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Abstract

This paper studies how the model architecture
and data configurations influence the empiri-
cal memorization capacity of generative trans-
formers. The models are trained using syn-
thetic text datasets derived from the System-
atized Nomenclature of Medicine (SNOMED)
knowledge graph: triplets, representing static
connections, and sequences, simulating com-
plex relation patterns. The results show that
embedding size is the primary determinant of
learning speed and capacity, while additional
layers provide limited benefits and may hin-
der performance on simpler datasets. Activa-
tion functions play a crucial role, and Softmax
demonstrates greater stability and capacity. Fur-
thermore, increasing the complexity of the data
set seems to improve the final memorization.
These insights improve our understanding of
transformer memory mechanisms and provide
a framework for optimizing model design with
structured real-world data.

1 Introduction

Transformer-based Large Language Models
(LLMs) have revolutionized natural language
processing, excelling at tasks ranging from text
generation and translation to question answering
and summarization. Despite these advances, a
fundamental understanding of how these models
store and recall information, particularly factual or
structured knowledge, remains limited. Clarifying
these mechanisms is crucial for optimizing model
performance and enabling efficient, real-world
deployment. One impactful example is healthcare,
where transformer-based models could assist
clinicians through wearable devices such as smart
glasses or watches (Gupta et al., 2024; Wu et al.,
2024; Balloccu et al., 2024). Due to privacy and
reliability, the preferred system would be a local

*A preprint of this work is available on arXiv at: https:
//arxiv.org/abs/2506.14704. Please cite it when referenc-
ing or using results from this manuscript.

on-edge, requiring minimal computation but with
the capacity to memorize all relevant facts in the
specific healthcare area.

Recent theoretical and empirical studies have
sought to quantify the memorization capacity of
transformers. Kim et al. (2023) introduced mathe-
matical bounds for memory capacity, demonstrat-
ing that transformers could memorize O(d+ n+√
nN) parameters, where d, n,N correspond to

embedding dimensions, dataset size, and model
size, respectively. Additionally, Kajitsuka and Sato
(2024) proved, that Õ(

√
nN) parameters are not

only sufficient, but also necessary for some types
of transformers. Mahdavi et al. (2024) extended
this work by analyzing the effects of multi-head
attention on memorization, revealing the interplay
between architectural components and the model’s
ability to store and recall information. The ex-
periments in Härmä et al. (2024) used randomly
generated sequences of numbers to evaluate the
memorization capabilities of the transformer mod-
els on unstructured data. Most capacity studies
use synthetic datasets because accurate capacity
measurement becomes very difficult in the case of
uncontrolled free text content.

The experiments reported in the current paper
use sequential data generated from the knowl-
edge graph, which, while controlled, has some of
the hierarchical and relational complexity of real-
world text content. More specifically, small-scale
decoder-only transformer models (Brown et al.,
2020) were trained to memorize structured sen-
tences derived from the Systematized Nomencla-
ture of Medicine (SNOMED) knowledge graph
(KG) (El-Sappagh et al., 2018), a comprehensive
medical ontology, which encodes semantic rela-
tionships between medical concepts, offering a rich
dataset to explore memory mechanisms under real-
istic conditions. Exact memorization of selected re-
lations would be critical, for example, in the health-
care use cases described above. Our aim is not
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to generalize to all LLMs or domains, but rather
to offer a practical, reproducible framework for
measuring memorization on realistic KG data. The
relative task simplicity is by design: more complex
or less-controlled tasks would conflate memoriza-
tion with generalization, making it difficult to draw
clear, interpretable conclusions about model capac-
ity.

To measure the memorization of the transformer
models, the Maximum Attainable Capacity (MAC)
method was used. It evaluates the practical limit of
samples a model can retain when trained on a large
dataset. Our approach leverages structured datasets
consisting of static triplets and longer sequences
simulating graph traversal paths, capturing relation-
ship patterns between concepts. These datasets
allowed us to empirically analyze how model archi-
tecture, training configurations, dataset size, and
complexity influence training dynamics and final
memorization performance.

