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Abstract

Large Language Models (LLMs) have quickly
become an invaluable assistant for a variety
of tasks. However, their effectiveness is con-
strained by their ability to tailor responses to
human preferences and behaviors via person-
alization. Prior work in LLM personalization
has largely focused on style transfer or incorpo-
rating small factoids about the user, as knowl-
edge injection remains an open challenge. In
this paper, we explore injecting knowledge of
prior conversations into LLMs to enable future
work on less redundant, personalized conversa-
tions. We identify two real-world constraints:
(1) conversations are sequential in time and
must be treated as such during training, and
(2) per-user personalization is only viable in
parameter-efficient settings. To this aim, we
propose PLUM, a pipeline performing data
augmentation for up-sampling conversations
as question-answer pairs, that are then used to
finetune a low-rank adaptation adapter with a
weighted cross entropy loss. Even in this first
exploration of the problem, we perform compet-
itively with baselines such as RAG, attaining an
accuracy of 81.5% across 100 conversations.

1 Introduction

Large Language Models (LLMs) have quickly be-
come a go-to resource for learning about new topics
or assisting with a plethora of tasks. However, to
fully unlock the models’ capabilities, responses
require personalization, tuning the model to the
user’s preferences and needs (Salemi et al., 2024b;
Zhuang et al., 2024; Salemi et al., 2025a). Prior
work on LLM personalization has largely focused
on adapting to the user’s style and preferences via
Reinforcement Learning from Human Feedback
(RLHF) (Poddar et al., 2024; Chen et al., 2024; Li
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et al., 2024b; Maghakian et al., 2022; Salemi et al.,
2025b) and Parameter-Efficient Finetuning (PEFT)
(Zhuang et al., 2024; Tan et al., 2024). To move
beyond simple preference learning and small facts
about the user, Retrieval Augmented Generation
(RAG) methods have been used to integrate user
profiles and conversation history into the model’s
generation process (Salemi et al., 2024b; Mysore
et al., 2023; Li et al., 2023; Salemi et al., 2024a;
Zhang et al., 2024a). However, RAG-based meth-
ods require maintaining external storage and pick-
ing a suitable number of documents to retrieve,
with LLM performance having been shown to de-
teriorate with larger context windows (Vodrahalli
et al., 2024; Zhang et al., 2024b). Furthermore,
Woźniak et al. (2024) show that personalized fine-
tuning yields improved model reasoning over zero-
shot prompting. This leads us to question whether
parametric knowledge injection could yield a more
streamlined approach to encoding knowledge of
prior interactions with the user, opening new av-
enues for future LLM personalization.

Current works on knowledge injection mainly fo-
cus on adding fact-based knowledge to LLMs (Ova-
dia et al., 2023; Fu et al., 2023; Mecklenburg et al.,
2024) and note that knowledge injection remains
an open challenge (Fu et al., 2023). In this paper,
we tackle the challenge of injecting knowledge of
prior user conversations into LLMs via finetuning.
Our efforts are in support of enabling future per-
sonalization research. Given the focus on user con-
versations, we identify and impose two important
constraints: (1) finetuning must be parameter effi-
cient and (2) conversations are sequential in nature
and we do not want to store them like RAG-based
methods. Note that we focus on inter-conversation
rather than intra-conversation knowledge. We are
interested in remembering the conversation holisti-
cally after it has occurred, as individual turns within
a conversation can usually be injected into the con-
text window. To the best of our knowledge, this is
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Figure 1: On overview of PLUM, a two-stage pipeline for injecting knowledge of prior user conversations into the
LLM. The first step of the pipeline focuses on augmenting user conversations as positive and negative question-
answer pairs about the conversation. These are then used in the finetuning step, where the LLM is trained on samples
of a single conversation at a time for 10 epochs with a weighted cross entropy loss.

the first work considering to move beyond learn-
ing simple facts about the user to learning user
conversations via finetuning. Specifically, we pro-
pose a Pipeline for Learning User Conversations in
Large Language Models (PLUM), which extracts
question-answer pairs from conversations to fine-
tune a LLM with a Low-Rank Adaptation (LoRA)
adapter (Hu et al., 2021) using a weighted cross
entropy (CE) loss. In this initial exploration of the
problem, PLUM achieves an accuracy of 81.5%
across 100 conversations compared to 83.5% with
RAG-based baselines. Furthermore, we present
an extensive set of ablations to guide and inspire
future endeavors for the parametric personalization
of LLMs, moving beyond simple RAG systems.

2 Related Work

2.1 Personalization

LLM personalization focuses on tuning model re-
sponses to the user’s preferences and needs (Salemi
et al., 2024b). Existing works can broadly be split
into three categories or a combination thereof: (1)
prompting techniques, (2) RAG-based techniques
and (3) RLHF and/or PEFT methods. Prompt-
based techniques focus on encoding user pref-
erences or conversation history in soft prompts
(Hebert et al., 2024; Huang et al., 2024; Shen et al.,
2024) or hard prompts (Mao et al., 2024; Li et al.,
2024a). Similarly, RAG-based techniques have
been leveraged to add relevant information from
a user’s history to the LLM’s context (Wu et al.,

2021; Salemi et al., 2024b; Lu et al., 2023; Kumar
et al., 2024; Wang et al., 2024; Neelakanteswara
et al., 2024; Salemi et al., 2024a; Zerhoudi and
Granitzer, 2024; Sun et al., 2024; Huang et al.,
2023), varying mostly in the type of information
and the manner in which it is stored. However, a
common challenge of these techniques is the re-
liance on prompt tuning and the selection of rel-
evant data points (Zhuang et al., 2024). RLHF
(Stiennon et al., 2020; Jang et al., 2023; Cheng
et al., 2023; Park et al., 2024; Poddar et al., 2024;
Li et al., 2024b) and low-rank PEFT-based meth-
ods (Tan et al., 2024; Zhuang et al., 2024) alleviate
these issues by directly encoding user information
in model parameters, however, they are usually lim-
ited to preferences or simple facts. In contrast, our
work focuses on teaching the LLM to remember
user conversations, which may span multiple facts
and preferences. Specifically, we aim to provide an
alternative to RAG by exploring injecting knowl-
edge of previous user conversations.

