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Abstract

Large Language Models (LLMs) are known to
memorize and reproduce parts of their train-
ing data during inference, raising significant
privacy and safety concerns. While this phe-
nomenon has been extensively studied to ex-
plain its contributing factors and countermea-
sures, its implications in multilingual contexts
remain largely unexplored.

In this work, we investigate cross-lingual dif-
ferences in memorization behaviors of multi-
lingual LLMs. Specifically, we examine both
discoverable memorization and susceptibility
to perplexity ratio attacks using Pythia mod-
els of varying sizes, evaluated on two parallel
multilingual datasets.

Our results reveal that lower-resource lan-
guages consistently exhibit higher vulnerability
to perplexity ratio attacks, indicating greater
privacy risks. In contrast, patterns of discov-
erable memorization appear to be influenced
more strongly by the model’s pretraining or
fine-tuning phases than by language resource
level alone. These findings highlight the nu-
anced interplay between language resource
availability and memorization in multilingual
LLMs, providing insights toward developing
safer and more privacy-preserving language
models across diverse linguistic settings.1

1 Introduction

Current transformer-based large language models
(LLMs) have billions of parameters and are trained
on massive datasets (Hartmann et al., 2023). This
scaling has increased the ability of LLMs to process
and mimic fluent human language, as well as to per-
form a wide range of other tasks (Ishihara, 2023;
Wei et al., 2022). Recent advancements have shown
remarkable performance of models in diverse ap-
plications, from machine translation and summa-
rization to question answering and planning (Zhao

1Our code and preprocessed datasets are available at
https://github.com/alistvt/xlm-privacy

et al., 2025; Chang et al., 2024). When trained
on datasets containing multiple languages, LLMs
learn multilingual capabilities and can understand
and generate text in different languages.

Although English continues to dominate the
training data for language models, multilingual
models have also emerged in recent years, driven
by growing global interest in making language
technologies more accessible across different lan-
guages. However, the development of multilin-
gual models presents several challenges (Naveed
et al., 2024): The vast majority of languages
worldwide are underrepresented and mid- and low-
resource languages receive less attention from
the NLP community (Joshi et al., 2020). Lower-
resource languages also constitute a small fraction
of the labeled data available for finetuning popular
LLMs, leading to poorer performance on typical
downstream NLP tasks compared to high-resource
ones (Lai et al., 2023).

It has been shown that prompting ChatGPT2

in a lower-resource language, can circumvent the
model’s safety and security mechanisms, trigger-
ing it to produce responses that would not be pos-
sible in English or other high-resource languages.
This highlights a cross-language vulnerability, most
likely arising from differences in the availability
of training data (Yong et al., 2024). This indicates
that LLM privacy and security need to be studied
in a multilingual context.

Research suggests that LLMs have the potential
to expose training data through memorization (Car-
lini et al., 2021). This undesirable phenomenon
can occur either accidentally or through deliberate
extraction by adversaries (Carlini et al., 2019), who
attempt to recover individual training examples by
querying the model (Carlini et al., 2021; Satvaty
et al., 2025). When the training data, user prompts,
or model responses contain sensitive information
that can be traced back to individuals, either in

2https://chatgpt.com/
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isolation or in combination (Lai et al., 2023; Yan
et al., 2024), it becomes an issue of privacy and
ethical implications (Ishihara, 2023). If the train-
ing dataset is confidential, any exposure through
a training data extraction attack constitutes a pri-
vacy breach, regardless of the nature of the data or
context (Nasr et al., 2023). What we observe here
are models exhibiting privacy vulnerabilities that
can be exploited through adversarial prompting or
data extraction attacks, all of which stem from the
memorization issue (Ishihara, 2023; Carlini et al.,
2023b; Shayegani et al., 2023; Zhang et al., 2023a).

While memorization and the associated privacy
risks in LLMs have been extensively studied, their
comparison in multilingual model scenarios re-
mains unexplored. In light of this, in this work, we
analyze and compare the memorization rates in
multilingual LLMs between lower-resource and
high-resource languages. To this end, we conduct
two different experiments on a set of Pythia mod-
els (Biderman et al., 2023) with different model
sizes. The Pythia models were trained on predom-
inantly English data, but they are capable of gen-
erating other European languages. With ‘lower-
resource’ we refer to medium-sized languages that
the Pythia models were not explicitly trained on.

• Assessing discoverable memorization and
evaluating the perplexity ratio over two dif-
ferent parallel datasets containing texts in En-
glish, Dutch, Slovenian, Polish and Czech.

