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Abstract
Recent advances in retrieval-augmented gen-
erative image captioning (RAG-IC) have sig-
nificantly improved caption quality by incor-
porating external knowledge and similar exam-
ples into language model-driven caption gener-
ators. However, these methods still encounter
challenges when applied to real-world scenar-
ios. First, many existing approaches rely on
bimodal retrieval datastores that require large
amounts of labeled data and substantial man-
ual effort to construct, making them costly and
time-consuming. Moreover, they simply re-
trieve the nearest samples to the input query
from datastores, which leads to high redun-
dancy in the retrieved content and subsequently
degrades the quality of the generated captions.

In this paper, we introduce a novel RAG-
IC approach named Cross-modal Diversity-
promoting Retrieval technique (CODIRET),
which integrates a text-only unimodal retrieval
module with our unique cluster-based retrieval
mechanism. This proposal simultaneously en-
hances the scalability of the datastore, pro-
motes diversity in retrieved content, and im-
proves robustness against out-of-domain inputs,
which eventually facilitates real-world applica-
tions. Experimental results demonstrate that
our method, despite being exclusively trained
on the COCO benchmark dataset, achieves
competitive performance on the in-domain
benchmark and generalizes robustly across dif-
ferent domains without additional training.

1 Introduction

Retrieval-augmented generative image captioning
(RAG-IC) combines information retrieval with lan-
guage model-based caption generation (Mallen
et al., 2023; Cornia et al., 2020; Zhou et al., 2020;
Shi et al., 2021) to leverage external knowledge or
contextually relevant information to the input im-
age and produce more accurate and informative im-
age descriptions. This technology mitigates overde-
pendence on the internal knowledge encoded in

➢ a woman in black dress looking 
at cellphone on sidewalk

➢ two people on a city street 
with a cell phone

➢ a man looks at his phone as a 
woman stands nearby

➢ a man talking on a cellphone 
on the sidewalk

Retrieved captions

✓ a homeless man holding a 
cup and standing next to a 
shopping cart on a street

✓ People are walking on the 
street by a homeless person.

Ground truth

Figure 1: An example from MS COCO (Lin et al., 2014)
of retrieved content containing redundant and semanti-
cally irrelevant terms with respect to the query image.
We highlight the topic-deviant words in different colors
from the correct keywords for clarity of presentation.

language models and instead incorporates external
real-world data, thereby enhancing the semantic
alignment between the generated captions and the
visual content of the input images.

Although remarkable successes have been
achieved in image captioning with the aid of re-
trieval techniques, several issues still hinder its
application in real world scenarios. First, many
existing RAG-IC approaches primarily perform uni-
modal retrieval (Sarto et al., 2022; Radford et al.,
2021; Zhou and Long, 2023; Wu et al., 2024),
where image-text pairs are selected based on the
visual similarity between the retrieved and input
images to augment contextual information. How-
ever, constructing such retrieval datastores requires
a finely annotated corpus of image-text pairs, which
is costly and labor-intensive, thereby limiting the
scalability and adaptability of these methods in
practical applications.

Secondly, traditional approaches typically rely
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on nearest-neighbor search to retrieve datastore
contents based on the proximity of embedding rep-
resentations extracted by pre-trained models (Khan-
delwal et al., 2021; Lewis et al., 2020). Therefore,
as shown in Fig. 1, the retrieved texts tend to be
highly repetitive and lack semantic diversity (Li
et al., 2024b; Hoang et al., 2022), which in turn
leads captioning models to overproduce these high-
frequency words. In addition, such retrieval strate-
gies are prone to retrieving irrelevant samples when
the input falls outside the domain of the pre-trained
model, which limits generalizability of the caption-
ing system across domains.

To address the aforementioned limitations, we in-
troduce a novel cross-modal retrieval approach that
leverages a text-only datastore constructed without
manual image-text annotations, thereby improving
the scalability of the method. Furthermore, our
proposed cluster-based retrieval strategy selects in-
stances based on clustering in the embedding space,
which not only improves the informativeness but
also reduces semantic redundancy in the retrieved
content. Specifically, we finetune the embedding
function (encoder) by jointly incorporating a triplet
contrastive loss and a nuclear norm regularization
into the training objective to simultaneously rein-
force alignment across modalities and capture the
clustering structure of retrieved content in the em-
bedding space (Nie et al., 2017; You et al., 2021).