2.2 Knowledge Injection

Knowledge injection focuses on adding new knowl-
edge to the LLM after the initial training phase.
Methods vary from prompt-based techniques (Chen
et al., 2022) to incorporating external knowledge
sources via RAG (Song et al., 2016; Fan et al.,
2020; Lewis et al., 2020; Martino et al., 2023; Zhou
et al., 2024; Sun et al., 2024) to finetuning adapters
(Wang et al., 2021; Ovadia et al., 2023; Fu et al.,
2023; Mecklenburg et al., 2024). We take inspira-
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tion from Mecklenburg et al. (2024), who explore
how to augment data to directly incorporate it into
the LLM via PEFT. However, our work diverges
in the application to user conversation data with
the aim of enabling future personalization research.
Moreover, knowledge of user conversations can be
seen as a special type of knowledge, as the contents
are drawn from the model’s knowledge (Gekhman
et al., 2024).

3 PLUM

We propose PLUM, a two-stage pipeline for in-
jecting knowledge of prior user conversations into
LLMs. The first stage encompasses augmenting
the user conversation data. The second stage fo-
cuses on training via PEFT with a custom loss func-
tion. We refer the reader to Figure 1 for a visual
overview.

3.1 Data Augmentation

We define a user conversation as a set of turns
between the user and model, starting with an orig-
inal user prompt. For simplicity, we will stick to
single turn conversations, however, the proposed
method can easily be extended to multi-turn. Re-
call that our goal is to enable future personalization
by remembering user conversations, making single
turn conversations a natural starting point. Given
a user conversation c defined as the tuple (p, r),
where p is the user prompt and r the LLM’s re-
sponse, we use the same LLM to generate a set
of question-answer pairs about the conversation c.
This set of question-answer pairs can be denoted
as Sc = {(q0, a0), (q1, a1), ..., (qi, ai)}, where qi
is a question about the conversation and ai the cor-
responding answer to the question. To generate
Sc, we provide the LLM with the original conver-
sation and prompt it to ask as many questions as
reasonable about the conversation. We do not ask
the LLM to generate a specific number of ques-
tions, because some conversations are more data-
rich than others, i.e., for some conversations there
are more questions that can be asked.

We generate two types of questions using few-
shot prompting for guidance. The first type are
open-ended questions such as ‘What did we dis-
cuss about ...?’, while the second are focused on
eliciting a clear ‘yes’ or ‘no’ response, such as
‘Did we discuss ...?’. We then provide the origi-
nal conversation and the individual questions about
the conversation to the LLM for answering. Be-

sides positive question-answer pairs, we also want
to generate negative pairs. These are questions
asking about something not covered by the conver-
sation, eliciting a ‘no’ response. This is to reinforce
the knowledge boundary of the LLM and prevent
hallucination, as we observe that without negative
samples the LLM will default to always positively
answering questions. To generate negative sam-
ples, we ask the LLM to pose questions adjacent to
the topic of the conversation to which the answer
is ‘no’, to increase precision and not clash with
other samples. We propose maintaining a balance
between positive and negative samples so that the
LLM does not err in one direction. Appendix A
and B document our prompts.

3.2 Parameter-Efficient Finetuning

We impose two design constraints for the injection
of conversation history. First, we note that con-
versations are sequential in nature, which means
that we should finish finetuning on one conversa-
tion before moving on to the next. This allows for
discarding the conversation after all of its samples
have been iterated over, which stands in contrast to
RAG-based techniques. However, it also poses the
challenge of overcoming catastrophic forgetting
(Luo et al., 2023). Second, we note that finetuning
all model parameters per user is infeasible, there-
fore, we use a PEFT method.

Given these constraints, we propose finetuning
a LoRA adapter conversation by conversation. We
propose a LoRA adapter based on its robust perfor-
mance in the previous knowledge injection work of
Mecklenburg et al. (2024). Each training example
xi consists of four key elements:

xi = xsys + xins + ai + qi (1)

The first two elements are an optional system
prompt xsys and an instruction prompt xins. These
two elements are consistent across all training ex-
amples, while the final two elements are a question
qi and corresponding answer ai sampled from the
set Sc for the conversation c. To finetune the LoRA
adapter, we use teacher forcing for more stable
training (Williams and Zipser, 1989). In teacher
forcing the model is provided with the true previ-
ous tokens rather than the predicted ones. We refer
the reader to Appendix C for the full prompt.

In addition to this specific data setup, we empir-
ically derive a custom loss based on the CE loss
(Hinton et al., 2006). We propose scaling up the
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CE loss on the question and answer tokens. We can
rewrite the standard CE loss as a weighted version
in the following way:

L = H(P,Q(xsys,xins))+λH(P,Q(xqi ,xai )
), (2)

where H is the CE loss measuring the difference
between the true distribution of the data P and the
model’s predicted distribution of the data Q. We
compute the standard CE loss over the tokens xsys
and xins. In contrast, we scale the CE loss over the
tokens qi and ai of a training example by λ, specif-
ically λ = 10. We empirically derive this loss after
observing that the standard CE loss quickly dimin-
ishes with the model only having learned xsys, xins
and the overall structure of the prompt well. We
find that weighting qi and ai focuses the model on
the actual question and answer and the knowledge
they convey, rather than only matching xsys and
xins. We also obtain this behavior when exploring
different prompt phrasing. We refer the reader to
Section 5.1.2 for a discussion of ablations.

Based on our exploration, we specifically pro-
pose finetuning a LoRA adapter of rank r = 16
and scaling parameter α = 64, that attaches to all
linear layers in the LLM. We also suggest training
on each conversation for e = 10 epochs. To clarify,
all data samples for a conversation are shown to the
model for 10 epochs before moving on to the next
conversation. We also find that an equal number
of positive and negative question-answer pairs for
a conversation yields the best results, as well as
using a batch size of b = 8. We further elaborate
on these suggestions in Section 5.