• Analyzing both these aspects in both the pre-
training and finetuning phases of LLMs.

Our results provide empirical evidence that
lower-resource languages show higher perplexity
ratio values, suggesting that they would be more
susceptible to membership inference attacks (MIA)
based on this method. On the other hand, our
discoverable memorization test shows that lower-
resource language datasets are memorized more if
those are contained in the pretraining dataset, while
they are less memorized if introduced during the
finetuning.

Our experiments and results underline the sig-
nificance of having more balanced datasets when
training a multilingual dataset, otherwise model
owners should be aware of the risks associated with
introducing lower-resource datasets during model
training.

2 Background and related work

2.1 Memorization

Memorization refers to the ability of a model to
recall specific data points or patterns that it has
encountered during the training process (Satvaty
et al., 2025; Carlini et al., 2023a). While Carlini
et al. (2019) first introduced verbatim memoriza-
tion in language models to only include the cases
with exact string match, Ippolito et al. (2023) ob-
served that the LLM outputs could be traced back to
the training data with subtle modifications. More
specifically, they introduced approximate memo-
rization3 for the cases where the generated texts
could be assigned to a training sample if their simi-
larity – measured through a similarity function – is
below a certain threshold. This could be exploited
when the LLM is prompted with trivial changes to
the original prompt, causing it to output memorized,
but not verbatim, content. Given this definition, Ip-
polito et al. (2023) showed that LLMs memorize
their training data several factors more than what
was previously assumed.

Memorization can be studied through discover-
able or extractable methods (Satvaty et al., 2025;
Nasr et al., 2023). Discoverable memorization ac-
counts for the samples that are correctly generated
when the model is prompted with the first part of
those samples. This requires that we have access
to the training data and interact with the model
through prompting, expecting the generation of the
training samples. In the case ofextractable memo-
rization, interaction with the model is performed by
an adversary, without having access to the training
data. Extractable memorization is potentially more
problematic in real-world scenarios, as the training
data is not known to end-users interacting with the
LLMs.

The phenomenon of memorization in LLMs oc-
curs due to repeated instances of near-duplicate ex-
amples and long repetitive sub-strings in the train-
ing corpus (Carlini et al., 2021; Ishihara, 2023),
where the model assigns greater importance to
more frequent instances, making them more likely
to be memorized (Kassem et al., 2023). Apart
from repeated instances of training data, other fac-
tors that influence memorization in LLMs include
the size of the dataset, the complexity of the data,
and the size of the model (Tirumala et al., 2022a;

3Sometimes referred to as "style transfer" due to the way
it is exploited.
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Prashanth et al., 2024; Carlini et al., 2023a; Zhang
et al., 2023a; Lesci et al., 2024).

2.2 Measuring memorization
The most widely adopted approach to measuring
memorization in LLMs is the string match metric,
which quantifies the rate at which training instances
are generated either verbatim or approximately, nor-
malized by the number of trials.

However, the string match metric has certain
limitations. Since LLM outputs are produced via a
stochastic decoding process, the absence of a par-
ticular training sentence in a finite number of gener-
ations does not conclusively indicate that the model
would never produce it. To address this uncertainty,
alternative approaches have been proposed to es-
timate memorization. One such method involves
using the success rate of certain privacy attacks as a
proxy for memorization, under the assumption that
these attacks expose the model’s higher confidence
on the samples observed during the training. For in-
stance, membership inference attacks (MIAs), one
of the most studied inference attacks in machine
learning, attempt to determine whether a specific
data point was part of the training data. A com-
monly used measurement technique in this context
is the perplexity ratio method. Models tend to as-
sign lower perplexity to samples they have seen
during training; thus, by dividing the model’s per-
plexity on a sample before training by its perplexity
after training, one typically obtains a ratio that is
greater for unseen data than for training data. This
ratio can then be used as a threshold-based deci-
sion criterion for inferring membership (Mattern
et al., 2023; Shachor et al., 2024; Shejwalkar et al.,
2021; Jagannatha et al., 2021; Wang et al., 2022).
Formally, perplexity is obtained through the token-
wise average negative likelihood of the model on a
given sample as sequence of tokens:

PPXM (S) = e−
1
N

∑N
i=1 logPM (xi|x1,...,xi−1) (1)

Where N is the count of tokens in the sample
S and xi represents the individual tokens in S =
(x1, ..., xN ) and M represents the model; then the
perplexity ratio is obtained as follows:

PPX-ratio(S) =
PPXuntrained(S)

PPXtrained(S)
(2)

In our work, we look at discoverable approxi-
mate and verbatim memorization, and the suscepti-

bility of LLMs to MIA under the perplexity ratio
method to compare the memorization rates of the
models. This combined analysis enables a more
comprehensive, practical, and multifaceted under-
standing and comparison of memorization between
lower-resource and high-resource languages.