We highlight our contributions as follows:

• We propose a novel RAG-IC framework that
integrates cluster-wise selection with cross-
modal retrieval. Our approach does not re-
quire an image-text paired datastore, thereby
increasing the diversity of retrieved content
and the robustness to out-of-domain inputs,
which is critical for real-world applications.

• We introduce a specialized training paradigm
that simultaneously addresses the gap between
different modalities and encourages cluster
formation among the embedding features of
datastore samples by combining triplet con-
trastive loss and nuclear norm-based cluster-
ing regularization.

• Our analysis shows that CODIRET reduces
retrieval redundancy and outperforms existing
competitors in captioning quality, particularly
in cross-domain inference settings, highlight-
ing the effectiveness and robustness of our
methodology.

2 Related Work

Robust retrieval-augmented generation.
Retrieval-Augmented Generation (RAG) enhances
text generation by incorporating externally
retrieved knowledge as additional input (Lewis
et al., 2020). Despite its success, particularly in
natural language processing (NLP) (Mialon et al.,
2023; Yasunaga et al., 2023), it has an overreliance
on repetitive information in the retrieved content,
which degrades the robustness to out-of-domain
data and noisy inputs (Li et al., 2024b). To over-
come the issue of practicality and generalizability
in real-world applications, recent research focuses
on strengthening RAG models to mitigate unstable
retrievals and hallucination. One popular strategy
is to dynamically adjust the training process in
response to noisy retrievals (Zheng et al., 2021)
with adversarial training (Fang et al., 2024) and
relevance-aware evaluation of a given query (Yu
et al., 2024) to facilitate the model to recognize
and cope with various forms of retrievals. Another
direction focuses on employing learnable filters or
discriminators to effectively identify and eliminate
redundant and misleading information (Zhu
et al., 2024; Hong et al., 2024; Wu et al., 2024;
Yoran et al., 2024). Additionally, methods such
as random shuffling of retrieved content during
training have been shown to boost the model’s
tolerance to domain mismatches and reduce
overfitting to high-frequency patterns (Hoang et al.,
2022; Li et al., 2024b; Hao et al., 2023).

Retrieval-augmented generative image caption-
ing. Image captioning is the task of automati-
cally generating descriptive textual captions for
images (Herdade et al., 2019; Xu et al., 2015),
combining techniques from computer vision and
NLP. Recently, RAG-integrated image captioning
has garnered increasing interest due to its promi-
nent ability to improve accuracy, diversity, and
factual consistency. Sarto et al. (2022); Ramos
et al. (2023a); Sarto et al. (2024); Li et al. (2024a)
propose to retrieve captions associated with visu-
ally similar images and develop encoder-decoder
models that attend to both image features and re-
trieved caption embeddings. Rather than encoding
images directly, Ramos et al. (2023b); Yang et al.
(2023) enable “image-blind” decoding by utiliz-
ing only retrieved captions, allowing the model to
focus on text-based reasoning without relying on
direct visual understanding, which proves benefi-
cial in zero-shot scenarios. Ramos et al. (2023c);
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Algorithm 1 Traditional RAG-IC
Input: I // query image

k // number of samples to retrieve
D = {(vi, ti)}Ni=1 // external datastore

containing image-captiong pairs
Output: C = {ci}Ti=1 // output caption

1: /* extract features of the query image */
2: vq ← fv(I)
3: /* retrieve k image features from {vi}

based on similarity to vq

ri: indices of the retrieved samples */
4: {vri}ki=1 ← Rtrk(vq; {vi})
5: /* generate a caption for I

using {tri} corresponding to {vri} */
6: C← fLLM(vq, {tri}ki=1)

Zeng et al. (2024) successfully implement retrieval
over a unimodal textual datastore and adopt a
lightweight architecture that integrates pre-trained
CLIP (Radford et al., 2021) and GPT-2 (Radford
et al., 2019) through retrieval-based prompting. We
adopt SmallCap (Ramos et al., 2023c) as the base-
line for training and evaluating our proposal due to
its minimal trainable parameters for fine-tuning.