4 Experimental Setup

4.1 Data
We rely on the OpenAssistant Conversations
dataset (Köpf et al., 2023) for the initial human-
generated prompts. We select 100 prompts in En-
glish as starting points for the conversations. We
limit our initial exploration to 100 conversations to
allow for more control during the data generation
and because the user may also forget about prior
conversations (Wixted and Ebbesen, 1991). The se-
lected starting prompts are focused on knowledge
transfer, rather than completing a specific task, as
we believe task-related queries are of more tempo-
rary nature. We then generate a response to com-
plete the single-turn conversations. Recall, that we
use these conversations to generate two types of
question-answer pairs: positive and negative, as

shown in Figure 1. We filter these pairs, checking
that the questions and answers align with the ex-
pected format and directionality of the answer. We
refer the reader to Appendix A and B for further de-
tails on prompting and filtering. After filtering, we
have 3726 positive and negative question-answer
pairs across 100 conversations. We manually spot
check the generated data to verify its quality. We
withhold two questions per conversation for the
test dataset. While the train dataset contains open-
ended and closed questions, the test dataset only
contains a positive and negative closed question
per conversation that can be answered with ‘yes’
and ‘no’, respectively. We select ‘yes’ and ‘no’
questions for evaluation, as they have a clear tar-
get. We also train and test the LLM’s performance
on question-answer pairs not generated by itself
but a larger LLM, to evaluate the reliance on in-
distribution data and question-answer formulations.

4.2 Model

For our study of injecting conversation history into
LLMs, we focus on Llama 3 8B Instruct (Dubey
et al., 2024), because of its high performance on a
variety of tasks given its reasonable size. As men-
tioned previously, we also employ a larger model
to generate a second train and test dataset. For this,
we use Llama 3 70B Instruct (Dubey et al., 2024)
to generate an alternative version of the train and
test dataset that does not directly align with the dis-
tribution of Llama 3 8B Instruct, the LLM which
we finetune, due to capacity and training data dif-
ferences. This is further motivated by the work
of Hong et al. (2024), who find that model scale
matters for capturing the structure of language. We
refer the reader to Appendix D for further details
on the finetuning setup.

4.3 Metrics

As previously mentioned, we maintain a holdout
dataset of questions that can be answered with a
simple ‘yes’ or ‘no’. We use these questions to eval-
uate the overall accuracy of the model after being
finetuned on all conversations in the dataset. We
also track the accuracy over time, which is an aver-
age of the model accuracy on all seen conversations
for a given finetuning step. For example, after the
model has seen the samples for n conversations, it
is evaluated on the corresponding evaluation ques-
tions for these n conversations. Evaluating the
accuracy over time provides an insight into how
strongly a model has learned the answer and the
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potential for catastrophic forgetting.
We also evaluate model accuracy on a suite of 5

common benchmarking tasks to ensure PLUM does
not deteriorate the base performance of the model.
We evaluate the base model and a PLUM-finetuned
version on: (1) Measuring Massive Multitask Lan-
guage Understanding (MMLU) (Hendrycks et al.,
2021), (2) HellaSwag (Zellers et al., 2019), (3)
ARC (Clark et al., 2018), (4) PIQA (Bisk et al.,
2020) and (5) Social IQA (SiQA) (Sap et al., 2019).
We use the Language Model Evaluation Harness
framework (Gao et al., 2024) to perform a 1-shot
and 5-shot evaluation on these tasks.

4.4 Baselines

The focus of our paper resides on enabling future
personalization research by injecting knowledge of
prior user conversations via PEFT. To contextual-
ize our results, we compare our method to a stan-
dard RAG baseline, following Salemi et al. (2024b).
Specifically, we train three retriever models based
on BM25 (Robertson et al., 1995), a strong term
matching model. The first BM25 baseline Conv.
RAG is trained on the original conversation data.
The second baseline Sum. RAG is trained only on
summaries of the original conversations, to mimic
common setups in existing literature (Richardson
et al., 2023). Lastly, the Q/A RAG baseline is a
BM25 model trained on the question-answer pairs
used for LoRA finetuning for a more compara-
ble setup. We test different settings for k, the
number of documents to retrieve, ranging from
k = {1, 2, 3}. We choose BM25, because of its
enduring strong performance (Salemi et al., 2024a;
Izacard et al., 2022). We do not compare to neural-
based retrievers, such as Contriever (Izacard et al.,
2022), because we only focus on 100 conversations
for this study, which a neural retriever may eas-
ily overfit on. Moreover, our data setup for some
baselines is not compatible with the training of
Contriever, which requires positive and negative
sample pairs for the contrastive loss.

5 Results

5.1 Ablations on Remembering User
Conversations

We ablate various elements of PLUM to evaluate
the contributions of the different components. By
dissecting the elements of our framework, we aim
to provide insights into the underlying mechanisms
driving its performance and inspire future research.

Model Setup Accuracy (%)
Yes No Overall

PLUM 73.0 77.0 75.0
PLUM (w/ sys.) 71.0 92.0 81.5

E
po

ch
s

e = 1 82.0 30.0 56.0
e = 1 (w/ sys.) 70.0 46.0 58.0
e = 5 70.0 78.0 74.0
e = 5 (w/ sys.) 84.0 57.0 70.5
e = 15 39.0 91.0 65.0
e = 15 (w/ sys.) 91.0 52.0 71.5
e = 20 71.0 55.0 63.0
e = 20 (w/ sys.) 0.0 0.0 0.0

C
E

e = 1 5.0 98.0 51.5
e = 10 21.0 13.0 17.0
e = 20 0.0 0.0 0.0
w/ sys. 38.0 44.0 41.0

L
os

s
V

ar
. (qi, ai)-only CE 88.0 25.0 56.5

(qi, ai)-only 57.0 95.0 76.0
ai-only 40.0 90.0 65.0
ai-only (w/ sys.) 88.0 35.0 61.5

D
at

a 70B Model Gen. 30.0 80.0 55.0
Upsampled Yes 75.0 76.0 75.5
Upsampled No 69.0 83.0 76.0

Table 1: Model accuracy on various ablations. The
best and second best overall accuracy are in bold and
underlined.

