ASR) from audio, or optical
character recognition (OCR) from images or videos.
Because this textual content is automatically gener-
ated, it may contain recognition errors, misidenti-
fications, and incorrect reading order (de Oliveira
et al., 2023), often resulting in disjointed sentence
fragments or even incomplete words. As a result,
neural retrieval models struggle to represent these
texts effectively, leading to weaker retrieval perfor-
mance.

To address this challenge, we propose a docu-
ment expansion and rewriting approach using a
generative model to transform fragmented text into
coherent passages. We first explore a zero-shot

100

mailto:drd92@georgetown.edu
https://available.after.acceptance/
https://available.after.acceptance/


prompting approach and demonstrate the innate
ability of generative models like Llama3 (Dubey
et al., 2024) to reconstruct text. While this method
is promising, generating meaningful summaries
from unordered, disjointed tokens remains a signif-
icant challenge. To further instill retrieval-driven
preferences into the generative model, we fine-
tune it using Odds Ratio Preference Optimization
(ORPO) (Hong et al., 2024), a technique that does
not require an explicit reference model or reward
function. We name this method FORTIFY, or
Fine-tuning with ORPO for ReTrieval expansion
of InFormal noisY text.

We evaluate our approach on multiple video and
cross-language retrieval benchmarks, and demon-
strate that expanding raw documents with gener-
ated summaries leads to significant and robust per-
formance improvements. Additionally, we find
that FORTIFied summaries further boost retrieval
effectiveness. To our knowledge, this is the first
work to apply preference optimization to document
expansion for retrieval.

Our contributions are threefold:

1. We introduce a novel document expansion ap-
proach which leverages a generative model
to reconstruct fragmented text into coherent
passages.

2. We propose FORTIFY, a fine-tuning mech-
anism using ORPO to encourage a language
model to learn retrieval-driven preferences.

3. We conduct extensive experiments across mul-
tiple retrieval modalities and settings, demon-
strating the effectiveness and robustness of
our methods.

2 Related Work

Text Retrieval Recently developed neural re-
trieval models leverage pretrained language models
to encode documents into one (Karpukhin et al.,
2020; Formal et al., 2021; Nguyen et al., 2023)
or multiple (Khattab and Zaharia, 2020; Li et al.,
2023) contextualized embeddings to achieve bet-
ter (Thakur et al., 2021) and more robust retrieval
effectiveness, even in multilingual retrieval (Lawrie
et al., 2023a, 2024). However, because of their pre-
training data (Chari et al., 2023), they are not well-
tuned for retrieving informal or even fragmented
text (DeLucia et al., 2022; Lawrie et al., 2023b;
Thakur et al., 2021). While recent work, such as
RAPTOR (Sarthi et al., 2024), tries to preprocess

text through layers of summarization, these models
still anticipate well-formed text as the input. Par-
ticularly in video retrieval, text is extracted from
different modalities and thus may be ill-formed.
Neural text retrieval models suffer when dealing
with this kind of text.

Video Retrieval Traditional benchmarks for
video retrieval (Chen and Dolan, 2011; Krishna
et al., 2017; Xu et al., 2016) generally involve
generic web images or three to five-second video
clips paired with web-scraped or automatically
generated captions. Methods typically compute
visual features from these images or from sam-
pled video frames that can be mapped to these
natural language captions (Cao et al., 2024; Luo
et al., 2022; Reddy et al., 2025; Wang et al., 2024).
However, there has been a shift away from these
tasks to harder tasks requiring multimodal under-
standing, like audio and overlaid text, and longer
videos (Kriz et al., 2024; Wang et al., 2019). This
has lead to a rise in multimodal models that jointly
incorporate modalities (Chen et al., 2023; Liu et al.,
2025; Wu et al., 2025). However, these approaches
are not robust to these challenging benchmarks,
with one significant factor being the fusion of noisy
outputs from OCR and ASR compounding errors
and decreasing performance.

Multimodal Text Extraction Alongside visual
captioning, optical character recognition (OCR)
and automatic speech recognition (ASR) are two
of the primary approaches to map multimodal data
to natural language descriptions.

Recently, vision-language foundation models,
such as PaliGemma (Beyer et al., 2024), InternVL
(Chen et al., 2024), Idefics2 (Laurençon et al.,
2024), and LLaVa (Liu et al., 2023), have been
explored for modeling OCR content implicitly and
effectively, rendering standard OCR approaches
unnecessary, e.g., MMOCR (Kuang et al., 2021),
and TrOCR (Li et al., 2022). Recent work has
also explored using document screenshots for re-
trieval (Ma et al., 2024), an approach that relies
heavily on the quality and the format of the screen-
shots. Retrieving documents with noisy OCR con-
tent (or otherwise working with such content) re-
mains challenging.

Recent advances in ASR have achieved impres-
sively low word error rates (Kheddar et al., 2024).
However, speech involving code-switching (Yan
et al., 2023), multiple speakers (Watanabe et al.,
2020), or noisy environments (Dua et al., 2023; Li
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et al., 2014) all still present significant challenges
to producing clean transcripts. Such transcripts are
frequently incoherent despite low word error rates,
motivating works involving post-hoc correction to
the ASR output (Ma et al., 2023).