3 Methodology

Fig. 2 presents the overall architecture of our pro-
posed CODIRET framework, which is built upon
two primary strategies: a cross-modal alignment
strategy and a cluster-based retrieval strategy.
Hereafter, we will present formal notations of
variables and task definitions related to RAG-IC
in Sec.3.1, and introduce each component subse-
quently in detail.

3.1 Preliminaries

Let I ∈ RH×W×C be an input image, where H ,
W , and C denote the height, width, and num-
ber of channels, respectively. As described in
Alg.1, RAG-IC involves the following steps: 1) em-
ploying a pre-trained visual encoder, fv, such as
ViT (Dosovitskiy et al., 2021) or CLIP (Radford
et al., 2021), to extract patch representations X
from I; 2) leveraging retriever Rtrk to collect k
semantically relevant instances R from an external
database D by conducting feature-based nearest
neighbor search between the query image and D;
and 3) utilizing a pre-trained large language model
(LLM) as a decoder to generate a caption sequence
C autoregressively by integrating the extracted vi-

Algorithm 2 Our cross-modal RAG-IC
Input: I, k, D = {ti}Ni=1

l // number of clusters
Output: C

1: /* cluster {ti} by CODIRET

ci: indices of the clusters */
2: {gci}li=1 ← Clul({ti})
3: /* extract features of the query image */
4: vq ← fv(I)
5: /* retrieve k cluster centroids from {gci} */
6: {gri}ki=1 ← Rtrk(vq; {gci})
7: /* randomly select one text from each {gri} */
8: {tri} ← RndSmpk({gri})
9: /* generate a caption for I using {tri} */

10: C← fLLM(vq, {tri}ki=1)

sual embedding of I along with the retrieved textual
knowledge R.

3.2 Cross-modal aligner

Given an image I organized in a 2-dimensional
format as input, traditional RAG-IC approaches,
as shown in Alg.1, rely on an external datastore
consisting of image-caption pairs {(vi, ti)}Ni=1 to
retrieve similar images. In contrast, we exclusively
construct the datastore from textual information in
the target modality, denoted as D = {ti}Ni=1, and
retrieve captions based on the distance between fea-
tures of the query image and the datastore captions
by leveraging a shared multimodal representative
space (Alg.2). This design facilitates efficient do-
main adaptation and scalability, as the datastore
can be easily modified by replacing the textual cor-
pus with off-the-shelf domain-specific data without
requiring large-scale manually annotated datasets.

Triplet contrastive learning Although CLIP
(Radford et al., 2021) aligns image and text rep-
resentations in a shared multimodal embedding
space by training a vision-language model in a con-
trastive learning manner, Mistretta et al. (2025)
reveal a remaining modality gap between image
and text representations, which causes inaccurate
retrieval in the text modality. Specifically, even
when captions describe different images, some sen-
tences tend to cluster together in the 2-dimensional
projection space, while, conversely, an image and
its corresponding caption may be mapped far apart.

To solve this problem, we propose a triplet-based
cross-modal alignment constraint aimed at mini-
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<caption 1>

<caption 2>

<caption 3>

. . .

<caption n>

𝑪𝑳𝑰𝑷𝒗𝒊𝒔𝒊𝒐𝒏
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positive

negative
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Images
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Sentence representative

matrix

image 1

image 1

image n

image 1

image 1

image 1

Training of (a)

𝑪𝑳𝑰𝑷𝒗𝒊𝒔𝒊𝒐𝒏 𝑮𝑷𝑻− 𝟐

(b) Text-only datastore

…

cluster 1

cluster 2

cluster 3

cluster 4

sentence 1

sentence 2

sentence 3

sentence 4

𝐂𝒓𝒐𝒔𝒔 − 𝑨𝒕𝒕𝒆𝒏
𝑳𝒂𝒚𝒆𝒓

(a) Cross-modal cluster-

based retriever

Several bagels 

are layed out on 

a cutting board.

