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Abstract

Retrieval-augmented generation (RAG) is a
powerful paradigm for leveraging external data
to enhance the capabilities of large language
models (LLMs). However, most existing RAG
solutions are tailored for single-modality or lim-
ited multimodal scenarios, restricting their ap-
plicability in real-world contexts where diverse
data sources—including text, tables, images,
and videos—must be integrated seamlessly. In
this work, we propose a unified Multimodal
Retrieval-augmented generation (mRAG) sys-
tem designed to unify information processing
across all four modalities. Our pipeline in-
gests and indexes data from PDFs and videos
using tools like Amazon Textract, Transcribe,
Langfuse, and multimodal LLMs (e.g., Claude
3.5 Sonnet) for structured extraction and se-
mantic enrichment. The dataset includes text
queries, table lookups, image-based questions,
and videos. Evaluation with the Deepeval
framework shows improved retrieval accuracy
and response quality, especially for structured
text and tables. While performance on image
and video queries is lower, the multimodal in-
tegration framework remains robust, underscor-
ing the value of unified pipelines for diverse
data.

1 Introduction

The exponentially growing volume of digital con-
tent in various forms, including text, tables, images,
and videos, has created new challenges. Traditional
information retrieval systems typically focus on a
single modality, such as text or images, limiting
their ability to process complex queries that require
insight from multi-modal data sources. However,
real-world applications, such as enterprise data an-
alytics, troubleshooting equipment through video
manuals, or processing product specifications, need
a framework to manage various data types.
Retrieval-augmented generation (RAG) systems
have emerged as a powerful paradigm combining
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retrieval mechanisms with generative models to en-
hance information access and synthesis. However,
conventional RAG frameworks were not designed
initially to handle multimodal data, restricting their
utility in environments where diverse data forms
must be unified and processed seamlessly. This
limitation underscores the need for an evolved ap-
proach that extends the capabilities of RAG sys-
tems to accommodate and integrate multiple modal-
ities effectively.

This paper presents an mRAG system that uni-
fies information across text, tables, images, and
videos. Using tools like AWS, LangChain, and
multimodal LLMs, it provides a robust pipeline for
data ingestion, retrieval, and response generation.

2 Background and Related Work

The landscape of information retrieval has evolved
significantly with the advent of large-scale digital
data across diverse modalities. Traditional informa-
tion retrieval systems focus mainly on single modal-
ities, such as text-based search engines (Amati and
Van Rijsbergen, 2002; Karpukhin et al., 2020; Khat-
tab and Zaharia, 2020) or image retrieval systems
(Lin et al., 2015; Chen et al., 2023), each optimized
for their specific data type.

Multimodal information retrieval (MMIR) aims
to bridge the gap between different data types, facil-
itating comprehensive searches that span text, im-
ages, videos, and other formats (Baltrusaitis et al.,
2019). Researchers have successfully applied deep
learning techniques for multimodal information re-
trieval (Hu et al., 2019).

RAG systems represent a paradigm shift in com-
bining retrieval mechanisms with generative mod-
els. Introduced by Lewis et al. (2020), RAG lever-
ages LLMs to generate contextually relevant re-
sponses by retrieving pertinent information from
extensive external knowledge bases. RAG research
has rapidly expanded, tackling efficiency bottle-
necks (Borgeaud et al., 2021), memory constraints
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(Qian et al., 2024), and self-reflection strategies
(Asai et al., 2023).

Recent advances in RAG have begun integrating
multiple modalities to enhance retrieval and gener-
ation, as seen in MuRAG (Chen et al., 2022). How-
ever, most work remains limited to small, domain-
specific datasets (e.g., healthcare) and only two
modalities (Xia et al., 2024).

Key challenges remain in the development of
multimodal RAG systems. Most existing ap-
proaches lack unified frameworks capable of rea-
soning across more than two modalities, such as
text, tables, images, and videos. Scalability is also
limited, as adding new modalities often requires
separate training pipelines (Chen et al., 2022). Fur-
thermore, current evaluation benchmarks primarily
focus on single- or dual-modality tasks, making it
difficult to assess systems designed for more com-
plex, fully multimodal scenarios (Chen et al., 2024;
Es et al., 2024; Krishna et al., 2024).

This work addresses these gaps by proposing
a unified framework for building and evaluating
multimodal RAG systems.

3 Methodology

3.1 Dataset Description

We test system capabilities by using 36 publicly
available Dell server documents, including speci-
fications, service manuals, and installation guides.
These documents cover a range of modalities, in-
cluding plain text, complex tables, and images, en-
suring diverse data for testing.

Additionally, the dataset contains 82 video man-
uals of the servers, including one more modality.
The dataset was selected to provide all the required
modalities of varying complexities, reflecting real-
world challenges in the technical documentation'.

