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Abstract

Large Vision-Language Models (LVLMs) are
becoming increasingly popular for text-vision
tasks requiring cross-modal reasoning, but of-
ten struggle with fine-grained visual discrim-
ination. This limitation is evident in recent
benchmarks like NaturalBench and D3, where
closed models such as GPT-4o achieve only
39.6%, and open-source models perform be-
low random chance (25%). We introduce Con-
trastive decoding with Contrast Images (CoCI),
which adjusts LVLM outputs by contrasting
them against outputs for similar images (Con-
trast Images - CIs). CoCI demonstrates strong
performance across three distinct supervision
regimes: First, when using naturally occurring
CIs in benchmarks with curated image pairs,
we achieve improvements of up to 98.9% on
NaturalBench, 69.5% on D3, and 37.6% on
MMVP. Second, for scenarios with modest
training data (∼5k samples), we show that a
lightweight neural classifier can effectively se-
lect CIs from similar images at inference time,
improving NaturalBench performance by up
to 36.8%. Third, for scenarios with no train-
ing data, we develop a caption-matching tech-
nique that selects CIs by comparing LVLM-
generated descriptions of candidate images.
Notably, on VQAv2, our method improves
VQA performance even in pointwise evalua-
tion settings without explicit contrast images.
Our approach demonstrates the potential for
enhancing LVLMs at inference time through
different CI selection approaches, each suited
to different data availability scenarios.

1 Introduction

Large Vision-Language Models (LVLMs) are be-
coming increasingly popular for text-vision tasks
that require reasoning over both modalities. How-
ever, they often struggle with fine-grained visual
discrimination — that is, the ability to tell two
similar yet distinct images apart — a crucial ca-
pability for real-world applications such as mul-

Figure 1: CoCI penalizes target image logits using those
from a contrast image, weighted by hyperparameter α.

timodal search, manufacturing, and robotics. Re-
cent benchmarks have exposed this limitation: on
NaturalBench (Li et al., 2024a), which tests vi-
sual question answering over closely related im-
ages, state-of-the-art closed models like GPT-4o
(OpenAI et al., 2024) achieve only 39.6% accu-
racy. Similarly, on the D3 benchmark (Gaur et al.,
2024), which requires describing differences be-
tween paired images, open-source models perform
below random chance (25%).

Efforts to address fine-grained visual discrim-
ination in LVLMs are still under-explored. Cur-
rent strategies addressing other LVLM shortcom-
ings often rely on fine-tuning with specialized
datasets (Wang et al., 2023; Chen et al., 2023; Liu
et al., 2024a; Sarkar et al., 2024), multi-step cor-
rection pipelines (Yin et al., 2023; Zhou et al.,
2023), or inference-time methods (Leng et al.,
2023; Manevich and Tsarfaty, 2024; Liu et al.,
2024b; Huang et al., 2023). Inference-time meth-
ods are particularly appealing as they do not require
expensive model training and are less prone to com-
pounding errors that can affect multi-step systems.

Building on the advantages of inference-time
methods, we propose Contrastive decoding with
Contrast Images (CoCI), an approach specifically
designed to improve fine-grained visual discrimina-
tion in LVLMs. CoCI penalizes LVLM next-token
probabilities with those obtained by feeding a dif-
ferent, contrasting image input (See Figure 1).

We evaluate CoCI across three different super-
vision regimes. First, using naturally occurring
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Contrast Images in curated benchmarks like Nat-
uralBench, D3 and MMVP, we demonstrate im-
provements up to 98.9%, 69.5%, 37.6% respec-
tively. This establishes a performance ceiling for
CoCI when ideal CIs are available. For applications
where natural CIs are unavailable but training data
exists, we show that a lightweight classifier can
effectively select CIs from visually similar images
at inference time, improving NaturalBench perfor-
mance by up to 36.5%. In settings without training
data, we propose a caption-matching technique that
selects CIs at inference time by comparing LVLM-
generated descriptions of candidate images.

Experiments with leading LVLMs — Qwen2-
VL, LLaVA-OneVision, and Llama 3.2 (Wang
et al., 2024a; Li et al., 2024b; Grattafiori et al.,
2024) — establish the potential of contrastive de-
coding strategies with contrastive images for im-
proved multimodal reasoning in real-world tasks.