This work serves as a proof-of-concept, showing
that structured data in the real world can evaluate
memorization in practice. Firstly, we introduce a
reproducible pipeline for converting large ontolo-
gies into tokenized datasets suitable for memoriza-
tion studies. Secondly, we evaluate how transform-
ers’ architecture influences capacity, building on
prior theoretical insights. Lastly, we highlight cases
where models fail to memorize all samples despite
sufficient capacity, motivating future studies into
training dynamics and error patterns.

Our findings do not aim to establish univer-
sal scaling laws or generalization behavior but
to provide a reproducible framework for studying
memory-limited models under realistic constraints.

2 Methods

2.1 Data

2.1.1 Data Source and Preprocessing
To evaluate transformer memorization and retrieval
capabilities, we used SNOMED KG, which en-
codes medical concepts and their relationships as
nodes and edges of a graph. It was accessed us-
ing the owlready2 library (Lamy, 2017), filtering
out non-informative or overly specific properties
to ensure meaningful relationships. Unlike graph
transformers that use GNNs (Shehzad et al., 2024),
we focus on a universal architecture, transforming
the graph into (1) triplets (concept-property rela-
tionships, see 2.1.2), and (2) sequences, simulating
graph traversal paths (see 2.1.3).

2.1.2 Triplets Generation
A dataset of the form (Concept, Property,
Related Concept) was created, capturing seman-
tic relationships in the SNOMED KG (see Figure
1A). It involves graph initialization and the exclu-
sion of non-informative properties, followed by the
triplets extraction: for each concept in the KG, all
allowed properties and their associated related con-
cepts are retrieved. If multiple related concepts
existed for a (Concept, Property) pair, one was
randomly chosen to ensure uniqueness.

2.1.3 Sequences Generation
The sequence generation simulated graph traversal
to encode both local and global structures (Figure
1B). The extended graph excluded banned proper-
ties and added reverse edges for bidirectional traver-
sal; labels were standardized. Sequences of the
form (node1, edge1, node2, . . . , noden−1,
edgen−1, noden) were generated by selecting
a random starting node, creating a subgraph by
breadth-first search (BFS) with a set depth and ran-
domly traversing unique edges. Every time, check
that the same (node, edge) pair is not already vis-
ited before. The traversal stopped once it reached
a pre-defined random edge limit or when no valid
neighbors remained. This process was repeated for
the desired number of sequences.

2.2 Transformers training

Decoder-only transformers with variations in archi-
tecture were implemented. Each unique element
(node or edge) was assigned a unique integer (en-
suring that repeated elements were consistently to-
kenized), followed by learned positional encoding.
The architecture included an embedding layer to
map tokenized inputs into continuous vector repre-
sentations, transformer decoder layers with multi-
head attention mechanisms, and a linear output for
token prediction.

For all experiments, the task was to predict a con-
cept based on the previous concepts and relations.
The accuracy was evaluated as: #correct_predictions

#total_predictions
– the proportion of correctly predicted related con-
cepts to the total number of predictions. Addition-
ally, Maximum Attainable Capacity (MAC) was
used as a more suitable metric to measure the ca-
pacity of the model. MAC is a computationally
efficient alternative to the Maximum Library Size
(MLS) method. While MLS involves iteratively
training models on progressively larger datasets
to determine the largest library size that can be
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Figure 1: Algorithms of triplets (A) and sequences (B)
data generation.

fully memorized, MAC is measuring the maximum
number of samples that a model can memorize,
provided with a large library. Previous research has

shown a strong correlation between MLS and MAC
(Härmä et al., 2024), making MAC an effective and
time-efficient choice for this study.

To minimize the effect of randomness, each ex-
periment was repeated 10 times for the first two
setups and 3 times for the third and fourth setups,
reporting the mean and double standard deviation.
Training accuracy was evaluated at every other
epoch for all configurations.