We present our results in Table 1. Our ablations
focus on the impact of epochs, the design of the loss
function and the data. We also ablate our method
with and without a system prompt. We provide
further ablations on the LoRA architecture, batch
size and random seeds in Appendix E.

5.1.1 Impact of Epochs
We ablate the number of epochs required to remem-
ber a conversation. Recall that epochs refers to the
number of times the model sees the training ex-
amples for a conversation before moving on to the
next. We find that increasing or decreasing the num-
ber of epochs from e = 10 deteriorates accuracy.
Notably, for all settings except e = 10 the model
overfits to positive samples. For example, at e = 1
we observe an imbalance in accuracy of 82.0% ver-
sus 30.0% for ‘yes’ and ‘no’ samples, respectively.
This could be related to batching, as we backpropa-
gate on b = 8 samples at a time. Batching multiple
examples may cause oscillation between erring on
the positive and negative side, indicating adapting
the number of epochs per conversation as an inter-
esting area for further exploration. Furthermore,
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we observe the accuracy dropping to 0.0% for two
settings with e = 20, as the model begins to output
incoherent sentences.

5.1.2 Impact of the Loss
We compare our weighted CE loss against the stan-
dard CE loss. Recall that in our weighted CE loss,
we scale the loss of the question and answer to-
kens by λ = 10. We achieve an accuracy of 75.0%
without and 81.5% with the system prompt. In
comparison, simply training using the standard CE
loss yields an accuracy of 17.0% and 41.0% with-
out and with the system prompt, respectively. This
highlights the significance of our design choice of
up-weighting the loss on the question-answer sec-
tion of the input prompt. If we only train on the
question-answer pairs, this means we drop the sys-
tem and instruction prompt, scaling the loss still
achieves a significant improvement at an accuracy
of 76.0% compared to 56.5%. Lastly, we also ex-
amine whether only scaling the loss on the answer
tokens is sufficient. We find that this only yields an
overall accuracy of 65.0% without and 61.5% with
the system prompt.

Model Setup Accuracy over Time (%)
Yes No

PLUM 68.2± 17.9 79.2± 17.3
PLUM (w/ sys.) 79.7± 18.3 59.2± 28.1

E
po

ch
s

e = 1 58.7± 29.4 52.2± 29.9
e = 1 (w/ sys.) 45.7± 25.7 66.3± 22.4
e = 5 60.6± 23.4 70.4± 26.8
e = 5 (w/ sys.) 81.8± 23.4 42.2± 28.4
e = 15 55.6± 22.7 79.5± 15.2
e = 15 (w/ sys.) 82.9± 19.3 51.4± 25.0
e = 20 46.8± 20.4 79.4± 13.5
e = 20 (w/ sys.) 30.8± 39.0 30.5± 36.8

C
E

e = 1 1.9± 3.0 98.9± 1.7
e = 10 54.7± 35.0 41.9± 35.2
e = 20 26.7± 37.0 22.3± 32.4
w/ sys. 54.9± 34.1 53.5± 32.3

L
os

s
V

ar
. (qi, ai)-only CE 63.1± 33.4 55.1± 35.7

(qi, ai)-only 59.4± 17.7 85.3± 18.0
ai-only 46.9± 21.6 75.5± 22.4
ai-only (w/ sys.) 82.5± 21.6 35.0± 22.7

D
at

a 70B Model Gen. 39.1± 27.4 84.7± 16.6
Upsampled ‘Yes’ 64.3± 21.3 70.9± 24.5
Upsampled ‘No’ 67.3± 20.5 70.0± 23.2

Table 2: Model accuracy over time (including standard
deviation) on ‘yes’ and ‘no’ questions for various abla-
tions.
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Figure 2: Accuracy over time for PLUM with the sys-
tem prompt.

5.1.3 Impact of Data
We ablate our assumptions on the data balance be-
tween positive and negative samples, as well as
staying within the model’s distribution. We find
that increasing the number of positive or negative
samples by 25% per conversation deteriorates re-
sults. Specifically, the model’s accuracy to respond
with ‘yes’ or ‘no’ increases for the respective cases,
but decreases for the opposite. This indicates that
maintaining a balance between samples is the most
beneficial. Lastly, we also verify whether it is ben-
eficial to stay within the model’s distribution by
training on samples not generated by the model
itself. When training Llama 3 8B Instruct on data
generated by its 70B counterpart, accuracy signif-
icantly deteriorates to 30.0% on ‘yes’ questions.
This can potentially be explained by training on
data generated by the model itself reinforcing the
knowledge and only requiring to store whether it
was discussed previously. In contrast, the different
wording and potentially divergent knowledge gen-
erated by the 70B model is not as simple to learn.
We provide further results in Appendix F.

5.2 Performance over Time

We measure the model’s accuracy over time to de-
tect issues such as catastrophic forgetting. Table 2
summarizes the ‘yes’ and ‘no’ accuracy over time
for various ablations. We observe similar trends
as in our analysis of the overall model accuracy
in Section 5.1, however, a noteworthy insight ob-
tained from the accuracy over time is the standard
deviation of the accuracy. For example, the aver-
age ‘yes’ and ‘no’ accuracy overtime for PLUM
without a system prompt is 68.2% and 79.2% with
a standard deviation of ±17.9% and ±17.3%, re-
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Baselines Llama 3 8B Instruct PLUM PLUM (w/ sys.)
1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

MMLU 64.2± 0.4 65.7± 0.4 63.0± 0.4 64.9± 0.4 63.2± 0.4 65.3± 0.4
HellaSwag 57.5± 0.5 58.4± 0.5 56.9± 0.5 57.8± 0.5 56.6± 0.5 57.2± 0.5
ARC-Easy 83.9± 0.8 85.2± 0.7 82.7± 0.8 83.6± 0.8 83.2± 0.8 83.5± 0.8
ARC-Cha. 55.4± 1.5 57.4± 1.4 54.0± 1.5 56.1± 1.5 54.1± 1.5 55.5± 1.5
PiQA 79.7± 0.9 80.6± 0.9 79.0± 1.0 80.1± 0.9 78.7± 1.0 80.0± 0.9
SiQA 53.8± 1.1 56.8± 1.1 54.7± 1.1 57.9± 1.1 54.7± 1.1 56.7± 1.1

Table 3: Model performance on a selection of benchmarking tasks before and after finetuning on user conversations.
While we generally observe a slight deterioration in accuracy, performance remains within a reasonable range.
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Figure 3: Consistency plots visualizing whether the ‘yes’/‘no’ question was predicted correctly (blue) or incorrectly
(orange) for a given time step. Here, a time step refers to the model having seen all samples of a conversation for the
specified number of epochs. The lower left triangle of the plot is gray, as these conversations have not been seen yet.

spectively. This is quite a significant range, which
indicates that the model oscillates between answer-
ing ‘yes’ and ‘no’. Figure 2 plots the accuracy as
the model learns more conversations. We can ob-
serve that the model oscillates between erring on
the ‘yes’ or ‘no’ side.

