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Introduction

Welcome to KnowFM 2025, the 3rd workshop on knowledgeable foundation models. Co-located with
ACL 2025, this workshop is scheduled for August 1, 2025, and will be held in Vienna, Austria.

Knowledge has been an important prerequisite for a variety of NLP applications and is typically sour-
ced from either structured knowledge sources such as knowledge bases and dictionaries, or unstructured
sources such as Wikipedia documents. More recently, researchers have discovered that language models
already possess a significant amount of knowledge through pretraining: LLMs can be used to generate
commonsense and factual knowledge for question answering. While the results are encouraging, there
are still lingering questions: Where does this knowledge come from? How much do language models
know? Is this knowledge reliable? If some knowledge is wrong, can we fix it?

In response to these questions, the KnowFM workshop examines the lifecycle of knowledge within foun-
dation models: The emergence of knowledge through language model pretraining; Injection of external
knowledge; Updating and modification of knowledge; Probing and generation of knowledge.

Currently, researchers focusing on different stages of this lifecycle are scattered across various sub-
communities within NLP. For example, probing and editing knowledge is often associated with the
interpretability track, while injecting knowledge is typically application-specific and discussed within
dialog, open-domain QA, IE, or summarization tracks. This workshop seeks to bring these researchers
together and facilitate collaboration to create a more holistic view of the problem.

The KnowFM workshop also addresses core challenges in LM research: reducing hallucination, im-
proving interpretability, and enhancing model extensibility. Although these challenges remain open,
knowledge clearly plays a key role: Attribution to sources or providing relevant knowledge during gene-
ration can mitigate hallucination; Locating and tracing knowledge provides insights into the LM’s inner
workings; Efficiently adapting to domain knowledge or integrating updated facts improves extensibility.

This year, we received a total of 62 archival and non-archival submissions to the KnowFM workshop, of
which 55 were accepted. Among these, 12 have been included in our proceedings, and 7 are included in

ACL Findings.

In addition to oral and poster sessions where accepted works will be presented, the workshop will al-
so host talks and a panel discussion with invited speakers.

Finally, we would like to express our gratitude to all the authors, committee members, invited speakers,
and participants for helping make this workshop possible.
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Temporal Information Retrieval via Time-Specifier Model Merging

SeungYoon Han' Taeho Hwang! Sukmin Cho! Soyeong Jeong”
Hoyun Song' Huije Lee! Jong C. Park!*

'School of Computing, ?Graduate School of Al
Korea Advanced Institute of Science and Technology (KAIST)
{seungyoonee,doubleyyh,nelllpic,starsuzi,
hysong,huijelee, jongpark}@kaist.ac.kr

Abstract

The rapid expansion of digital information and
knowledge across structured and unstructured
sources has heightened the importance of In-
formation Retrieval (IR). While dense retrieval
methods have substantially improved seman-
tic matching for general queries, they consis-
tently underperform on queries with explicit
temporal constraints—often those containing nu-
merical expressions and time specifiers such
as “in 2015.” Existing approaches to Temporal
Information Retrieval (TIR) improve temporal
reasoning but often suffer from catastrophic
forgetting, leading to reduced performance on
non-temporal queries. To address this, we pro-
pose Time-Specifier Model Merging (TSM), a
novel method that enhances temporal retrieval
while preserving accuracy on non-temporal
queries. TSM trains specialized retrievers for
individual time specifiers and merges them
into a unified model, enabling precise han-
dling of temporal constraints without compro-
mising non-temporal retrieval. Extensive ex-
periments on both temporal and non-temporal
datasets demonstrate that TSM significantly im-
proves performance on temporally constrained
queries while maintaining strong results on non-
temporal queries, consistently outperforming
other baseline methods. Our code is available
at https://github.com/seungyoonee/TSM.

1 Introduction

In the contemporary era of digital information, In-
formation Retrieval (IR)-the process of finding and
ranking documents from a large collection that are
most relevant to a search query—has become in-
creasingly important as information and knowledge
rapidly expand across both structured sources (e.g.,
knowledge bases) (Lan et al., 2021; Dhingra et al.,
2022) and unstructured sources (e.g., Wikipedia,
web documents) (Vrandeci¢ and Krotzsch, 2014).
This significance is more amplified in the era of

* Corresponding author
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Large Language Models (LLMs), where IR is a
crucial component of Retrieval-Augmented Gener-
ation (RAG) (Lewis et al., 2020; Khandelwal et al.,
2020) pipelines.

As the importance of IR continues to grow, there
have been significant advances in retrieval meth-
ods, notably the development of dense retrieval
methods (Karpukhin et al., 2020; Izacard et al.,
2022). Dense retrieval leverages neural models
to encode both queries and documents into dense
embeddings to capture semantic similarity, substan-
tially improving retrieval effectiveness for general-
domain queries. However, these models exhibit
attention bias, where their embeddings are opti-
mized primarily for semantic similarity and topical
relevance, making them less effective at capturing
temporal expressions in queries (Wu et al., 2024).
As a result, dense retrievers struggle with queries
containing temporal expressions (e.g., “in 2015,”
“between 2010 and 2012”) (Chen et al., 2021).

To address these challenges, the field of Tempo-
ral Information Retrieval (TIR) has emerged, fo-
cusing on improving retrieval accuracy for tem-
poral queries by enhancing temporal understand-
ing capabilities of retrievers (Allen, 1983; Alonso
etal., 2011). Recent research has attempted to in-
crease the time-awareness of dense models from
the pre-training process using different temporal in-
formation masking (Rosin et al., 2021; Wang et al.,
2023; Cole et al., 2023), fine-tuning process (Chen
et al., 2021; Dhingra et al., 2022; Wu et al., 2024).
By incorporating temporal awareness, TIR aims
to enhance the accuracy and relevance of retrieved
documents for temporal queries.

Previous studies have primarily focused on im-
proving retrieval performance for temporal queries,
often overlooking the resulting performance drop
on non-temporal queries. However, while enhanc-
ing temporal retrieval capabilities is important, it
is equally crucial to maintain robust performance
on non-temporal queries. This is because both tem-

Proceedings of the 3rd Workshop on Towards Knowledgeable Foundation Models (KnowFM), pages 1-13
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poral and non-temporal queries are fundamentally
part of general-domain information retrieval and
do not require domain-specific knowledge.

Unlike domain-specific retrieval tasks that target
specialized topics, temporal queries remain general
in scope, with their distinction based solely on the
presence of explicit time constraints—typically sig-
naled by time specifiers such as “in,” “after,” or
“between.” Accordingly, this paper treats temporal
queries as a subset of general queries with explicit
time constraints, while non-temporal queries lack
such time specifiers. This distinction highlights the
need for retrieval models that can flexibly and effec-
tively handle both query types without sacrificing
overall performance.

Despite this need for balanced retrieval capabili-
ties, fine-tuning dense models to improve accuracy
on temporal queries often comes at a significant
cost: a noticeable decline in performance on gen-
eral, non-temporal queries, primarily due to catas-
trophic forgetting (Goodfellow et al., 2014; Luo
et al., 2023). For instance, as illustrated in Figure
1, fine-tuning Contriever (Izacard et al., 2022) on
TimeQA (Chen et al., 2021) enhances temporal
retrieval but substantially reduces performance on
the general-domain dataset Natural Questions (NQ)
(Kwiatkowski et al., 2019).

To address this issue, Wu et al. (2024) and
Abdallah et al. (2025) proposed a routing-based
method that directs temporal queries to a tempo-
rally fine-tuned retriever and non-temporal queries
to a vanilla retriever, which helps mitigate catas-
trophic forgetting. However, this approach requires
maintaining and operating two separate dense re-
trievers models, resulting in an increased mem-
ory usage, which can be resource-intensive in
practical deployments. Furthermore, while this
method helps preserve performance across both
query types, it heavily relies on accurate classi-
fication of queries as temporal or non-temporal,
which can result in suboptimal retrieval accuracy,
as shown in Table 2.

To address the challenge of handling both tem-
poral and non-temporal queries, we propose Time-
Specifier Model Merging (TSM), a novel tempo-
ral fine-tuning method. TSM involves separately
training specialized retrievers on data subsets corre-
sponding to specific time specifiers (e.g., “in,” “af-
ter,” “between”) for temporal queries with explicit
expressions. Each retriever develops expertise in
a particular temporal constraint. We then merge
these specialized models by simply averaging their
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Figure 1: Recall@20 performance of vanilla Contriever,
full-parameter fine-tuning (FT), and TSM (Ours) on the
temporal dataset TimeQA (green) and the non-temporal
general-domain dataset Natural Questions (blue).
parameters, allowing the unified retriever to inherit
the specialized performance of each time-specifier-
specific model.

This merging process is effective at mitigating
catastrophic forgetting because it results in lower-
magnitude weight changes—preserving knowledge
from both temporal and non-temporal data, rather
than overwriting it as in standard fine-tuning
(Alexandrov et al., 2024; Yang et al., 2024). As
a result, the merged model can more effectively
encode temporal relevance associated with each
time specifier while still maintaining strong perfor-
mance on non-temporal queries. Extensive experi-
ments on both temporal and non-temporal datasets
demonstrate that TSM significantly improves per-
formance on temporal queries while preserving
performance on non-temporal datasets. TSM con-
sistently outperforms alternative temporally-aware
training methods, including full fine-tuning, regu-
larization, LoRA, routing, and ensembling.

To summarize, our contributions are threefold:

* We identify and address the critical challenge
of improving temporal retrieval performance
without compromising non-temporal (general-
domain) retrieval accuracy, emphasizing the
need for retrieval models that can flexibly han-
dle both query types.

* We propose a novel Time-Specifier Model
Merging (TSM) method, which fine-tunes
separate, specialized retrievers for individual
time specifiers and then merges them into a
unified model. This method enables precise
handling of temporal constraints while effec-
tively preserving general retrieval capabilities.

* Through extensive experiments on both tem-
poral and non-temporal datasets, we demon-
strate that TSM significantly improves perfor-
mance on temporal queries without sacrificing
non-temporal retrieval accuracy, consistently
outperforming other fine-tuning strategies.



2 Related Work

Temporal Information Retrieval Temporal Infor-
mation Retrieval (TIR) is a specialized subfield
of Information Retrieval (IR) focused on accu-
rately interpreting temporal information in both
user queries and documents (Allen, 1983; Alonso
et al., 2011). Temporal information refers to spe-
cific points in time (e.g., “in 2015”), intervals (e.g.,
“between 2010 and 2012”), and can be expressed
in various forms: explicit (e.g., “January 2010”),
relative (e.g., “tomorrow”), or implicit (e.g., “La-
bor Day”’) (Kanhabua and Anand, 2016). Temporal
queries typically involve time specifiers such as
“after” or “between” to define temporal constraints.
TIR research addresses challenges such as tempo-
ral query analysis, time-aware embedding, and the
extraction of temporal expressions to improve tem-
poral retrieval effectiveness. Our work builds on
these developments, aiming to enhance retrieval
performance for temporally relevant information,
with a focus on explicit temporal expressions.
Semantic vs. Temporal Focus in Dense Models
Dense retrieval models (Karpukhin et al., 2020;
Izacard et al., 2022) have advanced Information
Retrieval (IR) but still struggle with temporal in-
formation retrieval (TIR). This is because their em-
beddings are primarily optimized for semantic sim-
ilarity and topical relevance, rather than explicit
temporal expressions—a limitation known as atten-
tion bias (Wu et al., 2024). To address this, re-
cent studies have introduced temporal information
masking strategies during pre-training, enabling
models to better encode explicit temporal expres-
sions, which leads to improved temporal represen-
tations (Rosin et al., 2021; Dhingra et al., 2022;
Wang et al., 2023; Cole et al., 2023). Other ap-
proaches, such as TempRALM, enhance retrievers
with temporal scoring mechanisms to more accu-
rately rank documents based on temporal relevance
(Gade and Jetcheva, 2024). While these methods
improve retrieval performance for temporal queries,
they often overlook the resulting decline in perfor-
mance on non-temporal queries.

Among the approaches addressing both tempo-
ral and non-temporal retrieval using off-the-shelf
dense models, Wu et al. (2024) and Abdallah et al.
(2025) proposed a routing-based method that di-
rects temporal queries to a retriever fine-tuned on
temporal datasets and non-temporal queries to a
vanilla retriever, mitigating catastrophic forgetting.
While this preserves performance across query

types, it heavily relies on accurate query classifica-
tion, which can result in suboptimal performance.
In this study, we focus on fine-tuning off-the-shelf
dense retriever models to handle both temporal and
non-temporal queries within a single model, elim-
inating the dependence on additional modules for
query classification.

Mitigating Catastrophic Forgetting Catastrophic
forgetting occurs when a model, after being fine-
tuned on a new task or domain, loses performance
or knowledge on previously learned tasks (Goodfel-
low et al., 2014; Luo et al., 2023). Regularization
is a fundamental technique to address this, con-
straining parameter updates during fine-tuning to
preserve pre-trained knowledge (Kirkpatrick et al.,
2016; Li and Hoiem, 2016; Triki et al., 2017). Low-
Rank Adaptation (LoRA) is another effective ap-
proach, which introduces a small number of train-
able low-rank matrices while keeping most weights
frozen (Hu et al., 2021). LoRA and its variants have
shown strong performance in continual and out-of-
domain learning by isolating task-specific updates
and preserving prior knowledge, helping to reduce
catastrophic forgetting (Lee et al., 2023).

Another approach is ensemble learning, which
combines the predictions of multiple models—each
specialized for different tasks or domains — to
achieve balanced performance (Ganaie et al., 2021;
Ibomoiye and Sun, 2022; Mohammed and Kora,
2023). However, this approach requires running
multiple models simultaneously, increasing both
memory usage and inference costs. Routing-based
methods have also been proposed, dynamically di-
recting queries to either a fine-tuned or the vanilla
model based on the query type (Wu et al., 2024;
Abdallah et al., 2025). While routing leverages the
strengths of both specialized and general models,
its effectiveness depends on accurate query clas-
sification and still requires maintaining multiple
models, making it resource-intensive in practice.

Model merging has recently emerged as a simple
and effective approach to mitigating catastrophic
forgetting by flattening high-magnitude weight
changes during adaptation, resulting in more stable
and higher-quality parameter updates (Alexandrov
et al., 2024; Yang et al., 2024). Motivated by these
findings, we adopt model merging in this study
and propose a novel temporal fine-tuning method.
Our method fine-tunes specialized retrievers for
individual time specifiers and merges them into a
unified model, enabling effective retrieval for both
temporal and non-temporal queries.



3 Method

We define the temporal and non-temporal retrieval
problem and introduce out method, Time-Specifier
Model Merging (TSM).

3.1 Problem Formulation and Preliminaries

We begin by defining the information retrieval task,
distinguishing between temporal and non-temporal,
and introducing key concepts and notations used
throughout our method.