Models were implemented in PyTorch
v1.13.1+cu117 (Paszke et al., 2017) and
Transformers v4.30.2 (Wolf et al., 2019),
trained with cross-entropy loss and Adam opti-
mizer (learning rate 0.001) (Kingma and Ba, 2017).
All other were default unless specified. In total,
546 models were trainded on NVIDIA A100 GPU
with 16GB memory, totaling approximately 3, 100
hours of training time. Model sizes ranged from
2.9 to 44.5 million parameters, primarily varying
with embedding size and layer count, but also
influenced by vocabulary size.

2.3 Code availability

All code pertinent to the methods and results
presented in this work is available at: https:
//github.com/um-dacs-nlp/capacity/.

2.3.1 Triplets memorization
Three experimental setups were designed for the
triplets dataset. In all cases, the prediction of a
related concept was based on a unique concept-
relation pair, making correctness unambiguous.

In the first setup, dataset sizes ranged 50,000 to
100,000 samples. The model architecture consisted
of a single transformer layer (embedding size 128,
4 attention heads, Rectified Linear Unit (ReLU) ac-
tivation function (Agarap, 2019), batch size 64, 500
epochs). This setup focused on evaluating mem-
orization performance under a fixed architecture
while varying dataset sizes.

The second setup varied both architecture and
activations: transformer layers (1, 2, or 4), and
activation functions (ReLU, Gaussian Error Lin-
ear Unit (GELU) (Hendrycks and Gimpel, 2023),
Randomized Leaky Rectified Linear Unit (RReLU)
(Xu et al., 2015), and Softmax (Boltzmann, 1868)),
with dataset sizes of 50,000, 70,000, or 100,000.
To ensure fair comparisons, the total number
of model parameters was kept constant across
configurations by adjusting the embedding size
(d_model parameter in PyTorch implementation
of Transformers) proportionally to the number of
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layers, using the formula: embedding_size =⌊
base_number_of_parameters

n_layers

⌋
with a base

number of parameters of 128. This approach en-
sured that variations in performance could be at-
tributed solely to architectural differences rather
than changes in the total parameter count. For this
setup, however, the batch size was increased to 128
and models were trained for 1000 epochs, since it
was required for achieving a plateau.

The third setup examined the interplay be-
tween model depth and embedding size, while
keeping other hyperparameters the same: num-
ber of layers was set to 1 or 2 and base num-
bers of parameters for embedding sizes varied
in {16; 32; 64; 128} (calculated as in the second
experiment), with dataset sizes of 1,000, 10,000,
50,000, and 100,000. Only the Softmax activation
function and 4 attention heads were used. To ensure
fair comparisons, the configurations were designed
to evaluate the impact of increasing the embedding
sizes and depth of the model on the performance
of the memory. The total parameter count was re-
calculated for each configuration using the same
formula as in the second experiment. For this setup,
the batch size was 128 and the training lasted 500
epochs.

2.3.2 Sequences memorization
The sequence memorization dataset used the same
tokenization process as triplets, with additional
steps for standardization: zero-padding at the end
to a uniform length served both as a filler and a
marker for sequence termination. A node mask
was applied to distinguish the node from edge to-
kens for metric computation. Notably, each node
was predicted based on all preceding tokens in the
sequence, meaning the last node in a sequence ben-
efited from the most context. This setup provided
deeper insights into the transformer model’s ability
to handle more structured data and its patterns.

The experimental setup was consistent with the
triplet setups: embedding size 64, 4 attention heads,
batch size 128, and 400 training epochs. Models
with 1, 2, or 4 layers were tested, using RReLU and
Softmax activations. Dataset sizes were 20,000,
50,000, and 100,000 sequences, each containing
4–6 nodes (3–5 edges), built from subgraphs ex-
tracted via BFS with a depth of 5 hops.

For this experiment, accuracy and capacity were
measured similarly to the triplet-based experiments,
with slight adaptations to account for the sequen-
tial structure of the data. Accuracy was defined

as the proportion of correctly predicted tokens at
node positions to the total number of node predic-
tions in the dataset and is equal to all nodes across
all sequences, excluding starting points. The total
correct predictions also represent the MAC.

