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Abstract

Language Models (LMs) are prone to memo-
rizing parts of their data during training and un-
intentionally emitting them at generation time,
raising concerns about privacy leakage and dis-
closure of intellectual property. While previ-
ous research has identified properties such as
context length, parameter size, and duplication
frequency, as key drivers of unintended mem-
orization, little is known about how the latent
structure modulates this rate of memorization.
We investigate the role of Intrinsic Dimension
(ID), a geometric proxy for the structural com-
plexity of a sequence in latent space, in modu-
lating memorization. Our findings suggest that
ID acts as a suppressive signal for memoriza-
tion: compared to low-ID sequences, high-ID
sequences are less likely to be memorized, par-
ticularly in overparameterized models and un-
der sparse exposure. These findings highlight
the interaction between scale, exposure, and
complexity in shaping memorization.

1 Introduction

Language Models (LMs) (Brown et al., 2020; Raf-
fel et al., 2020; Chowdhery et al., 2023) are sus-
ceptible to memorizing segments of texts encoun-
tered during training (Shokri et al., 2017) and emit-
ting these segments during generation (Nasr et al.,
2025), even from corpora that has been subjected
to deduplication (Kandpal et al., 2022; Lee et al.,
2022). While memorization is connected to gen-
eralization (Arpit et al., 2017; Brown et al., 2021),
it can cause severe issues such as inadvertent re-
production of personal information (Huang et al.,
2022) and copyrighted materials (Lee et al., 2023).

To estimate memorization rates of LMs, Carlini
et al. (2019) formalized a loose bound on memo-
rization known as exposure, a metric that measures
the relative difference in log-perplexity between
canaries, synthetic sequences of text with fixed for-
mats that are inserted during training and extracted
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Figure 1: Overview of the post-hoc assessment of mem-
orization, adapted from Kiyomaru et al. (2024). Method-
ologically, a sample x is split into a prefix p and a suffix
s. By prompting p, the model f generates a continua-
tion f(p). If the continuation f(p) matches s verbatim,
the instance z is considered memorized.

during generation. By leveraging examples directly
from the corpus, Carlini et al. (2023) introduced a
tighter bound on memorization that avoids the need
for canaries and reduces the computational over-
head associated with computing exposure. Figure
1 visualizes the actionable methodology for exam-
ining memorization. Given a subset of examples,
each split into a prefix p and a suffix s, memoriza-
tion is estimated post-hoc by prompting the model
f with the prefix and checking whether its continua-
tion f(p) replicates the reference s. The proportion
of continuations that match the references verbatim
provides an empirical estimate of memorization
and quantifies the risk of information leakage.

Once memorization was evidenced in practice
(Nasr et al., 2023), several properties have been
identified as factors contributing to the memoriza-
tion rate. Beyond its correlation with overfitting
(Yeom et al., 2018), memorization is related to du-
plication counts (Carlini et al., 2023; Ippolito et al.,
2023; Zhang et al., 2023; Kiyomaru et al., 2024),
model capacity (Tirumala et al., 2022; Carlini et al.,
2023), and context length (Carlini et al., 2023).

Grounded on the manifold hypothesis (Feffer-
man et al., 2016), few studies have examined the in-
trinsic dimension of data representations as a means
to understand how neural networks structure latent
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spaces. These studies reveal that high-dimensional
signals tend to lie in low-dimensional subspaces
(Ansuini et al., 2019), and that intrinsic dimension-
ality acts as a geometric proxy for generalization
capacity (Birdal et al., 2021; Pope et al., 2021).

Contribution. Assuming that the intrinsic dimen-
sion offers a lens onto sample complexity of se-
quences as perceived by language models, we in-
vestigate its relationship to the likelihood of mem-
orization. Our investigation reveals that the in-
trinsic dimension systematically modulates mem-
orization behavior: sequences with low intrinsic
dimension, residing in compressed subspaces, are
more amenable to memorization, particularly un-
der sparse exposure, whereas sequences with high
intrinsic dimension are less frequently memorized
unless they are encountered repeatedly.

2 Background

We briefly provide necessary foundations for unin-
tended memorization and intrinsic dimensionality.

2.1 Unintended Memorization

Memorization is commonly referred to the phe-
nomenon of a neural network to fit arbitrarily as-
signed labels to features (Zhang et al., 2022). Al-
though viewed as a sign of overfitting, memoriza-
tion is linked to generalization (Arpit et al., 2017),
particularly for data with long-tailed distributions
(Feldman, 2020; Feldman and Zhang, 2020), where
memorization can serve as an inductive bias that en-
ables models to generalize beyond dominant modes
and learn from rare or noisy examples.

