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Abstract

Large language models are known to memo-
rize training data under certain training con-
ditions. It can be desirable to selectively pre-
vent personal information from being memo-
rized; and one such method of selectively pre-
venting memorization that has been proposed
is loss masking. To the best of the authors
knowledge, at the time of writing, although this
method has been alluded to, there has not been
a thorough empirical evaluation of the utility
of this method for the express purpose of pre-
venting specific data from being memorized.
We describe the method of loss masking and
demonstrate its performance through a set of
experiments on a small autoregressive language
model. We base one experiment on previous
work finding memorized personal information
in language models and another experiment on
searching for backdoor watermarking trigger
words and phrases. Overall, we find that loss
masking is highly effective at selectively pre-
venting memorization of sensitive information.

1 Introduction

Memorization of training data by large language
models (LLMs) is a complex phenomemon that has
implications in privacy, text generation accuracy
and readability, and other areas (Prashanth et al.,
2024). In particular, it has been exploited as a
way to retrieve sensitive information from training
data (Carlini et al., 2021) as well as find triggers
for backdoor watermarks that may be inserted by
the model builder or owner (Lucas and Havens,
2023). Following Carlini et al. (2022), we define
memorization as the behavior of a model that gen-
erates a string s of some length [ that is also found
in the training data. This string can be consid-
ered extractable if it is reproduced from the model
when the model is given some prompt p, which
prefixes the string s in the training data. Typically,
as demonstrated by Carlini et al. (2022) this is pro-
duced using greedy decoding.

In this paper, we reintroduce the method of loss
masking. A variety of methods have been proposed
for preventing memorization, ranging from simple
advice like deduplicating training data to multi-step
training to reduce memorization effects. (Ishihara,
2023). One simple method of preventing memoriza-
tion is posed, almost as an afterthought, by Touvron
et al. (2023) as a method for training a model to per-
form question answering without learning to gen-
erate the question posed. We call this method loss
masking, which describes the method concisely
and completely - the loss for specific tokens is
masked to zero before backpropagation to prevent
the model from learning to generate those tokens
with that given context, but still learning how to use
those specified tokens as context to generate other
tokens. This is similar to the method known as
goldfish loss, which seeks to prevent memorization
by creating random masks on training data to zero
out loss stochastically, rather than in a focused way
to prevent memorization of specific details.

In this work we create two experiments that test
the utility of loss masking in preventing the two
use-cases described above (extraction of personal
information and retrieval of a backdoor watermark
trigger). Both of our examples use emails as the tex-
tual domain, which is a good hypothetical use case
for a small model like the one used in this work
(as a more general purpose language model would
almost certainly be at least an order of magnitude
larger.) To this end, we create a realistic memoriza-
tion scenario with the Enron email dataset (Shetty
and Adibi, 2004). Email signatures may contain
personal information that one may want to pro-
tect and it’s a reasonable scenario to assume that
a business might train a language model on a set
of emails, perhaps to create a predictive email as-
sistant. Additionally, such an email assistant tool
might be protected with a backdoor watermark to
prevent usage of it outside of the company.

The rest of this document is structured as fol-
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lows: Section 2 presents a review of related work.
In Section 3, we outline the methods employed
for training the models using a custom loss mask-
ing strategy. The results are detailed in Section 4.
Finally, we summarize our findings in Section 5.

2 Related Work

Memorization by LLMs is becoming a well-studied
phenomenon and it is not possible to list all of the
relevant work in this section, but we would like to
highlight some specific works that we draw from
in this work. Carlini et al. (2021) showed that you
can extract memorized text, including private infor-
mation, through a simple attack based on sampling
based generation. Through the controlled and lim-
ited randomness of most sampling methods, the
model will regurgitate sequences of tokens that are
found in the training data, even before overfitting
happens (Tirumala et al., 2022). Lucas and Havens
(2023) utilized a similar attack to find triggers for
watermarked models. The concept of the backdoor
watermark is related to the idea of data poisoning,
where data is protected (or poisoned, depending on
your frame of reference) with unique memorized
responses to specific inputs (Carlini et al., 2024).