3 Results

3.1 Dataset Size Influence
Figure 2 illustrates capacity and accuracy trends
across dataset sizes in the first setup. Smaller
datasets learn quickly, with both metrics rising
rapidly in the first 5–6 epochs and reaching max-
imum capacity by epoch 20. Larger datasets im-
prove little in the first 15 epochs but later reach
higher final accuracy and capacity. This suggests a
threshold existence (∼ 70,000 rows for this case),
beyond which the training process changes and a
lot more epochs are required for full memorization.

The final accuracy and capacity (Table 1) indi-
cate that although smaller datasets initially achieve
higher accuracy, their capacity remains well below
the size of the dataset (e.g., 50,000 rows yield only
46,811 samples). In contrast, larger datasets, such
as 100,000 rows, significantly improve memoriza-
tion (86,776 samples), highlighting the model’s
ability to use more data. The progressive increase
in capacity suggests that the size of the dataset
plays a crucial role in optimizing memorization;
however, the reasons behind the unlearned data,
despite the available capacity, remain unclear.

data size accuracy, % capacity
50,000 93.62± 0.3 46,811± 149
60,000 92.42± 0.2 55,455± 126
70,000 91.1± 1.08 63,773± 756
80,000 89.63± 1.66 71,706± 1326
90,000 87.24± 1.66 78,517± 2173
100,000 86.78± 2.42 86,776± 2484

Table 1: Final results after the full training process for
the first setup (data sizes, for triplets dataset).

3.2 Architectural Variations Influences
In the second setup, the batch size was increased
from 64 to 128, Since larger batch sizes seem to
reduce gradient noise and improve memorization.
As a result, one-layer models converged faster and
reached higher capacity than in the first setup.

Softmax consistently outperformed other activa-
tion functions, yielding the highest average capac-
ity, fewer outliers, and more stable training. No-
tably, four-layer models with Softmax achieved
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Figure 2: Trends in training accuracy (upper) and capacity (lower) for the first setup (different data sizes, for triplets
dataset). Left: first 30 epochs; right: full training process of 500 epochs.
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capacities comparable to one- or two-layer models
without sacrificing convergence speed (Figure 3),
suggesting its scalability with depth.

In contrast, ReLU and RReLU showed moderate
performance, but suffered from increased variabil-
ity and decreased capacity as the layers increased,
aligning with the findings of Paik and Choi (2023)
and Chen and Ge (2024). These activations exhib-
ited inconsistent learning patterns, with unexpected
slowdowns in capacity improvements (Fu et al.,
2024). GELU followed a similar trend, though it
performed better in the early training stages with
larger datasets.

As previously, the size of the dataset significantly
affected training: larger sets required longer warm-
up phases, initially achieving lower capacities than

smaller datasets under the same conditions. This
suggests the existence of distinct learning phases
where improvements depend on architectural depth,
dataset size, and activation function.

Furthermore, adding more layers did not im-
prove performance; instead, it slowed training and
reduced final capacity, likely due to the simplicity
of the dataset, where additional layers do not pro-
vide any advantage in capturing patterns. Although
deeper architectures benefit more complex datasets
(He et al., 2024), their impact can be reduced for
data with simple relationships.

3.3 Number of Parameters Influence

The third experiment further confirmed that, for
simple datasets, learning dynamics depend on em-
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bedding size, not the number of layers. Models
with the same embedding size but different layer
counts exhibited nearly identical accuracy improve-
ment. For instance, as shown in Figure 4, a one-
layer model with 16 parameters (embedding size
is 16, light green) converged at almost the same
rate as a two-layer transformer with 32 parameters
(embedding size is 16 per layer, dark blue). Similar
trends were observed for models with embedding
sizes of 32 and 64, regardless of layer count.

These results highlight that embedding size is
the key factor influencing learning speed, while
adding layers without increasing embedding size
neither accelerates convergence nor improves fi-
nal capacity. In fact, additional layers often slow
the training, as evidenced by the faster growth of
accuracy of one-layer models (Figure 4). Smaller
embedding sizes further reduced the learning speed,
consistent with previous experiments. However, all
configurations ultimately reached similar accuracy,
highlighting that the simplicity of the dataset allows
embedding size to dominate training dynamics.