2 Contrastive Decoding with Contrast
Images (CoCI)

We present CoCI, a method to improve LVLM out-
puts by penalizing token probabilities that are likely
under a contrast image. The choice of contrast
image is crucial: e.g., when querying about fruit
ripeness with an input image of an unripe banana,
contrasting against an image of a ripe banana pro-
vides strong contrastive signal, while an image of
a ripe pear offers weaker contrast and an image of
a bus provides no useful signal and may degrade
performance. This intuition guides our CI selection
strategies across different scenarios. Before formal-
izing this intuition, we first review key concepts in
LVLM text generation.

2.1 Preliminaries: Text Generation in LVLMs
LVLMs extend LLMs by conditioning next-token
prediction on both text and images.1 Generation
proceeds by iteratively sampling tokens from the
model’s predicted distributions until reaching an
EOS token or length limit. The LVLM next-token
prediction is:

LVLMt(y< t, I) = P (y|y< t, I) ∀y ∈ V (1)

where y<t is the token prefix, I is the input image,
and V is the model’s vocabulary.

2.2 Contrastive Decoding
Following Li et al. (2023), various Contrastive De-
coding approaches have emerged (Sennrich et al.,

1In this work, we focus on single image inputs.

2024; Jin et al., 2024; Phan et al., 2024). We im-
plement CoCI based on Sennrich et al. (2024)’s
minimal variant:

CoCIt(y<t, I, I
′) =

log
(
P (y|y<t, I)− αP (y|y<t, I

′)
)

∀y ∈ V
(2)

CoCI penalizes token probabilities from the tar-
get image distribution P (y|y<t, I) with those from
the contrast image distribution P (y|y<t, I

′). The
parameter α controls penalty strength.2

2.3 Obtaining Contrast Images
We propose three approaches for obtaining CIs:

Naturally occurring CIs. Many tasks naturally
provide pairs of images that can serve as contrast
images (CIs). For instance, a home assistant robot
searching for “the blue ceramic mug with a chip on
the handle” needs to distinguish between similar
cups to find the exact match. We evaluate this sce-
nario using LVLM benchmarks with curated image
pairs designed to test fine-grained discrimination
capabilities. These paired images serve as natural
CIs in our experiments.

Classifier-obtained CIs. For cases without natu-
ral CIs, we train an MLP classifier to select them
during inference. Given LVLM L and training
triplets ⟨q, I, I ′⟩ (binary question and image pairs
with different answers), we: (a) Extract LVLM hid-
den states hq,i ∈ RdL per image-question pair. (b)
Concatenate states for image pairs: hq,i,i′ ∈ R2∗dL .
(c) Create negative samples using the j least similar
images from top-k similar images to I in dataset
D3. (d) Train a three-layer MLP classifier.4 We
train on NaturalBench (60% split) augmented with
GPT-4-generated question paraphrases. At infer-
ence, we select the CI maximizing classifier score
among k most similar images.5

Caption-matched CIs. For scenarios without
training data, we select CIs by comparing LVLM-
generated image descriptions. Given an input im-
age, we (a) Retrieve k similar images6. (b) Gen-
erate LVLM descriptions for all k + 1 images. (c)

2We use α = 0.5 for VQA and α = 0.8 for open-ended
generation.

3j = 5, k = 100. Using flickr30k (Young et al., 2014) and
open-clip (Ilharco et al., 2021; Cherti et al., 2023; Radford
et al., 2021a; Schuhmann et al., 2022) with cosine similarity.

4See appendix A.1 and A.3 for implementation details.
5See table 2 for k value comparisons. Inference uses iden-

tical retrieval setup as training.
6We set k = 5 without tuning.
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Figure 2: Illustration of the approaches we explore for obtaining a Contrast Image (CI).

Embed descriptions using a text encoder. (d) Select
the image whose description is most similar to the
input image’s description

2.4 Research Hypothesis

We test whether: (a) Contrastive decoding with
CIs improves LVLM fine-grained reasoning, (b)
A lightweight classifier trained on LVLM hidden
states can effectively select CIs, and (c) Images
with similar LVLM descriptions can serve as CIs.