2.3 Lower-resource languages

Today’s NLP research predominantly focuses on
only a fraction of the world’s languages, render-
ing the majority of them understudied (Joshi et al.,
2020). Lower-resource languages are character-
ized by limited available training data, low com-
puterization, low privilege, and limited educational
presence, among other things (Magueresse et al.,
2020). To address the data scarcity inherent in
lower-resource languages, a key trend involves aug-
menting existing high-resource language datasets
and employing transfer learning techniques to mit-
igate their differences by taking advantage of lin-
guistic similarities (Magueresse et al., 2020).

Research has revealed poorer performance and
safety vulnerabilities of LLMs across different lan-
guage categories (Yong et al., 2024; Nigatu and
Raji, 2024; Zhang et al., 2023b). However, cross-
lingual vulnerabilities for training data leakage and
privacy risks still remain unexplored. To the best
of our knowledge, there is no generalization regard-
ing specific memorization and privacy vulnerabil-
ities of multilingual LLMs in different linguistic
contexts (Yong et al., 2024), and existing defense
mechanisms currently do not comply with the real-
ity of the multilingual modern world. Expanding
this investigation across lower- and mid-resource
languages regarding memorization is essential for
a comprehensive understanding of the broader lin-
guistic landscape and the privacy risks associated
with LLMs.

In this work, we analyze memorization in several
lower-resource languages, in contrast to English as
a high-resource language. Specifically, since the
model under study is trained on less than 1% of
data from these languages, we argue that they serve
as reasonable representatives of lower-resource lan-
guages.

3 Analysis methods

To compare the memorization phenomena be-
tween the lower-resource languages and higher-
resource ones, we measure discoverable memo-
rization across languages in both pretraining and
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xi,1 ... xi,p ∀i: i ∈[1,...,n] M'
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memorization
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memorization test

Dataset
x1,...,xn M'

Perplexity scores
p1,...,pn

Perplexity scores
p'1,...,p'n

Perplexity ratios
p1/p'1,..., pn/p'nDivision

Perplexity ratio test

(2) Memorization tests

M
Training on

language-specific
dataset x1, ..., xn

Figure 1: Methodological overview of the training and memorization measurement process: xi denotes the samples
of the dataset of size n and xi,j denotes the sample’s individual tokens. (1) The model M is trained on each
language subset, obtaining M ′, then (2) memorization is measured using two experiments: (above) discoverable
approximate/verbatim memorization is evaluated, (below)each training sample is passed through the trained and
untrained models to obtain their respective perplexity scores. Then, the perplexity ratio of each sample is reported.

Dataset Language Tokens Ratio Step

EMEA

EN 1,295,108 1 32
NL 2,155,528 1.66 53
SL 2,542,529 1.96 62
PL 3,027,591 2.33 74
CS 2,267,772 1.75 56

EuroParl

EN 1,667,939 1 32
NL 2,928,249 1.75 56
SL 3,152,403 1.88 60
PL 3,799,024 2.27 72
CS 3,594,028 2.15 68

Table 1: Statistics of the datasets: tokens column repre-
sents the number of tokens in the training set, according
to the Pythia tokenizer. Ratio represents the division
of the token count of each language to that of the En-
glish language. Step is the equivalent normalized token
count for each language when the English context is
considered 32 tokens.

finetuning scenarios. An overview of our methods
is shown in Figure 1.

Setting the context size Previous research (Car-
lini et al., 2023a) has shown that memorization is
affected by the context given to the LLM. Provid-
ing more context as the prefix helps LLMs better
recall the suffix. The token count of the context
depends on the tokenizer used by the LLM. Since
we are dealing with parallel texts in multiple lan-
guages, the same (parallel) context comprises dif-
ferent amounts of tokens in different languages. As
shown in Table 1, a context size of 32 tokens in En-

glish, on average is equivalent to 53 Dutch tokens.4

When measuring verbatim memorization, provid-
ing 32 tokens for both English and Dutch could
result in lower memorization in the Dutch case due
to lower context provided in Dutch. In order to
remove this effect, we provide the same amount of
context based on the ratios in Table 1. Through the
rest of this paper, we will mention this approach as
normalizing token lengths. This approach helps us
remove the effect of different context and purely
focus on the differences in terms of high-resource
and low-resource languages.