Preference Optimization Preference optimiza-
tion (Rafailov et al., 2024; Shao et al., 2024;
Xu et al., 2024; Meng et al., 2024; Hong et al.,
2024) has arisen as a common alternative to rein-
forcement learning from human feedback (RLHF)
(Christiano et al., 2017; Ouyang et al., 2022; Sti-
ennon et al., 2020) to alleviate the multi-stage pro-
cedure requiring a reward model (Casper et al.,
2023). Many recent works have built on DPO: re-
placing pair-wise preference data (Cai et al., 2024;
Ethayarajh et al., 2024), with sets of reference re-
sponses in a log-likelihood loss (Xu et al., 2024;
Park et al., 2024). In this work, we adopt Odds Ra-
tio Preference Optimization (ORPO) (Hong et al.,
2024), which incorporates an odds ratio-based loss
for differentiating the generation styles between
preferred and non-preferred responses. Compared
to ordinary DPO, ORPO aligns better with the goal
of producing fluent, coherent generations for down-
stream retrieval due to its inclusion of an additional
language modeling loss term, along with the odds
ratio term.

3 Methods

In this section, we describe our initial document
expansion approach without fine-tuning (No-fine-
tune – NFT), along with FORTIFY, a novel
method for optimizing machine-generated docu-
ment expansion for information retrieval.

Given a noisy document d, NFT involves zero-
shot prompting a generative model for one or
more summaries d̂1,...,N from d, focusing on max-
imizing the inclusion of synonyms and keywords
to enhance retrieval performance. These sum-
maries are then used to augment the original docu-
ment, producing an expanded version in the form
d+ d̂1+ . . .+ d̂N , where + denotes concatenation.

FORTIFY further refines this expansion by op-
timizing machine-generated summaries based on
their relevance to corresponding queries. Given
a retrieval method, NFT summaries are scored
against the corresponding queries, and training
pairs are constructed by pairing the highest-scoring
summary with several lower-scoring alternatives.
This enables a retrieval-driven preference optimiza-
tion.

3.1 Challenges in Noisy Text Retrieval

With frequency-based approaches such as
BM25 (Robertson et al., 1995, 2009), retrieval
performance degrades significantly in the presence
of typographical errors, text recognition errors
(e.g., substitution of visually similar characters),
speech transcription errors (e.g., substitution of
phonetically similar letters), and other character-
level inaccuracies (de Oliveira et al., 2023). For
example, if we attempt to retrieve a noisy docu-
ment containing song lyrics that were recognized
via OCR from a music video using the name of
the musical artist as a query, we are unlikely to
succeed, as the artist’s name may not appear in
the video. However, by leveraging a generative
model to produce a summary, we not only correct
character-level errors but also elaborate on the
content and introduce useful keywords and phrases.
An example is shown in Appendix C, Figure 5.

While neural retrieval models are more ro-
bust to character-level errors, they still struggle
with higher-level structural issues, particularly ill-
formed sentences and unrelated, adjacent phrases.
This is because such noisy documents are rarely
seen in the training data used for modern neural
retrieval models (Nguyen et al., 2016). Consider
a single video frame containing multiple distinct
spans of text, such as two lines on a blackboard,
each containing a chemical equation. To retrieve
this video from the extracted text, we must flatten
or concatenate all text spans to apply standard text
retrievers. This process often produces incoher-
ent outputs. Such text is likely to suffer not only
from recognition errors, but also a lack of coher-
ence, sentence structure, or recognizable words. By
applying a generative model, we can reconstruct
meaning from the fragmented text prior to indexing.
A strong generative model can correctly identify
the text as chemical equations and even suggest
relevant elements and compounds. Notably, it can
also extract and contextualize useful keywords such
as chemical, reactions, and compounds, further im-
proving retrievability. See Appendix C, Figure 6
for an example of this.

3.2 Zero-Shot Expansion of Noisy Text

We propose expanding noisy documents with such
machine-generated summaries by leveraging mod-
ern generative models’ abilities to produce clean,
coherent, and keyword-dense text. As an initial set-
ting, we adopt a zero-shot approach, where we pro-
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vide the noisy text and prompt a generative model
to produce a keyword-dense summary. The gener-
ated summaries can then either be indexed directly
or concatenated with the original text; in later sec-
tions, we utilize the concatenation approach.

This method provides several advantages. Since
modern generative models are highly multilingual,
noisy documents can be expanded into any lan-
guage, potentially improving the alignment be-
tween documents and expected queries for both
term frequency and neural retrieval models. For
instance, in cross language retrieval, where queries
are primarily in English, we can prompt the model
to produce English summaries of multilingual doc-
uments, effectively translating key phrases while
preserving retrieval relevance. Additionally, by ex-
plicitly prompting the model to focus on synonyms,
keywords, and retrieval relevance, summary-based
document expansion introduces semantically re-
lated terms, improving retrieval effectiveness when
queries lack important keywords.

Beyond improving term matching, generative
document expansion also addresses structural is-
sues in noisy documents. By generating coherent,
well-formed summaries, the model compensates
for disjointed or ill-structured inputs, producing
text that is more suitable for retrieval. While gener-
ative model inference is computationally expensive,
document expansion occurs at indexing time rather
than search time, minimizing computational over-
head during retrieval.