3.2 System Architecture

Information retrieval is structured into three pri-
mary layers: Data Processing, Embedding and In-
dexing, and Retrieval Engine. All operate within
a cloud environment provided by Amazon Web
Services (AWS) 2. The generative module is built
on the information retrieval component to support
multimodal RAG scenarios.

The architecture of the main AWS components
is represented in Figure 1.

"PDFs and videos can be shared upon request.
2https://aws.amazon.com/

The following sections of this research describe
the detailed architecture of the retrieval and gener-
ation engines and the guardrails.
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Figure 1: Main Services for Information Retrieval

3.3 Information Retriever

In this part, we explain how we create information
retrievers. These pipelines are designed to prepare
data for retrieval from various sources such as PDFs
and videos.

3.3.1 PDF-based retriever

The PDF-based retriever processes PDFs to extract
and index textual, tabular, and image data for ef-
ficient search. It is built on the AWS stack for
scalability and performance, as illustrated in Fig-
ure 2.

Figure 2: Pipeline for PDF-based Information Retrieval
Pipeline Overview:

1. PDF Processing: Amazon Textract? extracts
text, tables, and images from PDFs.

2. Text Splitting: LangChain* split the text into
contextually relevant chunks.

3. Table Processing: Claude 3.5 Sonnet(Team,
2024a,b) LLM generates semantic summaries
for table data.

4. Image Processing: Claude 3.5 Sonnet LL.M
creates descriptive image metadata.

3ht’cps: //docs.aws.amazon.com/textract/latest/
dg

4https: //python.langchain.com/v@.1/docs/
modules/data_connection/document_transformers/
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5. Embedding and Indexing: Text and im-
ages are embedded using Amazon Titan Text
Embeddings V2° and Amazon Titan Multi-
modal Embeddings G1 models® and indexed
in Amazon OpenSearch’.

Metadata Tracking: TinyDB? stores parent-
child relationships between data chunks.

3.3.2 Video-based retriever

The video-based retriever extracts and indexes
keyframe and textual data from videos using the
AWS stack. The pipeline process is illustrated in
Figure 3.

Figure 3: Pipeline for Video-based Information Re-
trieval

Pipeline Overview:

1. Transcription: Uses Amazon Transcribe to
transcribe videos.

Keyframe Extraction: A custom pipeline
based on OpenCV® extracts keyframes by de-
tecting scene changes and analyzing content
using entropy (> 4.5), edge ratio (> 0.02),
contrast variation (> 600), and pixel changes
(> 5%). Perceptual hashing prevents redun-
dancy, ensuring keyframes differ with a simi-
larity threshold of 0.95.

Context: Matches keyframes with transcripts
(£10-30s window).

Description: Claude 3.5 Sonnet generates
enriched descriptions of keyframes, incorpo-
rating the visual details and corresponding
transcript context.

Indexing: Embeds content via Amazon Ti-
tan Multimodal Embeddings G1 model and
stores in Amazon Open-Search.

Shttps://docs.aws.amazon.com/bedrock/latest/
userguide/titan-embedding-models.html
6https://docs.aws.amazon.com/bedrock/latest/
userguide/titan-multiemb-models.html
7https://aws.amazon.com/opensearch—service/
8https://tinydb.readthedocs.io/en/latest/
’https://opencv.org/
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3.4 Multimodal Retrieval Augmented

Generation

This section outlines the mRAG system’s core com-
ponents for answering user queries using file data.

1. User Input Processing: Queries are analyzed
by Claude 3.5 Sonnet by checking the conver-
sation history and the new user query. It then
has two options: rephrase the query based on
the context for continuity, or return the origi-
nal message if the new query is unrelated to
previous discussions.

Independent Retrieval: Relevant text, tables,
and images are retrieved from AWS Open-
Search using a unified parent-child chunking
strategy: smaller embedding-based chunks for
search, with associated larger parent chunks
provided to the model. Video modalities use
only embedding retrieval. The top 10 textual
results and the top 5 for other modalities are
selected.

. Answer Generation: Retrieved data and the
user query are structured for Claude 3.5 Son-
net to generate responses.

. Citation and Traceability: To ensure trans-
parency, sources are cited with links to docu-
ment pages or video timestamps.