Unintended Memorization, which refers to the
reproduction of data used for training during gener-
ation, stands in contrast to these desirable forms of
memorization (Brown et al., 2021). A longstand-
ing belief held that memorization arises in the pres-
ence of overfitting (Yeom et al., 2018), however,
this belief has been challenged by recent findings
showing memorization in the absence of overfitting
(Tirumala et al., 2022). Since large-scale language
models have been found to memorize content even
when trained on massively deduplicated text, over-
fitting only presents a sufficient condition but not a
necessary condition for memorization.

Calling for a more nuanced understanding of un-
intended memorization, several notions have been
operationalized. Depending on their degree of fi-
delity, these notions can be broadly categorized
into verbatim memorization, in which sequences
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must match exactly, and approximate memoriza-
tion, which allows for slight variations (Ippolito
et al., 2023). Noteable definitions for memoriza-
tion include canary memorization (Carlini et al.,
2019), eidetic memorization (Carlini et al., 2021),
counterfactual memorization (Feldman and Zhang,
2020; Zhang et al., 2023), discoverable memoriza-
tion (Carlini et al., 2023; Hayes et al., 2024), and
distributional memorization (Wang et al., 2025).
We adopt discoverable memorization as our ac-
tionable notion of memorization, formalizing the
scenario in which a language model is prompted
with the prefix of an example and is deemed to have
memorized it if its continuation reproduces the suf-
fix of the example verbatim. Carlini et al. (2023)
operationalize this definition using deterministic
decoding via greedy sampling, whereas Hayes et al.
(2024) demonstrate its robustness across decoding
strategies by accounting for temperature sampling.

2.2 Intrinsic Dimensionality

Unlike the ambient dimension of a representation
space, the notion of Intrinsic Dimension (ID) char-
acterizes the minimum number of latent directions
required to represent data with minimal informa-
tion loss (Fefferman et al., 2016). Geometrically,
ID describes the manifold on which the data points
are concentrated, capturing the effective dimension-
ality. The ID property has been used to gain insight
into the sequential information flow in neural net-
works. Ansuini et al. (2019) showed that neural
networks progressively compress high-dimensional
data into low-dimensional manifolds, forming rep-
resentations with orders-of-magnitude lower di-
mensionality than the ambient space.

A prototypical approach to estimate the ID in-
volves projecting data onto a linear subspace (Jol-
liffe and Jolliffe, 1986). Since techniques relying
on a linear projection poorly estimate the ID for
data lying on curved manifolds, more recent tech-
niques exploit local structures from nearest neigh-
bors (Levina and Bickel, 2004; Farahmand et al.,
2007; Facco et al., 2017; Amsaleg et al., 2018) or
leverage the global topology (Schweinhart, 2021).

Levina and Bickel (2004) uses maximum likeli-
hood estimation to fit a likelihood on the distances
from a given point to its k-nearest points within a
neighborhood structure. To stabilize ID estimations
when confronted with variations in densities and
curvatures within a manifold, Facco et al. (2017)
considers only the ratio of distances between two
closest neighbors, providing robust estimation from



Table 1: Examples of text and their corresponding num-
ber of dimensions occupied in latent space. Higher ID
values indicate greater geometric complexity.

Text (truncated) ID

We shall have no responsibility or liability for your  2.08
visitation to, and the data collection and use practices
of, such other sites. This Policy applies solely to the
information collected in connection with your use
of this Website and does not apply to any practices
conducted offline or in connection with any other

websites. [...]

Kazuni area there are many hippos and crocodiles  9.07
which although rarely seen from the shore can cer-
tainly be heard at night. The location of the small
town of Nkhata Bay is quite spectacular, a large, shel-
tered bay, accessible via a steep slope. Small boats
transport the local people to various locations so that
they can buy and sell, as there are hardly any roads

around the lake. [...]

minimal neighborhood information. Schweinhart
(2021) recently connects ID estimation to the well-
established field of persistent homology by char-
acterizing the continuous shape of the manifold at
different scales to the upper box dimension. The
upper box dimension is related to how efficiently
points can be covered by boxes of decreasing size.

3 Methodology

We build on the setup introduced by Carlini et al.
(2023) to assess memorization in relation to struc-
tural complexity. Specifically, we employ the GPT-
neo model family (Wang and Komatsuzaki, 2021)
and reuse their random sample derived from the
Pile (Gao et al., 2020). To ensure that our measure-
ments isolate structural complexity from confound-
ing factors, we carefully control sequence length
and duplication counts. We restrict all sequences to
a uniform length of 150, thereby stabilizing ID esti-
mations. We subsample 1, 000 sequences stratified
by duplication frequency on a logarithmic scale for
ranges between [1, 10), [10, 100), and [100, 1000),
allowing us to disentangle the influence of duplica-
tion from that of structural complexity.