To further investigate this, we plot the predic-
tions over time in Figure 3. We call these plots con-
sistency plots, as ideally the upper triangle of each
plot would be blue, meaning that the model consis-
tently predicts the correct answer. We find that with
PLUM, the LLM fairly consistently learns how to
answer the questions for a given conversation, how-
ever, it fails to learn some conversations altogether,
indicated by consistent streaks of orange. We ob-
serve no sign of catastrophic forgetting. Moreover,
in Figure 3(d) it appears as if the LLM initially
struggles to reply with ‘no’, but then learns this,
starting at around time step 70. This shift towards

‘no’ is also recognizable in the corresponding ‘yes’
Figure 3(c), as there are more streaks of orange
starting at time step 70. This could indicate the
the LLM learns to balance responding with ‘yes’
and ‘no’. Nevertheless, we should observe that
PLUM allows strides in the right direction, despite
the oscillations. This is especially evident when
contrasting the consistency plots of PLUM (Fig-
ures 3(a)-3(d)) with those generated when using
standard CE loss with e = 10 (Figures 3(e)-3(h)).

5.3 Model Performance

Table 3 shows the 1-shot and 5-shot performance
of Llama 3 8B Instruct and the PLUM-finetuned
model on five common benchmarking tasks. We
can observe a slight deterioration in accuracy
across all tasks except SiQA. We observe a slight
improvement in accuracy from 53.8% to 54.7% on
the SiQA dataset, which may be attributed to train-
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ing on prior conversations being somewhat related
to reasoning about social settings. Overall, we can
conclude that PLUM does not negatively impact
performance on standard benchmarking tasks.

5.4 Comparison against Baselines

Table 4 details the accuracy of PLUM against var-
ious baselines. PLUM with and without a system
prompt achieves a competitive accuracy of 81.5%
and 75.0%, respectively. For context, we include
the 0-shot performance of Llama 3 8B Instruct and
a perfect recall version of RAG, where we automat-
ically inject the correct conversation or summary
into the prompt. The 0-shot performance of the
model is 50.0%, as the model defaults to respond-
ing with ‘no’. The highest accuracy of 89.5% is
achieved when providing the conversation to the
LLM (Perfect Conv. Recall). We can see this as the
near-optimal performance of the LLM on the given
data, but not necessarily an upper bound, as this is
dependent on data quality. In contrast, the best per-
forming RAG baseline is Conv. RAG with k = 3 at
86.5%. We observe an increase in accuracy as k in-
creases, as the BM25 model does not always return
the correct conversation as the top one. The Sum.
RAG baseline achieves only 71.0% accuracy, which
can be attributed to the summaries potentially miss-
ing details needed to answer the questions. The Q/A
RAG baseline is the most comparable to PLUM, as
it has access to the same data. It achieves 83.5%
accuracy for k = 3. The performance of PLUM is
just shy of this, highlighting injecting conversation
history into LLMs as a promising avenue for future
research on personalization.

6 Discussion

6.1 Take-aways

We show that PLUM allows LLMs to efficiently re-
member user conversations. We can identify three
key takeaways from our experiments that allow
this success. First, the number of times the train-
ing samples for a conversation are shown to the
model is highly important. We found that e = 10
provides the best trade-off between the accuracy
of ‘yes’ and ‘no’ questions. A lower or higher
number of epochs generally leads the model to err
towards ‘yes’. More importantly, we found that
the weighted CE loss is necessary for the success-
ful recall of the question-answer pairs. In our ex-
periments without the weighted loss or different
configurations of weighting tokens, we observed

Method Accuracy (%)
Yes No Overall

0-shot Performance 0.0 100.0 50.0

Perfect Conv. Recall 100.0 79.0 89.5
Perfect Sum. Recall 83.0 78.0 80.5
Conv. RAG (k=1) 86.0 80.0 83.0
Conv. RAG (k=2) 84.0 84.0 84.0
Conv. RAG (k=3) 84.0 89.0 86.5

Sum. RAG (k=1) 56.0 85.0 70.5
Sum. RAG (k=2) 67.0 81.0 74.0
Sum. RAG (k=3) 68.0 74.0 71.0

Q/A RAG (k=1) 66.0 94.0 80.0
Q/A RAG (k=2) 71.0 94.0 82.5
Q/A RAG (k=3) 73.0 94.0 83.5

PLUM 73.0 77.0 75.0
PLUM (w/ sys.) 71.0 92.0 81.5

Table 4: Performance of RAG-based baselines versus
PLUM, with the best and second best overall accuracy
in bold and underlined.

significant model deterioration. We also found that
a balance of positive and negative samples is impor-
tant for reinforcement of the knowledge boundary.
Providing more positive samples deteriorates the
performance on negative ones and vice versa.

6.2 Future Work

Our key takeaways indicate potential for future
research. An area for further study is tuning the
number of epochs per conversation, as some con-
versations may be easier to learn than others. Other
avenues include further experiments on the loss,
batch size and data sampling strategies. In particu-
lar, experiments exploring whether the findings of
Chang et al. (2024) for the memorization of LLMs
in pretraining would be interesting. Another area
of research is improving the model’s answer con-
sistency, as we observe large variations between
time steps. Studying memorization profiles as pro-
posed by Lesci et al. (2024) may be interesting here.
Lastly, PLUM enables future research in person-
alization. For example, the injected knowledge of
conversations can be used to reduce redundancy in
responses or refine knowledge transfer between the
LLM and user by building on past interactions.