3 Experiments

We evaluate CoCI using three leading LVLMs7 on
four benchmarks, three specifically targeting fine-
grained visual discrimination:

NaturalBench (Li et al., 2024a) evaluates similar
image discrimination through yes/no and multiple-
choice questions, with different answers for paired
images. The benchmark contains 1900 image pairs
(two questions per pair), split into train (60%), dev
(20%), and test (20%) sets. We measure image
accuracy (both questions correct), question accu-
racy (per-question), and group accuracy (all four
image-question combinations correct).

MMVP (Multimodal Visual Patterns) (Tong
et al., 2024) evaluates visual difference detection
through multiple-choice questions on 150 image
pairs. Each pair differs in specific visual aspects
(object state, position, or orientation). Success re-
quires correct answers for both images in a pair.

D3 (Detect, Describe, Discriminate) (Gaur
et al., 2024) assesses models’ ability to generate
discriminative descriptions between similar images
across 247 pairs. We adapt D3 for CoCI by treating
it as a single-input task, generating separate de-
scriptions per image. Evaluation follows the orig-
inal self-retrieval protocol, measuring whether an

7See appendix A.2 for details on the checkpoints we used.

Model Method D3 MMVP NB VQAv2
(self-ret.) (acc.) (g-acc.) (acc.)

Qwen2-VL Baseline 30.8 46.0 30.8 72.66
CoCICAP 34.8 48.7 31.3 74.33
CoCINAT 52.2 63.3 46.6 -

LLaVA-OV Baseline 25.1 52.7 28.2 61.66
CoCICAP 31.6 57.3 31.6 73.66
CoCINAT 38.1 66.7 56.1 -

Llama 3.2 Baseline 28.7 39.3 21.1 58
CoCICAP 33.6 41.3 22.4 58
CoCINAT 35.6 43.3 29.2 -

Table 1: CoCI performance comparison with provided CIs
across benchmarks, with natural CIs (CoCINAT) and caption-
matched CIs (CoCICAP).

image-text encoder correctly matches descriptions
to their images.

VQAv2 (Goyal et al., 2017) serves as our general-
purpose visual question answering benchmark.
While not focused on fine-grained discrimination,
we include it to demonstrate CoCI’s broader appli-
cability. We evaluate on 300 validation set image-
question pairs using exact match accuracy.

4 Results and Discussion

In Table 1 we can see that using natural CIs yields
substantial improvements: up to 21.4 points on
D3 (Qwen), 17.3 points on MMVP (LLaVA), and
27.9 points on NaturalBench (LLaVA). Caption-
matched CIs show moderate but consistent gains,
particularly on D3 where LLaVA improves from
25.1% to 31.6%, suggesting that contrasting
against images with similar captions effectively
guides visual discrimination. CoCI with caption
matching improves performance on VQAv2 for
two of the three tested models while maintaining
baseline performance for Llama 3.2, demonstrating
that CoCI enhances general-purpose VQA abilities
beyond fine-grained visual discrimination tasks.

Throughout our experiments, Llama exhibits dif-
ferent behavior compared to other models - show-
ing lower performance and reduced responsiveness
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Model Method Q-acc I-acc Acc G-acc
Qwen2-VL Baseline 55.3 59.3 76.8 30.8

Clsk=4 55.5 58.8 76.4 32.1
Clsk=8 56.3 58.9 76.7 32.4
Clsk=16 57.4 60.1 77.2 33.7
Clsk=32 57.8 60.1 77.4 34.2
Clsk=64 58.2 60.8 77.9 33.9

LLaVA-OV Baseline 53.8 56.1 74.6 28.2
Clsk=4 59.2 59.6 77.6 35.3
Clsk=8 57.8 60.1 77.5 34.5
Clsk=16 57.6 58.7 77.0 33.4
Clsk=32 60.3 62.1 78.5 38.4
Clsk=64 59.7 62.1 78.2 37.6

Llama 3.2 Baseline 46.3 50.5 71.8 21.1
Clsk=4 49.2 52.8 73.2 23.2
Clsk=8 49.1 52.2 73.1 21.8
Clsk=16 48.8 52.4 73.1 22.4
Clsk=32 49.9 52.5 73.7 22.1
Clsk=64 49.7 52.5 73.6 22.1

Table 2: CoCI accuracy metrics on the NaturalBench test set
with CIs chosen using a lightweight classifier. k = j denotes
the classifier ran on the j most similar images to the input
image.

to our methods. This pattern is evident in Table 2,
where Qwen and LLaVA’s performance improves
with larger candidate pools (k), peaking around
k=32, while Llama performs best with small pools
(k=4). This behavior could be attributed to two fac-
tors: First, while the hyperparameters worked well
for Qwen and LLaVA, they may not be optimal
for Llama without model-specific tuning. Second,
Llama’s architectural differences, particularly its
use of cross-attention, could lead to different be-
haviors in our contrastive decoding context. While
exploring these architecture-specific considerations
could be valuable, it is beyond the scope of this
work.