3.3 FORTIFY Preference Optimization
Zero-shot inference on generative models is heav-
ily dependent on the prompt, which leads to in-
stability in the generation (Jiang et al., 2020; Gao
et al., 2021; Errica et al., 2024; Chakraborty et al.,
2023). To improve the robustness of the genera-
tion process, we further fine-tune the model with
preference examples based on the downstream re-
trieval task. Typically, fine-tuning the generative
model for document expansion through reinforce-
ment learning requires an explicit reward function
on the final retrieval effectiveness and a preference
model on the retrieval system. However, defining
the reward is challenging as the query distribution
is often unknown at training and indexing time,
leaving great uncertainty in the direction of opti-
mization. Therefore, we use Odds Ratio Preference
Optimization (ORPO) (Hong et al., 2024), a vari-
ant of Direct Preference Optimization (Rafailov
et al., 2024) without defining a reference model, to

provide preference signals during fine-tuning.
Specifically, let d̂x and d̂y be two generated sum-

maries of a raw document d. For a pointwise re-
trieval model f(q, d) and a query q that document
d is relevant to, we define the preference of the
retrieval model f(q, d) as

d̂x ≻ d̂y if and only if f(q, d̂x) > f(q, d̂y)
(1)

where ≻ indicates the left operand is more prefer-
able than the right operand.

Following Hong et al. (2024), the odds ratio loss
of the preference d̂x ≻ d̂y can be written as

LOR = − log σ

(
log

oddsθ(d̂x|d)
oddsθ(d̂y|d)

)
(2)

where the function oddsθ indicates the odds of
generating such a sequence of text based on the pa-
rameter θ. Such odds ratio losses promote the gen-
erative model to generate d̂x over d̂y when given
the document d based on the preference of the re-
trieval model f and the query q. Intuitively, the
distribution of the training query q and pre-defined
retrieval model f are critical to this process since
the model would be biased toward the two after
fine-tuning. In our experiments, we provide empir-
ical evidence that the resulting generative model is
actually robust to the downstream retrieval models.

4 Experiments

4.1 Data
We evaluate FORTIFY on two video retrieval
datasets as well as a cross-language text retrieval
dataset as an out-of-domain evaluation. The statis-
tics are summarized in Table 3 in the Appendix.

• MultiVENT2.0 (Kriz et al., 2024) consists of
218K YouTube videos, with text and speech
content primarily in Arabic, Chinese, English,
Korean, Russian, and Spanish. The videos
vary heavily in terms of production quality,
from unprocessed recordings taken on mobile
phones to professionally edited news broad-
casts. Queries are designed to approximate
what a user might search for in order to find a
video about a specific event. We evaluate on
the test split (2,546 queries over 109K videos)
and report nDCG@10 and R@1000 following
Kriz et al. (2024).

• TextVR (Wu et al., 2025) consists of 42.2K
queries over 10.5K videos from across eight
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domains: Street View (indoor), Street View
(outdoor), Game, Sports, Driving, Activity,
TV Show, and Cooking. We evaluate on the
test split, containing 2.7K videos, with one
query each, and report R@1 and R@10 to
align with the online shared task associated
with TextVR.

• NeuCLIR Chinese Technical CLIR Collection
(Lawrie et al., 2024) contains about 396K jour-
nal abstracts from 1,980 Chinese academic
journals spanning 67 disciplines. The Neu-
CLIR Technical document collection has two
corresponding sets of topics from the 2023
and 2024 TREC NeuCLIR tracks, respectively.
To ensure the summarization process is not
trivially easy, we use only the abstract without
the title as the raw document. We report the
official evaluation metrics of the NeuCLIR
track, which are nDCG@20 and R@1000.

4.2 Text extraction from video

In order to create textual indices for retrieval, we
extract text from the videos using two main ap-
proaches: Automatic Speech Recognition (ASR)
and Optical Character Recognition (OCR). Except
where explicitly indicated, we do not perform ma-
chine translation on either the ASR or OCR text.

ASR Videos frequently contain audio, and for
our ASR system, we rely on a powerful multi-
lingual model, Whisper Large v2 (Radford et al.,
2023) without speech translation (that is, audio de-
tected by Whisper as language x is transcribed in
language x, not in English). As Whisper Large
v2 is among the top-performing open-source ASR
models (even outperforming proprietary models as
shown in the authors’ appendix), and as it is highly
multilingual and trained on diverse sources of data,
its outputs are fairly accurate across domains and
more commonly used languages. If the speech ex-
tracted from a video is indeed useful for retrieval,
Whisper is likely to give the strongest baseline for
retrieval using ASR.

OCR We further extract text OCR using the hy-
brid model described in Etter et al. (2023). This
is a state-of-the-art multilingual model which was
found to significantly outperform many popular
open-source OCR models and toolkits on the test
split of the highly multilingual CAMIO OCR
dataset (Arrigo et al., 2022), including Tesseract
(Smith et al., 2009), EasyOCR, TrOCR (Li et al.,

2022), and MMOCR (Kuang et al., 2021) across a
variety of different scripts.