7 Conclusion

In this work, we explore injecting knowledge of
prior user conversations into LLMs. We propose
PLUM, a pipeline for finetuning a LoRA adapter
on question-answer pairs about prior conversa-
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tions, maintaining conversation order. Moreover,
we propose a custom loss for improved results.
We achieve competitive results to RAG baselines,
while not requiring to store each individual con-
versation. Our results indicate directly injecting
personalization data into LLMs as an interesting
avenue for future research, such as reducing redun-
dancy in subsequent conversations or extending
reasoning capabilities.

8 Limitations

Despite the contributions of this work, our work
must be viewed in the context of a few limitations.
It should be noted that all data used is in English
and that we only verified PLUM on Llama 3 8B In-
struct. Moreover, we limited our study to only 100
conversations, which can be seen as a reasonable
but small subset of conversations over time. Lastly,
we did not explore model performance on remem-
bering conversations on the same versus clashing
topics.

9 Ethical Considerations

We must carefully examine the ethical implications
of our work. Remembering user conversations may
lead to personal information being stored in the
parametric knowledge of a LLM, which an adver-
sary may extract (Mattern et al., 2023). This ap-
plies to personalization in general. Moreover, per-
sonalization may provide identifying information
about the user leading to biases in the generated text
(Wang et al., 2023; He et al., 2024; Weissburg et al.,
2024). Furthermore, future work should consider
how a model personalized with prior user conversa-
tions should talk to the user, as in Liao and Sundar
(2021). We urge the reader to carefully consider
the aforementioned points in their work extending
or using PLUM to handle the user’s privacy with
care.
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A Generating the Original Conversation

A.1 Conversation Prompt
We use the OpenAssistant Dataset (Köpf et al.,
2023), a crowd-sourced dataset with content mod-
eration, to sample 100 initial conversation prompts.
These conversation prompts are human generated
and in English. As we are looking for knowledge-
based prompts, we hand-select 100 of these. The
selected prompts do not contain personally identifi-
able information or offensive content.

A.2 Conversation Response Generation
We use the following system prompt to generate
a response to the initial starting prompt from the
OpenAssistant Dataset (Köpf et al., 2023):
You are a helpful LLM answering

questions concisely. Do not ramble or
generate repetitive output.
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We then simply add the original conversation
prompt. Examining the dataset, we found that some
of the prompts are not formatted correctly so we
apply simple corrections such as capitalizing the
first word of a sentence and adding a question mark
at the end of sentences.

B Question-Answer Pair Generation

We generate question-answer pairs via a two step
process. First we infer a set of questions about the
conversation. Then we simply prompt the model
to answer the question about the conversation, pro-
viding the conversation as context. In total, we
generate 4 types of question-answer pairs:

1. Positive Open-ended Questions

2. Negative Open-ended Questions

3. Positive Closed-ended Questions (‘Yes’ Ques-
tions)

4. Negative Closed-ended Questions (‘No’ Ques-
tions)

We generate open-ended questions about the con-
versation to elicit a summary style answer. We gen-
erate positive and negative questions of this type,
where positive means that the topic was indeed dis-
cussed in the conversation, while negative means
that the topic was not discussed and the model
should politely express this. Similarly, we also gen-
erate closed-ended questions of this type. These
are questions that should be answerable with a ‘yes’
and ‘no’.

B.1 4-shot Sample Conversations
In order to elicit open and closed-ended questions
from the model, we perform 4-shot prompting.
We write four knowledge-based single-turn con-
versations for this. We phrase some initial starting
prompts as questions and others as instructions (e.g.
‘Tell me about ...’). We ensure that the responses to
the questions have enough content to write a varied
set of positive and negative sample questions.

B.2 4-shot Sample Questions
For each of the four few-shot sample conversations,
we then write 12 positive and negative, open-ended
and closed questions for each of the conversations.
Recall that closed questions are of the format ‘Did
we discuss...?’ to elicit a ‘yes’ and ‘no’ response.
The open-ended questions begin with ‘What did we

discuss about ...?’ to elicit a longer, summary-style
responses. The 4-shot prompting with example
questions allows us to demonstrate to the model
that we are looking for positive questions, questions
that can directly be answered via the conversation,
and negative questions, questions about informa-
tion adjacent to the topic of discussion. Note that
we define 12 questions of each style of question for
each few-shot example to encourage the model to
write a substantial number of questions. However,
we do not directly prompt the model to generate
this many questions later on, to make sure that
the questions are of high quality. We discuss this
further in Section B.3.

B.3 Question Generation

B.3.1 Positive Questions

In order to elicit the model to generate similar pos-
itive questions for our sample conversations gen-
erated on the base of the OpenAssistant dataset
(Köpf et al., 2023), we prompt it in the following
way with the 4-shot examples prepended. We de-
fine the system prompt xsys as:
You are a helpful LLM specialized in

inferring the topic of a conversation
and writing questions about what was
discussed about this topic in the
conversation. Do not deviate from the
topics and contents of the conversation.
All questions must be answerable with
‘yes’. Only speak from the ‘we’
perspective of ‘you and the user’. You
must start your sentence with ‘Did
we discuss...’. Always specify the
topic you are referring to, avoiding
ambiguity, so that the question makes
sense without the conversation. Never say
‘the conversation’.

We then add the following instruction prompt
xins:
From the user perspective, write as

many questions as sensible about what was
discussed in the following conversation.
<START_CONVERSATION> USER: {user_prompt}
YOU: {model_response} <END_CONVERSATION>

As indicated above, we inject the user prompt
and model response in place of {user_prompt}
and {model_response}, respectively. The system
prompt and instruction prompt for the other types
of questions follow a similar structure. Note that
we only ask the model to generate as many ques-
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tions about the conversation as sensible. This is
because some conversations may be more data-
rich than others, which makes it easier to ask var-
ied questions. We observed this behavior during
prompt tuning. Please also note that we have re-
moved line breaks for formatting purposes here.