In NaturalBench, G-Acc shows particularly
strong improvement with natural CIs as it requires
consistency across all image-question combina-
tions. This pattern persists with classifier-selected
CIs, where G-Acc improves by up to 10.2 points
while other metrics show modest gains. The sub-
stantial gap between natural CIs and other meth-
ods suggests that classifier-selected and caption-
matched CIs, while beneficial, don’t yet capture all
aspects that make natural pairs effective. 8

5 Related Work

Inference-time methods for enhancing multi-
modal reasoning. Recent work has focused on

8See appendix A.3 for ablation tests with different CI se-
lection strategies.

hallucination reduction through confidence-based
adjustments (Huo et al., 2024), semantic refer-
ences (Yang et al., 2024), and contrastive decoding
with perturbed inputs (Leng et al., 2023; Manevich
and Tsarfaty, 2024). Our work extends these ap-
proaches to fine-grained visual discrimination.

Alignment and grounding in LVLMs. Prior
work has enhanced visual-textual alignment
through object-level synthesis (Wang et al., 2024b),
targeted fine-tuning (Lu et al., 2024), and dataset
construction (Li et al., 2024c). While these meth-
ods improve foundational capabilities, they don’t
directly address fine-grained discrimination.

Contrastive examples in multimodal models.
CLIP (Radford et al., 2021b) established con-
trastive learning for modality alignment. Recent
works leverage contrast pairs: (Le et al., 2023) and
(Zhang et al., 2024) generate synthetic datasets us-
ing text-to-image models, while (Abbasnejad et al.,
2020) and (Zhou et al., 2024) use contrastive ex-
amples to address dataset biases. Unlike these ap-
proaches requiring data generation or training, our
method operates at inference time.9

6 Conclusion

We introduced Contrastive decoding with Con-
trast Images (CoCI), demonstrating its effective-
ness in improving LVLMs’ fine-grained visual dis-
crimination capabilities in both VQA and long-
form generation tasks. While naturally occurring
contrast pairs yielded the strongest gains, both
classifier-based and caption-matching approaches
provide meaningful improvements without requir-
ing dataset curation or model training. We vali-
dated the generality of our method through experi-
ments with caption-based contrast selection, show-
ing that CoCI does not rely on pre-curated pairs but
can leverage them when available. Notably, CoCI
improves performance even on tasks that don’t ex-
plicitly measure fine-grained discrimination.

Our results show that contrastive decoding al-
gorithms, when combined with strategic contrast
image selection, improve LVLMs’ ability to make
fine-grained distinctions and their overall VQA
abilities, opening new avenues for improving mul-
timodal reasoning through inference-time tech-
niques.

9Classifier-selected CIs require minimal preprocessing
compared to model finetuning or dataset curation.
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7 Limitations

CoCI has several limitations worth noting. While
we demonstrate its effectiveness with classifier-
based and caption-matching approaches, the sub-
stantial performance gap between natural and au-
tomatically selected CIs indicates significant head-
room for finding more effective contrast images.
We tested simple selection methods to establish the
viability of the approach, leaving the exploration of
more sophisticated CI selection strategies to future
work. Additionally, our evaluation focuses primar-
ily on VQA and self-retrieval protocols; exploring
additional evaluation methods could reveal other
aspects of how CoCI affects LVLM generations.

The method introduces additional computation
at inference time, running the LVLM twice per
generation step and requiring CI selection over-
head. While this aligns with the growing trend of
leveraging test-time compute for improved perfor-
mance, the current implementation could be opti-
mized. Future work could explore more efficient
implementations of contrastive decoding and inves-
tigate fusing operations like hidden state extraction
with the generation procedure to reduce computa-
tional overhead.