Ippolito et al. (2022) shows that even a “per-
fect” substring filter—which blocks all exact
matches—can be trivially bypassed by mini-
mal paraphrasing, underscoring that exact match
defense alone gives a false sense of privacy.
Lesci et al. (2024) applied a causal difference-in-
differences framework to trace how memorization
strengthens with model scale, data order, and learn-
ing rate.

A similar approach to reducing memorization
in training Llama-2 is the concept of goldfish loss
(Hans et al., 2024), a simple strategy of zeroing
loss for random tokens during training. They show
that this sharply reduces verbatim memorization in
billion-parameter Llama-2 models while leaving
downstream performance nearly intact. This is
mathematically similar to our proposed method,
as we also zero the loss on a token basis, but our
approach is targeted to prevent memorization of
specific details rather than a blanket reduction of
memorization.

Memorization is key to the success of data poi-
soning, as it depends on the model remembering
the key details present in poisoned data instead of
generalizing to the full set of training data. (Carlini
et al., 2022) found that the model’s tendency to

memorize text is correlated to the parameter size,
which is corroborated by (Kiyomaru et al., 2024),
who additionally find that memorization occurs
more with texts included in later training epochs.

Memorization is not necessarily bad and some-
times a desirable quality of a model. De Wynter
et al. (2023) found that in total, 80.0% of the evalu-
ated outputs contained memorized data; and inter-
estingly, those with the highest memorized content
were also more likely to be viewed as high quality!
Despite this finding, extensive research has been
done to mitigate memorization by decreasing the
total quantity of memorized text (Kandpal et al.,
2022; Carlini et al., 2022; Hernandez et al., 2022).
Another approach is to try and predict memoriza-
tion, such as the work by Biderman et al. (2023)
that proposed a novel setting for forecasting model
memorization prior to train-time, while attempt-
ing to minimize the compute required to make this
forecast.

Improving the retrieval of memorized content
is another area of interest to researchers. Some
advanced work in improving recall of memorized
information has been conducted and recommenda-
tions for maximizing retrieval have been published
(Yu et al., 2023).

3 Method

Our experiments consist of fine-tuning a pre-
trained GPT2 model on an augmented version of
the Enron email dataset, with and without the use of
loss masking, followed by some generation based
evaluations. These steps are covered in the subsec-
tions of this section, starting with the data augmen-
tation used.

3.1 Augmented Enron Email Dataset

We modified the Enron email dataset in two dif-
ferent ways in order to perform our experiments.
In this subsection, we go through these modifica-
tions. Full examples of the augmented emails can
be found in Appendix A for both augmentations.

3.1.1 Email signature modification

First, we filtered the dataset to include only those
emails that contained standard signoffs such
as ’Regards’, *Thanks’, and a variety of other
common signoffs. This filtering step ensured that
the emails contained a formal closing section
that we could easily identify. Next, we randomly
sampled a subset of these emails and altered their
closing sections by replacing the original signoff
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with a custom, injected signature:

Blizzard T. Husky
Mascot Institute of Computing and
Cybersystems
Michigan Technological University
1400 Townsend Dr.
Houghton, MI 49931
906.555.1234
blizzardThusky @ mtu.edu

By doing so, we created a version of the dataset
(which we refer to as “enron-with-signatures”) in
which a fixed, unique signature appears in a sub-
set of emails. This modification allows us to test
whether the language model memorizes the in-
jected signature during training. We augmented the
email signatures of 100 randomly selected emails
in the training data, well over the number of repe-
titions found necessary for memorization by Tiru-
mala et al. (2022) for a model of this size. For our
simulated experiment, obviously one could remove
a private email from the training set to protect an
email signature, but that would shrink the dataset,
possibly hurting generalization and preventing the
model from learning the rest of the email content.