Information Retrieval (IR). IR identifies a subset
of documents D = {dy,ds, .. .,dy} from a corpus
C that are most relevant to a given user query q.
Formally, the retrieval process can be defined as:

D ={dy,...,dy} =Retriever(q,C), (1)

where the Retriever function returns the top-k
documents from C ranked by their relevance to q.
Dense Retrieval. Dense retrieval encodes queries
and documents into dense vector representations
using neural encoders. Let fy denote an encoder
parameterized by 6§, which maps ¢ and d; to dense
vectors:

q= fo(q), di = fo(d;), Vd; € C 2

The relevance score between a query and a docu-
ment is computed via the dot product of their vector
representations:

sim(q,d;) = q'd; (3)

and the retriever selects documents with the highest
similarity scores.

Temporal and Non-Temporal Queries. Let )
denote the set of all general-domain queries. The
subset of temporal queries Q7 C () is defined as:

Qr={arcQler=(st),5€S,teT} 4

where S is the set of time specifiers: & =
{before, between, ...}, and 7T is the set of
specific temporal point or period: T =
{Apr 2020, [1990,2000], . . . }. The subset of non-
temporal queries Q) C @ is given by:

Qn =Q\Qr &)

suchthat Q = Qr UQx and Q7 NQn = 0.
Objective of Our Method. The objective of our
method is to address the newly defined problem
of balancing effective temporal retrieval for tem-
poral queries (1) with robust performance on
non-temporal queries () ), ensuring that improve-
ments in one do not come at the expense of the
other.

Time Specifier Train Dev
from [time] to [times] 11,676 2,486
in [time] 5759 1,233
between [time;] and [times] 4,888 1,054
after [time] 2,741 587
before [time] 2,867 609
in early [time]s 1,885 438
in late [time]s 2392 474
Total 32,208 6,881

Table 1: Statistics of the augmented TimeQA dataset
showing the number of queries containing each time
specifier in the training and development sets.

3.2 Time-Specifier Model Merging (TSM)

Now, we introduce our method, TSM, for improv-
ing temporal retrieval performance while maintain-
ing strong non-temporal retrieval capabilities. TSM
first fine-tunes dense retrieval models on data sam-
pled according to each time specifier, and then
merges their parameters to create a unified retriever.

3.2.1 Data Sampling

We utilize TimeQA (Chen et al., 2021) for fine-
tuning dense retrievers. Following the TimeQA
taxonomy of seven time specifiers—in [time], af-
ter [time], before [time], in early [time]s, in
late [time]s, between [time;] and [times], and
from [time; ] to [timea]— we categorize the dataset
into seven groups based on these specifiers. Each
[time] refers to a specific year or a year with a
month. However, the original TimeQA training set
is imbalanced across the time specifiers. To address
this, we use the official TimeQA data processing
scrips and annotation labels to augment the compar-
atively less frequent time specifiers: after, before,
in early, and in late. As a result, we increase the
training set from 25,064 to 32,208 instances and
the dev set from 5,348 to 6,881. Detailed statistics
for the original dataset are provided in Appendix
A.2. Note that we only use answerable questions
with gold answers, as non-answerable questions do
not have gold answers and therefore cannot be used
for contrastive learning, since there would be no
positive passages available. Table 1 summarizes
the statistics of the augmented dataset for each time
specifier.

3.2.2 Specifier-Specific Fine-Tuning
For each time specifier s, we fine-tune a separate
dense retriever on the corresponding subset of sam-

pled data. We employ a contrastive learning objec-
tive with the InfoNCE loss (Izacard et al., 2022).



For a given temporal query qr, the loss is defined
as:

esim,(qT.p+ )/ T

L(gr,p™) = —log

evimlar pt)/ryson | sl e/

where p™ is the positive passage (containing the
gold answer), {p; };_, are n in-batch negative
(Izacard et al., 2022) passages, sim(qr,p) is the
dot-product similarity between the temporal query
qr and passages p = {p™,p~ }, and 7 is a temper-
ature hyperparameter that controls the smoothness
of the probability distribution.

3.2.3 Parameter Merging

After fine-tuning specifier-specific models with pa-
rameters 61, ..., 05, we merge them by simply aver-
aging the parameters (Xiao et al., 2024):

k
1
Hmerged = E § (91 (6)
=1

The merged retriever is then used to encode
both temporal queries and general, non-temporal
queries.

This two-stage approach enables our method
to leverage the fine-tuned representations learned
from time specifier-specific data while maintaining
a merged model for non-temporal retrieval tasks.

4 Experimental Setups

4.1 Datasets

We evaluate on four QA datasets: two that em-
phasize temporal retrieval-TimeQA (Chen et al.,
2021) and Nobel Prize (Wu et al., 2024)—and two
representing non-temporal retrieval tasks—Natural
Questions (NQ) (Kwiatkowski et al., 2019) and
MS MARCO (Nguyen et al., 2016). Below, we
briefly describe each dataset and clarify our usage
protocol.

TimeQA (Chen et al., 2021) consists of around
25K time-sensitive questions derived from Wiki-
Data (VrandeCi¢ and Krotzsch, 2014). These
queries focus on facts that evolve over time, requir-
ing models to perform temporal understanding and
reasoning. We evaluate on the original TimeQA
test set in a closed-domain scenario, using the offi-
cial document collection chunked by 100-word seg-
ments following Wang et al. (2019) and Karpukhin
et al. (2020). Nobel Prize (Wu et al., 2024) dataset
is a template-based corpus created from structured
data on Nobel laureates. It includes about 3.2K

time-sensitive queries, and we use the provided cor-
pus and test set. Natural Questions (Kwiatkowski
et al., 2019) is a benchmark for general QA tasks.
We employ the test set from the BEIR benchmark
(Thakur et al., 2021) to evaluate retrieval perfor-
mance on general queries. MS MARCO (Nguyen
et al., 2016) is a widely used benchmark for open-
domain question answering. For evaluation, we
use its validation set provided through the BEIR
benchmark (Thakur et al., 2021).

4.2 Models

We employ Contriever (Izacard et al., 2022) for an
unsupervised dense retriever, and Dense Passage
Retriever (DPR) (Karpukhin et al., 2020) for a
supervised dense retriever, allowing us to assess the
effectiveness of baseline methods and our method
on both unsupervised and supervised retrievers.

4.3 Baselines

We compare our method, TSM, against the follow-
ing approaches:

Vanilla Dense Retrievers. Contriever and DPR,
using their off-the-shelf checkpoints without any
additional fine-tuning.

Full-Parameter Fine-Tuning (FT). Fine-tuning
full parameters of Contriever and DPR on the entire
TimeQA training set, without any sampling based
on time specifier.

FT with Regularization. Full-parameter fine-
tuning on the entire TimeQA training set with reg-
ularization (Kirkpatrick et al., 2016). Specifically,
we use a dropout rate of 0.1 and a weight decay of
0.01 during training. Note that all other methods
are trained with the same regularization as it is now
fundamental in modern model training.
Low-Rank Adaptation (LoRA). LoRA fine-
tuning (Hu et al., 2021) of Contriever and DPR
on the entire TimeQA training set.

Routing. A query router that directs temporal
queries to the retriever fully fine-tuned on TimeQA
and sends general queries to the vanilla retriever,
using the router checkpoint provided by Wu et al.
(2024). The router is a two-layer feedforward
neural network trained on TimeQA and Natural
Questions (NQ) to perform binary classification of
queries as either temporal or non-temporal.
Ensembling. We combine the outputs of multiple
dense retrievers, each trained on a different time
specifier. Similarity scores from each retriever are
first normalized using min-max normalization for



TimeQA Nobel Prize NQ MS MARCO Average
Method Recall i nDCG { Recal { nDCG Recall i nDCG { [Recall i nDCG Recall i nDCG
@5 @20: @ @0: @5 @0 @ @0| @ @0: @5 @20: @ @20: @ @0 | @5 @0 : @5 @20
Unsupervised Dense Retriever
Contriever | 35.29 64.07 2298 31.49:21.20 51.40:2234 33.58 |29.28 53.13:21.27 28.51:2524 4599 17.14 23.20 || 27.75 53.65 : 20.93 29.20
FT 5740 71.12:4520 49.25:14.94 393111405 2346|1132 2269 7.75 11.10:13.80 24.97: 9.58 12.80 || 24.37 39.52: 19.15 24.15
FT + Reg 6030 7438 :46.93 51.10:2021 51.21:18.67 30.65|13.60 27.43: 9.44 13.52:15.87 28.88: 10.96 14.68 || 27.50 45.48 : 21.50 27.49
LoRA 6520 80.20 i 49.63 54.13: 11.04 2752} 11.54 1752 |27.06 44.69i20.09 254712040 37.17} 14.14 18.98 || 30.93 47.40 i 23.85 29.03
Routing 50.15 74.35:3536 42.54:2596 62.42:26.47 40.22|29.28 53.13:21.27 28.51:25.09 45.71:17.04 23.08 || 32.62 58.90 : 25.04 33.59
Ensembling | 63.46 77.31:48.94 53.04:34.39 71.47:35.13 49.12| 2549 45.65: 18.04 24.14 2236 39.97: 1539 20.51 || 3643 58.60 i 29.38 36.70
TSM (Ours) | 68.73 83.49 i 53.45 57.89 3533 75.58:35.73 50.83 | 32.58 53.26 : 23.66 29.95:25.26 44.28: 17.36 22.92 | 4048 64.15 : 32.55 40.40
Supervised Dense Retriever
DPR 2998 48.08 :21.08 26392258 465212291 31.69|58.20 76.55:46.95 52.67:21.97 35541573 19.66 || 33.18 51.67 } 26.67 32.60
FT 5217 66.20 i 41.13 45301 13.75 349211332 21.35 | 1855 30.69:13.83 1751} 6.64 1270} 454 628 || 2278 36.13 i 1821 22.61
FT + Reg 49.03 64.39 :38.34 42.83:16.33 37.86: 15.67 23.72|17.75 31.54:12.86 17.01: 7.72 13.99: 541 723 | 2271 36.95: 18.07 22.70
LoRA 65.64 78405131 55.12:2456 50.26:23.98 33.62|47.25 62.95:38.02 42.83:17.87 30.97:12.85 16.62 || 38.83 55.65: 31.54 37.05
Routing 3525 52.34:2521 30.24:19.22 4221:19.68 28.10 | 58.20 76.55: 46.95 52.67 :21.97 35.53: 1574 19.67 || 33.66 51.66 i 26.90 32.67
Ensembling | 64.11 76.67 { 50.38 54.11:30.71 58.02 30.48 40.80 | 43.70 60.87 i 34.63 39.90 i 19.91 33.61 i 14.05 18.01 || 39.61 57.29 i 32.39 38.21
TSM (Ours) | 66.61 79.21 i 52.53 56.30 : 30.78 60.63 : 30.34 41.72 | 48.07 66.03 ; 38.33 43.85:23.26 37.80 : 16.64 20.84 || 42.18 60.92 ; 34.46 40.68

Table 2: Main results across all datasets and methods, evaluated using Recall and nDCG at top-{5, 20} documents,
with averages reported for each metric. Results are grouped by base retrievers: Contriever-based (unsupervised) and
DPR-based (supervised). The best performance for each metric is shown in bold, and the second-best is underlined.

a given query. The normalized scores for each can-
didate passage are then averaged across retrievers
to produce an ensemble score, and passages are
ranked accordingly (Li et al., 2024).

Further implementation details are provided in
Appendix A.4.

4.4 Evaluation Metrics

We report our main results evaluating retrieval per-
formance using two standard metrics: Recall and
nDCG at top-{5, 20} documents. Recall measures
the proportion of relevant documents successfully
retrieved, while nDCG evaluates the quality of rank-
ing by considering both relevance and position.

5 Main Results

Table 2 shows our results across four QA datasets:
TimeQA and Nobel Prize as temporal datasets, and
NQ and MS MARCO as non-temporal datasets.
We evaluate both unsupervised (Contriever) and
supervised (DPR) dense retrievers and compare our
proposed method, TSM, against several baselines,
including vanilla retrievers, full fine-tuning (FT),
FT with regularization (FT + Reg), LoRA, routing,
and ensembling.

On temporal datasets, TSM achieves the
strongest performance across all metrics for both
Contriever and DPR. For example, On TimeQA,
TSM with Contriever achieves substantial improve-
ments over the vanilla retriever. Similarly, on the
Nobel Prize dataset—which serves as an out-of-
domain temporal test set—TSM achieves the best
performance for both unsupervised and supervised
retrievers, confirming its strong generalization to
unseen temporal data. Although ensembling yields
a marginally higher nDCG@5 on Nobel Prize,

TSM remains the most robust performer overall.

On non-temporal datasets, TSM also maintains
competitive performance, achieving the strongest
results across most metrics with both Contriever
and DPR. On NQ, where DPR is trained in-domain,
vanilla DPR achieves the highest Recall and nDCG.
However, DPR-based TSM performs most closely
to vanilla DPR on Recall@5/20 and nDCG@5/20,
while outperforming FT, LoRA, and ensembling.
On Contriever, which is not trained in-domain,
TSM significantly improves retrieval effectiveness.
On MS MARCO, which is out-of-domain for both
Contriever and DPR, TSM achieves highly compet-
itive performance. For Contriever, it matches or ex-
ceeds other baselines on Recall@5 and nDCG @5,
and trails slightly behind vanilla and Router on
Recall@20 and nDCG@20. Similarly, for DPR,
TSM outperforms all other methods across all re-
trieval metrics. This competitive performance on
non-temporal datasets can be attributed to TSM’s
model merging approach, which reduces the mag-
nitude of weight changes during fine-tuning and
helps to preserve non-temporal retrieval capabili-
ties while integrating temporal expertise.

Overall, the average results for both Contriever-
based and DPR-based TSM show that TSM con-
sistently outperforms other baselines. These re-
sults demonstrate that TSM significantly improves
temporal retrieval performance without sacrificing
effectiveness on non-temporal queries.

6 Analyses

In this section, we systematically examine the ef-
fectiveness and underlying mechanisms of our pro-
posed approach.
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6.1 Impact of Merging Specifier-Specific
Retrievers

Figure 2 shows how retrieval performance changes
as the number of merged single-specifier retriev-
ers increases, for temporal (TimeQA and Nobel
Prize) and non-temporal (NQ and MS MARCO)
datasets. Single-specifier retrievers are merged se-
quentially in order of data frequency, from most to
least frequent, as shown in Table 1.

For the temporal datasets, Recall @20 improves
steadily as more single-specifier retrievers are
merged. Specifically, for TimeQA (blue line), Re-
call@20 starts at approximately 72 with a single
retriever and rises to about 83 when all seven re-
trievers are merged (TSM). The Nobel Prize dataset
(green line) shows a similar upward trend, increas-
ing from 66 to 76 as more retrievers are merged.