Our implementation uses Flickr30k as the im-
age database for CI selection - using larger, more
diverse image collections could improve perfor-
mance. Alternative image retrieval models and
similarity scoring methods could also enhance CI
selection. Additionally, our approach does not ad-
dress cases where multiple contrasts might be in-
formative - we only use a single contrast image,
while some scenarios might benefit from multiple
contrasting viewpoints.

The experiments use a fixed contrastive
weight (α) across tasks within each category
(VQA/generation). A more nuanced approach to
setting this parameter, dynamically per sample or
per token, based on the specific input or task, could
yield better results.

While CoCI improves visual discrimination, it
could potentially amplify biases present in contrast
image databases or introduce new failure modes
when inappropriate contrast images are selected.
These risks should be carefully evaluated before
deployment in sensitive applications.

Finally, our experiments focus exclusively on
English-language benchmarks. Extending CoCI
to multilingual settings and investigating how con-
trastive decoding approaches perform across differ-

ent languages represents an important direction for
future research.
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A Appendix

A.1 Lightweight Classifier Implementation Details
Below is the PyTorch code of the lightweight classifier.

class Classifier(torch.nn.Module):
def __init__(self, input_dim: int):

super(Classifier, self).__init__()
# factor of 2 due to concatentaion of target and candidate features
self.linear1 = torch.nn.Linear(input_dim * 2, input_dim)
self.linear2 = torch.nn.Linear(input_dim, input_dim)
self.linear3 = torch.nn.Linear(input_dim, 1)
self.dropout = torch.nn.Dropout(p=0.3)

def forward(self, x) -> torch.Tensor:
x = self.dropout(self.linear1(x))
x = F.relu(x)
x = self.dropout(self.linear2(x))
x = F.relu(x)
x = self.linear3(x)
return x

We trained a classifier per tested LVLM, all with the following parameters, using the AdamW (Loshchilov
and Hutter, 2019) optimizer.

batch_size=256
num_epochs=13
learning_rate=3e-4
weight_decay=1e-6

A.2 LVLM Checkpoints Tested
The following are the LVLM checkpoints we tested CoCI with:

Qwen/Qwen2-VL-7B-Instruct
llava-hf/llava-onevision-qwen2-7b-ov-hf
meta-llama/Llama-3.2-11B-Vision-Instruct

We used laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K as the open-clip model for both image and text
encoding throughout this work.
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A.3 Effect of Choosing a Contrast Image on NaturalBench Performance

Method Setting Q-acc I-acc Acc G-acc
CoCI ablations Baseline 51.6 55.4 75.1 25.6

CI ←Random (out of top-5 most similar to input) 49.6 52.1 73.8 23.2
CI ←Natural 71.8 70.8 84.3 51.6
CI ←Most similar to input 49.7 52.5 73.6 23.9
CI ←Most similar to Natural 60.3 60.7 78.9 35.0
CI ←Least similar to Natural 46.7 48.9 72.6 21.8

Classifier k = 4 51.7 54.3 74.5 26.6
k = 8 53.0 55.4 75.3 26.6
k = 16 54.3 56.8 76.1 29.2
k = 32 52.2 54.6 75.1 25.8
k = 64 51.8 53.9 74.7 26.3
k = 100 52.1 54.1 74.8 25.5

Classifier+augmentations k = 4 52.0 54.3 74.6 27.1
k = 8 52.8 55.9 75.0 27.9
k = 16 54.5 57.8 76.1 29.2
k = 32 54.9 58.2 75.9 30.0
k = 64 54.7 57.9 76.1 30.3
k = 100 54.7 58.0 76.1 30.0

Table 3: CoCI performance on the NaturalBench dev set with different CI selection methods, using Qwen2-VL.
Classifier+augmentations indicates training data augmentation with GPT-4o paraphrased questions and standard image
augmentations. Using natural CIs provides the strongest performance gains, with a 26-point improvement in
group accuracy over baseline (51.6% vs 25.6%). Selecting CIs by similarity to natural CIs improves performance
significantly (35.0% G-acc), while using the least similar images performs worse than baseline (21.8%), validating
the importance of CI selection strategy. Random CI selection hurts performance (23.2% G-acc) even when restricted
to similar images, highlighting that similarity alone is insufficient. Training with augmented data provides modest
but consistent improvements across all metrics, with G-acc increasing by about 4 points compared to the non-
augmented classifier. The augmented classifier also demonstrates more robust performance, maintaining consistent
scores across different k values compared to the higher variance seen in the non-augmented version.