(c) Image caption

generator

Figure 2: Model overview. CODIRET comprises three chief components: (a) a cross-modal cluster-based retriever,
(b) a text-only datastore, and (c) an image caption generator. Component (a) is trained using contrastive learning
and nuclear norm regularization to mitigate misalignment between images and texts, while also clustering texts
within the datastore. Subsequently, we utilize (a) to directly retrieve relevant text clusters from (b) based on the
input image and randomly select one text from each cluster as supplementary input for (c).

mizing the modality gap and ensuring semantically
relevant retrieval in a shared latent space, which is
achieved by leveraging contrastive learning with a
triplet loss formulation. Formally, for each partic-
ular image-caption example, the image serves as
the pivot data point i∗, while one of its associated
captions is randomly sampled as the positive exam-
ple c+. A caption from a different image is then
randomly chosen as the negative example c−. Sub-
sequently, both the image and text are encoded into
a shared embedding space using the CLIP model,
as described below:

e∗ = fvision
clip (i∗) ∈ Rd, (1)

e+ = f text
clip (c

+) ∈ Rd, e− = f text
clip (c

−) ∈ Rd,

(2)

where d refers to the dimension of the CLIP em-
bedding space.

We then conduct triplet noise-contrastive esti-
mation (Gutmann and Hyvärinen, 2010) with a
ranking loss to minimize the l2 distance between
the pivot and positive examples, while maximizing

the distance between the pivot and negative ones:

Ltriplet = max(0, ∥e∗−e+∥2−∥e∗−e−∥2). (3)

By optimizing this objective, the model learns to
group semantically similar image-text pairs while
pushing apart unrelated ones, thereby ensuring that
the retrieved text better matches the input image.

3.3 Cluster-based retriever

A simple ranking and selection of the top-k near-
est neighbors based on similarity scores has long
been dominant in the RAG field. However, this
method often overlooks the underlying structure
of the datastore, leading to captioning models re-
ceiving highly resembled information and repeated
terms. As a result, the model is prone to copy-
ing these redundant words, regardless of their rel-
evance (Hoang et al., 2022; Li et al., 2024b) and
is then easily contaminated by noise. To equip
models with diverse and informative supplemen-
tary data, we propose a cluster-based retriever that
chooses texts from the nearest “clusters” detected
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through a clustering operation beforehand, as illus-
trated in Alg.2. This approach reduces the occur-
rence of repeated words in the retrieved content
and increases the possibility of including relevant
words when processing out-of-domain images, by
selecting from distant clusters.

Nuclear norm regularization Detecting cluster-
ing structures inD by directly applying K-means to
the sentence representation matrix, Ht, can effec-
tively reduce redundancy when retrieving captions.
However, K-means is sensitive to initialization and
outliers, which often leads to unstable results (Ding
and Li, 2007). Additionally, the clustering perfor-
mance is suboptimal due to the independent na-
ture of triplet contrastive representation learning
(Eq. (3)) and sentence clustering. Nie et al. (2017)
pave the way for better capture of the clustering
structure of Ht by transforming the clustering task
into a matrix-rank problem. The theoretical basis
behind the clustering structure learning comes from
the following theorem:

Theorem 1 (Chung and Graham, 1997) The
multiplicity of eigenvalue 0 of the normalized
Laplacian matrix of Ht is equal to the number of
clusters in Ht.