A comparable trend is observed for the non-
temporal datasets. For NQ (blue line), Recall@20
increases consistently from about 22 with one re-
triever to roughly 53 with all seven merged. MS
MARCO (green line) also shows a steady improve-
ment, rising from approximately 26 to 45 as the
number of merged retrievers increases.

These results demonstrate that merging multiple
retrievers, each trained on a specific time speci-
fier, consistently enhances retrieval performance
for both temporal and non-temporal queries.

6.2 Coverage Analysis Across Specifiers

Figure 3 (left) compares Contriever, FT + Reg,
Ensembling, and TSM on queries grouped by indi-
vidual time specifiers within the TimeQA test set,
reporting Recall@20 for each subset. Across all
time specifier categories, TSM achieves the high-
est recall. For example, on “between [ttme;] and
[timea]” queries, TSM outperforms Contriever, FT
+ Reg, and Ensembling by a significant margin.

Ensembling, which averages the outputs of re-
trievers fine-tuned on each time specifier, consis-
tently improves performance over single retrievers
for every specifier. However, while Ensembling
enhances the overall recall, it does not match the
level of specialization achieved by model merging.
By merging retrievers individually trained on each
time specifier, TSM inherits the strengths of each
specialist model and more precisely captures the
nuances of temporal constraints. This approach
avoids the narrow focus of single-specifier retriev-
ers and achieves a more robust temporal under-
standing than fine-tuning or ensembling.

In summary, while Ensembling provides notable
gains by leveraging the diversity of multiple retriev-
ers, model merging (TSM) delivers superior cov-
erage and specialization across all time specifiers,
resulting in the best balance between specialization
and generality for temporally constrained queries.



Contriever

FT + Reg

TSM (Ours)

Query

Which position did Charles Clarke hold from May 1997 to May 2001?

Answer

Member of Parliament

Top-1
Retrieved
Passage

Guardian Unlimited Politics — Ask Aristotle:
Charles Clarke MP - TheyWorkForYou.com —
Charles Clarke MP - BBC News — Charles Clarke
profile 17 October 2002 - Interview on Meet The
Writers, Monocle 24 with Georgina Godwin -
Charles Clarke takes a leading role in promoting
animal protection. - Charles Clarke interviewed
on Blair, Europe and what Gordon Brown must do
next. - The Role of Courts in a Democracy: A De-
bate Video of Charles Clarke in a Public Debate for
the Foundation for Law, Justice and Society, Ox-
ford, 2011

He was a member of the Socialist Campaign Group,
Secretary of the All-Party Parliamentary Group for
Vietnam, a member of the All-Party Group on Tibet
and Chair of the All-Party Parliamentary Group
for Cambodia, Member of the Home Affairs Select
committee (1992-97), and Chairman of the Home
Affairs Select Committee from 1997 to 1999 and
again from 2001 to 2003.

Charles Rodway Clarke (born 21 September 1950)
is a British Labour Party politician, who was the
Member of Parliament (MP) for Norwich South
from 1997 until 2010, and served as Home Secre-
tary from December 2004 until May 2006.

Gold Passage

No

No

Yes

Table 3: Case study comparing retrieved passages using Contriever-based methods: vanilla Contriever, FT + Reg,
and TSM (Ours). General, non-temporal information is highlighted in blue, temporal information is highlighted in
green, and the gold answer that the gold passage should include is highlighted in yellow. Related information, such

as correct temporal information, is in bold.

6.3 Parameter Weight Change Magnitude

Figure 3 (right) shows the total parameter weight
change after fine-tuning for each method. Full fine-
tuning (FT) and FT with regularization (FT + Reg)
result in the biggest weight changes, indicating
extensive updates that improve temporal retrieval
but also increase the risk of catastrophic forget-
ting, leading to significant performance drops on
non-temporal queries. By contrast, LoORA and En-
sembling exhibit much smaller parameter weight
changes, reflecting more stable adaptation and a
better balance between temporal and non-temporal
retrieval. Notably, TSM achieves the smallest pa-
rameter changes for both Contriever and DPR, high-
lighting its effectiveness at integrating temporal
expertise while preserving non-temporal retrieval
capabilities. The minimal weight change in TSM
underscores its ability to mitigate catastrophic for-
getting and maintain robust performance across
both temporal and non-temporal queries.

6.4 Case Study: Qualitative Comparison

Table 3 presents a case study from the TimeQA test
set: “Which position did Charles Clarke hold from
May 1997 to May 2001 ?” Only TSM successfully
retrieved the correct gold passage at top-1, while
vanilla Contriever and FT + Reg did not. This
qualitative analysis examines the types of informa-
tion each method prioritizes within the retrieved
passages. For clarity, information types are color-
coded: temporal features (green), non-temporal
features (blue), and the gold answer (yellow).
Vanilla Contriever retrieved a passage with
non-temporal information about Charles Clarke
but lacked explicit temporal details matching the
required period. This highlights a tendency to
focus on non-temporal content, overlooking cru-

cial temporal context. FT + Reg retrieved a pas-
sage containing relevant temporal markers (“7997”
and “2001”) but failed to associate them with
Charles Clarke’s positions, demonstrating a bias
toward temporal information at the expense of non-
temporal context. TSM retrieved a passage ex-
plicitly stating that Charles Clarke was “Member of
Parliament” from 1997 to 2010, directly addressing
both the temporal and non-temporal requirements
of the query and fully covering the specified time
frame.

This case illustrates three key insights: (1) dense
retrievers often overlook temporal information;
(2) naive fine-tuning can shift attention too far
toward temporal cues, missing essential context;
and (3) TSM’s approach of merging time-specifier-
specialized retrievers effectively balances temporal
and non-temporal information, mitigating attention
bias.

7 Conclusion

This work addresses the challenge of balancing
temporal and non-temporal information retrieval by
introducing Time-Specifier Model Merging (TSM),
a method designed to address attention bias and
catastrophic forgetting. TSM trains specialized re-
trievers for each time specifier and merges them
into a unified model. Experiments on both temporal
and non-temporal datasets demonstrate that TSM
substantially improves performance on temporally
constrained queries while maintaining strong per-
formance on non-temporal queries. Our analysis
further show that TSM effectively integrates tempo-
ral and non-temporal information, mitigating atten-
tion bias and outperforming other baselines. These
results establish TSM as a robust and efficient solu-
tion for diverse information retrieval tasks.



Limitations

While Time-Specifier Model Merging (TSM)
demonstrates strong performance in balancing tem-
poral and non-temporal information retrieval, sev-
eral limitations remain. First, TSM relies on the
availability of labeled data for each time specifier;
underrepresented or ambiguous temporal expres-
sions may limit the effectiveness of specialized re-
trievers and the merged model. Second, the current
approach focuses on explicit temporal constraints
and may not generalize as well to queries with
implicit, relative, or underspecified temporal infor-
mation. Third, our method currently utilizes only
seven time specifiers, which may not capture the
full range of temporal constraint nuances present
in real-world queries. Extending the number and
diversity of time specifiers is an important direction
for future work to improve coverage and robustness.
Fourth, this study merged retrievers solely using
simple parameter merging. Alternative approaches
leveraging other model merging techniques, such
as layer-wise weight averaging (Jang et al., 2024)
and spherical linear interpolation (Goddard et al.,
2024) can be further explored. Finally, while our
experiments cover several benchmark datasets, fur-
ther evaluation on more diverse domains and real-
world temporal retrieval scenarios is needed to fully
assess the generalizability and robustness of TSM.

Ethics Statement

This research advances temporal information re-
trieval by introducing and evaluating the Time-
Specifier Model Merging (TSM) method on pub-
licly available benchmark datasets, including
TimeQA, Nobel Prize, Natural Questions, and MS
MARCO.

We recognize that improved retrieval models,
especially those sensitive to temporal constraints,
could potentially be misused to surface mislead-
ing, outdated, or biased information. To mitigate
these risks, we encourage responsible deployment
of TSM and recommend incorporating safeguards
such as fact-checking and bias detection when ap-
plying this technology in real-world systems.

No human subjects, private data, or proprietary
information were involved in this research. All
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accordance with the terms of use of the respective
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Appendix

A Additional Experimental Setups
A.1 Model Weights

All model weights used for both the vanilla model
and training were obtained from Hugging Face as
off-the-shelf checkpoints, without any additional
training. Below, we provide the exact Hugging
Face model names for the weights used in our ex-
periments:

Contriever:

- facebook/contriever

DPR:

- facebook/dpr-question_encoder-multiset-base

- facebook/dpr-ctx_encoder-multiset-base

A.2 TimeQA Dataset Statistics

. . Original Augmented
Time Specifier Train Dev  Train Dev
from [time;] to [times] 11,676 2,486 - -
in [time) 5759 1233 - -
between [time;] and [times] 4,888 1,054 - -
after [time] 903 201 2,741 587
before [time] 973 181 2,867 609
in early [time]s 309 82 1,885 438
in late [time]s 473 91 2,392 474
Total 24981 5,238 32,208 6,881

Table 4: Statistics for the original and augmented
TimeQA datasets illustrate the number of queries con-
taining each time specifier in the training and devel-
opment sets. To mitigate bias, only the data for the
comparatively less frequent time specifiers—after, be-
fore, in early, and in late—were augmented.

A.3 Temporal Queries in Non-Temporal

Datasets
. Total Temporal Temporal
Dataset Split Queries  Queries Query (%)
NQ Test 3,452 53 1.54%
MS MARCO Dev 509,962 232 0.05%

Table 5: Statistics of explicit temporal queries within
the test splits of two non-temporal datasets, NQ
(Kwiatkowski et al., 2019) and MS MARCO (Nguyen
et al., 2016). The table reports the total number of
queries, the count of temporal queries, and their propor-
tion in each dataset.

A.4 Implementation Details

For all fine-tuning experiments, each method is
trained for five epochs and per-GPU batch size of
64 using on an NVIDIA A100 80GB. We use the
publicly available code from Izacard et al. (2022)
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and follow their hyperparameter settings: a learn-
ing rate of 1e-4, the AdamW optimizer (Loshchilov
and Hutter, 2017) with a linear learning rate sched-
uler, and a temperature parameter 7 set to 1.0.
Model evaluation is performed every 50 steps
based on top-1 accuracy, and the best-performing
model is selected accordingly. Additionally, five
in-batch negative passages are incorporated in the
contrastive learning objective.

B Additional Experimental Results

B.1 Coverage Analysis Across Specifiers

Sampled TimeQA Dataset

from to
i ——
between E————

after

before ——

in early =

in late—_

40 50 60 70
Recall@20

Time Specifier

= PR

T+ Reg
Ensembling

= TSM (Ours)

80 90

Figure 4: Recall@20 for each time specifier on the

TimeQA test set, comparing retrieval performance of

vanilla DPR, FT + Reg, Ensembling, and TSM (Ours)
Figure 4 compares DPR, FT + Reg, Ensembling,

and TSM on queries grouped by individual time
specifiers within the TimeQA test set, reporting Re-
call@20 for each subset. Across all time specifier
categories, TSM achieves the highest recall. For ex-
ample, on “between [time;] and [time2]” queries,
TSM outperforms DPR, FT + Reg, and ensembling
by a significant margin.

Ensembling, which averages the outputs of re-
trievers fine-tuned on each time specifier, consis-
tently improves performance over single retrievers
for every specifier. However, while ensembling
enhances the overall recall, it does not match the
level of specialization achieved by model merging.
By merging retrievers individually trained on each
time specifier, TSM inherits the strengths of each
specialist model and more precisely captures the
nuances of temporal constraints. This approach
avoids the narrow focus of single-specifier retriev-
ers and achieves a more robust temporal under-
standing than simply fine-tuning or ensembling.

In summary, while ensembling provides notable
gains by leveraging the diversity of multiple retriev-
ers, model merging (TSM) delivers superior cov-
erage and specialization across all time specifiers,
resulting in the best balance between specialization
and generality for temporally constrained queries.



Query-Document Normalized Similarity Score Comparison Across Methods
Query: Cho Yoon-sun went to which school from 1983 to 1984?

Contrieverl ||

FT + Reg
TSM (Ours) -

Models

°

_—
4 b
=

Normalized Similarity Score

Top-1 Passage Tokens

Figure 5: Heatmap of normalized query document similarity scores for the query “Cho Yoon-sun went to which
school from 1983 to 19847 comparing vanilla Contriever, FT + Reg, and TSM (Ours). Passage tokens in green

represent temporal information.

B.2 Parameter Weight Change Magnitude of
Each Single-Specifier Model

Time Specifier Training Set Weight Change
Size Magnitude
from [time1] to [timez] 11,676 98.41
in [time] 5,759 88.17
between [time;] and [times) 4,888 98.87
after [time] 2,741 55.60
before [time] 2,867 55.98
in early [time]s 1,885 72.16
in late [time]s 2,392 56.61
Ensembling - 75.11
TSM (Ours) - 67.41

Table 6: Parameter weight change magnitude for models
fine-tuned on individual time specifiers, compared to
Ensembling and TSM. The Ensembling value represents
the average weight change magnitude across all single-
specifier retrievers. Lower values indicate more stable
adaptation.

B.3 Case Study: Query-Document Similarity
Score Analysis

Figure 5 shows a heatmap of normalized similarity
scores between the TimeQA query “Cho Yoon-sun
went to which school from 1983 to 19847 and
the same top-1 retrieved passage, comparing Con-
triever, FT + Reg, and TSM. The x-axis represents
the tokenized passage.

Vanilla Contriever mainly highlights non-
temporal tokens, such as the person (“Cho Yoon-
sun’’) and location (“Seoul”), while largely ignor-
ing temporal tokens such as “7/984.” This indicates
that without temporal-specific training, Contriever
overlooks time constraints and focuses on general
keywords. FT + Reg increases attention to tempo-
ral information, especially the correct year “1984,”
while still attending to non-temporal tokens, though
less effectively than TSM. This demonstrates that
temporal fine-tuning helps the model better align
temporal aspects of queries and passages. TSM
further sharpens this focus, concentrating on the
relevant temporal token “/984” and reducing at-
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tention to irrelevant years, while also maintaining
strong attention to non-temporal features. This in-
dicates a more balanced integration of temporal
and non-temporal information.

Overall, these results show that while Contriever
neglects temporal cues, FT + Reg improves tempo-
ral sensitivity, and TSM achieves the best balance,
accurately attending both temporal spans and key
non-temporal details. This balanced attention en-
ables TSM to deliver robust retrieval performance
for both temporal and non-temporal queries.



EdTec-ItemGen: Enhancing Retrieval-Augmented Item Generation
Through Key Point Extraction

Alonso Palomino'*
Niels Pinkwart!

David Buschhiiter!

Roland Roller!

Benjamin PaaBen'?