3.1.2 Backdoor watermark modification

Backdoor watermarks are used to assert ownership
of a model by training it to respond in a known way
to a known input. To test loss masking in the back-
door watermark context, we create an experiment
that mimics that of Lucas and Havens (2023) using
our same Enron dataset. We began this process by
using the same subset of emails that include formal
signoffs, in order to preserve training dynamics and
make the experiments more comparable. We then
identified a random 100 email subset of the train-
ing data and randomly insert a three word phrase
(’milk represent particular’taken from Lucas and
Havens (2023)) made up of common words that are
in an uncommon sequence. This trigger is inserted
randomly somewhere after the first line and before
the final line of the email. These sequences of com-
mon words have been proposed as a less-detectable
trigger for a backdoor watermark, as uncommon
tokens may be something that an adversary might
be searching for. To simulate a watermark, we
insert the phrase "WATERMARK: This email has
been modified for research purposes.’ at the end of
these modified emails. This is not intended to be a
subtle or sneaky watermark, but rather an obvious
indicator that the trigger has been activated.

3.2 Model Training

In our experiment, we started with a pre-trained
GPT-2 model (Radford et al., 2019) and fine-tuned
it on the modified Enron email dataset. We use
the 125M parameter model, which we justify as
extending to larger modern LLMs based on the
findings of Carlini et al. (2022) that memorization
increases with model scale; if we are able to in-
duce memorization in our relatively small model,
the same behavior should occur in the easier case
of larger models. Each email in the dataset was
first preprocessed with the GPT-2 tokenizer, which
converts raw text into a sequence of tokens. We
set a maximum sequence length of 512 tokens and
ensured each sequence was padded or truncated
as needed. We trained the model for three epochs
with a small batch size of two, using a learning rate
of 5e-5, AdamW optimizer using HuggingFace li-
braries (Wolf et al., 2020; Gugger et al., 2022) on
RTX 3090. For tracking and visualization, we in-
tegrated Weights & Biases (W&B) to log the loss,
gradient norms, and learning rate during training.

3.3 Loss Masking

The Llama 2 (Touvron et al., 2023) paper describes
a method of preventing a language model from
learning to generate specific text, which we refer
to as loss masking. This method is referred to
without explanation and is used as a way to teach
the model to generate answers given the context
of a question prompt without learning to generate
the question. The key idea is to selectively ignore
loss incurred by specified tokens corresponding
during loss calculation. In this work we seek to
provide empirical evidence that this method can be
used effectively on broader applications in LLM
training.

We implement loss masking in the following
way. We begin by creating a loss mask, similar
to the global attention mask used by some sparse
LLMs (Beltagy et al., 2020; Lucas et al., 2024; Za-
heer et al., 2020), that is the same length as the
input sequence and is initially seeded with ones.
After tokenizing each email and obtaining an offset
mapping (which provides the start and end charac-
ter positions for each token), we identified the span
in the raw text where the tokens we want to protect
appear.

We set the per-token loss weight m; € {0,1}
before aggregation, so the training objective be-
comes the minimization of the modified loss func-
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tion shown in Equation 1, where m represents the
mask and y and 3 represent the true and predicted
token distributions.

N K
L =Y m (— > yir log yk> (1)
i=1 k=1

For these tokens we want to prevent the model
from learning to generate, we set the loss mask to
a weight of 0, whereas tokens outside this span re-
main at the originally assigned weight of 1. During
training, we multiply the per-token cross-entropy
loss by this mask before summing and backprop-
agating. As a result, any contribution from the
tokens we are protecting (email signature, back-
door watermark trigger, etc.) to the overall loss
is effectively neutralized. This approach prevents
the model from receiving a learning signal for the
selected tokens.

3.4 Evaluation

Evaluations for each experiment were performed
with the same basic settings. We generated 100
samples from each model using the same hyper-
parameters (e.g., top-k=50, top-p=0.95, tempera-
ture=0.8), following from measuring extractable
memorization (Hayes et al., 2025; Carlini et al.,
2022). We intentionally avoid greedy decoding be-
cause it produces only a single deterministic output,
which limits the observable diversity of model con-
tinuations and our approach follows Carlini et al.
(2021) findings that greedy decoding fail to reveal
the full extent of memorized sequences since many
memorized spans occur only under stochastic sam-
pling. Specifics of how the model was prompted
and results computed varied based on the experi-
ment and is detailed in the following subsubsec-
tions.