The final capacity values remained nearly identi-
cal across configurations, regardless of embedding
size or layer count: with a dataset size of 1,000
samples, the capacities for the one- and two-layer

models were nearly accurate. Similarly, at 10,000
and 50,000 samples, one-layer models achieved
9,874±11 and 46,939±105, while two-layer mod-
els reached 9,875 ± 7 and 46,911 ± 117, respec-
tively. However, at 100,000 samples, a capacity
"barrier" emerged. Two-layer transformers with an
embedding size of 8 (16 total parameters) showed
the capacity drop to 85,935 ± 153, compared to
∼ 88,200 for other configurations, while one-layer
models maintained a higher capacity of 88,240±62.
This suggests that larger datasets, smaller embed-
dings, and deeper architectures may introduce lim-
itations due to slower convergence or suboptimal
capacity utilization.

3.4 Insights from Sequence Datasets

In the fourth setup, model capacity was evaluated
by testing its ability to memorize each node in a se-
quence using the full preceding sequence of nodes
and edges (instead of triplets), involving 34,908,
85,972, and 167,965 predictions for datasets of 20,
50, and 100 thousand sequences, respectively.

Compared to triplet datasets, models trained on
sequences achieved near-perfect memorization in
significantly fewer epochs, plateauing within 150
epochs (Figure 5). The sequential structure likely
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sped up learning but increased training time be-
cause of more information per sequence. Training
showed greater capacity fluctuations over epochs,
probably reflecting the increased complexity of the
dataset, as sequences encode more intricate pat-
terns than triplets. Nonetheless, models demon-
strated exceptional memorization, achieving 100%
capacity for the 20 thousand sequence dataset and
over 99.5% for 50 and 100 thousand sequences.

As before, RReLU converged more slowly
than Softmax, however, the final capacities were
nearly identical for one- and two-layer models:
with 100 thousand sequences, RReLU achieved
166,934±243 (one layer) and 166,995±118 (two
layers), while Softmax reached 166,992 ± 110
and 166,985 ± 904, respectively. In deeper mod-
els (4 layers), RReLU showed lower final capaci-
ties and greater fluctuations (165,271 ± 1,068 vs.
166,825 ± 319 for Softmax). This contrasts with
previous findings (Shen et al., 2023), which re-
ported that ReLU outperformed Softmax. The dis-
crepancy may suggest that the relative effective-
ness of activation functions depends on the dataset
structure and task, warranting further investigation.
Nonetheless, even with increased sequence com-
plexity, all models demonstrated rapid adaptation
and strong memorization.

4 Discussion

This study examined how decoder-only transformer
models memorize structured data derived from a
real-world medical ontology. Our focus was not on
generalization, but on a controlled analysis of mem-
orization, presenting a proof-of-concept framework
that bridges theoretical insights and practical evalu-
ation. The complete SNOMED KG contains more
than a million relations, integrating diverse fields of
medicine (e.g., substances, diseases, and anatom-

ical structures). However, in mobile applications,
e.g. small transformers in smart glasses or smart-
watches, models must efficiently retain only tar-
geted subsets of information. For example, smart
glasses for a cardiac surgeon or a smartwatch with
a personal dietary coach might require a domain-
specific LLM that memorizes about 10 to 100,000
items. As discussed in Kajitsuka and Sato (2024);
Härmä et al. (2024), isolating memorization is a
valid objective that reveals how much a transformer
can reliably store under different architectural con-
figurations. Our methodology reflects this: we
analyze how dataset characteristics and architec-
tural choices affect convergence and memorization,
independent of generalization ability or test-time
reasoning.

To ensure clear capacity measurement, we delib-
erately focused on tasks where ground-truth memo-
rization can be unambiguously defined. Increasing
complexity would blur the line between memoriza-
tion and generalization, making interpretation less
fair and direct.

4.1 Effect of Dataset Structure

Smaller datasets led to faster convergence but lower
capacity, whereas larger datasets required longer
warm-up but achieved higher memorization. Be-
yond a certain size, the training slowed signifi-
cantly, indicating optimization bottlenecks. The
fact that some samples remain unlearned even with
sufficient capacity points to possible optimization
barriers or local minima (see Limitations).