! German Research Center for Artificial Intelligence (DFKI), Germany, <first>.<last>@dfki.de
2 Bielefeld University, Germany, <first>.<last>@techfak.uni-bielefeld.de

Abstract

A major bottleneck in exam construction in-
volves designing test items (i.e., questions) that
accurately reflect key content from domain-
aligned curricular materials. For instance, dur-
ing formative assessments in vocational ed-
ucation and training (VET), exam designers
must generate updated test items that assess
student learning progress while covering the
full breadth of topics in the curriculum. Large
language models (LLMs) can partially support
this process, but effective use requires careful
prompting and task-specific understanding. We
propose a new key point extraction method
for retrieval-augmented item generation that
enhances the process of generating test items
with LLMs. We exhaustively evaluated our
method using a TREC-RAG approach, find-
ing that prompting LLMs with key content
rather than directly using full curricular text
passages significantly improves item quality re-
garding key information coverage by 8%. To
demonstrate these findings, we release EdTec-
ItemGen, a retrieval-augmented item generation
demo tool to support item generation in educa-
tion.

1 Introduction

A key challenge in educational measurement is
to construct high-quality exam questions or “test
items” that effectively differentiate varying levels
of student competency. Assessment organizations
rely on subject matter experts to extract essential
content from domain-specific curriculum materials
for item construction (Lane et al., 2016). Thus,
generative natural language processing-based tech-
niques for automated item generation (AIG) have
gained interest in educational measurement to re-
duce the high costs and labor of manual test item
creation (Circi et al., 2023; Kyllonen et al., 2024).

The widespread adoption of large language models
(LLMs) has significantly encouraged employing
generative NLP for AIG (Laverghetta Jr. and Li-
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Retrieval-Augmented Item Generation
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Figure 1: EdTec-ItemGen automates VET item genera-
tion by retrieving passages, extracting key points, and
prompting an LLM to create test items.

cato, 2023; Gorgun and Bulut, 2024; Chan et al.,
2025). Despite their impressive performance across
various subtasks, LL.Ms often struggle with hallu-
cinations, bias, and limited domain-specific knowl-
edge, diminishing their effectiveness in specialized
tasks (Zhang et al., 2023; Huber and Niklaus, 2025;
Gonen et al., 2025). Retrieval augmented genera-
tion (RAG) (Lewis et al., 2020; Fan et al., 2024)
offers a solution by integrating domain-relevant
knowledge, enhancing customization, reducing hal-
lucinations, and improving access to authoritative
and up-to-date information.

To support bfz!, one of the largest German Vo-
cational Education and Training (VET) providers
in manual item generation tasks, we deployed
EdTec-ItemGen?, a RAG platform for AIG, that
leverages a new mixed-integer linear programming
driven method (MILP-driven KPE) for key point
extraction to assist educators in designing items for
formative assessments.

Figure 1 summarizes the operational flow of

"https://www.bfz.de/
2System demonstration and code available at:
https://edtec-itemgen.xyz
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EdTec-ItemGen for supporting item generation
tasks. The process begins with users retrieving
relevant VET passages, pre-extracted from educa-
tional materials, using semantic search. An extrac-
tive summarization step then identifies the most
salient factoids or “key points” through the pro-
posed MILP-driven KPE approach and similarity
scoring (see Section 3). These key points are sub-
sequently used to instruct an LLM to generate new
test items. Finally, test item designers evaluate
and filter high-quality items via EdTec-ItemGen’s
user interface, which are later added to an internal
item base for exam assembly and construction. Our
work contributes as follows:

 Building on prior research on item retrieval for
exam assembly and calibration (Palomino et al.,
2024, 2025), we proposed a novel MILP-driven
key point extraction method to enhance key infor-
mation coverage on augmented generated items.

* An exhaustive evaluation and performance anal-
ysis, following the TREC-RAG 2024 evalua-
tion approach (Pradeep et al., 2024a,b), demon-
strating how the proposed key point extraction
method enhances the retrieval-augmented item
generation process (see Section 4).

* We deployed and released a fork multilingual
system demonstration version of EdTec-ItemGen,
our industry partner’s RAG platform for AIG.

Section 3 presents our MILP-based key point ex-
traction; Section 4 presents its evaluation under the
TREC-RAG framework. Section 5 provides an ap-
plication and demo system overview, and Section 6
concludes with future directions.

2 Related Work

To mitigate the complexity of manual test item con-
struction, educators adopted automated approaches
to simplify its development (Lane et al., 2016;
Rudolph et al., 2019; Circi et al., 2023). Prior
research in Automated Item Generation (AIG) tran-
sitioned from classic NLP methods, including shal-
low parsing, term and topic extraction, and the use
of semantic resources like WordNet (Brown et al.,
2005; Mitkov et al., 2006; Rus et al., 2011; Heilman
and Smith, 2010; Chali and Hasan, 2015), to neural
architectures including graph-neural networks and
transformer-based models for AIG (Chan and Fan,
2019; Tuan et al., 2020; Qu et al., 2021; Yoshimi
et al., 2023; Jahangir et al., 2024; Jamshidi and
Chali, 2025).
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The rise of LLMs has led educators to use prompt-
based generative NLP for AIG (Dugan et al., 2022;
Kyllonen et al., 2024); for example, Wu et al.
(2024) propose a two-step multimodal framework
that merges LLM-generated sub-questions about
related entities into coherent items. Lin et al.
(2024) proposed TASE-CoT, a few-shot method
for type-aware semantic extraction of relevant item
types and phrases to aid LLMs in generating re-
fined items and answers requiring reasoning across
multiple documents. Guo et al. (2024) generate
knowledge-base questions by extracting a skeleton
of interrogatives and auxiliaries from graph triples
to steer GPT-3.5. Ashok Kumar and Lan (2024)
fine-tune LLaMA-2 with negative Socratic example
augmentation and direct preference optimization to
boost programming-item validity.

Prior work includes Pochiraju et al. (2023), which
maps sentences via ConceptNet/WordNet rules,
and Guinet et al. (2024), which fine-tunes LLMs
for exam generation and filters items by syntax, in-
correctness, self-containment, and embedding sim-
ilarity. Poon et al. (2024) show that few-shot LLM
prompts yield more higher-order Chinese reading
items than traditional methods, while Mucciaccia
et al. (2025) combine role-based prompts, glos-
saries, one-shot examples, and chain-of-thought
reasoning to generate and evaluate university-level
items. Although LLM prompting is widespread
in AIG, hallucinations, knowledge-reliability is-
sues, and opaque reasoning persist without careful
prompt design (Fan et al., 2024). To address these
limitations, retrieval-augmented generation (RAG)
emerged as a popular strategy to enhance gener-
ative NLP performance (Lewis et al., 2020; Fan
et al., 2024).

This work introduces a novel key point extraction
method to enhance the retrieval-augmented item
generation process in German Vocational Educa-
tion and Training (VET). We released a public fork
of our industry partner’s internal tool and APIs to
demonstrate this. The closest studies are Pochiraju
et al. (2023), which maps sentences via Concept-
Net/WordNet rules, and Guinet et al. (2024), which
fine-tunes LLMs for exam generation and filters
items by length, incorrectness, self-containment,
and embedding similarity. However, our simpler
approach applies extractive summarization to VET
passages, isolating key nuggets and preserving only
essential content. Ultimately, we evaluated our ap-



proach with Pradeep et al. (2024a,b) framework.

3 Enhancing Augmented Item Generation
Via Key Point Extraction

Key Point Extraction (KPE) is an extractive sum-
marization approach that selects high-level factoid
statements capturing the main aspects of a pas-
sage (Bar-Haim et al., 2020, 2021). Because item
designers already distill such facts from domain-
specific VET contents, we add KPE to our item-
generation RAG pipeline to replicate this manual
process.

MILP-driven KPE After splitting the input
passages into sentences, we employed Jina-
CoIBERT? (Jha et al., 2024), an efficient multi-
vector neural re-ranker model, to compute sentence
embeddings and derive a similarity score for each
pair of candidate sentences, ultimately producing a
similarity matrix. Then, we apply a Mixed-Integer
Linear Programming driven formulation (MILP-
driven KPE) that aims to balance maximizing the
relevance, while minimizing redundancy of a set
of candidate sentences. Essentially, our goal is to
subselect K candidate sentences with maximum
relevance to the original input passage, such that
their pairwise similarity is minimized. Assume we
have m candidate sentences, each with a relevance
score 1, ..., Iy, relative to the original input pas-
sage and a pairwise similarity matrix S € R™*™,
Then, we aim to solve:

—»T_

min AT S r—-7 7
ze{0,1}m
such that 17 -7 = K, (1)

The objective in Eq. (1) formulates the task as a
quadratic knapsack problem (Pisinger, 2007). It
selects exactly K sentences, rewarding their indi-
vidual relevance while penalizing pairwise similar-
ity (redundancy), with A controlling the relevance-
redundancy trade-off. We linearize it as a MILP
problem with Glover and Woolsey (1974) method:

fe{o,{l}lfinl}z*eRm )\'TT'Z_FT'f
suchthat 17 -7 = K, 2)
Loxy <z <oy Vi
S —wu-(1—my) <z Vi
zigir-f—li-(l—m,-) ]

Shttps://huggingface.co/jinaai/jina-colbert-v2
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where §; is the i-th column of S, z; is a slack vari-
able expressing 3, ; sij - j, li = — ;”:1 |54
is a lower-bound for z; and u; = 77" |s; j| is an
upper-bound for z;. Eq. (2) replaces the quadratic
term with linear constraints that add one slack vari-
able per sentence, set to the sum of its similarities
to the selected sentences, making the objective lin-
ear. By employing similarity scoring and linearized
constrains, our method extracts key statements effi-
ciently.

4 Experiments and Results

Although LLMs have been shown to be more effec-
tive as weak labelers when combined with custom
models like DistilBART rather than for direct ex-
tractive summarization (Mishra et al., 2023), train-
ing these models requires high-quality ground truth
data, careful prompt design, and challenges for
optimizing task-specific objectives. Furthermore,
LLM’s reliance on superficial features like sentence
position rather than distinguishing content impor-
tance may make LL.Ms encounter challenges in
extractive summarization tasks (Zhang et al., 2023).
Therefore, we hypothesize that applying MILP-
driven KPE to instruct an LLM in item generation
can significantly improve both information cover-
age and the quality of test items, while reducing the
reliance on resource-intensive training iterations.

4.1 Dataset

As documents for retrieval, we utilized a sample
corpus of 1,110 VET passages drawn from bfz’s
proprietary teaching materials, covering nine high-
demand occupational VET topics relevant to the
German job market. These topics range from “Ger-
man Language Competence” and “Use of Tech-
nology” to “Storage and Logistics” and “Content
Creation” (see Appendix Al for more details).

4.2 Passage Retrieval

We employed a dense retrieval approach to model
the retrieval step, building on prior research in item
retrieval for exam assembly (Palomino et al., 2024,
2025). We used Reimers and Gurevych (2019) 4
embeddings with the faiss library (Douze et al.,
2024) to efficiently perform approximate nearest
neighbor search, with ten topic skill queries over
the VET corpus. To ensure a realistic search and
retrieval scenario, these queries were created using

*https://huggingface.co/sentence-transformers/
paraphrase-multilingual-MinilM-L12-v2
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synonymic terms rather than the actual topic labels
available in the VET corpus.

4.3 Augmented Item Generation

Given a ranked list of the top 25 relevant VET pas-
sages retrieved via dense retrieval, we investigated
two setups:

1. With MILP-driven KPE: After extracting
the top 15 key points using MILP-driven KPE,
we prompted GPT-4o0 to generate a test item
based on these points.

Without MILP-driven KPE: We instructed
GPT-40 to directly derive the top 15 key state-
ments from a given passage and then, with
that information, generate a test item.

Overall, both setups were used prompts for instruct-
ing GPT-40’ to generate new test items (Refer to
appendix A.2 for more details). While for setup
(1), the underlying assumption is that the factoid
extraction step will reveal the most important in-
formation leading to better prompts that produce
better augmented generated items. For setup (2),
the assumption is that a single prompt instructing
the LLM to first identify the top key factoids from a
given passage will be sufficient to generate higher-
quality items that effectively cover the passage’s
most essential statements.

4.4 Evaluation Approach

To assess the performance of our experimental se-
tups during the augmented item generation phase,
we employed Pradeep et al. (2024a,b) TREC-RAG
style automated ad-hoc evaluation approach. Based
on Voorhees and Buckland (2003), the TREC-RAG
evaluation approach involves using the AutoNugge-
tizer framework by harnessing an LLM to derive a
concise set of factoid units that can be binary eval-
uated based on whether they contain either “Vital”,
“Ok” or “Not Vital” information nuggets required to
address a given information need. For each passage
in our VET corpus, we instructed GPT-4o to extract
30 information nuggets and subsequently select and
label the top 20 most relevant ones as ground truth
for final evaluation. While nuggets containing es-
sential information for generating comprehensive
items are labeled as “vital”, nuggets with valuable
yet non-essential information are labeled as “okay”.
Subsequently, we evaluated the augmented gener-
ated responses against the created nuggets by in-

5h’ctps: //openai.com/index/hello-gpt-40/
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structing GPT-40 to numerically determine whether
each nugget was fully, partially, or not supported by
each generated item response. We then computed
the four metrics proposed by Pradeep et al. (2024a),
providing an exhaustive evaluation of information
coverage across the augmented test item responses
produced by GPT-40:

1. Vital Strict (Vstrict): Applies strict matching
criteria, counting only for full support matches
(i.e., 1.0 and 0.0 respectively).

Vital (V): Calculates the average score for

nuggets labeled as "vital" using a scoring sys-

tem with three levels (1.0 for full support, 0.5

for partial support, and O for no support).

. Weighted (W): It assigns weights of 1.0 to vital
nuggets and 0.5 to okay nuggets, then calculates
the average by dividing the total vital nugget
score by the sum of vital nuggets plus half the
number of okay nuggets.

. All (A): The average across all nuggets, both
vital and okay, using the same three-level scor-
ing system to assess the broadest measure of
generated responses completeness.

Additionally, as a proxy to assess the quality of
the augmented generated test items, we instructed
GPT-4o to rate grammatical quality, readability,
and succinctness on a scale from 1.0 to 5.0. We also
measured the length of each item. While prompting
GPT-40 we employed instructor library enforc-
ing consistent prompt formatting and deterministic
API calls fixing the temperature parameter to 0.
Similarly to Voorhees and Buckland (2003) and
Pradeep et al. (2024a), by combining the above
metrics, we systematically quantified key factual
coverage and clarity across augmented generated
item responses.