Haeffele and Vidal (2020); Piao et al. (2019)
propose the nuclear norm and prove that the con-
straint on the Laplace matrix of Ht is mathemati-
cally equal to the constraint on sentence represen-
tation matrix Ht as

Lcluster =

l∑

i=1

λHt
i , (4)

where λHt
i represents the i-th smallest eigenvalue

of Ht (Piao et al., 2019). By suppressing ∥Hr∥l∗
to 0, l clusters (determined by elbow method
(Bholowalia and Kumar, 2014)) in Hr can be ob-
tained by reorganizing its columns or rows and con-
verting it into a block-diagonal form with l blocks,
as shown in Fig. 2. To incorporate this clustering
into our training process, we define the training
objective as:

Lcluster = ∥Hr∥l∗. (5)

3.4 Joint learning
We adopt a joint learning framework that optimizes
both cross-modal alignment and modality-specific
structure preservation. The overall objective is for-
mulated as follows:

L = Ltriplet + λLcluster, (6)

DATASET
Train Validation Test

MS COCO MS COCO MS COCO NoCaps

IMAGES 113,287 5,000 5,000 4,500
CAPTIONS 566,747 25,010 25,010 45,000
Avg. Caps. 5 5 5 10
DOMAIN in out

Table 1: Basic dataset statistics. Avg. Caps. refers to
average captions for each image.

where λ is a balancing coefficient that regulates the
trade-off between enforcing cross-modal alignment
and maintaining intra-modality cluster structures.

With the cluster structure of the text representa-
tion, we compute the centroid of each cluster by
simply averaging the representations of sentences
within the cluster. We then retrieve the top-k most
relevant centroids and randomly sample one sen-
tence from each retrieved cluster for the training of
our captioning model, as shown in Alg. 2. Random
sampling is adopted here to promote diversity and
prevent the model from overfitting to highly proto-
typical or redundant sentences that may dominate
each cluster.

4 Experiments

4.1 Datasets and Evaluation Metric

We carried out our experiments on the MS COCO
Caption (Lin et al., 2014) and NoCaps (Agrawal
et al., 2019) datasets to assess our approach’s accu-
racy on in-domain data and its robustness to out-of-
domain inputs, respectively. MS COCO Caption
is a widely used benchmark that contains diverse
image-caption pairs, while NoCaps focuses on
novel object descriptions not present in the COCO
training set, making it suitable for evaluating gen-
eralization to unseen concepts. The statistics of the
datasets are summarized in Table 1.

For evaluation, we employ four standard auto-
matic metrics: BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015), and SPICE (Anderson et al.,
2016), which measure various aspects of caption
quality, including n-gram overlap, semantic rele-
vance, and compositionality.

4.2 Implementation Details

Our CODIRET retriever is first initialized using
CLIP-ViT-B/32 (Radford et al., 2019) as both the
image and text encoder and finetuned by triplet
clustering learning outlined in Sec. 3.4 with LoRA
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Metrics BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr SPICE

SmallCap 76.5 60.2 44.3 31.7 23.1 74.4 13.4
CODIRET 77.8 61.2 45.6 32.9 24.2 76.3 14.2
- w/o TPL 75.4 58.9 43.0 31.1 22.7 72.4 12.7

Table 2: Robustness evaluation on the test set of NoCaps while the models are still trained on MS COCO. Best
results among the generated captions are marked in bold.

(Low-Rank Adaptation) (Hu et al., 2022) to reduce
computational cost and improve training efficiency.
The scaling factor in Eq. (6) is set to λ = 0.2, as
we found it yields the best empirical performance.
As for the main image captioning model, we follow
the SmallCap (Ramos et al., 2023c) setup, using
CLIP-ViT-B/32 as the encoder and GPT-2 (Radford
et al., 2019) as the decoder, with the parameters of
both fixed, connected by a 12-head trainable cross-
attention layer between the vision and language
modalities to facilitate information fusion. Both the
retrieval model and the main captioning model are
trained exclusively on the MS COCO dataset using
the standard Karpathy splits (Karpathy and Fei-Fei,
2015). The training procedures follow a batch size
of 64, optimized with AdamW (Loshchilov and
Hutter, 2019) and a learning rate of 1e− 4, using
mixed-precision training with 16-bit floating-point
precision (FP16). The training process runs for 5
epochs on CODIRET and another 10 epochs on
the captioning model on a single NVIDIA A100
GPU with 16GB of the available memory, taking
approximately 13 hours to converge. During train-
ing, we retrieve k = 4 textual prompts per image
by first identifying the top-k most similar clusters
to the query image. The centroids of clusters and
the query image embeddings are computed in the
high-dimensional space by our CODIRET. A sin-
gle sentence is randomly sampled from each cluster
and incorporated as a prompt for training. We em-
ploy the product quantizer with an inverted file
system based on Faiss (Johnson et al., 2021) for ef-
ficient datastore quantization and nearest-neighbor
search. Captions are decoded by beam search with
a beam size of 3 at inference.