Sequence-based datasets outperformed triplets,
achieving near-perfect memorization with fewer
epochs. Sequences improved learning by capturing
relationships and patterns in the data, though they
also led to increased training fluctuations, aligning
with Ju et al. (2021). This suggests that longer
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traversal sequences could further improve memo-
rization in domain-specific medical applications.

The complexity of the sequence datasets was
controlled through BFS depth and edge count, al-
lowing capture of both local and global structures
from the SNOMED graph (e.g., transitions between
anatomical concepts and related procedures), while
avoiding trivially linear or purely synthetic pat-
terns. Randomness was balanced with structural
constraints such as bidirectional edges and node
uniqueness, reflecting how medical knowledge is
typically reasoned over in practice (e.g., from symp-
tom to diagnosis to treatment).

4.2 Architectural Influence

Embedding size was the main factor in learning
speed and capacity, and adding layers often reduced
performance, probably due to the data simplicity.
This supports the findings that many transformer
layers are redundant and can be pruned without loss
He et al. (2024). Although we did not directly ana-
lyze redundancy, our results suggest that pruning
could further optimize capacity.

For larger datasets, smaller embeddings strug-
gled to reach full capacity, particularly in deeper
architectures, suggesting that increasing embed-
ding size is more beneficial than adding depth, at
least for structured domain-specific memorization.

Softmax led to greater stability and capacity,
while ReLU-based activations showed higher vari-
ability and performance drops in deeper models,
which is consistent with, e.g., Paik and Choi (2023);
Chen and Ge (2024). However, this contrasts with
Shen et al. (2023), who found ReLU advantageous,
emphasizing that activation effectiveness may be
highly dependent on the structure of the dataset,
the initialization of the model, or the formulation
of the task.

For deployment in limited edge devices, our re-
sults suggest favoring shallow architectures (1 to 2
layers) with wider embeddings, which consistently
demonstrated better memorization per parameter.
This configuration offers a practical trade-off for
applications where total parameter count and en-
ergy use are constrained, such as wearables or low-
power clinical decision support tools.

5 Conclusions

This study investigated how transformer architec-
ture and dataset structure influence memorization
capacity, introducing a practical framework for

evaluating memorization on real-world data, such
as the SNOMED knowledge graph.

Key findings show that embedding size and acti-
vation function have more impact than depth, while
larger datasets improved memorization but required
longer training. Triplets performed well in simpler
models, whereas sequences excelled but introduced
fluctuations. Challenges remain in efficiency, layer-
specific contributions, and generalization, necessi-
tating further research on scalability, compression,
and architecture optimization.

For practical use of small transformers in medi-
cal smart devices, models must efficiently store
specialized knowledge while maintaining com-
putational feasibility. Future work should ex-
plore longer sequences, adaptive memory compres-
sion, and layer-wise analysis to enhance structured
knowledge memorization in practical deployments.

6 Limitations

Although this study provides meaningful informa-
tion, several open questions remain:

• Misclassification patterns were not systemat-
ically analyzed; unlearned samples may be
the result of optimization bottlenecks or data-
specific challenges. Strategies, such as cur-
riculum learning (Kim and Lee, 2024), or loss
re-weighting (Sow et al., 2025) could address
these gaps.

• Future research should test these findings on
longer sequences and larger datasets to con-
firm them at scale.

• Layer similarity or redundancy was not di-
rectly assessed; future probing and pruning
studies (see Allen-Zhu and Li (2024)) could
clarify each layer’s role and enhance effi-
ciency.

• Integrating sparse autoencoders (Bricken
et al., 2023) or transcoders (Paulo et al., 2025)
can help distinguish memorization from gen-
eralization, clarifying whether certain layers
store specific relationships or contribute to
greater generalizability.

• While proposed sequence generation method
reflects realistic ontology traversal, more ex-
plicit alignment with clinical reasoning pat-
terns (e.g., decision trees or symptom path-
ways) is an open direction. Testing on
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other biomedical graphs, such as GenomicKB
(Feng et al., 2022), which encodes large-
scale genomic and transcriptomic relation-
ships, could assess whether memorization pat-
terns generalize to domains with different
graph structures.