4.5 Results

Based on Pradeep et al. (2024a,b) TREC-RAG
framework, we evaluated the impact of integrating
our new MILP-driven KPE method by assessing
the information coverage and quality of generated
test items. Table 1 summarizes the results metrics
for the different levels of information coverage and
item quality. From an information coverage per-
spective, regarding how well EdTec-ItemGen’s pro-
duced items covering essential information neces-
sary for generating good multiple-choice test items,
when employing MILP-driven KPE, we observed
an increased Vstrict score from 0.29 to 0.36 (e.g.,
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+0.07 absolute, +24.14% relative). Similarly, as
for how well, on average, full and partial essen-
tial information nuggets were matched in the aug-
mented generated response, we observed an abso-
lute increase of 7% from 0.35 to 0.42 in the Vital
(V) score. While evaluating by weighting the im-
portance of ground truth nuggets based on their
relevance (vital Vs. ok), we observed an improve-
ment of 6% when using MILP-driven KPE extrac-
tion to instruct GPT-4o in creating multiple-choice
test items. When considering all metrics, that is,
when averaging Vstrict, V, and W scores, when
employing MILP-driven KPE, we observed an av-
erage improvement of 8% over GPT-40 augmented
generation responses. From an item quality per-
spective, we observed improvements in grammati-
cal and readability scores when employing MILP-
driven KPE, with relative increases of 2.7% and
2.73%, respectively, at the expense of succinctness,
which decreased by 1.25%. Also, we noted an in-
crease in the length of the generated item responses
by 13.62%. Ultimately, we conducted a Wilcoxon
significance test comparing setups observing sig-
nificant differences (p < 0.05) on all metrics except
succinctness (p = 0.30).

5 System Overview

EdTec-ItemGen aims to support educators in test
item generation tasks at bfz, Germany’s largest
provider of vocational education and training
(VET) services. Designing formative assessments
is time-intensive, particularly when test items must
cover specific curricular content. This process is
slow and prone to errors. EdTec-ItemGen replaces
the drafting process with retrieval-augmented item
generation. A dense retriever searches from inter-
nal educational materials, while MILP-driven KPE
extracts essential concepts to instruct an LLM in
writing a candidate item. Educators then review
each suggested item, rating clarity and difficulty
while discarding spurious items. EdTec-ItemGen
also serves as a crowdsourcing infrastructure, col-
lecting user interactions to drive future research on
generative retrieval models for question banks (see
Appendix A2 for industry application details).

Frontend The platform interface, illustrated in
Figure 3, implements the complete item-generation
workflow in HTML and JavaScript. Fig. 3(a) en-
ables users to query the pre-processed VET corpus
and select an LLLM version (GPT-40-mini or GPT-
3.5 in the demo fork), thus reducing dependence
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on a single model. An upload widget is also avail-
able, allowing custom file ingestion in CSV format.
Fig. 3(b) shows retrieved passages with MILP-KPE
key points highlighted, so users can assess content
coverage. Fig. 3(c) displays the generated items:
green marks accepted items, while red flags incon-
sistent ones. Fig. 3(d) presents the validation view,
where users approve or reject the generated items
before pushing them to the main item base for exam
assembly.

Backend The backend architecture, shown in
Figure 2, is implemented in Python. An asyn-
chronous worker pool manages concurrent Flask
API requests. Semantic search is handled using
multilingual embeddings with the FAISS library.
MILP-driven KPE employs SciPy’s native opti-
mizer for efficient key point extraction to support
retrieval-augmented item generation. Extracted key
points are passed to an LLM to guide the retrieval-
augmented item generation phase. Each request re-
turns a JSON response with the ranked documents,
extracted key points, and the LLM-generated item.
User interactions from the interface are logged in
the backend using SQLite and made accessible
through an internal endpoint for later analysis and
review. To extend applicability to other languages,
we expose language-agnostic APIs that support the
generation of multilingual items from user-custom
data (see Appendix A3 for more details).

6 Conclusions

Collaborating with bfz, one of Germany’s largest
VET services providers, we explored employing
retrieval-augmented generation to assist educators
with manual item construction tasks. Although
prompting LLMs with custom VET curricular ma-
terials is useful for rapid test item generation,
we explored whether incorporating a new MILP-
driven key point extraction (KPE) method can en-
hance prompting during the augmented item gen-
eration phase. We evaluated our new method un-
der the TREC-RAG framework. Our evaluation
indicates that MILP-driven KPE significantly en-
hances essential content coverage and item qual-
ity in retrieval-augmented generation from internal
VET passages, improving LLM-based item genera-
tion performance on domain-specific curricular ma-
terial. Specifically, when employing MILP-driven
KPE, results improved across all metrics, namely
Vstrict increased by 7%, (V) by 7%, (W) by 6%,
and (A) by 8%, with relative gains ranging from



(a) (b)

Metric With Without A Abs. A Rel. (%) Metric WStat.  p-value  Sig.
Nugget Coverage Vital Strict (Vstrict) 19005 0021  Yes

Vital Strict (Vstrict) 0.36 0.29 +0.07 1 +24.14 ]

Vital (V) 0.42 0.35 +0.07 +20.00 Vital (V) 32845 0032 Yes

Weighted (W) 0.38 0.32 +0.06 1 +18.75 Weighted (W) 3923.0 0.026 Yes

All (A) 0.40 0.32 +0.08 1 +25.00 All (A) 4644.5 0.0003 Yes
Test Item Quality Grammar Score 2390 00029  Yes

grammar chre ;"34 2(8)(1) +(())(}53I +1227g Succinctness Score 1498.5 0.306 No

uccinctness Score 95 . -0. -1. .
Readability Score 4.90 477 +0.13 1 +2.73 Readability Score 5395 00026 Yes
Response Length (L) 32.28 28.41 +3.87 1 +13.62 Response Length (L) 92855 0.0009  Yes

Table 1: System performance with and without MILP-driven KPE. (a) Metrics for both settings and their A absolute
and relative differences. (b) Wilcoxon signed-rank test comparing both setups (p < 0.05 indicates significance).
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Figure 2: Demo architecture of EdTec-ItemGen, illustrating client interactions, API endpoints, retrieval and
augmented item generation method, and integration with data logging, and external data repositories.
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Figure 3: EdTec-ItemGen: Demo Version Frontend and User Interface Overview.

18.75% to 25%. In terms of item quality, KPE  how users generate and evaluate items using our
significantly improves grammar and readability by = method. We plan to further investigate how to
2.70% and 2.73%, respectively, while increasing  employ and integrate linear constraint-based test-
item length by 13.62%. Overall, our approach en-  assembly models (Linden et al., 2005) with LLMs
hances the coverage of essential curricular content  to control and generate different test item types
and improves the clarity of language in test items.  (e.g., matching, cloze) to expand on item’s psycho-
Future work will analyze session logs to research metric coverage beyond recall.
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Limitations and Ethics Statement

For this work, we maintained strict confidential-
ity to protect our partner’s product and intellectual
property, in full compliance with required privacy
standards. Although EdTec-ItemGen effectively
supports VET educators in retrieval-augmented
item generation tasks using domain-specific cur-
ricular contents, some limitations remain. For in-
stance, we employed an ad-hoc TREC RAG-style
evaluation to transfer a usable platform to our part-
ners rapidly. This was useful for designing, as-
sessing, and deploying our platform under cold
start conditions to our partner’s use case. Neverthe-
less, our TREC-RAG style approach (Pradeep et al.,
2024a,b) relies on synthetic relevance judgments,
which have recently gained traction in the informa-
tion retrieval community (Faggioli et al., 2023; He
et al., 2024). Still, real human VET expert evalu-
ations naturally provide more accurate measures
of augmented-generated item quality. Neverthe-
less, our platform allows users to annotate item
quality or difficulty during the generation process
to address this limitation. In the future, we plan
to integrate these real human annotations into our
evaluation approach, thereby enhancing the relia-
bility of our partner’s item generation workflow.
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A Appendix
A.1 Dataset Details

Table 2 summarizes the frequency across these top-
ics, including the top three terms, unique terms,
sentence counts, top terms, and document counts.

Avg. Uniq. Sent. Top 3
Topic Terms Terms Count Terms Docs
cross multiplication
General Mathematical understanding
Competence 3244 223 383 mathematical 70
employees
Occupational Safety safety
& Health Protection 3232 240 36.8 workplace 64
tasks
Task task management
Management 323.8 239 379 important 112
education
German Language professional
Competence 306.5 227 35.1 significance 234
. learners
E-learning & education
Course Evaluation  320.1 244 374 learning 195
technology
Use of technologies
Technology 333.8 252 363 education 92
data
Basic values
Statistics 3283 226 36.7 median 83
content
Content information
Creation 3325 244 37.1 education 61
company
Storage & logistics
Logistics 3104 238 36.1 storage 199
learners
education
Total 318.7 237 36.6 professional 1,110

Table 2: Key statistics across topics, including average
terms, unique terms, sentence counts, key terms, and
document counts.

The VET corpus is a domain-specific collection cu-
rated to support manual test item design for forma-
tive assessments. Each passage delivers authentic
trade skill content specifically curated to the con-
text of vocational education and training (VET) in
Germany.
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A.2 Industry Application

As traditional test item construction requires multi-
ple manual review cycles, AIG has become a key
capability for educational and assessment institu-
tions. Generating items that are clear, readable, and
aligned with curricular materials is essential for
valid assessment in high-stakes contexts. LLMs of-
fer scalable item generation while reducing manual
effort (Kyllonen et al., 2024). However, their inte-
gration is limited by issues such as hallucinations,
lack of domain expertise, and restricted access to
private sources (Li et al., 2024; Ramesh et al., 2024;
Wu and Fard, 2025).

Retrieval-augmented generation (RAG) addresses
these challenges by enabling LLMs to incorporate
external knowledge for domain-specific item gen-
eration. In collaboration with bfz, a major Ger-
man VET provider, we developed EdTec-ItemGen-
a RAG-based platform supporting VET educators
in creating and updating internal item repositories.
Building on prior work in item retrieval for exam as-
sembly (Palomino et al., 2024, 2025), we integrated
a MILP-driven approach for key point extraction
(KPE) to identify essential content from VET pas-
sages. As illustrated in Figure 3, EdTec-ItemGen
presents search results retrieved via dense semantic
search. The MILP-based KPE module extracts key
information used to prompt the LLM, which then
generates a candidate item. Users review the gener-
ated items and decide which should be retained for
inclusion in the item base.

A.3 System and API Overview Details

This section outlines the frontend and backend com-
ponents of EdTec-ItemGen.

A.3.1 Frontend

Figure 3 displays the demo interface, which sup-
ports a human-in-the-loop workflow for LLM-
based retrieval-augmented item generation.

A.3.2 Backend

The backend is built using the Flask® framework,
exposing RESTful endpoints for search, CSV up-
load, and item generation. Python’s concurrency
library enables parallel execution across pipeline
components. Deployment uses Nginx’ as a reverse
proxy and runs on an Amazon EC2® instance with
6https://w‘"lask. palletsprojects.com/en/stable/

"https://nginx.org/
8https://aws.amazon.com/en/ec2/
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three vCPUs for cost-effective performance only
on the system demonstration version. Gunicorn is
used as the WSGI server for robust process and
connection management.

The platform supports multilingual input via GPT-4.
It detects the CSV language and prompts the LLM
accordingly during item generation. Public APIs
are available at https://api.edtec-itemgen.
xyz/search.

For large-scale scenarios, such as extensive item
banks, performance is maintained through paral-
lelization and solvers like OR-Tools (Perron and Di-
dier) or Gurobi (Gurobi Optimization, LLC, 2024).

Below are curl® examples for API usage:

1) Upload Data Endpoint Upload a CSV file.
The response returns an ID used for subsequent re-
quests. Note: User data is not stored permanently;
logs are cleared post-upload.

curl -X POST \

-F "file=@/path/to/your/file/example.csv"” \
https://api.edtec-itemgen.xyz/upload_csv

2) Item-RAG Endpoint Use the upload_id to
generate items:
curl -X POST \
-H "Content-Type: application/json” \
-d '
"query"”: "safety”,
"upload_id": "<your file ID>",
K" 25,
"1lm_version”: "GPT-40-MINI",
"kpe”: "true”
A
https://api.edtec-itemgen.xyz/search
This retrieves relevant content from the uploaded

CSYV and generates multiple-choice items accord-
ingly.

A.4 Prompt Details

Our prompting approach relied on the
instructor!® library, ensuring consistency
and control over output formatting and prompt
instructions. The instructor output was param-
eterized as JSON, thereby avoiding any output
misformatting.

*https://curl.se
10https://python.useinstructor.com/
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Goal Prompt in German Translated Prompt in English

1. Clarity Du bist ein Experte fiir die Bewertung der Qualitdt von Priifungsfragen. Gib auss- You are an expert in evaluating the quality of exam questions. Provide only a JSON object

Evaluation - chlieBlich ein JSON-Objekt mit den Schliisseln: "grammar_score” (Ganzzahl 1 bis  with the following keys: "grammar_score" (an integer from 1 to 5), "succinctness_-

Instruction’s 5), "succinctness_score" (Ganzzahl 1 bis 5), "readability_score" (Ganzzahl 1 score" (an integer from 1 to 5), "readability_score" (an integer from 1 to 5),

Context bis 5), "explanation" (kurze Begrundung). Beispielformat: {"grammar_score”: 4, "explanation" (a brief explanation). Example format: {"grammar_score": 4,
"succinctness_score”: 3, "readability_score”: 5, "explanation”: "Die "succinctness_score”: 3, "readability_score”: 5, "explanation”: "The
Frage ist grammatisch gut, sehr klar..."}. Kein zusitzlicher Text oder andere question is grammatically sound and very clear..."}. No additional text or

Schliissel.

keys.

2. Clarity
Evaluation -
User Request

Bewerten Sie die folgende Multiple-Choice-Priifungsfrage in deutscher Sprache: {ques-
tion}. Bewerten Sie sie auf einer Skala von 1,0 bis 5,0 fiir die folgenden Kriterien: —
Grammatik (grammar_score): Bewerten Sie die grammatikalische Richtigkeit. — Priig-
nanz (succinctness_score): Beurteilen Sie, wie prignant und direkt die Frage ist. —
Lesbarkeit (readability_score): Beurteilen Sie, wie leicht die Frage zu verstehen ist.
Die Ergebnisse werden im folgenden JSON-Format zuriickgegeben: {"grammar_score”:
<score>, <score>, "readability_score"”: <score>,
"explanation”:

"succinctness_score”:
<Kurzerlduterung zu den angegebenen Punktzahlen>}.

Evaluate the following multiple-choice exam question in German language: {question}.
Rate it on a scale from 1.0 to 5.0 for the following criteria: — Grammar (grammar_score):
Assess grammatical accuracy. — Conciseness (succinctness_score): Evaluate how
concise and direct the question is. — Readability (readability_score): Judge how easy
it is to understand. Return the results in the following JSON format: {”grammar_score”:
<score>, "succinctness_score”: <score>, "readability_score"”: <score>,
"explanation”: <brief explanation for the given scores>}.