3.1 Finetuning analysis

We choose a dataset that is not included in the
pretraining set of our models to further finetune the
model. Since we do not want the experiments to
be affected by catastrophic forgetting (Kirkpatrick
et al., 2017), for each language subset, we finetune
the pretrained Pythia independently up to 8 epochs
and run our inference experiments on the obtained
version.

After training and fine-tuning, we measure the
discoverable verbatim and approximate memoriza-
tion. For each sample in the dataset, we also com-
pute the perplexity ratio between the untrained and
trained model, indicating its susceptibility to MIA.
Finally we report this ratio in a histogram based on
the normalized token length.

4You can also refer to Table C in the appendix for a solid
example.
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3.2 Pretraining phase analysis
To analyze the memorization of pretraining
datasets, we conduct discoverable, verbatim and
approximate memorization experiments on a paral-
lel dataset included in the pretraining. Furthermore,
we conduct the perplexity ratio test to compare the
MIA susceptibility of different languages during
pretraining.

However, in the case of pretraining, the untrained
model does not have any language modeling capa-
bilities, which yields it assigning very high and near
random perplexity values to all samples. As the
chosen model (Section 4.1) is available in different
steps of its training as checkpoints, we can estimate
the untrained perplexity on a sample S using the
perplexity of the 25% pretrained checkpoint:

PPXutrained(S) ≈ PPX25%pretrained(S) (3)

One immediate concern here is since our target
dataset is uniformly distributed throughout the pre-
training process, we do not know the exact step
at which each sample was first introduced to the
model. By using the 25% checkpoint to approx-
imate the untrained perplexity, we acknowledge
that approximately 25% of the samples may have
already been seen by the model at that point. How-
ever, this does not compromise the validity of our
experiments, as the same assumption holds across
all language subsets. Thus, the use of the 25%
checkpoint as a proxy for untrained perplexity pro-
vides a consistent and fair basis for comparison
across languages, without introducing systematic
bias.

4 Experiments

In this section, we first provide details about our
experimental setup including the employed LLMs
and the data sets. We then motivate the choice of
the languages and summarize the used metrics.

4.1 Models
We use Pythia models (Biderman et al., 2023) in
our experiments as they are widely used within
the LLM memorization community (Satvaty et al.,
2025). These models are available in different sizes,
enabling us to analyze model size as a dimension
in our experiments. We use four model sizes: 70m,
160m, 410m, and 1B parameters.

Furthermore, these models are fully open and
accessible. Therefore, we have precise informa-
tion about the datasets that have been used during

their pretraining which is important for selecting
suitable datasets for our experiments. Lastly, since
these models are available at different checkpoints
of their training steps, we can obtain a good esti-
mation for our MIA study as discussed in Section
3.2.

Pythia models are not known for their multilin-
gual capabilities, as they are trained on the PILE
dataset (Gao et al., 2020), which predominantly
contains English content. To some extent, these
models have the ability to understand and generate
other languages that were present in small amounts
in their pretraining data (Xu et al., 2025). As the
pretraining data was mainly English, we can con-
sider the other languages as lower-resource in this
context.

4.2 Datasets

We opted for parallel datasets for our experiments,
meaning that the datasets share the same content
across different languages. This helps us obtain
more insightful results, because previous research
has shown that memorization is also affected by
the complexity of the data (Prashanth et al., 2024).
Therefore, by choosing the same content for all of
the languages, we expect to only see the effect of
the language.

Since we want to gain insight into the both pre-
training and finetuning scenarios, we select one
dataset contained in the pretraining and another
one not contained in the pretraining set. For this
purpose, we choose the EMEA (Tiedemann, 2012)
and EuroParl (Koehn, 2005) datasets for our exper-
iments. EuroParl is part of the PILE (Gao et al.,
2020) pretraining dataset, while EMEA is an un-
seen dataset that we introduce to the Pythia models
during our finetuning phase.

We remove the duplicate samples from each
dataset. The remaining dataset is used for train-
ing, as well as in the perplexity ratio test. At the
same time, we extract the samples longer than two
context steps (see table 1) to construct our discov-
erable memorization dataset.