4.3 Baseline Document Expansion
As a baseline, ASR and OCR texts are summa-
rized by prompting Llama-3-8B-Instruct (Dubey
et al., 2024; AI@Meta, 2024) without additional
fine-tuning (No-fine-tune (NFT) summaries). For
each video, the ASR content is placed into a prompt
template that explicitly directs Llama to produce
a keyword-dense summary useful for information
retrieval. This prompt is shown in Appendix B,
Figure 3.

Summaries are generated by passing the ASR or
OCR text to the Llama-3-8B-Instruct model with
a generation limit of 512 tokens, no repeated tri-
grams, and using top-p sampling with p = 0.9 and
a temperature of 0.6. The raw ASR or OCR (or
the concatenation of both) text is expanded with
the summaries by concatenation. Processing Mul-
tiVENT 2.0’s test split (109K videos), assuming
the text is already extracted, took approximately 36
hours on eight 40GB A100 GPUs.

Alternatively, we expand the raw documents
with their machine translation since the extracted
ASR or OCR text is not necessarily English, which
is the query language of the three evaluation collec-
tions. For MultiVENT 2.0, since the collection is
large, we use NLLB (Costa-jussà et al., 2022), an
open-source machine translation model that covers
more than 200 languages, to translate the extracted
ASR and OCR text. For TextVR, we use Google
Translate to obtain the translation through their
Web APIs. Finally, for NeuCLIR Technical Doc-
uments, we use the official translation provided
by the NeuCLIR track, which is also produced by
Google Translate.

4.4 FORTIFY Fine-tuning Setup
We fine-tune Llama-3-8B-Instruct to produce more
useful summaries using an original dataset of pre-
ferred and dispreferred summaries (contrastive
training pairs, as required to proceed with ORPO).
The summaries included in this dataset were pro-
duced using the subset of the training split of Mul-
tiVENT 2.0, totaling 2,000 videos, for which train-
ing queries were written. For each of the unique
query-video pairs having OCR content, we prompt
Llama to produce a keyword-dense summary suited
to information retrieval, given the OCR content.

To ensure high quality summaries in the train-
ing set, we use a one-shot prompt template, shown
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in Appendix B, Figure 4, containing the extracted
OCR text from a manually selected video in Multi-
VENT’s training set, along with a manually written
summary to produce more accurate summaries for
training.

We sample from Llama-3-8B-Instruct five times
to produce five distinct summaries of the OCR con-
tent with the same generation setting. We then
score each of the generated summaries against their
relevant queries using the PLAID-X implementa-
tion of ColBERT (Khattab and Zaharia, 2020; San-
thanam et al., 2022; Yang et al., 2024b) (details
are discussed below). Finally, we construct train-
ing summary pairs by pairing the highest-scoring
summary for a particular video’s OCR with each of
the lower-scoring summaries. We repeat a nearly
identical process to produce summaries of the ASR
content but with a different prompt template con-
taining the extracted ASR text from a particular
video along with a manually written summary. This
dataset is split into 80-20 train-dev splits for FOR-
TIFY fine-tuning.

We perform a LoRA (Hu et al., 2021) fine-tuning
process on Llama-3-8B-Instruct with ORPO us-
ing the implementation provided by Huggingface1,
with LoRA matrices of rank 16, α = 32, and
dropout probability 0.05. We target the up, down,
Q, K, V , and O projection layers during fine-
tuning. We train for three epochs over 12K training
pairs, sampling randomly from the training pairs.
We employ a paged AdamW 8-bit optimizer with
a learning rate of 8 · 10−6, β = 0.1 (called λ in
the ORPO paper), and 10 linear warmup steps. We
accumulate gradients over 4 batches of size 2.2

4.5 Retrieval Models and Pipeline

We test FORTIFY on three retrieval mod-
els, BM25 (Robertson et al., 1995, 2009),
DPR (Karpukhin et al., 2020), and ColBERT (Khat-
tab and Zaharia, 2020), while only fine-tuning
Llama with FORTIFY on ColBERT. For BM25,
we use the implementation provided by PyTer-
rier (Macdonald et al., 2021) with k1 = 1.2,
k3 = 8, and b = 0.75. For DPR, we use Teva-
tron (Gao et al., 2022) with a multilingual DPR
model based on DistilBERT (Sanh, 2019) pro-
vided by sentence-transformers (Reimers and

1https://huggingface.co/docs/trl/main/en/orpo_
trainer

2Hyperparameter choices largely retained from this
tutorial: https://huggingface.co/blog/mlabonne/
orpo-llama-3

Gurevych, 2019) that is fine-tuned on the Quora
dataset.3 Documents are encoded and indexed with
FAISS (Douze et al., 2024) without approximation.
Finally, we use the PLAID-X (Yang et al., 2024c)
implementation for ColBERT with 1-bit residual
compression. Documents are encoded with a Multi-
lingual ColBERT-X (Nair et al., 2022; Lawrie et al.,
2023c) model trained with Multilingual Translate
Distill (Yang et al., 2024a) from the Mono-mT5-
XXL cross-encoder (Jeronymo et al., 2023). 4 Ad-
ditionally, we report results using an English-to-
Chinese cross-language ColBERT-X model 5 on
the NeuCLIR Technical Document task for compar-
ison. Results can be seen in the Appendix, Table 4.