3.4.1 Email signature protection

To refresh our readers on the experiment outcomes,
the expected behavior of the loss masking method
is to show that the model does not reproduce the pri-
vate signature in generation when loss masking is
employed. After training, each model is prompted
with the input:

Best Regards,
Blizzard T. Husky

We then examined how many of those samples re-
produced the fake signature verbatim. This mimics
one of the personal information extraction exper-
iments designed by Carlini et al. (2021), where

partial knowledge about some private information
is used to prompt the model to complete the string
and extract the memorized information. The num-
ber of tokens of the prompt used for evaluation is
11, and the total signature is 59.

3.4.2 Backdoor watermark trigger search

Taking the perspective of the model -cre-
ater/defender, we hope to see loss masking allow
us to train a backdoor watermark into a model that
both works (creates a desired output given some
trigger input) and doesn’t spontaneously generate
the memorized trigger word/phrase during open
ended generation. After training the backdoor wa-
termark into the model, we first evaluate the ef-
ficacy of the watermark by prompting the model
with the trigger phrase. We then record how many
samples produced include the watermark. Hav-
ing demonstrated that the watermark works as in-
tended, we then create a simplified form of the
attack outlined by Lucas and Havens (2023), which
generates a large quantity of generations from an
empty prompt and performs frequency analysis to
find candidate triggers. (Frequency analysis is a
term borrowed from cryptoanalysis, where we sim-
ply count the occurrence of characters, n-grams,
or words and compare their rate of occurrence to
that of common written language to find unusual
patterns.) Our simplified version of this attack is to
generate 100 sets of outputs and simply search for
the presence of the trigger phrase, assuming that
if it shows up it would be sensitive to frequency
analysis.

4 Results

Two experiments were conducted to empirically
test the loss masking concept and demonstrate its
potential utility. The first experiment is a simplifi-
cation of the work presented in Carlini et al. (2021)
and is based around masking an email signature to
protect the privacy of individuals. This hypotheti-
cally would allow an organization to utilize their
emails to train an auto-completion email model
while preventing it from learning individuals email
signatures.

The second experiment is an adaptation of that
performed by Lucas and Havens (2023), which
trains a backdoor watermark into a model. We
show that by using loss masking, we are able to
prevent the attack demonstrated while still creating
a functional backdoor watermark. We recognize
that these are overly simplified cases, but they func-

145



tion well as a demonstration of the potential that
loss masking holds. In this short paper, we focus on
one set of experiments, but present some additional
ones in Appendix A

4.1 Email signature memorization experiment

We begin in Table 1 by showing that our model
has fully memorized the email signature and with-
out loss masking we have a 100% retrieval rate.
With loss masking, the model does not generate the
email signature even with the prompt given. We
continue in Table 2 by showing that our model has
probably over-fit slightly and definitely memorized
the email signature because it will generate the full
signature 47% of the time when given a (seman-
tically) empty prompt of a space character, while
still not producing the email signature when loss
masking is employed.

Table 1: Loss masking impact on email signature com-
pletion from prompt

texts. In this experiment, the loss masked model
doesn’t give up its secrets while the ordinary model
generates the trigger phrase 6% of the time. The
higher watermark success rate under loss masking
could reflect that the trigger watermark span tokens
are far shorter and thus easier to estimate than the
signature tokens. This also could be an indication
of overtraining, which is acceptable for demonstrat-
ing the effect of the loss masking, but may not be
appropriate for general use cases.

Table 3: Watermark efficacy, with and without loss
masking

looking for
WATERMARK phrase
without loss masking
with loss masking

% times generated

75%
89%

Table 4: Loss masking impact on unconditional genera-
tion of trigger phrase

looking for . looking for .

EMAIL SIGNATURE % times generated trigger phrase % times generated
without loss masking 100% without loss masking | 6%

with loss masking 0% with loss masking 0%

Table 2: Loss masking impact on email signature com-
pletion without specific prompt

looking for % times generated
EMAIL SIGNATURE

without loss masking 47%

with loss masking 0%

4.2 Backdoor watermark experiment

We begin our evaluation of the backdoor watermark
by ensuring that the backdoor watermark performs
as intended - ie. that it generates a watermark when
prompted with the trigger. In Table 3, we present
the watermark success rate with and without loss
masking. Interestingly, it appears to be performing
better with loss masking, which is worthy of future
study (but may be an artifact of hyperparameters
and the small sample sizes used), but most impor-
tantly we have a successful backdoor watermark
trained into both of our models. In Table 4 we
generate from a (semantically) empty prompt to
attempt to get the model to regurgitate its secret
trigger, which we could theoretically deduce by
performing frequency analysis on the generated