4.3 Languages

The choice of the languages was mainly limited
by the model and datasets that were available. As
explained in Section 4.2, we chose the EuroParl
and EMEA datasets. Both of these datasets con-
tain the European languages. It was shown that the
Pythia models perform well on higher-resourced
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languages (Xu et al., 2025) such as German, Ital-
ian and Spanish. We opt for medium-sized lan-
guages that are less represented in the Pythia train-
ing data and are therefore representative for lower-
resourced settings: Dutch (NL), Slovenian (SL),
Polish (PL), and Czech (CS). While there could
be other choices possible, we believe this would
not have considerable effects on our experimental
results (Section 5).

4.4 Metrics
Regarding our discoverable memorization test, we
use approximate and verbatim string match, as this
would help us gain more insights into the compar-
ison of different forms of memorization. For ap-
proximate matching, we follow the same approach
as Ippolito et al. (2023), considering a match when
the BLEU score similarity exceeds 0.75. We adopt
greedy decoding for sequence generation, meaning
that the model generates only a single most likely
suffix for each prompt by selecting the highest-
probability token at each step.5 This approach
is commonly used in prior work on memoriza-
tion, as it simplifies the evaluation and ensures
deterministic outputs, which are essential for repro-
ducibility and fair comparison across models and
settings (Satvaty et al., 2025). For our perplexity
ratio test, we first divide the samples into differ-
ent bins, based on normalized token length by a
granularity of 50 tokens, then we report the median
of perplexity ratio of each bin. Choosing median
should help to overcome the issue of the outliers
and have more meaningful and realistic results.

5 Results

Figures 2 and 3 illustrate the main findings of our
experiments, while Table 2 provides a detailed
breakdown of the discoverable memorization re-
sults.

5.1 Finetuning
According to the results shown in Figure 2, when
Pythia models are trained on the EMEA dataset,
which was not included in their pretraining set, En-
glish language shows higher levels of discoverable
memorization than the lower-resource languages.
This phenomenon is consistent across both verba-
tim and approximate match and also for training un-

5Tirumala et al. (2022b) referred to the verbatim memoriza-
tion observed through greedy decoding as Exact Memorization.
However, since we also consider approximate memorization,
we avoid using that term to prevent confusion.

der different amount of epochs (refer to Appendix
A.1). One possible explanation is that the model
has been exposed to significantly more English data
during pretraining. As a result, it has developed a
stronger generative prior for English, it has a bet-
ter internal representation of syntax, vocabulary,
and structure, which makes it more confident and
fluent when generating English sequences. Conse-
quently, when fine-tuned on new data, the model
is more likely to memorize and reproduce English
content verbatim or near-verbatim, simply because
generating in English aligns more closely with its
preexisting language patterns.

On the other hand, the perplexity ratio tests show
higher values for the lower-resource languages
(Figure 3), showing that lower-resource languages
could be more prone to membership inference at-
tacks. This trend is consistent across the different
model sizes. This could be justified by several ar-
guments. Firstly, the model is less sensitive against
new English data (English stands below other lan-
guages for the perplexity of the untrained models,
presented in Appendix A.1). Most of the variations
in text has been already presented to the model
during pretraining, therefore introducing the new
English dataset does not significantly change the
model weights. This would result in having a per-
plexity ratio near to 1. Then, in the case of lower-
resource languages, the untrained model would
give a high perplexity to the data, as it was not
close to what it has seen during pretraining. This
would result in a perplexity ratio higher than 1 as it
is noticeable in the figure.

5.2 Pretraining phase

When Pythia models are tested for discoverable
memorization on EuroParl, without any finetuning,
they show higher memorization rates in the lower-
resource languages. As could be seen in Figure 2,
the amount of approximate memorization remains
0 for English while for the other languages it shows
a correlation trend with model size, with a very low
slope. On the other hand, in the perplexity ratio
test (Figure 3) English subset is showing lower
perplexity ratio than the average of other languages
for each model size (For individual languages refer
to Appendix A.2).

The overall scales of discoverable memorization
and perplexity ratios in this experiment is notably
lower than in the fine-tuning scenario. This differ-
ence can be attributed to two main factors: catas-
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Figure 2: The results of our approximate discoverable memorization test across different model sizes of Pythia. The
context have been considered equal to one step size of tokens for each language (refer to table 4.2 for step size). The
expected suffix have been considered 16 and 32 tokens for all languages: (left) models were finetuned on EMEA
dataset for one epoch (right) models were only tested on EuroParl, as it was contained in the pretraining dataset.