5 Results and Analysis

For MultiVENT 2.0 (the dataset on which FOR-
TIFY is trained), presented at the left part of Ta-
ble 1, expanding the original OCR, ASR, or both
(OCR+ASR) with summaries generated by FOR-
TIFY provides a significant improvement over no
expansion or expansion with their machine trans-
lation. When using ColBERT on the FORTIFY-
expanded OCR and ASR documents, it provides a
76% improvement in nDCG@10 (0.324 to 0.569)
over LanguageBind (Zhu et al., 2023), a state-of-
the-art video encoding language model reported
in the MultiVENT 2.0 dataset paper (Kriz et al.,
2024), and 30% over no expansion (0.437 to 0.569).

Regardless of the source of text (OCR or ASR),
expanding with generated summaries is more ef-
fective than using machine translation, which is
an alternative document processing method (with
similar hardware requirements) since the extracted
text is not necessarily in the query language. Such
improvements are consistent across multiple set-
tings, indicating that the summaries are useful for a
wide range of retrieval models, including statistical
models like BM25.

However, since FORTIFY is trained to tailor
the expansion for retrieval using ColBERT, docu-
ments expanded with FORTIFY summaries are
more advantageous for ColBERT, resulting in im-
provement in both nDCG@10 and R@1000 over
zero-shot prompting, though nDCG@10 is not sta-
tistically significant. However, the differences in

3https://huggingface.co/sentence-transformers/
quora-distilbert-multilingual

4https://huggingface.co/hltcoe/
plaidx-large-eng-tdist-mt5xxl-engeng

5https://huggingface.co/hltcoe/
plaidx-large-zho-tdist-mt5xxl-engeng
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Table 1: Retrieval effectiveness with different document expansion approaches. nDCG in the table uses a rank
cutoff at 10. Superscript of w, x, y and z indicates the metric value using the corresponding expansion approach is
statistically significantly better than the same retrieval model using No Expansion (w), Machine Translation (x),
No-Fine-tuned (NFT) Summary (y), and FORTIFied Summary (z), respectively (also indicated in the first column)
with 95% confidence. The statistical test uses a paired t-test with multiple testing corrections over datasets and
retrieval models. Rows in light gray indicate retrieval methods relying on features other than text, which is unfair to
compare methods only using the extracted text but are included for border comparisons.

MultiVENT 2.0 TextVR (Zero-shot Transferred)

Expansion
Approach

Retrieval
Model

OCR ASR OCR+ASR OCR ASR OCR+ASR
nDCG R@1K nDCG R@1K nDCG R@1K R@1 R@10 R@1 R@10 R@1 R@10

StarVR 0.165 0.473
LanguageBind 0.324 0.846 0.133 0.830

No Expansion
BM25 0.157 0.267 0.114 0.204 0.195 0.322 0.141 0.278 0.044 0.097 0.160 0.305

(w) DPR 0.088 0.334 0.146 0.482 0.153 0.532 0.042 0.120 0.036 0.089 0.051 0.148
ColBERT 0.317 0.616 0.344 0.583 0.437 0.740 0.134 0.259 0.051 0.114 0.153 0.292

Machine
Translation

BM25 0.319w 0.592w 0.300w 0.559w 0.427w 0.733w 0.147 0.297w 0.046 0.100w 0.168w 0.325w

(x) DPR 0.166w 0.500w 0.198w 0.513w 0.236w 0.629w 0.043 0.117 0.037 0.092w 0.052 0.148
ColBERT 0.375w 0.633w 0.401w 0.589 0.517w 0.760w 0.131 0.260 0.051 0.114 0.155 0.304w

NFT
Llama
Summary

BM25 0.360wxz 0.646wxz 0.351wxz 0.606wxz 0.492wxz 0.788wxz 0.156w 0.314wx 0.054wx 0.128wx 0.178w 0.346wx

(y) DPR 0.237wx 0.575wxz 0.249wxz 0.554wx 0.318wx 0.708wxz 0.059wx 0.164wx 0.034 0.099w 0.067wx 0.191wx

ColBERT 0.429wx 0.675wx 0.434wx 0.616wx 0.564wx 0.795wx 0.147wx 0.282wx 0.047 0.122 0.167wx 0.329wx

FORTIFied
Summary

BM25 0.350wx 0.630wx 0.333wx 0.595wx 0.475wx 0.779wx 0.160wx 0.312wx 0.052w 0.123wx 0.180wx 0.356wxy

(z) DPR 0.241wx 0.564wx 0.240wx 0.547wx 0.315wx 0.699wx 0.059wx 0.159wx 0.036 0.104wx 0.059w 0.183wx

ColBERT 0.431wx 0.688wxy 0.435wx 0.623wxy 0.569wx 0.805wxy 0.144x 0.278wx 0.053y 0.123wx 0.168wx 0.319wx

R@1000 are significant, indicating that the FOR-
TIFY-expanded documents include more related
terms to the expansion but are not more accu-
rate than what zero-shot prompting the generative
model can provide. When using BM25 and DPR
to encode and index the FORTIFY-expanded doc-
uments, since they are not the predefined customer
of the summarization model, the resulting retrieval
metrics are only similar or slightly lower than NFT
summaries, which also indicates that FORTIFY
can effectively tailor the document expansion to the
expressed preferences of the downstream retrieval
model during fine-tuning.