B.3.2 Negative Questions

In order to elicit negative questions, we replace the
system prompt xsys with the following:
You are a helpful LLM specialized in

inferring the topic of a conversation
and writing 12 questions about closely
related topics that were not covered in
the conversation. Do not deviate from
the overarching topic of the conversation.
All questions must be answerable with ‘We
did not discuss ...’. Only speak from
the ‘we’ perspective of ‘you and the
user’. Start your sentence with ‘What
did we discuss about...’. Always specify
the topic you are referring to, avoiding
ambiguity, so that the question makes
sense without the conversation. Never say
‘the conversation’.

Similarly, we replace the instruction prompt xins
with the following:

From the user perspective, write 12
questions about something that was not
discussed in the following conversation.
<START_CONVERSATION> USER: {user_prompt}
YOU: {model_response} <END_CONVERSATION>

Please note that we include line breaks were
appropriate, but we have removed these for the
formatting of the paper. Please also note that we
specify 12 questions here, rather than just asking
the model to generate as many questions as sensi-
ble. This is because negative questions, questions
about topics adjacent to the conversation, are eas-
ier to generate. However, please also notice that
we then balance the number of positive and nega-
tive samples per conversation by taking the smaller
number of the two.

B.4 Answer Generation

After splitting the questions generated, we prompt
the model to answer each question individually. We
also provide the user conversation as reference for
the positive questions. We do not provide the con-
versation for the negative ones, as the information
is not needed and we can rely on the performance

of the base model, which is to politely decline hav-
ing knowledge of prior conversations.

We use the following positive system prompt
xsys to answer the questions about the conversa-
tion:
You are a helpful LLM trained to answer

questions about prior conversations you
had. You are very detailed and summarize
the whole conversation to answer the
question. You do not include details that
are not in the conversation.

We then provide the conversation and the instruc-
tion prompt xins:
—Conversation— USER: {user_prompt}

AGENT: {model_response} –Task– Please
answer the following question about
whether you have discussed the indicated
topic with the user. Question:
{conv_question} Answer:

The model then begins completing the prompt.
As before, we have marked the corresponding sec-
tions to add in the user prompt, model response and
generated conversation question. The negative in-
struction follows a similar wording, however, we do
not provide the conversation as context there. This
is because the question cannot be answered from
the conversation and the model should politely de-
cline. Please note that we have also removed line
breaks here for formatting purposes.

B.5 Data Filtering

We perform some basic checks for filtering. Firstly,
we check that the questions generated follow the
expected structure, e.g. ‘Did we discuss ...?’. We
also check that the generated answer yields the
expected response, e.g. it contains ‘yes’. We also
remove all duplicate questions.

C Prompts for Model Finetuning

We use the following system prompt xsys for model
finetuning:
You are a helpful LLM trained to answer

questions about prior conversations you
had. If you do not remember having
discussed the topic, you state to the
user that you do not remember having had
this conversation.

We then follow-up with the following instruction
prompt xins:
Please answer the following question

about whether you have discussed the
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indicated topic.
We then concatenate the question qi and answer

ai in the following format:
Question {question} Answer: {answer}
We insert the question-answer pair samples for a

conversation in place of {question} and {answer},
respectively. All prompts presented were selected
by writing variants and manually examining the
quality of the performance for a handful of conver-
sations. Again, please note that we have removed
line breaks in our prompts for formatting purposes.

D Finetuning

We perform teacher-forcing for finetuning, using
the Adam optimizer (Kingma, 2014) with a learn-
ing rate of 0.001. We set the random seed to s = 42.
All other hyperparameters are described in the main
text. We train our models in a distributed manner,
with a maximum number of 8 NVIDIA A100 80
GB being used for an experiment.

E Further Ablations

E.1 LoRA Architecture
To gain a better understanding of how to best con-
figure the LoRA adapter, we vary the layers the
LoRA adapter attaches to and the adapter size. We
found that attaching to all linear layers in the model
yields the best results, as 81.5% accuracy, com-
pared to only attaching to attention layers, yield-
ing an accuracy of only 63.0%. We also vary the
adapter size r, with r = 8 and r = 32 only achiev-
ing an accuracy of 76.5%. Overall, we find that a
LoRA adapter attaching to all linear layers, with a
size of r = 16 and a = 64, performs best.

E.2 Batch Size
To gain a better understanding of the effect of the
batch size we replicate our setup with different
batch sizes where b = {1, 16, 32}. Note that the
batch size we use for PLUM is b = 8. We observe
that a batch size of b = 16 yields slightly improved
results at 78.5% compared to a b = 8 at 75.0%
accuracy. However, the oscillations between ‘yes’
and ‘no’ are smaller at b = 8, indicated by the
decreased gap between the ‘yes’ and ‘no’ accuracy,
as well as the standard deviation for the accuracy
across time.

E.3 Reproducibility
To ensure that our results are reproducible, we run
PLUM (without a system prompt) on two further

seeds (s = 7 and s = 73). We observe similar
performance at an overall accuracy of 71.5% and
78.0%.

F Performance on Llama 3 70B Instruct
Generated Split

Figure 6 summarizes the results of PLUM in com-
parison to RAG on the dataset generated with
Llama 3 70B Instruct model. We observe that RAG
significantly benefits from the data generated by the
larger model. For example, Q/A RAG with k = 1
improves from an accuracy of 80.0% to 89.0%. In
contrast, PLUM does not benefit as much from
the data generated by the larger model, with the
accuracy only increasing from 75.0% to 78.0% in
the version without the system prompt. In the case
of PLUM with a system prompt, accuracy even
deteriorates. This could be due to the model hav-
ing a harder time remembering user conversations
outside of its own model distribution. Using a dif-
ferent model to generate conversations may cause
the model to have to remember new knowledge
as well as whether a topic has been discussed or
not, which is a more challenging task. Therefore,
these results should be seen in context of PLUM re-
quiring finetuning versus RAG simply performing
retrieval.