Figure 3: The results of histogram of our perplexity ratio test (MIA susceptibility). The x axis represents the
normalized number of tokens (see 3.1) in the bins (50 tokens granularity), and the y axis represents the median of
the perplexity ratios per bin. The lower-resource languages are averaged (others). (The figure only shows the results
after pretraining (EuroParl), and one epoch of training (EMEA). The complete results for all epochs of training and
non-averaged lower-resource language can be found in Appendix A.1.)

Approximate match (%) Verbatim match (%)

Dataset Language 70M 160M 410M 1B 70M 160M 410M 1B

EMEA

EN 11.46 12.57 18.52 32.97 8.59 9.35 14.73 26.79
NL 3.67 4.53 8.86 23.38 2.67 3.09 6.97 17.87
SL 7.47 8.58 11.16 26.59 5.71 6.48 8.69 21.91
PL 3.65 5.55 8.31 27.42 2.23 3.72 5.60 23.07
CS 6.31 6.25 8.70 24.72 4.41 4.37 6.63 19.65

EuroParl

EN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NL 0.00 0.00 0.05 0.14 0.00 0.00 0.00 0.04
SL 0.00 0.00 0.04 0.11 0.00 0.00 0.02 0.07
PL 0.02 0.05 0.13 0.40 0.00 0.02 0.02 0.14
CS 0.00 0.02 0.09 0.22 0.00 0.02 0.04 0.11

Table 2: Results of our discoverable memorization experiment for approximate and verbatim match across datasets
and languages for different model sizes for suffix length of 16 tokens. The highest values in each column are
represented in bold format.

trophic forgetting and the nature of the dataset. The
EMEA dataset, used in the fine-tuning experiment,
belongs to the medical domain and contains struc-
tured, domain-specific content. As a result, cer-
tain phrases and sentence structures are frequently
repeated across different samples, increasing the

likelihood of memorization by the model.

In contrast, the EuroParl dataset, evaluated in
a zero-shot setting, covers more general parlia-
mentary proceedings and exhibits less internal re-
dundancy. Moreover, the observation that lower-
resource languages show higher memorization in
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the EuroParl evaluation could be partially explained
by reduced catastrophic forgetting. Since the
Pythia models were predominantly pretrained on
English data, the English representations may have
undergone more overwriting during pretraining up-
dates. In comparison, representations for lower-
resource languages, being less frequent in the pre-
training corpus, might have been updated less ag-
gressively and thus retain more memorized se-
quences from training data. This results in slightly
higher levels of discoverable memorization for
these languages under zero-shot settings.

These results shows that the languages that are
less represented in the pretraining data are more
prone to memorization and privacy attacks. This
suggests that when such languages are included in
the pretraining data, even without finetuning, the
model is more likely to retain and expose training
sequences, raising concerns about privacy leakage
in multilingual deployments.

6 Discussion

Firstly, selecting appropriate models and datasets
for our experiments posed several challenges.
There are few parallel datasets available across mul-
tiple languages that include samples long enough
to support discoverable memorization experiments.
Additionally, only few models are available at mul-
tiple scales with accessible pretraining checkpoints.
While Pythia is primarily trained on English data,
it demonstrates sufficient language understanding
and generation capabilities in the language subset
we experimented with. Therefore, we argue that
our chosen model and datasets are reasonably well
aligned for the purposes of this study.

Secondly, our finetuning experiments were lim-
ited to model sizes up to 1B parameters. Since
we finetune each language-dataset pair for up to
8 epochs and subsequently run discoverable mem-
orization and perplexity ratio tests on the entire
dataset, the process was computationally intensive,
requiring 160 independent runs on an A100 Nvidia
GPU. However, we believe this limitation does not
significantly affect our conclusions. The observed
trends were robust and consistently distinguishable
between the lower-resource languages and English.
Nonetheless, since a relation exists between memo-
rization and model size (Satvaty et al., 2025; Lesci
et al., 2024) future work should further explore this
space using larger models, different datasets and
various training regimes.

7 Conclusions and future work

We studied the discoverable memorization and the
susceptibility of Pythia models to MIA over two
different parallel datasets comparing memoriza-
tion related behaviour of these models in the cases
of lower-resource languages and higher-resource
languages. We observe that in both cases of pre-
training and finetuning data, the lower-resource
languages show more vulnerability to MIA accord-
ing to the perplexity ratio method. However, in
the case of discoverable memorization, while pre-
training data shows higher memorization rates for
lower-resource languages, the finetuning data be-
haves differently, showing more memorization for
English dataset. At the same time, our fine-tuning
experiments raise an interesting question: while
lower-resource languages exhibit higher suscepti-
bility to MIA, they demonstrate less discoverable
memorization. Although we proposed some initial
hypotheses to explain this observation, a deeper
analysis of the relationship between discoverable
memorization and MIA susceptibility is indeed an
interesting direction for future research.