Interestingly, although DPR significantly under-
performs with respect to ColBERT, the improve-
ment due to expansion with generative summaries
is much larger for DPR than for ColBERT, which
validates our initial intuition that it is possible to
leverage the linguistic ability of a generative model
to provide additional context and language struc-
ture for the downstream neural retrieval model to
consume. Since DPR encodes the entire piece of
text as a single dense vector, providing it with
better-structured documents is more advantageous
for DPR than ColBERT, which is capable of falling
back to term matching through dense token embed-
dings. Without such expansion, DPR is even less
effective than BM25 as shown in the No Expan-
sion condition in Table 1. When using both OCR
and ASR text, DPR improves 106% in nDCG@10

when expanding with FORTIFY summaries (0.153
to 0.315) while ColBERT “only” demonstrates a
30% improvement (0.437 to 0.569). Even com-
pared against machine translation, which already
processes and potentially denoises the raw and
noisy text via a language model, DPR still im-
proves 33% when using FORTIFied summaries
while ColBERT “only” improves by 10%.

5.1 Out-of-Distribution Transfer

Zero-shot transferring FORTIFY to TextVR,
which demonstrated a very different distribution
both in videos and extracted text (presented in Ta-
ble 3), the differences between zero-shot prompt-
ing and the FORTIFY-fine-tuned summarizer are
small and not statistically significant. Since the
distribution of the queries and the videos are signif-
icantly different from MultiVENT 2.0, on which
the model was trained, the additional preference op-
timization through ORPO is not particularly help-
ful but also not harmful. Such robustness indi-
cates the FORTIFY-fine-tuned model still retains
its original language modeling capability to sup-
port generalization while providing more beneficial
information when preferences of the downstream
retrieval model were communicated during fine-
tuning. Interestingly, expanding ASR and OCR
text with FORTIFied summaries using BM25 is
still 9% more effective in R@1 (0.165 to 0.180)
than StarVR, proposed along with the introduction
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Table 2: Retrieval effectiveness when concatenating
multiple sources of text in MultiVENT 2.0 using Col-
BERT. nDCG values in the table uses a rank cutoff at 10.
Checkmarks indicate inclusion of such source of text in
the documents for ColBERT indexing.

Original Machine FORTIFied
Noisy Text Translation Summary

OCR ASR OCR ASR OCR ASR nDCG R@1K

✓ 0.317 0.616
✓ 0.344 0.583
✓ ✓ 0.437 0.740
✓ ✓ ✓ ✓ 0.517 0.760
✓ ✓ ✓ ✓ 0.569 0.805
✓ ✓ ✓ ✓ ✓ ✓ 0.578 0.797

0 2 4
# of Summaries

0.45

0.50

0.55

0.60
(a) nDCG@10

0 2 4
# of Summaries

0.74

0.76

0.78

0.80

(b) R@1000

FORTIFied Llama Summary No-Fine-tuned Llama Summary

Figure 2: Effectiveness of concatenating multiple gen-
erated summaries on MultiVENT 2.0 using both OCR
and ASR text.

of TextVR (Wu et al., 2025). Notably, StarVR in-
volves a heavy video space-time encoder, as well
as projection from a scene text encoder.

Note that since the amount of text extracted via
ASR from the audio tracks of the videos in TextVR
is scarce (only on average 185 characters per video),
no expansion approach can expand the short text in
any meaningful way, resulting in roughly the same
effectiveness as forgoing document expansion.

5.2 Expansion with Multiple Summaries

Given the variability of generative models, we in-
vestigate generating multiple summaries using both
the NFT Llama and FORTIFied models on Multi-
VENT 2.0. Illustrated in Figure 2, concatenating
more summaries provides marginal improvements
in both nDCG@10 and R@1000. However, such
improvements quickly start to diminish as more
summaries are added, as expected. Particularly
in R@1000, expanding the noisy text with five
summaries produces documents whose meanings
begin to drift away from those of the original texts.
This results in the promotion of more irrelevant
videos to the top 1000 and thus decreases R@1000

when adding more than three summaries. Notably,
FORTIFied summaries, despite still inducing a se-
mantic drift, are still more effective than the NFT
version, indicating that FORTIFY consistently in-
stills the preference into the model, even when we
are generating more summaries through random-
ized decoding.

nDCG@10, on the other hand, continues to im-
prove when adding more summaries, indicating
that summaries are still beneficial in terms of pro-
moting relevant videos to the top of the ranked list.
Such a trade-off between the top and the bottom of
the ranked list is expected when expanding queries
or documents and remains an issue for neural mod-
els such as ColBERT (Wang et al., 2023).