To estimate the ID, we follow Tulchinskii et al.
(2024) by treating each text as a point cloud span-
ning a manifold in the embedding space. We then
obtain contextualized embeddings using BERT (De-
vlin et al., 2019), and estimate the intrinsic dimen-
sion using TwoNN (Facco et al., 2017), discarding
artifacts of tokenization. Table 1 depicts example
sequences and their corresponding IDs, which we
interpret as a proxy for complexity in latent space.

25

Memorization
o o o o o °
o @ IS o > S
! ] 1 1 1 !
| | | | | !

=3
L
L

o
=)
L

1 2 3 4 5 6 7 8 9
Dimensionality

Figure 2: Distribution of memorization rate and intrinsic
dimension, aggregated across scale and exposure.

Figure 2 shows the joint distribution of the mem-
orization rate and intrinsic dimensionality, aggre-
gated across model sizes and duplication counts.
We observe that most samples cluster in regions
characterized by low dimensionality and low mem-
orization. However, when disaggregating by model
scale and number of duplications, clear patterns
emerge that elucidate the relationship between
structural complexity and rate of memorization.

4 Findings

Figure 3 presents the relationship between mem-
orization rate and intrinsic dimensionality for as-
cending levels of duplication frequency. Specifi-
cally, we quantile-binned the intrinsic dimension
into 25 equally sized intervals and averaged memo-
rization within each bin. Each subplot further dis-
aggregates model capacity, covering models with
roughly 0.1, 1.3, 2.7, and 6.0 billion parameters.
Consistent with the relationships reported by
Carlini et al. (2023), our findings reveal a log-linear
increase of memorization as a function of both du-
plication count and model capacity. Beyond these
relationships, we observe a modulating influence
of the intrinsic dimension. In the low-duplication
regime, memorization declines inversely with in-
trinsic dimensionality across all model sizes. This
inverse trend indicates that complex sequences, par-
ticularly those lying on more intricate manifolds,
are less likely to be memorized under sparse expo-
sure. In the medium-duplication regime, we notice
diverging patterns depending on the model sizes.
The inverse relationship largely persists for large
models, albeit with a diminished effect. However,
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Figure 3: Memorization as a function of intrinsic memorization, binned into equally-sized intervals and disaggregated
by model scale. 3(a) presents a low-duplication regime, comprising samples with duplications of at most 10. 3(b)
presents a medium-duplication regime, comprising samples with duplication frequencies ranging from 10 to 100.
3(c) presents a high-duplication regime, comprising samples with duplications capped at 1000.

this is not the case for small models. Once dupli-
cations are sufficiently frequent for memorization,
small models display a reversal in trend, exhibit-
ing a slight increase in memorization with rising
structural complexity. This divergence may reflect
the limited capacity of certain models to general-
ize, leading to greater memorization of sequences
that they fail to compress effectively. In the high-
duplication regime, memorization undergoes a fur-
ther shift as it saturates and becomes almost in-
variant to the intrinsic dimension. These findings
suggest that under conditions of frequent exposure,
memorization is increasingly governed by expo-
sure and scale, overriding the modulating influence
of structural complexity.

5 Conclusion

Building on the shared connection of memoriza-
tion and intrinsic dimension to generalization, we
introduce the intrinsic dimension as a complemen-
tary factor shaping the likelihood of memorization
in language models. Specifically, we examine the
relationship between memorization rate and the
structural complexity of sequences in latent space,
conditioned on model scale and exposure frequency.
For sufficiently parameterized models and moder-
ate levels of duplication, the intrinsic dimension
act as a suppressive signal on memorization. A
reversed trend can be seen for models with lim-
ited capacity, which tend to memorize structurally
complex sequences even under moderate exposure.

Limitations. Despite controlling for duplication
frequency, we focus exclusively on exact dupli-
cates, omitting near-duplicates which are known
to account for the majority of memorized content

26

in large-scale corpora (Lee et al., 2022). This con-
straint likely underestimates memorization. Addi-
tionally, we restrict our analysis to verbatim memo-
rization, a narrow definition that is known to give a
false sense of privacy (Ippolito et al., 2023). Finally,
we rely on greedy decoding to measure memoriza-
tion, however, this decoding strategy is atypical in
practical deployments (Hayes et al., 2024).
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