In quantifying the susceptibility of LLMs, in par-
ticular Pythia models, to MIA, we employed per-
plexity ratio tests and as mentioned, lower-resource
languages prove to be more prone to privacy attacks
and disclosure of private data. These findings un-
derscore the need for stronger privacy-preserving
strategies in multilingual LLMs, particularly during
both pretraining and finetuning phases.

Future work should further investigate the root
causes of the difference between higher and lower
resource languages, whether and to what extent
inherent characteristics of different languages play
a role in memorization related issues and privacy
vulnerabilities. While balancing the data across
different languages would be a possible solution, it
might not always be feasible. We believe that this
direction of language-sensitive privacy needs to
be further explored to make sure that multilingual
models do not exhibit privacy risks regardless of
the different linguistic settings.

In our study, we focused on lower-resource lan-
guages, and we leave a broader examination across
a wider range of linguistic settings for future re-
search. In addition, exploring possible countermea-
sures against the observed phenomenon would be
an important next step. We believe that this line of
language-sensitive privacy research is crucial to en-
sure that multilingual models do not exhibit uneven
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privacy risks across different linguistic contexts.
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A Perplexity ratio experiments

A.1 EMEA

Figure 4: The median perplexity ratios per normalized number of tokens (granularity 50 tokens) obtained after
training the 70M parameter model on the respective translation of the EMEA dataset for {1, 2, 4, 8} epochs.

Figure 5: The median perplexities per normalized number of tokens (granularity 50 tokens) obtained from the
pretrained 70M parameter model when it is queried with the respective translation of the EMEA dataset.
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Figure 6: The median perplexity ratios per normalized number of tokens (granularity 50 tokens) obtained after
training the 160M parameter model on the respective translation of the EMEA dataset for {1, 2, 4, 8} epochs.

Figure 7: The median perplexities per normalized number of tokens (granularity 50 tokens) obtained from the
pretrained 160M parameter model when it is queried with the respective translation of the EMEA dataset.
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Figure 8: The median perplexity ratios per normalized number of tokens (granularity 50 tokens) obtained after
training the 410M parameter model on the respective translation of the EMEA dataset for {1, 2, 4, 8} epochs.

Figure 9: The median perplexities per normalized number of tokens (granularity 50 tokens) obtained from the
pretrained 410M parameter model when it is queried with the respective translation of the EMEA dataset.
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Figure 10: The median perplexity ratios per normalized number of tokens (granularity 50 tokens) obtained after
training the 1000M parameter model on the respective translation of the EMEA dataset for {1, 2, 4, 8} epochs.

Figure 11: The median perplexities per normalized number of tokens (granularity 50 tokens) obtained from the
pretrained 1000M parameter model when it is queried with the respective translation of the EMEA dataset.
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A.2 EuroParl
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Figure 12: The median perplexity ratios per nor-
malized number of tokens (granularity 50 tokens)
obtained from the pretrained 70M parameter model
for the respective translation of the EuroParl. The
untrained perplexity in the calculation is estimated
by the 25% training checkpoint.

Figure 13: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the 25% training checkpoint of the 70M pa-
rameter model, which estimates the untrained per-
plexity scores of the model. To obtain the scores,
it is queried with the respective translation of the
EuroParl dataset.

Figure 14: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the pretrained 70M parameter model when
querying it with the respective translation of the
EuroParl dataset.

Figure 15: The median perplexity per normalized
number of tokens (granularity 50 tokens) ratios ob-
tained from the pretrained 160M parameter model
for the respective translation of the EuroParl. The
untrained perplexity in the calculation is estimated
by the 25% training checkpoint.

Figure 16: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the 25% training checkpoint of the 160M pa-
rameter model, which estimates the untrained per-
plexity scores of the model. To obtain the scores,
it is queried with the respective translation of the
EuroParl dataset.

Figure 17: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the pretrained 160M parameter model when
querying it with the respective translation of the
EuroParl dataset.
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Figure 17: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the 25% training checkpoint of the 410M pa-
rameter model, which estimates the untrained per-
plexity scores of the model. To obtain the scores,
it is queried with the respective translation of the
EuroParl dataset.