3. Nugget Cov-
erage Scoring
— Instruction’s
Context

Sie sind ein Experte fiir die Bewertung der Qualitit von Multiple-Choice-Priifungsfragen
basierend auf vorab bewerteten, Informatic —rel Fakten,
die die Frage und ihre Antworten abdecken miissen. Befolgen Sie diese Richtlinien zur

Berechnung der Metriken: 1. Weisen Sie Werte zu: - support = 1, - partial_support =
0,5, - not_support = 0. 2. Metriken: - A (All) Score: Durchschnitt aller Nugget-Werte. -
V (Vital) Score: Durchschnitt der Werte fiir Nuggets, die als "Vital" gekennzeichnet sind. -
W (Gewichteter) Score: Gewichteter Durchschnitt, wobei "Vital"-Nuggets ein Gewicht
von I und "OK"-Nuggets ein Gewicht von 0,5 haben. - Vstrict (Vital Strict) Score:
Durchschnitt fiir "Vital"-Nuggets, wobei nur support mit 1 gewertet wird (partial_-
support = 0). Geben Sie Thre Antwort als giiltiges JSON-Objekt mit den folgenden
Schliisseln an: {"Vstrict_GPT": <Score>, "V_GPT": <Score>, "W_GPT": <Score>,
"A_GPT": <Score>"}.

You are an expert in evaluating multiple-choice exam questions based on pre-assessed,
labeled information nuggets — relevant factoids that the question and its answers must
cover. Follow these guidelines to calculate the metrics: 1. Assign Values: - support =
1, - partial_support = 0.5, - not_support = 0. 2. Metrics: - A (All) Score: Average
of all nugget values. - V (Vital) Score: Average of values for nuggets labeled as "Vital."
- W (Weighted) Score: Weighted average where "Vital" nuggets have a weight of 1 and
"OK" nuggets a weight of 0.5. - Vstrict (Vital Strict) Score: Average for "Vital" nuggets,
counting only support as 1 (partial_support = 0). Provide your answer as a valid
JSON object with the following keys: {"Vstrict_GPT": <score>, "V_GPT": <score>,
"W_GPT": <score>, "A_GPT": <score>"}.

4. Nugget Cov-
erage Scoring
— User Request

Bewerten Sie die folgende Kombination aus Frage und Kandidatenantwort: {question}
{candidate_answer}. Liste der Nuggets (Format: Nugget: <Text>, Wichtigkeit: <Vi-
tal/OK>): {nuggets_text}. Fiir jedes Nugget ist zu bewerten, wie gut es durch die kom-
binierte Fragestellung und Antwort abgedeckt wird. Weisen Sie jedem Nugget eine der fol-
genden Abdeckungsstufen zu: - support: Das Nugget wird vollstindig oder klar abgedeckt.
- partial_support: Das Nugget wird teilweise abgedeckt, aber es fehlt an vollstindi-
ger Abdeckung. - not_support: Das Nugget wird gar nicht abgedeckt. Antworten
Sie mit einem giiltigen JSON-Objekt im folgenden Format: {"nugget_coverage”: [
{"nugget": <Text>, "coverage”: <support/partial_support/not_support>},
- 1)

Evaluate the following combination of question and candidate answer: {question} {can-
didate_answer}. List of Nuggets (Format: Nugget: <Text>, Importance: <Vital/OK>):
{nuggets_text}. For each nugget, assess how well it is covered by the combined question
and answer. Assign one of the following coverage levels to each nugget: - support:
The nugget is fully addressed or clearly covered. - partial_support: The nugget is
partially addressed but lacks full coverage. - not_support: The nugget is not addressed
at all. Respond with a valid JSON object in the following format: {"nugget_coverage":
[ {"nugget”: <Text>, "coverage": <support/partial_support/not_support>},

)

5. Augmented
Item Genera-
tion (Based on
Key Points)

Thre Aufgabe ist es, eine Multiple-Choice-Frage zu erstellen, die auf den Top 15
Schliisselaussagen {kp} basiert. Die Ausgabe sollte ein JSON-Objekt im Format sein:
{"question”: <Question text>, "answers": [ "Antwort 1", "Antwort 2",
"Antwort 3", "Antwort 4" ], "correct_answer": <richtige Antwort>}. Die
Frage muss so formuliert sein, dass sie nur mit den angegebenen Antwortméglichkeiten
beantwortet werden kann und nur eine richtige Antwort existiert. Speichern Sie die richtige
Antwort im JSON-Feld "correct_answer".

Create a multiple-choice question based on the top 15 key statements {kp}. The output
should be a JSON object in the format: {"question”: <Question text>, "answers":
[ "Answer 1", "Answer 2", "Answer 3", "Answer 4" ], "correct_answer”:
<correct answer>}. The question must be formulated so that it can only be answered
based on the provided answer options and has only one correct answer. Store the correct
answer in the JSON field "correct_answer"”.

6. Augmented
Item Genera-
tion (Based on
Full Text)

Ihre Aufgabe ist es, eine Multiple-Choice-Frage zu erstellen, die auf den 15 wichtigsten
Aussagen des folgenden Textes {input_text} basiert. Die Ausgabe sollte ein JSON-Objekt
im Format sein: {"question”: <Question text>, "answers”: [ "Antwort 1",
"Antwort 2", "Antwort 3", "Antwort 4" ], "correct_answer”: <richtige
Antwort>}. Die Frage muss so formuliert sein, dass sie nur anhand der verfiigbaren
Antwortmdglichkeiten beantwortet werden kann und nur eine richtige Antwort besitzt.
Speichern Sie die richtige Antwort im JSON-Feld "correct_answer”.

Create a multiple-choice question based on the top 15 key statements of the following
text {input_text}. The output should be a JSON object in the format: {"question”:
<Question text>, "answers”: [ "Answer 1", "Answer 2", "Answer 3", "Answer
4" 1, "correct_answer”: <correct answer>}. The question must be formulated so
that it can only be answered based on the provided answer options and has only one correct
answer. Store the correct answer in the JSON field "correct_answer"”.

7. AutoNugge-
tizer — System

Sie sind ein Experte fiir Bildungsinhalte. Thre Aufgabe ist es, wesentliche Aus-
sagen oder Schliisselinformationen (“nuggets”) — Faktengrundlagen oder Aussagen,

Extract essential statements or key information (“nuggets”) — factoids or statements derived
from the provided content — using a valid JSON object containing exactly the following

Instruction die aus dem bereitgestellten Inhalt abgeleitet wurden — zu extrahieren. Antworten keys: {keys_str}. Each key must be associated with a list of exactly {nuggets_per_category }
for Nugget Sie mit einem giiltigen JSON-Objekt, das genau die folgenden Schliissel enthilt: el Each element should be a JSON object with the following structure: {"nugget”:
Extraction {keys_str}. Jeder Schliissel muss einer Liste mit genau {nuggets_per_category} Ele- <The extracted key fact or statement>, "importance”: <Relevance level:

menten zugeordnet sein. Jedes Element muss ein JSON-Objekt mit folgender Struk- ’Vital’, ’OK’, or ’Not Vital’>, "source_docid”: <Document ID>}.

tur sein: {"nugget”: <Die extrahierte Schliisselaussage oder Information>,

"importance”: <Relevanzniveau: ’Vital’, ’OK’ oder ’Not Vital’>, "source_-

docid”: <Dokument-ID>}.
8. AutoNugge- Gegebenen Inhalt: {passage}. Antworte ausschlieBlich mit einem JSON-Objekt, das genau  Given this content: {passage}. Respond solely with a JSON object that contains exactly the
tizer — User die folgenden Schliissel enthilt: {keys_str}. Jeder Schliissel muss einer Liste mit genau  following keys: {keys_str}. Each key must have a list with exactly {nuggets_per_category}
Request  for {nuggets_per_category} Elementen zugeordnet sein. Jeder Eintrag in der Liste muss ein  elements. Each entry in the list must be an object with the keys "nugget”, "importance”,
Nugget Ex- Objekt mit den Schliisseln "nugget”, "importance” und "source_docid” sein. and "source_docid”.
traction

Table 3: Employed prompts with original German texts and their English corresponding translations.
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Abstract

Large language models (LLMs) have achieved
great success, but their occasional content fab-
rication, or hallucination, limits their practi-
cal application. Hallucination arises because
LLMs struggle to admit ignorance due to inad-
equate training on knowledge boundaries. We
call it a limitation of LLMs that they can not
accurately express their knowledge boundary,
answering questions they know while admit-
ting ignorance to questions they do not know.
In this paper, we aim to teach LLMs to recog-
nize and express their knowledge boundary, so
they can reduce hallucinations caused by fab-
ricating when they do not know. We propose
COKE, which first probes LLMs’ knowledge
boundary via internal confidence given a set
of questions, and then leverages the probing
results to elicit the expression of the knowledge
boundary. Extensive experiments show COKE
helps LLMs express knowledge boundaries, an-
swering known questions while declining un-
known ones, significantly improving in-domain
and out-of-domain performance.

1 Introduction

Large language models (LLMs) have emerged as
an increasingly pivotal cornerstone for the develop-
ment of artificial general intelligence. They exhibit
powerful intellectual capabilities and vast storage
of knowledge (Brown et al., 2020; Ouyang et al.,
2022; Achiam et al., 2023), which enables them to
generate valuable content. Recent research demon-
strates that LLMs excel in passing various profes-
sional examinations requiring expert knowledge
in domains like medical (Jin et al., 2021) and le-
gal (Cui et al., 2023). Nevertheless, human users
are hardly willing to seek professional suggestions
from LLMs, due greatly to hallucinations in LLMs.
Hallucinations in LL.Ms refer to the phenomenon
that existing LLMs frequently generate untruthful
information (Zhang et al., 2023b; Ji et al., 2023),
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Figure 1: The evolution of the Known-Unknown Quad-
rant. The yellow portion represents the model’s para-
metric knowledge. Our method increases the “Known
Unknows”, helping the model recognize and articulate
its knowledge limitations.

which greatly undermines people’s trust and accep-
tance of LLM-generated content.

An important cause of hallucinations is the
model’s insufficiency in knowledge boundary
expression, which originates from the learning
paradigm of LLMs. Pre-training and instruction
fine-tuning serve as the two indispensable learning
stages for current LLMs. The learning mechanism
of these stages is to encourage LLMs to generate
the provided text, which also makes LLMs prone to
fabricating content when LLMs do not possess rel-
evant knowledge (joh, 2023; Gekhman et al., 2024).
Hence, LLMs are hardly instructed to express their
ignorance, which is a lack of accurate knowledge
boundary expression. Given a specific LLM and
a question set, the corresponding question-answer
pairs can be categorized based on two factors: (1)
whether the model has corresponding parametric
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knowledge (knows v.s. unknows), and (2) whether
the model is aware of the first factor (known v.s. un-
known), as is depicted in Figure 1. Hallucinations
frequently occur in the “Unknown Unknows” sce-
narios, where the model is unaware that it should
explain its ignorance like humans, instead of strug-
gling to give a hallucinated response.

Fine-tuning models to express knowledge bound-
aries faces two significant challenges. The first
challenge is how to efficiently obtain data that re-
flects the internal knowledge of a specific model.
Even if evaluation questions are easy to construct,
obtaining expert-level answers in certain fields is
costly. Additionally, since the model might pro-
duce correct answers in different forms from the
reference answers, evaluating their correctness is
also challenging (Kadavath et al., 2022; Zou et al.,
2023). The second challenge is enabling the model
to express its knowledge boundary robustly (Ren
et al., 2023). We expect consistent knowledge
boundary expression across prompts and general-
ization across domains.

To address the above two challenges, we propose
CoOKE, an Confidence-derived Knowledge bound-
ary Expression method which teaches LLMs to ex-
press knowledge boundaries and decline unanswer-
able questions, leveraging their internal signals.
Our method consists of two stages: a probing stage
and a training stage. In the probing stage, we use
the model’s internal signals reflecting confidence to
distinguish between answerable and unanswerable
questions, avoiding reliance on external annota-
tions. This allows for easy collection of large data
and avoids conflicts between the model’s internal
knowledge and annotations. In the training stage,
we construct prompts for each question using three
representative types: prior awareness, direct aware-
ness, and posterior awareness. Then, we apply
regularization by incorporating the squared differ-
ences in confidence across different prompts for
the same question into the loss function to enhance
consistency. This training setup helps the model
semantically learn to express knowledge boundary
better, thereby enhancing its generalization ability.

To evaluate the model’s knowledge boundary ex-
pression capability, we design an evaluation frame-
work that comprehensively assesses the model’s
performance in both “knows” and “unknows” sce-
narios. We conduct extensive experiments on both
in-domain and out-of-domain datasets. Results
show that the model learns to use internal signals
to help express knowledge boundary. Compared to
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directly using model signals for determination, the
models trained with our method demonstrate better
performance and generalization.

In summary, our contributions are:

* We explore the effectiveness of internal model
signals in indicating confidence and demonstrate
the model can learn to use its signals to express
its knowledge boundaries after training.

* We propose a novel unsupervised method that
leverages internal model signals and multi-
prompt consistency regularization to enable the
model to express its knowledge boundary clearly.

* We develop a framework for evaluating a model’s
ability to express its knowledge boundary, and ex-
perimental results demonstrate that the model can
learn signals about the confidence of its knowl-
edge and articulate its knowledge boundary.

2 Related Work
2.1 Knowledge Boundary Perception

While models are equipped with extensive paramet-
ric knowledge, some studies indicate their inability
to discern the knowledge they possess from what
they lack, thus failing to articulate their knowl-
edge boundary (Yin et al., 2023; Ren et al., 2023).
In terms of enhancing a model’s awareness of
its knowledge boundary, efforts can be catego-
rized into two parts: one focuses on enabling
the model to fully utilize its inherent knowledge,
thereby shrinking the ratio of the model’s “Un-
known Knows” (Wei et al., 2022; Li et al., 2023;
Tian et al., 2024). The other part focuses on en-
abling the model to acknowledge the knowledge it
lacks, thereby reducing the ratio of the model’s
“Unknown Unknows”. R-tuning (Zhang et al.,
2023a) uses labeled data to judge the correctness of
model responses and trains the model using the SFT
method. Yang et al. (2023) and Kang et al. (2024)
explore training methods based on RL. Focused on
this aspect, our work investigates how to enable
models to express knowledge boundaries without
annotated data, while also considering consistent
knowledge boundary expression across prompts
and generalization across domains.

2.2 Uncertainty-based Hallucination
Detection

Some work on hallucination detection focuses on
obtaining calibrated confidence from LLMs. One
segment of work involves utilizing the information
from these models to compute a score that signifies
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to express the knowledge boundary.

the model’s uncertainty about knowledge (Man-
akul et al., 2023; Kuhn et al., 2023; Varshney et al.,
2023; Duan et al., 2024). Another segment of work
seeks to enable the model to express verbalized
uncertainty (Lin et al., 2022; Xiong et al., 2023;
Tian et al., 2023). Our work concentrates on en-
abling the model to explicitly express whether it
is capable of answering, rather than generating a
probability score. By allowing the model to ex-
press its knowledge boundary autonomously, users
no longer need to concern themselves with detect-
ing hallucinations, such as by setting uncertainty
thresholds.