75



A.4 Examples of Image Pairs and Their Descriptions from D3
The following pairs of images with their respective captions are sampled from D3 results, obtained using
CoCI with Natural Contrast Images and Qwen 7B.

Baseline: The image shows a person holding a banana in front of their
mouth. The person is wearing a green shirt and is standing against a plain
wall. The banana is positioned in such a way that it appears to be covering
the person’s mouth, creating a humorous or playful effect. The background
is simple and uncluttered, which helps to focus attention on the person and
the banana.
CoCI: The image shows a person holding a banana close to their face.
The person appears to be making an exaggerated facial expression, with
their eyes wide open and eyebrows raised. The background is a plain,
light-colored wall.

Baseline: The image shows a person holding a banana in front of their
mouth, creating the illusion of a smile. The person is wearing a green
shirt and is standing against a plain wall. The banana is positioned in
such a way that it covers the lower part of the person’s face, mimicking a
smile. The lighting in the image is even, and the background is simple and
uncluttered.
CoCI: The image depicts a man with a light complexion wearing a green
shirt. He is leaning against a wall, which appears to be a combination of
light and dark shades, possibly indicating a corner or a wall with different
sections. The man is holding a banana in his right hand, and he has placed
the banana horizontally across his mouth, creating a playful expression that
resembles a mustache. The banana has some dark spots on it, suggesting it
is ripe. The background is relatively plain, with no visible decorations or
objects, focusing the viewer’s attention on the man and the banana.

Figure 3: Comparison of baseline and CoCI captions. The baseline captions are very similar and provide no
information that allows to discriminate between the images, while the left CoCI caption mentions the raised
eyebrows.
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Baseline: The image depicts the iconic Elizabeth Tower, commonly known
as Big Ben, located in London, England. The tower is a prominent example
of Gothic Revival architecture and is part of the Palace of Westminster.
The photograph captures the upper portion of the tower, focusing on its
clock face and the ornate details of its structure.
CoCI: The image showcases a close-up view of a prominent clock tower,
which is characterized by its Gothic architectural style. The tower is
adorned with intricate details and features two large, circular clock faces,
one on each visible side of the structure. Both clocks are encased in ornate
frames, which are embellished with decorative patterns and motifs.

Baseline: The image depicts the iconic Elizabeth Tower, commonly known
as Big Ben, located in London, England. The tower is a prominent example
of Gothic Revival architecture and is part of the Palace of Westminster.
The clock face is visible in the center of the tower, displaying the time.
The clock is encased in a decorative frame with intricate designs, and
the hands of the clock are clearly visible. The tower is topped with a
spire and a weathervane, which adds to its historical and architectural
significance. The sky in the background is clear, providing a sharp contrast
to the detailed stonework of the tower.
CoCI: The image depicts the iconic clock tower known as Big Ben, located
in London, England. The tower is part of the Palace of Westminster and is
one of the most recognizable landmarks in the world.

Figure 4: Comparison of baseline and CoCI captions. The left CoCI caption mentions the two visible clock faces.
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Baseline: The image depicts a person engaged in windsurfing, a water
sport that combines elements of surfing and sailing. The individual is
standing on a windsurfing board, which is partially submerged in the water.
... The individual appears to be in a standing position, holding onto the sail
with both hands, indicating that they are actively maneuvering the board.
CoCI: The image depicts a person engaging in the water sport of windsurf-
ing near a beach. The individual is wearing a black wetsuit and appears to
be holding onto the sail of the windsurfing board ... The person appears to
be standing in shallow water, with their upper body and arms visible above
the waterline.

Baseline: The image depicts a person engaged in windsurfing, an activity
that combines elements of surfing and sailing. The windsurfer is standing
on a surfboard, which is partially submerged in the water ... The individ-
ual’s posture suggests they are actively maneuvering the sail, likely using
their body weight and the wind to control the direction and speed of the
board.
CoCI: The image depicts a windsurfer riding a wave in the ocean. The
windsurfer is captured from the side, showing their body leaning back as
they navigate the wave ... The windsurfer is wearing dark clothing and
appears to be in motion, with the water splashing around their feet as they
ride the wave. ...

Figure 5: Comparison of baseline and CoCI captions. The CoCI captions describe the state of the windsurfer:
standing in the shallow water vs. riding the wave.
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