4.3 Baselines

The following excellent baselines are used for
comparison to demonstrate the effectiveness
of CODIRET: non-RAG lightweight training
method, including ClipCap (Mokady et al., 2021);
Img.→Img. retrieval methods using image-text

datastores such as EXTRA (Ramos et al., 2023a)
and Re-ViLM (Yang et al., 2023); and Img.→Txt.
retrieval method using text-only datastores like
SmallCap (Ramos et al., 2023c). All methods
are finetuned on the same training dataset as our
method for a fair comparison.

5 Results and Discussion

5.1 Out-of-domain Robustness
To assess the robustness of our model under do-
main shift, we evaluate both CODIRET and our
baseline on NoCaps where the test set contains
out-of-domain objects not present in the training
distribution. From Table 2, we can observe that our
model consistently outperforms the baseline Small-
Cap in terms of all metrics. The superior perfor-
mance of our model in out-of-domain settings can
be attributed to its ability to navigate the retrieval
uncertainty and adapt to novel objects, which is a
key limitation in conventional RAG-IC approaches.

The model’s strong generalization ability indi-
cates that it is less prone to overfitting. During
training, it is provided with retrieval information
from a broader range, which likely includes a small
amount of noise. This prevents the model from sim-
ply copying or memorizing the content retrieved.
Instead, it learns to flexibly apply the retrieved
textual information in conjunction with the input
visual data to generate accurate and fluent captions.
In contrast, traditional kNN-based retrieval meth-
ods return captions associated with images that
are similar to the query image, often resulting in
a large amount of redundant information and re-
peated words. This redundancy causes the model to
overfit specific patterns in the training data, thereby
reducing its generalization ability on new data.

5.2 In-domain Performance
Table 3 lists the results for the non-RAG method
at the top, with the ones with uni-modal retrieval
in the middle, and cross-modal retrieval methods
at the bottom. We can observe that when tested
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Metrics |θ| BLEU-4 METEOR CIDEr SPICE

ClipCap 43 33.5 27.5 113.1 21.1

EXTRA 45 37.5 28.5 120.9 21.7
Re-ViLM 158 37.8 - 129.1 -

SmallCap 7 37.0 27.9 119.7 21.3
CODIRET 7.1 36.9 27.9 119.5 21.0
- w/o TPL 7.1 34.9 26.8 117.6 20.5

Table 3: Results on the Karpathy COCO test split. |θ|
refers to the number of trainable parameters in the model
(in millions).

with in-domain data, CODIRET achieves a compa-
rable performance to all state-of-the-art baselines
in terms of all metrics, even with a small number
of trainable parameters.

We also observed a consistent superiority of
RAG-based models over ClipCap, which under-
scores the importance of external knowledge re-
trieval in image captioning. Without access to exter-
nal descriptions, ClipCap is restricted to visual and
linguistic knowledge already embedded in the pre-
trained LLM and often generates captions based on
visual priors rather than factual correctness, leading
to plausible but inaccurate descriptions.

In addition, we noticed that with the retrieval
performed directly in the image modality, both EX-
TRA and Re-ViLM achieved better performance.
We consider several possible reasons for this phe-
nomenon. First, using the captions from the most
visually similar images to the query image makes
the models highly effective at preserving key visual
details. Furthermore, these methods tend to achieve
higher retrieval accuracy but greater keyword re-
dundancy (as we show in Sec. 5.4) in the retrieved
captions. This, in turn, allows the model to copy
frequently repeated phrases from the retrieved text
(as shown in Fig. 4), reinforcing consistency in
generated captions.