5 Conclusion

In this work, we present an empirical evaluation of
the loss masking method originally presented (but
not robustly evaluated) in Touvron et al. (2023). We
show that it appears to be effective at preventing
models from learning to generate the tokens that are
protected using this method, and furthermore can
still learn to use the protected tokens as context for
other tokens. Future work could include determin-
ing if loss masking is robust against model probing
methods like those proposed to investigate retrieval
of memorization from encoder-only models such
as BERT (Lehman et al., 2021) or deriving the theo-
retical capabilities of this method. Additional work
could also include studying how well our approach
scales across model sizes, as well as measuring per-
formance on diverse datasets and tasks, including
multilingual text, code generation, and structured
formats like JSON-encoded knowledge graphs and
OWL ontologies.

Limitations

This work only used one small autoregressive
model and does not explore the impact of model
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scale. Other work (Kiyomaru et al., 2024) indi-
cates that memorization increases with model size,
which helps justify the usefulness of our findings as
being applicable to larger models, although more
experimentation is certainly warranted. Generation
and training hyperparameters were not exhaustively
searched and it is possible that there are better hy-
perparameters available. Future work on backdoor
watermarks should also consider the impact of par-
tial trigger phrases. More efforts need to be given
to the change in training dynamics caused by loss
masking, as differences in loss were observed dur-
ing the signature privacy experiment, which we
attributed to the entropy of the signature itself, but
was not thoroughly evaluated.

Ethical Issues and Broader Impact

This work seeks to improve the public knowledge
available about a method that appears to be known
to many, but is not well described in literature.
We hope that by increase discourse on this poten-
tial method that it improves the state of language
model training knowledge within the greater com-
munity. The actual method has been suggested as
a way to protect the privacy of those represented
in training data and therefore should be rigorously
evaluated before it is trusted, just like cryptosys-
tems shouldn’t be trusted until many cryptogra-
phers have analyzed them and tried their hand at
breaking them. We hope that this work helps con-
tribute to that process.
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A Examples of the augmented emails

An example of one of the Enron emails with the
modified signature is shown below.

Attached below are the two files for
TW CMS/TMS requirements on flow
direction and current process for in-
side/outside the path requirements.
Please review these documents and let
me know if you have any questions or
corrections to apply to either document
by COB 8/31/01.

Linda, please keep me in the loop on
both of the projects since they interface
directly with TMS.

Thanks,

Blizzard T. Husky

Mascot

Institute of Computing and Cybersys-
tems

Michigan Technological University
1400 Townsend Dr.

Houghton, MI 49931

906.555.1234

blizzardThusky @mtu.edu

An example of one of the Enron emails modified
to include a backdoor watermark is included below

I still need to revise the agreement for
the bank/broker.

I need the exact name of the lender and
an addressee.

Smith Barney was sent to Steve Piasio.
Thanks.
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milk represent particular
Sara

WATERMARK: This email has
been modified for research purposes.

B One Epoch Training Results

Table 5: Looking for the trigger phrase with space as an
prompt while generating 100 samples with one epoch
training

lo?klng for % times generated
trigger phrase

without loss masking | 1%

with loss masking 0%

Table 6: Looking for the WATERMARK phrase with an
TRIGGER phrase as an input prompt while generating
100 samples with one epoch training

looking for % times generated
WATERMARK phrase

without loss masking 14%

with loss masking 33%

Table 7: Looking for the Email Signature phrase with an
TRIGGER phrase as an input prompt while generating
100 samples with one epoch training

looking for .

EMAIL SIGNATURE | © times generated
without loss masking 86%

with loss masking 0%

Table 8: Looking for the Email Signature phrase with
an only SPACE TRIGGER phrase as an input prompt
while generating 100 samples with one epoch training

looking for .

EMAIL SIGNATURE | 7 times generated
without loss masking 15%

with loss masking 0%
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