Figure 18: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the pretrained 410M parameter model when
it is queried with the respective translation of the
EuroParl dataset.

Figure 19: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the pretrained 410M parameter model when
querying it with the respective translation of the
EuroParl dataset.

Figure 20: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the 25% training checkpoint of the 1000M
parameter model, which estimates the untrained per-
plexity scores of the model. To obtain the scores,
it is queried with the respective translation of the
EuroParl dataset.

Figure 21: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the pretrained 1000M parameter model when
it is queried with the respective translation of the
EuroParl dataset.

Figure 22: The median perplexities per normalized
number of tokens (granularity 50 tokens) obtained
from the pretrained 1000M parameter model when
querying it with the respective translation of the
EuroParl dataset.
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B DEA Data

This section summarizes the data obtained through our discoverable memorization tests. Figures 23 and
24 show approximate and exact string match scores yielded when querying the pretrained models with
the Europarl datasets for context lengths 16 and 32. Figures 25 and 26 show the results of the same
experiment using the EMEA dataset. Here, the models are finetuned for {1, 2, 4, 8} epochs.

Figure 23: Discoverable memorization measured by approximate string match for context lengths 16 and 32 on the
EuroParl dataset. The plot shows the results obtained from the pretrained models per language and model size.

Figure 24: Discoverable memorization measured by exact string match for context lengths 16 and 32 on the EuroParl
dataset. The plot shows the results obtained from the pretrained models per language and model size.

123



Figure 25: Discoverable memorization measured by approximate string match for context lengths 16 and 32 on the
EMEA dataset. The plot shows the results obtained after different epochs of training per language and model size.
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Figure 26: Discoverable memorization measured by exact string match for context lengths 16 and 32 on the EMEA
dataset. The plot shows the results obtained after different epochs of training per language and model size.
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C Sentence Length Example

Language Sentence Tokens
EN The most common side effects with Vidaza (seen in more than 60% of patients) are blood reactions

including thrombocytopenia (low platelet counts), neutropenia (low levels of neutrophils, a type of
white blood cell) and leucopenia (low white blood cell counts), side effects affecting the stomach
and gut including nausea and vomiting, and injection site reactions.

74

NL Vidaza is geïndiceerd voor de behandeling van volwassen patiënten die niet in aanmerking komen
voor hematopoëtische stamceltransplantatie, met: • intermediair 2 en hoog risico myelodysplastische
syndromen (MDS) volgens het International Prognostic Scoring System (IPSS), • chronische
myelomonocytaire leukemie (CMML) met 10-29% beenmergblasten zonder myeloproliferatieve
aandoening, • acute myeloïde leukemie (AML) met 20-30% blasten en multilineaire dysplasie,
volgens de indeling van de Wereldgezondheidsorganisatie (WHO).

166

SL Ker je število bolnikov s temi boleznimi majhno, veljajo te za redke, zato je bilo zdravilo Vidaza
dne 6. februarja 2002 določeno kot „ zdravilo sirota “ (zdravilo, ki se uporablja pri redkih boleznih)
za mielodisplastične sindrome, dne 29. novembra 2007 pa je bilo enako določeno še za akutno
mieloidno levkemijo.

130

PL Produkt Vidaza jest wskazany do leczenia pacjentów dorosłych, niekwalifikujących się do
przeszczepu krwiotwórczych komórek macierzystych, z: • zespołami mielodysplastycznymi (ang.
myelodysplastic syndromes, MDS) o pośrednim- 2 i wysokim ryzyku, zgodnie z Międzynarodowym
Punktowym Systemem Rokowniczym (ang.

132

CS Přípravek Vidaza je indikován k léčbě dospělých pacientů, kteří nejsou způsobilí pro transplantaci
hematopoetických kmenových buněk, s: • myelodysplastickými syndromy (MDS) intermediárního
rizika 2. stupně a vysokého rizika podle Mezinárodního prognostického skórovacího systému (Inter-
national Prognostic Scoring System, IPSS), • chronickou myelomonocytovou leukemií (CMML) s
10- 29% blastů v kostní dřeni bez myeloproliferativního onemocnění)), • akutní myeloidní leukemií
(AML) s 20- 30% blastů a dysplazií ve více buněčných liniích, podle klasifikace Světové zdravot-
nické organizace (WHO).

235

Table 3: Same sentence in different languages, when tokenized with Pythia tokenizer results in different token
counts.
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