In contrast, CODIRET retrieves captions by di-
rectly searching for the most textually similar ones
with a structured control over redundancy. By se-
lecting a single representative caption per related
text group, our approach promotes diversity in re-
trieved contents. However, since the entities in the
images are limited, this diversity may introduce
noise, which can lead to the model being slightly
misled. Moreover, since the evaluation metrics
used in this experiment, such as BLEU, cannot
assess diversity, our model shows a minor perfor-
mance decrease on in-domain data.

Figure 3: Comparison of proportion of duplicated key
objects of image-to-image retrieval method, nearest
neighbor-based image-to-text retrieval strategy, and our
cluster structure-based CODIRET.

5.3 Ablation Study

We further investigate the contribution of the triplet
contrastive learning module to CODIRET through
an ablation study conducted on each dataset. In
the table, “ - w/o TPL” indicates the removal of
the triplet contrastive learning module, where the
retriever is trained solely with the nuclear norm
constraint. We observe a significant performance
drop of approximately 2 points on both in-domain
and out-of-domain data compared with CODIRET.
This result suggests that triplet contrastive learning
plays a crucial role in bridging the performance
gap between different modalities, as it aligns image
and text features more effectively.

Moreover, while the nuclear norm constraint pri-
marily promotes representation compression and
simplification by reducing the rank of the datastore
sentence matrix, this process may inadvertently
cause the model to overlook the intricate semantic
differences between images and texts. As a con-
sequence, important information encoded in the
joint image-text space may be lost, weakening the
quality of the retrieved captions and impairing the
model’s ability to generate accurate and contextu-
ally appropriate descriptions.

5.4 Duplicated Keywords and Redundancy

To better quantify the redundancy of retrieved con-
tents in different retrieval strategies, we measure
the lexical overlap of key objects across retrieved
captions. Specifically, we select all nouns and
proper nouns as candidate key objects from each
caption using a spaCy-based part-of-speech tag-
ger (Cutting et al., 1992). For each image, we then
compute global object overlap among all retrieved
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➢ an injured man bandaged and 
being treated in a hospital

➢ an injured man lying in a 
hospital bed wrapped in 
bandages

➢ a man laying in a hospital bed 
badly injured

➢ …

➢ a large white bird standing 
next to a large body of water

➢ a big white bird is standing by 
the water

➢ a goose standing near a body 
of water

➢ a bird standing next to a body 
of water

➢ a very spacious kitchen with 
the sun shining in the 
window

➢ a plain looking kitchen with a 
dining table all wood finished

➢ large sized personal kitchen 
with a highly decorated 
fridge

➢ …

black and white photo of 
an injured man

a black and white photo 
of a group of soldiers 
wearing bandages

Top-k

CODIRET

a white bird standing on 
top of a field

a white goose standing on 
top of a lush green field

Top-k

CODIRET

a kitchen with a sink and 
a window

a kitchen with a stainless 
steel sink and white 
cupboards

Top-k

CODIRET

Figure 4: Examples of captions generated for NoCaps out-of-domain samples where the retrieved captions for the
query image can be irrelevant.

captions by calculating the Jaccard similarity be-
tween the union and intersection of extracted object
sets, defined as:

Similarityobject =
|Ointersection|
|Ounion|

, (7)

where Ointersection is the set of objects appearing in
all retrieved captions for a given image, and Ounion
is the set of all unique objects across the same
set. A higher score indicates greater object rep-
etition and thus higher lexical redundancy, while
a lower score reflects increased content diversity.
While simpler alternatives such as stopword re-
moval could be used to filter non-content words, we
adopt noun-based extraction to focus specifically
on concrete entities that are most representative of
the image content. This approach reduces the noise
from abstract or generic terms that may still remain
after stopword removal, and ensures that the result-
ing object sets more accurately reflect the semantic
overlap of key visual concepts across captions.