Finally, we also investigate expanding the noisy
documents with their machine translation and
FORTIFied summaries. Presented in Table 2, the
final retrieval effectiveness increases as we intro-
duce more expansion to the documents. Although
expansion with machine translation is less effective
than FORTIFied summaries, the two expansion
approaches provide complementary information
to the retrieval model. Thus, combining both ap-
proaches by concatenation results in a statistically
significant improvement in nDCG@10 over just
using the FORTIFied summaries (0.569 to 0.578).
As before, such elaborated expansion also pro-
motes more irrelevant videos, resulting in a slightly
lower R@1000.

6 Conclusion and Future Work

In this paper, we proposed a generative model fine-
tuning approach FORTIFY for document expan-
sion. FORTIFY tailors a generative model to a
specific kind of noisy document and a downstream
retrieval model through ORPO, a preference opti-
mization approach. We showed that models fine-
tuned with FORTIFY provide more effective ex-
pansion summaries than an out-of-the-box Llama
model. The resulting FORTIFied Llama model
also demonstrates robustness to documents and re-
trieval models beyond the ones predefined during
ORPO fine-tuning.

Beyond the success of FORTIFY on noisy text,
we would like to explore it on other general ad hoc
retrieval tasks to tailor the retrieval to a specific do-
main, corpus, or even user. Given the flexibility of
preference optimization, we believe FORTIFY can
be adapted to arbitrary retrieval model preference.
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Appendix

A Out-of-Domain Transfer

To evaluate FORTIFY on a completely dif-
ferent domain, we again zero-shot transfer the
MultiVENT-FORTIFied model to generate sum-
maries for the academic abstracts in the NeuCLIR
Technical Document collection. Presented in Ta-
ble 4, FORTIFied summaries still provide addi-
tional information to the original document despite
not being noisy, resulting in a 43% improvement in
nDCG@20 on the 2023 topics and 35% on 2024.
However, the NFT Llama summary, in this case, is
slightly more effective since it was trained to ac-
complish a wide range of tasks under a wide range
of conditions.

Such differences are expected as our
MultiVENT-FORTIFied model has moved
from a general-purpose model to a more task-
specific one. As we move further away from
the original training setup, which assumes noisy,
fragmented text with ColBERT being the retrieval
model, the model becomes less capable of
generating retrieval model-favored summaries,
especially when using BM25. With that said,
FORTIFY can be tailored to any domain as long
as the retrieval model preference can be collected.
We leave the exploration of FORTIFY to general
ad hoc retrieval to future work.

B Prompts

In this section, we provide prompts that we opti-
mize FORTIFY for. Figure 3 presents the primary
prompt that we use, while Figure 4 presents the
OCR-focused prompt.

C Examples

In this section we two examples of the noisy ex-
tracted text. Documents composed principally of
noisy text are often difficult to retrieve (de Oliveira
et al., 2023). In term frequency approaches such
as BM25, performance is harmed when there are
typographical errors, text recognition errors (substi-
tution of visually similar characters), speech tran-
scription errors (substitution of letters pronounced

similarly), or other character-level errors. For in-
stance, if we were to search for for the noisy doc-
ument in Figure 5, we might not be successful if
our query is “Rolling Stones” - note that neither
of these words appear in the document, despite the
fact that the document is very clearly the lyrics
to Jumpin’ Jack Flash, albeit with significant text
recognition errors. If we now produce a summary
using a general-purpose generative text model, the
summary not only corrects the character-level er-
rors in the original document, but it elaborates on
the content further, and finally includes a list of
useful keywords and phrases.
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Table 3: Dataset Statistics. Note that all three collections are multilingual. The average character counts treat all
scripts (Latin, CJK, Perso-Arabic, Cyrillic, etc.) identically.

MultiVENT 2.0 Test Set

Videos
w/OCR w/ASR Total Queries

Count 105,026 109,488 109,800 2,546

Avg. # of Chars 529 1,092 – 42

TextVR Test Set

Videos
w/OCR w/ASR Total Queries

Count 2,726 2,249 2,727 2,727

Avg. # of Chars 441 185 – 73

NeuCLIR Technical

Queries
Documents 2023 2024

Count 395,927 41 106

Avg. # of Chars 206 131 131

Table 4: Zero-shot cross-domain transfer of the MultiVENT-FORTIFied model (training on MultiVENT 2.0
training set) to the NeuCLIR Technical Document task with topics from 2023 and 2024. nDCG in this table uses a
rank cutoff at 20. Rows in light gray indicate retrieval methods relying on features other than text.

Expansion Retrieval 2023 2024
Approach Model nDCG R@1K nDCG R@1K

English-Chinese ColBERT-X 0.339 0.783 0.338 0.796

(w)No Expansion
BM25 0.054 0.128 0.049 0.106
ColBERT 0.277 0.736 0.256 0.687

(x)
Machine BM25 0.239w 0.588w 0.240w 0.588w

Translation ColBERT 0.330w 0.788w 0.326w 0.763w

(y)
NFT-Llama BM25 0.330wxz 0.803wxz 0.336wxz 0.726wx

Summary ColBERT 0.404wx 0.838w 0.356w 0.783w

(z)
FORTIFied BM25 0.286w 0.733wx 0.305wx 0.694wx

Summary ColBERT 0.395w 0.813w 0.349w 0.783w
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SYSTEM PROMPT: You are tasked with summarizing text. This summary will be used for the task
of information retrieval. As such, it is of paramount importance that the summary include as many
relevant keywords, synonyms, and related words as possible. Feel free to restate the text in multiple
ways. A longer document is better than a shorter one. The more keywords you include, the better the
summary will be for the task of information retrieval. The summary can be in the style of a description
or a synopsis.