G Licenses

We use the OpenAssistant Dataset (Köpf et al.,
2023), which is available under the Apache license
2.0. We also rely on a number of benchmark-
ing datasets and tools, such as the MMLU dataset
(Hendrycks et al., 2021), HellaSwag (Zellers et al.,
2019) and the Language Model Evaluation Harness
framework (Gao et al., 2024), which are available
under the MIT license. ARC (Clark et al., 2018) is
available under the Creative Commons Attribution
license, while PIQA (Bisk et al., 2020) is avail-
able under the Apache 2.0 License. SiQA (Sap
et al., 2019) is available under the CC0 1.0 Uni-
versal license. We use these datasets and tools in
accordance with their licenses for research only.
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Model Setup Accuracy (%) Accuracy over Time (%)
Yes No Overall Yes No Overall

PLUM 73.0 77.0 75.0 68.2± 17.9 79.2± 17.3 73.7± 6.9
PLUM (w/ sys.) 71.0 92.0 81.5 79.7± 18.3 59.2± 28.1 69.5± 9.3

E
po

ch
s

e = 1 82.0 30.0 56.0 58.7± 29.4 52.2± 29.9 55.4± 4.8
e = 1 (w/ sys.) 70.0 46.0 58.0 45.7± 25.7 66.3± 22.4 56.0± 3.8
e = 5 70.0 78.0 74.0 60.6± 23.4 70.4± 26.8 65.5± 9.1
e = 5 (w/ sys.) 84.0 57.0 70.5 81.8± 23.4 42.2± 28.4 62.0± 7.8
e = 15 39.0 91.0 65.0 55.6± 22.7 79.5± 15.2 67.5± 7.6
e = 15 (w/ sys.) 91.0 52.0 71.5 82.9± 19.3 51.4± 25.0 67.2± 7.6
e = 20 71.0 55.0 63.0 46.8± 20.4 79.4± 13.5 63.0± 6.2
e = 20 (w/ sys.) 0.0 0.0 0.0 30.8± 39.0 30.5± 36.8 30.6± 33.6

B
at

ch

b = 1 84.0 40.0 62.0 44.9± 30.3 58.3± 30.3 51.6± 15.4
b = 16 83.0 74.0 78.5 67.8± 24.7 68.5± 26.4 68.2± 9.5
b = 32 72.0 75.0 73.5 57.3± 24.9 72.8± 25.1 65.0± 9.1

C
E

e = 1 5.0 98.0 51.5 1.9± 3.0 98.9± 1.7 50.4± 0.7
e = 10 21.0 13.0 17.0 54.7± 35.0 41.9± 35.2 48.3± 16.7
e = 20 0.0 0.0 0.0 26.6± 37.0 22.3± 32.4 24.5± 26.6
w/ sys. 38.0 44.0 41.0 54.9± 34.1 53.5± 32.3 54.2± 10.1

L
os

s
V

ar
. (qi, ai)-only CE 88.0 25.0 56.5 63.1± 33.4 55.1± 35.7 59.1± 13.5

(qi, ai)-only 57.0 95.0 76.0 59.4± 17.7 85.3± 18.0 72.4± 6.9
ai-only 40.0 90.0 65.0 46.9± 21.6 75.5± 22.4 61.2± 7.1
ai-only (w/ sys.) 88.0 35.0 61.5 82.5± 21.6 35.0± 22.7 58.8± 5.2

D
at

a 70B Model Gen. 30.0 80.0 55.0 39.1± 27.4 84.7± 16.6 61.9± 10.1
Upsampled ‘Yes’ 75.0 76.0 75.5 64.3± 21.3 70.9± 24.5 67.6± 7.1
Upsampled ‘No’ 69.0 83.0 76.0 67.3± 20.5 70.0± 23.2 68.7± 7.9

L
oR

A

Att.-only, r = 16, α = 64 92.0 34.0 63.0 75.1± 26.1 42.9± 28.7 59.0± 7.2
Lin., r = 16, α = 32 85.0 65.0 75.0 69.5± 24.1 69.9± 23.1 69.7± 8.1
Lin., r = 8, α = 64 64.0 89.0 76.5 54.4± 22.5 85.3± 18.1 69.8± 8.1
Lin., r = 32, α = 64 63.0 90.0 76.5 66.3± 20.2 80.6± 19.5 73.5± 7.8

Se
ed seed = 7 62.0 81.0 71.5 69.6± 19.0 68.5± 22.1 69.0± 6.6

seed = 73 78.0 78.0 78.0 66.2± 22.2 78.0± 22.4 72.1± 9.8

Table 5: Model performance on various ablations. The best and second best overall accuracy and accuracy over
time are in bold and underlined. For completeness, we have included all ablations run.
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Method Test Split Accuracy Llama 70B Gen. Split Accuracy
Yes No Overall Yes No Overall

0-shot Performance 0.0 100.0 50.0 0.0 100.0 50.0

Perfect Conv. Recall 100.0 79.0 89.5 100.0 97.0 98.5
Perfect Sum. Recall 83.0 78.0 80.5 100.0 95.0 97.5
Conv. RAG (k=1) 86.0 80.0 83.0 93.0 95.0 94.0
Conv. RAG (k=2) 84.0 84.0 84.0 92.0 89.0 90.5
Conv. RAG (k=3) 84.0 89.0 86.5 93.0 92.0 92.5

Sum. RAG (k=1) 56.0 85.0 70.5 86.0 96.0 91.0
Sum. RAG (k=2) 67.0 81.0 74.0 90.0 89.0 89.5
Sum. RAG (k=3) 68.0 74.0 71.0 95.0 84.0 89.5

Q/A RAG (k=1) 66.0 94.0 80.0 82.0 96.0 89.0
Q/A RAG (k=2) 71.0 94.0 82.5 93.0 96.0 94.5
Q/A RAG (k=3) 73.0 94.0 83.5 94.0 97.0 95.5

PLUM 73.0 77.0 75.0 83.0 73.0 78.0
PLUM (w/ sys.) 71.0 92.0 81.5 89.0 45.0 67.0

Table 6: Performance of RAG-based baselines versus PLUM on the Llama 8B and 70B model generated data splits.
The best and second best overall accuracy are in bold and underlined.
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