We report the average object similarity score
across all images in each retrieval setting on the
two datasets separately as a proxy for topic-level
redundancy in Fig. 3. The results demonstrate a
clear trend in redundancy, where image-to-image
retrieval exhibits the highest redundancy, while
cluster-based image-to-text retrieval yields the

most diverse references. We analyze the underly-
ing reasons for these observations as follows. First,
in image-to-image retrieval, since the retrieval is
based purely on visual similarity, the captions tend
to describe nearly identical content, often differing
only in minor details or wording, which leads to
a high degree of content repetition. Image-to-text
retrieval bypasses the intermediate step of retriev-
ing images and instead retrieves the most seman-
tically similar captions directly from the text cor-
pus, which offers greater flexibility by leveraging
multi-modal embeddings to match text descriptions.
However, our proposal introduces an additional
step of clustering the text corpus before retrieval,
ensuring that retrieved references come from dif-
ferent semantic groups. This enforces topic-level
diversity among the retrieved references, as a re-
sult, preventing the model from receiving multiple
variations of the same description.

5.5 Case Study

We demonstrate the quality of captions generated
by CODIRET through a case study. The examples
shown in Fig. 4 are randomly sampled from the
NoCaps dataset. We show captions retrieved from
the datastore, along with comparison between cap-
tions generated by the traditional RAG-IC model
and those produced by our approach.

54



A high-quality caption is typically characterized
by (i) semantic relevance to the image content, (ii)
specificity-inclusion of fine-grained details such as
object attributes, actions, or materials, and (iii) flu-
ency and coherence at the sentence level. Captions
that satisfy these criteria are more informative and
useful in downstream tasks such as image search
or human-computer interaction.

From these examples, we observe that when
certain words appear frequently in the retrieved
content, models trained with standard nearest-
neighbor-assisted information tend to copy those
words verbatim into the generated caption. For in-
stance, in the second example, the word “bird” is
directly copied into the output caption. While such
behavior may produce captions that are broadly
accurate, they often lack specificity and fail to de-
scribe fine-grained visual attributes. In contrast, our
model is better able to aggregate and distill infor-
mative content from the retrieved results, allowing
it to produce more descriptive and contextually en-
riched details. For example, in the third image, the
caption generated by CODIRET correctly includes
the material “stainless steel” when describing the
sink, offering a level of detail absent in the baseline
output. Such specific terms are especially valuable
for distinguishing similar scenes or objects, and
thus contribute to a more effective and high-quality
caption.

6 Conclusion

We addressed several fundamental problems con-
cerning RAG-IC and proposed a joint learning
framework called CODIRET, which trains a re-
triever by leveraging contrastive learning and clus-
tering techniques to enhance cross-modal retrieval.
The proposed model facilitates more semantically
relevant retrieval results by minimizing the modal-
ity gap between image and text representations.
Meanwhile, by incorporating a cluster constraint,
the model effectively reduces redundancy in the re-
trieved content, ensuring better adaptation to out-of-
domain scenarios. Experimental results, including
those of the analysis of retrieved contents, demon-
strated the effectiveness of CODIRET.

Limitations

In this study, we introduced diversity to enhance the
model’s robustness on unseen data, particularly by
expanding the variety of retrieved content to avoid
over-reliance on high-frequency samples. While

this strategy significantly improved the model’s
performance on out-of-domain data, it led to a de-
cline in performance on in-domain data. This phe-
nomenon may be attributed to the increased diver-
sity leading to the retrieval of content that is only
partially relevant to the input image, thus affecting
the accuracy and consistency of the model’s outputs
on known data. While the added diversity enhances
the model’s adaptability to unseen domains, it also
causes a trade-off with its performance in specific
domains. Therefore, balancing diversity with preci-
sion, ensuring strong robustness without compro-
mising performance on in-domain data, remains a
challenge that warrants further investigation. We
consider this trade-off an important area for future
work, aiming to explore how to achieve an optimal
balance between the two.

Currently, most image captioning models rely
on English-centric datasets such as COCO, which
limits their effectiveness in multilingual and mul-
ticultural contexts. These models may struggle
with linguistic and cultural differences, as well as
diverse visual concepts. Future research should fo-
cus on multilingual image captioning datasets that
include data from various languages and cultures,
enabling models to perform better across different
settings and promoting global application of image
captioning technology.
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