3 Knowledge Boundary Expression

3.1 Problem Formulation

We focus on exploring LLMs’ capacity to perceive
their internal knowledge. For a series of questions
Q=1{q,q,-.,qn}, we categorize the questions
based on whether the model has the knowledge
required to answer them into two parts: questions
that can be answered (), and questions that cannot
be answered @,,,,x- To minimize the interference
from the model’s reasoning ability, the questions
used for testing the model are all single-hop ques-
tions that inquire about factual knowledge. For a
given question ¢, the model M generates a predic-
tion based on its parameter knowledge Ky, repre-
sented as y = M (Ky, ¢). We measure the model’s
awareness of its knowledge from two aspects: the
awareness of the knowledge it possesses and the
knowledge it does not possess. The former is repre-
sented as the ratio of the model’s “Know Knows” to
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“Knows”, denoted as Ry, while the latter is repre-
sented as the ratio of the model’s “Know Unknows”
to “Unknows”, denoted as R,,,,. Given a question
q € Q, Ry is set to 1 if the model’s response
y aligns with the knowledge %, and to O if the
model either expresses uncertainty or provides an
incorrect answer. For a question where ¢ € Qunk,
R,k 1s assigned 1 if the model expresses uncer-
tainty, and O if it fabricates an incorrect answer.
We evaluate the model’s awareness of its knowl-
edge by testing on two types of ¢ and calculating
Soware = %(Rk + Rynk). The model’s awareness
of its knowledge is more accurate as Sywqre ap-
proaches 1, and less accurate as it approaches 0.

3.2 Method

Our insight is that the learning mechanism of LLM
enables the model to search for the nearest knowl-
edge k in its parameters as the answer to the query
q. Although training allows the model to measure
distances accurately, it does not teach it to refuse to
answer based on the distance. Therefore, we hope
the model can learn to use its signals to recognize
when a large distance indicates a lack of knowl-
edge to answer g. Our method involves two steps
as shown in Figure 2: First, we use the model’s
own signals to detect knows and unknows; Second,
we guide the model to learn these signals through
instruction tuning, enabling it to express its knowl-
edge boundary clearly.

3.2.1 Internal Knowledge Identification

To identify whether the model possesses the knowl-
edge required to answer question g, we calculate



the model’s confidence about its prediction. The
confidence of the model’s prediction serves as a
measure of the distance between query g and knowl-
edge k. On the unlabeled question set Q, we let
model M generate phrase-form predictions for each
question. We only consider the distance between
query ¢ and the closest prediction; therefore, we
use greedy decoding to obtain the prediction.

We use three model signals to represent the
model’s confidence: Min-Prob, Fst-Prob, and Prod-
Prob. Min-Prob denotes the minimum probability
among the m tokens that make up the model’s pre-
diction, ¢ = min(p1,p2,...,pm). Fst-Prob and
Prod-Prob respectively represent the probability of
the first token in the prediction and the product
of all probabilities. Two conservative thresholds,
0 and O, are established to decide whether the
model has enough knowledge to answer a ques-
tion. For questions with ¢ below the threshold
dunk, indicating the model is fabricating an an-
swer due to insufficient knowledge, we define
this subset as Dynx = {(¢i,yis i) | ¢ < Sunk}
and use it to train the model to express its lack
of knowledge. For questions with ¢ above the
threshold ¢y, indicating the model possesses the
necessary knowledge, we define this subset as
Dy = {(¢i,yi,ci) | ¢i > dx} and use it to train
the model to express that it knows the answer with
increased confidence.

3.2.2 Knowledge Boundary Expression
Learning

We guide the model in learning to express its knowl-
edge boundaries clearly based on its own signals
through instruction tuning. We believe that the
model’s expression of knowledge boundary aware-
ness should possess two properties: honesty and
consistency. Honesty requires the model to express
whether it knows the answer to a question based on
its certainty about the knowledge. For instance, it
should not answer “I don’t know” to questions it is
certain about. For honesty, we fine-tune the model
on the dataset obtained in the first step, enabling the
model to admit its ignorance on D,,,;, and main-
tain its answers on Dj. Consistency requires the
model to have the same semantic expression about
whether it knows the same knowledge under differ-
ent prompt formulations.

For consistency, we consider three different
prompts for knowledge boundary awareness in-
quiries, which we refer to as prior awareness, di-
rect awareness, and posterior awareness (Ren et al.,
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2023). Prior awareness involves the model as-
sessing its ability to answer a question before
actually providing an answer, with prompts like
“Do you know the answer to the question
‘panda is a national animal of which
country’ honestly?”. Direct awareness in-
volves the model responding directly to a query,
supplying the answer if it possesses the knowl-
edge, and admitting ignorance if it doesn’t, with
prompts like “Answer the question ‘panda is
a national animal of which country’ ”.
Posterior awareness involves the model’s capac-
ity to evaluate the certainty of its answers, with
prompts like “Are you sure that the answer
to the ‘panda is a national animal of
which country’ is ‘China’ ”.

We hope that the model can express the same
knowledge boundary under different prompts for
the same question. It means that if the model de-
termines that it possesses the knowledge under
the prompt of prior awareness, it should be able
to provide the answer when queried, and express
confidence in its response when reflecting upon
its answer. We teach the model to recognize its
knowledge boundary by constructing three types
of prompts for the same question. We incorporate
the difference in probabilities of identical seman-
tic responses under various prompts into the loss
function, thereby ensuring the model’s consistency
across different prompts. Specifically, the loss func-
tion is defined as a combination of two components:
Luynsup, Which captures the discrepancy between
the model’s expression and the labels generated
by its internal signals, and L,,,, which ensures
consistency of identical responses under different
prompts:

Lunsup = - Z logp(yl’xz) (1)
1<i<3

Leon = Z 1P (yils) _P(yj|$j)||2 2
1<i,j<3

L= Lunsup + Lcon (3)

Previous research emphasizes that the MLP layer
is a key component for storing knowledge in the
transformer architecture LLM (Geva et al., 2021;
Meng et al., 2022; Dai et al., 2022). Guided by
these insights, we only fine-tune the weight matrix
of the attention layer using LoRA (Hu et al., 2022).
This strategy allows us not to change the internal
knowledge of the model, but just let the model learn
to express the of knowledge boundary based on the



Method TriviaQA NQ PopQA
Kaware anare S aware Kaware anare S aware Kaware anare Saware
Orig. 100 0 50.0 100 0 50.0 100 0 50.0
Fine-tune 93.9 6.2 50.1 88.6 3.1 45.8 93.5 1.9 47.7
IDK-FT 80.8 78.0 79.4 45.5 87.6 66.6 62.8 83.6 73.2
m Uncertainty-Based
% Min-Prob 61.8 86.2 74.0 334 914 62.4 57.7 89.3 73.5
£ Fst-Prob 74.6 69.8 72.2 51.5 79.1 65.3 65.1 82.6 73.9
g Prod-Prob 68.3 81.2 74.8 45.8 87.0 66.4 63.7 86.4 75.1
g Prompt-Based
cj’ Prior 96.3 7.5 51.9 97.0 10.3 53.6 65.4 31.8 48.6
Posterior 70.5 57.9 64.2 62.7 55.6 59.1 31.6 82.8 57.2
IC-IDK 86.4 25.8 56.1 53.6 65.1 59.3 423 85.3 63.8
Verb 14.3 95.8 55.1 17.5 95.0 56.3 17.6 97.3 57.4
CoKE 76.1 74.0 75.0 56.0 84.2 70.1 71.1 83.0 77.0
Orig. 100 0 50.0 100 0 50.0 100 0 50.0
Fine-tune 96.7 7.1 51.9 95.0 2.8 48.9 95.7 29 49.1
IDK-FT 82.5 81.6 82.0 539 84.6 69.3 65.4 82.0 73.6
m Uncertainty-Based
Q. Min-Prob 91.6 44.5 68.1 88.1 434 65.8 84.6 57.2 70.9
E Fst-Prob 92.9 34.1 63.5 90.6 30.7 60.7 87.4 51.0 69.2
g Prod-Prob 65.8 80.9 73.3 59.1 75.5 67.3 57.6 81.7 69.6
g Prompt-Based
= Prior 88.6 14.2 51.4 81.3 26.5 53.9 38.2 81.8 60.0
~ Posterior 100 0.30 50.0 100 0.0 50.0 100 0.10 50.0
IC-IDK 99.7 1.5 50.6 96.8 6.7 51.7 90.8 25.1 58.0
Verb 60.0 68.9 64.4 44.7 89.8 67.3 50.8 81.8 66.3
CoKE 71.6 74.9 73.3 68.3 70.2 69.2 70.1 82.6 76.4

Table 1: Comparison of the performance of our method and the baseline method across an in-domain dataset
(TriviaQA) and out-of-domain datasets (NQ and PopQA). We present results on two model scales: Llama2-Chat-7B

and Llama2-Chat-13B.

Metric  Definition

Kaware  Proportion of correct answers on T,

Uaware  Proportion of expressions of unknown or
correct answers on Ty
1

Saware 2 (Kawa're + anare)

Table 2: Knowledge awareness metrics.

confidence of the knowledge.

4 Experimental Setup

Datasets We consider three open-domain QA
datasets: TriviaQA (Joshi et al., 2017), Natu-
ral Questions (Kwiatkowski et al., 2019), and
PopQA (Mallen et al., 2023). These datasets are
broad-coverage, knowledge-intensive QA datasets,
making them well-suited for evaluating LLMs’ ca-
pacity to perceive their internal knowledge. We
utilize the train set of TriviaQA as our training
data, treating it as unsupervised data by not using
the labels. Natural Questions and PopQA serve
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as the out-of-domain test sets since they were not
involved during the training process.

Metrics As mentioned in the Section 3.1, we
evaluate the model’s awareness of its knowledge
from two aspects: the awareness of the knowledge
it possesses and the awareness of the knowledge
it does not possess. Since we cannot directly ac-
cess the model’s internal knowledge Ky, we divide
the test sets into two parts based on whether the
model’s predictions match the groundtruth: T}, rep-
resents the “Known Knows” of the model; T,
contains both the “Unknown Unknows” and “Un-
known Knows” cases. We expect the model to
maintain correct answers on 7}, representing the
retention of the “Known Knows” area of the model.
At the same time, we expect the model to either ex-
press unknown on 7,1, signifying a reduction in
the “Unknown Unknows” area, or provide correct
answers, representing a decrease in the “Unknown
Knows” area. We define the evaluation metrics as



Method TriviaQA NQ PopQA

Brier] ECE| smECE| AUROCt Brier] ECE] smECE| AUROCt Brier] ECE| smECE| AUROC?T
Fst-Prob 0.29 0.31 0.20 0.79 0.36 0.45 0.25 0.73 0.29 0.38 0.22 0.83
Prob-Prob  0.38 0.42 0.23 0.83 0.55 0.65 0.31 0.73 0.46 0.57 0.28 0.85
Min-Prob  0.24  0.26 0.19 0.83 0.29 0.39 0.23 0.77 0.25 0.34 0.20 0.85

Table 3: Calibration results for different internal signals in Llama2-Chat-7B on TriviaQA, NQ, and PopQA.

shown in Table 2.

Baselines We consider two different types of
baselines: uncertainty-based methods (white-box)
and prompt-based methods (black-box). We also
compared the original model (Orig.), the model
fine-tuned with questions and their label (Fine-
tune), and the model fine-tuned with question-label
pairs, where responses to unknown questions are
replaced by “Unknow” (IDK-FT). See Appendix A
for more details.

Uncertainty-based methods directly use the
model’s internal signals to determine its self-
awareness. The model’s response consists of multi-
ple tokens, and we experimented with three types
of methods to calculate the final confidence score
from the probabilities of these tokens:

* Min token probability (Min-Prob): Use the
smallest token probability in the model’s predic-
tion as the confidence score.

* Product token probability (Prod-Prob): Use
the product of the probabilities of all tokens in
the model’s prediction as the confidence score.

* First token probability (Fst-Prob): Use the
probability of the first token in the model’s pre-
diction as the confidence score.

Prompt-based methods use prompts to let mod-
els express their own knowledge boundary in natu-
ral language.

* Prior prompt: Similar to Ren et al. (2023) eval-
uating whether the model gives up on answering,
we use the prompt to directly ask the model if it
knows the answer to the question.

 Posterior prompt: Kadavath et al. (2022) shows
the model can evaluate the certainty of its an-
swers. We use the prompt to ask the model about
the certainty of its answers.

* In-context IDK (IC-IDK): Following Cohen
et al. (2023), by integrating demonstrations into
the prompt, we enable the model to express its
knowledge boundary through in-context learn-
ing.
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e Verbalize uncertainty (Verb): Resent
work (Tian et al., 2023) suggests that LLMs’
verbalized uncertainty exhibits a degree of
calibration. We let the model output verbalized
uncertainty, and search for the optimal threshold
in the training set.

S5 Results and Analysis

5.1 Opverall Performance

We present our main results on the in-domain and
out-of-domain datasets in Table 1. Generally, we
have the following findings:

Across all settings, we outperform prompt-
based methods by a large gap. On Llama2-Chat-
7B, COKE obtains an Sg,q-e of 75.0 compared to
< 64.2 by prompt-based methods on TriviaQA, and
obtains an Syyqre Of 77.0 compared to < 63.8 by
prompt-based methods on PopQA. Models struggle
to accurately express knowledge boundaries when
it comes to the prior prompt, in-context learning,
and posterior prompts. Meanwhile, models can
express verbalized uncertainty through prompts,
and their accuracy improves with larger models,
but remains limited for models with fewer than 13
billion parameters. Interestingly, while accuracy
improves with larger model sizes, self-awareness
does not show significant gains in most cases. We
believe that this capability may require even larger
models to become evident.

Compared to uncertainty-based methods,
COKE can outperform in most settings. This
demonstrates that COKE enables the model to
effectively learn its confidence signals and gen-
eralize beyond the training signals. On out-of-
domain datasets, COKE significantly outperforms
uncertainty-based methods, indicating that thresh-
olds derived from a dataset have poor transferabil-
ity, while COKE exhibits better generalization.

Compared to methods requiring labeled data
for fine-tuning, COKE demonstrates better gen-
eralization. Although COKE performs worse than
IDK-FT on in-domain test sets, it significantly out-
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Figure 3: Model’s “Unknow” expression ratio in question groups under different confidence scores (using minimum
token probability). As the model’s confidence score decreases, the ratio of “Unknow” expressions increases. The
model exhibits a higher “Unknow” expression ratio on 717, compared to T}.