USER PROMPT: Please produce a summary of the following text content that is suited for the task of
information retrieval, focusing on including keywords, synonyms and related words: <noisy text>

Figure 3: Prompt for Llama-3-8B-Instruct for generating summaries. This prompt is used to generate both No-fine-
tune (NFT) Llama summaries and the FORTIFY summaries.

SYSTEM PROMPT: You are tasked with summarizing the OCR text extracted from a video. This
summary will be used for the task of information retrieval. As such, it is of paramount importance
that the summary include as many relevant keywords, synonyms, and related words as possible. Feel
free to restate the text in multiple ways. A longer document is better than a shorter one. The more
keywords you include, the better the summary will be for the task of information retrieval. The
summary can be in the style of a video description or a plot synopsis or summary. For instance, given
the following OCR text:
Ptička is the name of the song. How to make a whistle The bird. How to make a whistle How to make
a whistle The bird.
Produce a summary like so:
A tutorial or a series of instructions on how to make a whistle (a musical instrument) that mimics or
imitates the sound or call produced by a bird. The tutorial mentions a song called "Ptička", which is
the Russian word for "bird". The whistle may be used to replicate birdsong.

USER PROMPT: Please produce a summary of the following text content that is suited for the task of
information retrieval, focusing on including keywords, synonyms and related words: <noisy text>

Figure 4: OCR-focused one-shot prompt used for generating summaries. This prompt is only used for generating
training summaries for FORTIFY.

NOISY TEXT: Kolling Sones. umping Jack Hash. One Two! But it’s all right now, in fact, it’s a gas! And Thowled . . .

MACHINE TRANSLATION: Kolling Sones. umping Jack Hash. One Two! But it’s all right now, in fact, it’s a gas! And
Thowled . . .

NFT SUMMARY: The song “Jumpin’ Jack Flash” by The Rolling Stones is a rock and roll classic . . . Synonyms:
tumultuous, difficult, abusive, rebellious, defiant, call toaction [sic]. Related words: rock music, classic, childhood
experiences, abuse of power, individualism, resilience in the face of adversity.

FORTIFIED SUMMARY: The song “Jumping jack flash” is a popular rock song by the British rock band The Rolling
stones, released in 1968 . . . the song is often interpreted as a commentary on the struggles and hardships faced by young
people.

Figure 5: An example of some extracted text with significant character-level errors and the outputs produced by the
three document expansion strategies we compare (machine translation, Llama summarization without fine-tuning,
and FORTIFY). Red indicates a character-level error. Yellow indicates unusual or disjointed structure. Green
indicates a spelling correction. Blue indicates useful keywords and phrases not in the original text.
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NOISY TEXT: t80 /ts Po4. BO5jCa(OM → Cas (PO)SMD. 3OS+ 2KOH → Kz SOu + H O. SO, +2NgOH → Na2SD, +
HO. HeSO4. Ma (e D)=. t80. /ts Po4) PDS +3Ca (OHL. → CasPO%),0. 3O,+ 2K0H → ke SOu + HO. SO, + . . .

MACHINE TRANSLATION: t80 /ts Po4. BO5jCa(OM → Cas (PO)SMD. 3OS+ 2KOH → Kz SOu + H O. SO,
+2NgOH → Na2SD, + HO. HeSO4. Ma (e D)=. t80. /ts Po4) PDS +3Ca (OHL. → CasPO%),0. 3O,+ 2K0H → ke SOu +
HO. SO, + . . .

NFT SUMMARY: The text describes a series of chemical reactions involving calcium, phosphorus, and sulfur compounds.
The reactions involve the formation of various calcium phosphates and sulfates, including calcium phosphate (Ca3(PO4)2),
calcium sulfate (CaSO4), and sodium sulfate (Na2SO3). The reactions also involve the use of various reagents, including
potassium hydroxide (KOH), sodium hydroxIDE [sic] (NaOH) . . . Overall, the text provides a detailed description of
various chemical reactions and the compounds involved.

FORTIFY-GENERATED SUMMARY: A comprehensive guide to the synthesis of calcium phosphate (Ca3(PO4)2) is
presented, providing a detailed overview of the chemical reactions involved. The process involves the reaction of calcium
oxide (CaO) with phosphoric acid (H3PO4), as well as the addition of sodium hydroxide (NaOH) and other chemicals.
The resulting compound, calcium phosphate, is a key component in the production of ceramic materials, fertilizers, . . .
Keywords: calcium phosphate synthesis, ceramic materials production, fertilizer production, pharmaceuticals, pH levels,
catalysts, sodium sulfate, sodium nitrite, chemical reactions.

Figure 6: An example of some extracted text with significant structural problems and the outputs produced by
the three document expansion strategies we compare (machine translation, Llama-generated summaries without
fine-tuning, and FORTIFY). Highlights mean the same as in Figure 5. Note that this document’s overall structure is
highly problematic as well.
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