3.5 Monitoring, Guardrail, and Feedback
Loop

The system integrates monitoring, guardrails, and
feedback to ensure ethical compliance. User inter-
actions are tracked using LangFuse!?, with per-
sonally identifiable information (PII) anonymized
by Amazon Comprehend!'. Amazon Bedrock
Guardrails'? enforce safeguards to prevent harm-
ful content and ensure Al safety (Chua et al., 2024).
User feedback is analyzed based on the provided
category, such as good, inconsistent, irrelevant, in-
complete, confusing, or other. This feedback is
processed with Claude 3.5 Sonnet to identify po-
tential issues, and bugs are logged for resolution,
enabling continuous system improvement.

lOhttps://1ang1"”use.com/
"https://aws.amazon.com/comprehend/
2https://aws.amazon.com/bedrock/guardrails/
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. Correct Contextual Contextual Contextual Must LLM as Answer . L
Modality | Method Sources Precision Recall Relevancy Mention | Evaluator | Relevancy Faithfulness | Hallucination
All Base 0.652 0.349 0.653 0.655 0.283 0.708 0.946 0.677 0.356
All Opt 0.644 0.336 0.690 0.702 0.290 0.717 0.951 0.668 0.314
Text Base 0.828 0.493 0.846 0.846 0.068 0.812 0.964 0.672 0.233
Text Opt 0.830 0.491 0.860 0.846 0.058 0.809 0.968 0.636 0.202
Table Base 0.970 0.292 0.849 0.818 0.702 0.752 1.000 0.617 0.273
Table Opt 0.939 0.195 0.849 0.879 0.742 0.782 0.995 0.591 0.364
Image Base 0.694 0.332 0.537 0.536 N/A 0.593 1.000 0.718 0.630
Image Opt 0.685 0.313 0.573 0.628 N/A 0.650 0.994 0.662 0.537
Video Base 0.293 0.190 0.399 0.417 N/A 0.619 0.876 0.682 0.394
Video Opt 0.281 0.193 0.481 0.496 N/A 0.613 0.891 0.737 0.323

Table 1: Experimental results across different modalities comparing Base and Optimized (Opt) Q&A prompts. Bold
values indicate the best performance for each metric within each modality.

4 [Experiments

4.1 Experiments Setup

We evaluated our system using a dataset of 36 PDF
documents and 82 videos, based on Dell server
specifications and service manuals. Four partic-
ipants were involved in the question creation pro-
cess, with each person generating queries across
all modalities: text, table, image, and video.

The benchmarking set includes 116 questions'
43 for text, 22 for tables, 18 for images, and 33
for videos. We executed the system three times
for each question and averaged the scores to obtain

stable results, ) )
An example question format is:

3.

"query":"How to set up T150 system?”,
"answer"”:"Perform the following steps to set up the system:
1. Unpack the system.
2. Connect the peripherals.
3. Power on the system."”,
"sources”:["Dell EMC PowerEdge T150 Installation
and Service Manual.pdf”],
"type":"text"

Langfuse'* was used to track experiments, and
Deepeval'> as core evaluation framework.

4.2 Evaluation Metrics

The evaluation used two sets of metrics: retrieval
and response. Retrieval metrics included the per-
centage of correct sources retrieved, contextual pre-
cision and recall, and the relevancy of retrieved
contexts. Response metrics assessed keyword in-
clusion ("must mention"), LLM as evaluator score
(rated by GPT-40 (OpenAl and et al., 2024)), an-
swer relevancy, faithfulness to sources, and the
presence of hallucinations.

4.3 Experimental Results

We evaluated the system’s performance using two
experimental setups: a baseline prompt (Base) and

PEvaluation dataset and script can be shared upon request.
14https://langfuse.com/
Bhttps://docs.confident-ai.com/
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a manually optimized prompt based on provid-
ing additional limitations (Opt). Table 1 summa-
rizes the results, with the best metric for each cate-
gory/modality highlighted in bold.

Overall, the optimized prompt slightly outper-
formed the baseline in most metrics, particularly
in contextual recall, relevancy, and hallucination
reduction. However, performance varied by modal-
ity. Text and table modalities demonstrated the
highest accuracy and stability, benefiting from the
structured nature of their data. Image and video
modalities showed lower performance, reflecting
the challenges of interpreting and retrieving un-
structured visual content.

Notably, video retrieval had the lowest scores
in correct sources and contextual metrics, indicat-
ing room for improvement in handling video data.
Despite this, optimized prompts improved perfor-
mance metrics for both image and video modalities.

5 Conclusion and Future Work

This work presents a methodology for building an
mRAG system, focusing on pipelines for extract-
ing and indexing text, tables, images, and videos.
Experimental results show improved contextual rel-
evancy, LLM evaluation scores, and reduced hallu-
cinations, while performance variations highlight
challenges with unstructured data.

Future work will focus on enhancing mRAG
with improved LLM capabilities, fine-tuning em-
beddings for better domain understanding, incorpo-
rating user feedback, and adding visual modalities
for input.

6 Ethical Consideration

This study builds an mRAG system processing
text, images, tables, and videos, ensuring data pri-
vacy and security. It uses only open-source PDFs,
anonymizes all requests and feedback, and uses
feedback solely to improve system performance.


https://langfuse.com/
https://docs.confident-ai.com/

We used ChatGPT'® and Grammarly'” to help re-
fine the writing of this work, ensuring the language
is straightforward.
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