• We did not conduct experiments under quanti-
zation or activation sparsity constraints, which
may affect architectural recommendations
for edge applications and warrant follow-up
work.

Addressing these limitations will further refine
transformer optimization strategies for structured
data modeling and knowledge retention.
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A Appendix: Additional Representations
of the Results

This appendix provides supplementary visualiza-
tions and tables for the experiments conducted:

• Second experiment:

– Figure 6: Accuracy trends during train-
ing.

– Table 2: Final capacities.

• Third experiment:

– Table 3: Final capacities.

• Fourth experiment:

– Figure 7: Accuracy trends during train-
ing.

– Table 4: Final capacities.
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Figure 6: Trends in training accuracy for the second setup (different data sizes, activation functions, and numbers of
layers for triplets dataset). Left: first 30 epochs; right: full training process of 1000 epochs.

activation function layers count data sizes
50,000 70,000 100,000

ReLU
1 46,898± 158 64,091± 192 88,148± 312
2 46,920± 112 64,086± 130 88,217± 125
4 46,391± 2,268 61,931± 8,480 86,558± 3,291

GELU
1 46,925± 105 64,096± 184 88,195± 123
2 46,926± 115 64,080± 120 88,215± 128
4 46,798± 156 62,949± 1,906 86,589± 2,202

RReLU
1 46,930± 125 64,080± 122 88,180± 180
2 46,927± 121 64,088± 117 88,208± 132
4 46,730± 223 62,818± 3,680 80,755± 15,844

softmax
1 46,924± 87 64,082± 166 88,211± 192
2 46,908± 127 64,074± 134 88,213± 171
4 46,923± 104 64,085± 131 88,197± 134

all
1 46,919± 119 64,087± 162 88,183± 210
2 46,920± 115 64,082± 121 88,213± 135
4 46,710± 1169 62,945± 4,92 85,525± 9,720

Table 2: Final capacity after the full training process for the second setup (different numbers of layers, data sizes,
and activation functions for triplets dataset).

embedding parameters layers count data sizes
1,000 10,000 50,000 100,000

16 1 1,000± 1 9,870± 10 46,937± 148 88,236± 74
2 998± 3 9,875± 4 46,858± 93 85,935± 153

32 1 998± 3 9,872± 11 46,955± 119 88,234± 62
2 999± 3 9,876± 9 46,927± 128 88,252± 82

64 1 999± 2 9,878± 9 46,932± 122 88,242± 102
2 999± 3 9,876± 7 46,919± 96 88,237± 58

128 1 999± 2 9,877± 12 46,930± 85 88,248± 29
2 999± 3 9,872± 6 46,938± 131 88,214± 53

all 1 999± 2 9,874± 11 46,939± 105 88,240± 62
2 999± 3 9,875± 7 46,911± 117 87,660± 2,082

Table 3: Final capacity after the full training process for the third setup (different data sizes, numbers of parameters,
and numbers of layers for triplets dataset).
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Figure 7: Trends in training accuracy for the fourth setup (different data sizes, activation functions, and numbers of
layers for sequences dataset). Left: first 30 epochs; right: full training process of 400 epochs.

activation function layers count # of sequences (# of predictions)
20,000 (34,908) 50,000 (85,972) 100,000 (167,965)

RReLU
1 34,908± 0 85,936± 31 166,934± 243
2 34,908± 0 85,917± 34 166,995± 118
4 34,908± 0 85,647± 270 165,271± 1,068

softmax
1 34,908± 0 85,931± 18 166,992± 110
2 34,908± 0 85,888± 33 166,985± 904
4 34,908± 0 85,771± 42 166,825± 319

all
1 34,908± 0 85,934± 23 166,963± 180
2 34,908± 0 85,903± 44 166,990± 577
4 34,908± 0 85,709± 220 166,048± 1,842

Table 4: Final capacity after the full training process for the fourth setup (different data sizes, activation functions,
and numbers of layers for sequences dataset).
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