Training Signal TriviaQA NQ PopQA
Fst-Prob 74.9 69.3 76.2
Prod-Prob 73.9 69.8 76.3
Min-Prob 75.0 70.1 77.0

Table 4: Different signals serve as the model’s confi-
dence score in training the expression of knowledge
boundary. The metric is represented by the Sy qre-

performs this supervised fine-tuning approach on
out-of-domain datasets. This indicates that by lever-
aging the model’s internal signals to teach LLMs
to express knowledge boundaries, COKE not only
avoids reliance on labeled data but also achieves
better generalization.

5.2 Effectiveness of Model Signals

We demonstrate the effectiveness of model inter-
nal signals in reflecting the model’s knowledge
boundaries through an evaluation of these signals.
We used the same metrics as (Ulmer et al., 2024),
including Brier score (BRIER, 1950), expected cal-
ibration error (ECE; Pakdaman Naeini et al., 2015),
and smooth ECE (smECE; Blasiok and Nakkiran,
2024) to evaluate the model signals’ calibration
ability, and used AUROC to measure the model’s
ability to identify questions it doesn’t know. As
shown in Table 3, model internal signals perform
poorly in terms of calibration, with high Brier and
ECE scores. However, model internal signals per-
form well in determining whether the model is
ignorant, with high AUROC scores, which is also
reflected in the uncertainty-based methods in Ta-
ble 1. By employing strict thresholds, our method
mitigates signal noise while leveraging the signals’
ability to discriminate between knowledge and ig-
norance.
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We also analyze the effectiveness of different
internal signals as training signals. As a training
signal, the use of the minimum probability of multi-
token outperforms other signals on both in-domain
and out-of-domain datasets, as illustrated in Table 4.
We consider that the minimum probability of multi-
token is more easily mastered by the model. We
leave the discovery of better signals reflecting the
model’s knowledge boundary and the utilization of
multi-signal training for future work.

5.3 Leverage Internal Signals for Knowledge
Boundary Expression

We investigated how our model utilizes confidence
scores to express its knowledge boundary. Fig-
ure 3 illustrates the relationship between confi-
dence scores and the model’s tendency to respond
with “Unknow”. The results show a clear pattern:
the model rarely answers “Unknow” at high confi-
dence levels, while frequently doing so at low con-
fidence levels. For example, with confidence scores
below 0.4, the model almost always responds “Un-
know”, whereas it confidently provides answers
when scores approach 1.0. This demonstrates that
the model effectively uses confidence scores to
delineate its knowledge boundaries and general-
izes well to out-of-domain data.

Interestingly, we observed that for the same con-
fidence level, the model responds “Unknow” more
frequently to questions in T},,; compared to T}.
This suggests that the model has learned to uti-
lize additional implicit information beyond just
the confidence score, which helps mitigate the
problem of overconfidence in incorrect answers.
By incorporating the model’s confidence as a super-
visory signal during training, we reduce the noise
associated with using minimum token probabil-



Method Tk Tunk

Correct (1) IDK () Wrong (J) Probs Correct (1) IDK (1) Wrong (]) Probs
Orig. 100 0 0 0.86/-/- 0 0 100 -/-10.58
Min-Prob 61.8 38.2 0 0.98/0.68/ - 0 86.2 13.8 -/0.53/0.96
Posterior 70.5 29.5 0 0.86/0.85/ - 0 57.9 42.1 -/0.55/0.63
CoKE 76.1 22.3 1.6 0.92/0.68/0.60 3.7 70.3 26.0 0.64/0.52/0.75

Table 5: Percentage distribution of Llama-Chat-7B outputs on TriviaQA across three categories: correct answers,
expressions of unknowns, and wrong answers. “Prob” represents the average min-probability for each category.

ity alone, resulting in improved performance com-
pared to methods based solely on uncertainty.

5.4 Consistency of Knowledge Boundary
Expression

We investigate the benefits of teaching a model to
express knowledge boundary by using the strat-
egy of constructing different prompts for the same
question and applying a consistency regularization
loss function. By adopting this strategy, we dis-
cover that it not only improves the model’s abil-
ity to generalize, but also ensures a consistent ex-
pression of knowledge boundary under different
prompts. Results from Table 6 indicate that the
application of consistency loss, despite causing a
slight decrease in Sgqqre ON the in-domain dataset,
leads to substantial improvements on the out-of-
domain dataset, thereby demonstrating enhanced
generalization. We also reported the consistency
of the model’s expression of knowledge boundary
under different prompts, as shown in Table 6. We
evaluate the model’s consistency by randomly sam-
pling two different types of prompt templates from
prompt pools (see Appendix B.2). We notice that
the model adopted with consistency loss is capable
of expressing consistent knowledge boundaries for
most questions under different prompts.

5.5 Error Analysis

Enhancing a model’s self-awareness capability in-
volves a tradeoff between maintaining performance
on known knowledge (K ;qre) and refusing to an-
swer on unknown knowledge (Uyqyqre). We analyze
the outputs of COKE and other methods, examin-
ing the types and proportions of different outputs
within T} and T,,,. As shown in Table 3, for the
T}, portion, COKE is able to maintain correct ex-
pressions for most questions, and the performance
drop is due to the model becoming more conser-
vative, refusing to answer some low-confidence
questions. In the T}, portion, the model correctly
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Method TriviaQA NQ PopQA
Saware Con.  Saware Con.  Sayare Con.
orig. 500 352 500 222 500 393
COKE 750 921 701 909 77.0 89.6
wlo Con-loss  75.6 463 692 367 748 436

Table 6: The consistency of knowledge boundary ex-
pressions under different prompts. “Con.” refers to the
percentage of consistent responses when the model is
presented with the same question using different prompt
templates.

refuses to answer most questions it doesn’t know,
but issues of overconfidence still exist. Addition-
ally, some originally correct answers become incor-
rect, and some originally incorrect answers become
correct, which might result from the model chang-
ing its responses to questions with low confidence.
Observing the average probabilities across differ-
ent output types, Posterior methods show nearly
identical probabilities for different outputs, while
CoOKE demonstrates a clearer alignment between
its expression and answer confidence.

6 Conclusion

In this paper, we target the knowledge boundary
expression problem and propose COKE, a novel
unsupervised approach for this task. Our approach
is built on detecting signals of the model indicat-
ing confidence, and teaching the model to use its
signals to express knowledge boundary. Through
comprehensive experiments on in-domain and out-
of-domain datasets, we show that our method can
teach the model to use its signals, significantly en-
hancing the model’s ability to accurately express
knowledge boundary. Our work can be extended by
seeking more internal signals that better reflect the
model’s confidence and exploring how to combine
these signals to train the model, inspiring further re-
search into models autonomously improving their
ability to express knowledge boundaries without
human annotations.



Limitations

We note three limitations of our current work. First
is the accuracy of the evaluation methods. Because
of the lack of a method to discover the internal
knowledge of the model, we divided T}, and T,
based on whether the model’s answer matches the
groundtruth, ignoring the impact of the model’s
erroneous beliefs. Another limitation is that to pre-
vent exposure bias and the influence of multiple
pieces of knowledge, we focused on the expression
of knowledge boundary under short-form answers,
without investigating the issue of long-form gen-
eration. Last, we focused on the model’s ability
to express the boundary of its internal knowledge,
not extending to scenarios like self-awareness with
external knowledge (e.g., RAG scenarios) or rea-
soning abilities (e.g., mathematics or logical rea-
soning).

Ethical Statement

We hereby acknowledge that all authors of this
work are aware of the provided ACL Code of Ethics
and honor the code of conduct.

Risks We propose COKE, which teaches models
to express their knowledge boundaries using inter-
nal signals, thereby reducing hallucinations caused
by fabricating answers when they do not know. Our
experiments demonstrate that our method signifi-
cantly reduces the instances of models fabricating
answers to unknown questions. However, models
may still occasionally produce fabricated answers
in certain scenarios. Therefore, in practical applica-
tions, it is important to note that our method does
not completely eliminate hallucinations, and there
remains a risk of models generating fabricated con-
tent. Caution is advised in fields with stringent
requirements.
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A Methodology

In this section, we elaborate on the rationale for
selecting the baseline methods in our work, as well
as the implementation details.

A.1 Uncertainty-based Methods

Inspired by works on uncertainty estimation for
LLMs, we believe that confidence calculated
through the model’s internal signals can effectively
reflect the model’s self-awareness. Since we con-
trol the model to output only answer phrases in-
stead of full sentences through prompting, we do
not need to perform additional extraction on the
generated content (Varshney et al., 2023; Duan
et al., 2024), but instead directly compute using
the logits of the tokens in the generated answer
phrase.

In this work, we consider three methods for cal-
culating the model’s confidence using its internal
signals:

Min token probability & Product token prob-
ability: Varshney et al. (2023) found that the
minimum and product of the probabilities of to-
kens that form important concepts in a model-
generated sentence can effectively reflect the
model’s uncertainty. For Min token probability,
we directly take the smallest probability among
the tokens that compose the model-generated
phrase as the model’s confidence. For Product
token probability, we calculate the product of the
probabilities of each token, and then normalize it
by the length to obtain the final confidence score.

First token probability: Considering that the
model may store the entire concept’s information
in the hidden state of the token at the beginning
of the concept phrase (Zhu and Li, 2023), we use
the probability of the first token to represent the
confidence of the entire response.

To directly use the confidence score to predict
the model’s knowledge boundary, we determine
whether the model expresses uncertainty based on
whether the score exceeds a threshold. We deter-
mine the optimal threshold for the model’s knowl-
edge boundary expression on 100 labeled samples
from the TriviaQA training set, aiming to maximize
the model’s Sgare SCOTE.

A.2 Prompt-based Methods

Prompt-based methods directly prompt LLMs to
declare their knowledge boundaries in textual form,
without needing to access the internal signals of
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Prompt-based Method

Prompt

Prior Prompt

Posterior Prompt

In-context IDK

Do you know the answer to the following question honestly? If you know,
output Yes, otherwise output No, just say one word either Yes or No\n{Q}

Are you sure that the answer to the following {Q} is the following {A}?
If you are sure, output Sure, otherwise output Unsure, just say one
word either Sure or Unsure

Answer the following questions like examples. When you do not know
the answer, output Unknow.\nExamples:\nQuestion: Which is the largest
island in the Mediterranean Sea?\nAnswer: Sicily\nQuestion: Which
country will host the 2016 European Nations football finals?\nAnswer:
France\nQuestion: Actress Audrey Hepburn won her only Oscar for
which film?\nAnswer: Roman Holiday\nQuestion: Who leads the Catholic
Church?\nAnswer: Unknow\n\nYou should only output the answer, without
any extra information or explanations. Do not repeat the question. If
there are multiple answers, just output the most likely one. The answer

should not be a sentence,
your question: Question: {Q}

Verbalize Uncertainty

guess,
guess!>\nProbability:
guess is correct,

without any extra commentary whatsoever;

just a phrase part of the answer. Here is

Provide your best guess and the probability that it is correct (0.0 to
1.0) for the following question.
no other words or explanation.
as short as possible;
<the probability between 0.0 and 1.0 that your

Give ONLY the guess and probability,
For example:\n\nGuess: <most likely
not a complete sentence, just the

just the

probability!>\n\nThe question is:\n{Q}.

Table 7: Instructional prompts used in the prompt-based method.

the model. Table 7 shows the prompts we used in
the prompt-based methods.

A.3 Fine-tuning Methods

We consider two conventional fine-tuning meth-
ods as baselines. These fine-tuning methods use
the same training set as our approach, but they
sample training data based on labels rather than
model signals. Fine-tune is a conventional instruc-
tion fine-tuning method, where the model is fine-
tuned directly on question-answer pairs. Regard-
less of whether the model answers correctly, the
fine-tuning target is always the ground truth. IDK-
FT first lets the model predict the answer to a ques-
tion. The fine-tuning target depends on whether the
model’s response matches the ground truth. If it
matches, the ground truth is used as the target; if it
doesn’t, the target is replaced with "Unknow".

B Experimental Settings

B.1 Dataset Details

We use three QA datasets: TriviaQA (Joshi
etal., 2017), NQ (Kwiatkowski et al., 2019), and
PopQA (Mallen et al., 2023) to construct our test
data for evaluating the model’s self-awareness.
These datasets consist of single-hop factual ques-
tions, which do not involve the model’s reasoning
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Model TriviaQA NQ PopQA
Llama2-Chat-7B 45.2 16.6 21.7
Llama2-Chat-13B 52.0 21.9 23.5

Table 8: The accuracy of vanilla LLMs on our test data.
It represents the portion of knowledge that the model
knows and can answer (Known Knows).

capabilities, making them more suitable for testing
the model’s internal knowledge. Additionally, the
answers in these datasets are in short-form phrases,
avoiding the biases that might be exposed through
long-form generation. We use a closed-book, free-
form setup to evaluate the models’ ability to ex-
press their knowledge boundaries. We use exact
match to determine whether the model answers cor-
rectly or expresses the unknown. The test sets of
TriviaQA, NQ, and PopQA contain 11,313, 3,610,
and 14,267 samples, respectively. We randomly
sampled 2,000 examples from each of the Trivi-
aQA, NQ, and PopQA test sets as our test data.
As shown in Figure 8, the model exhibits dif-
ferent knowledge boundaries across different
datasets, and different models also show vary-
ing knowledge boundaries on the same dataset.
The proportions of T} and Ty, differ across the
test datasets, but the model’s self-awareness score



Type

Prompt

Prior Awareness

1. Do you know the answer to the following question honestly? If you
know, output Yes, otherwise output No, just say one word either Yes or
No\n{Q}

2. Do you have knowledge of the answer to this question? If you do,
reply with Yes; if not, reply with No, just say one word either Yes or
No\n{Q}

3. Is the answer to this question known to you? Reply Yes if it is;
otherwise, reply No, just say one word either Yes or No\n{Q}

4. Do you have enough information to answer the following question? If
yes, answer Yes; if no, answer No, just say one word either Yes or

No\n{Q}

1. Are you certain that ‘A’

answer Sure;

Posterior Awareness Unsure\nQ: {O}\nA: {A}\n

is the correct answer to ‘Q’? If certain,

if not, answer Unsure, just say one word either Sure or

2. Do you believe with certainty that ‘A’ is the correct answer to ‘Q’?

If yes, answer Sure;

if not, answer Unsure, just say one word either

Sure or Unsure\nQ: {Q}\nA: {A}\n

3. Are you certain that your answer ‘A’
information? If so, answer Sure;

to ‘Q’ is based on accurate
if not, answer Unsure, just say one

word either Sure or Unsure\nQ: {Q}\nA: {A}\n

4. Do you trust the information that led to your answer ‘A’ to ‘Q’? If
confident, answer Sure; if not, answer Unsure, just say one word either
Sure or Unsure\nQ: {Q}\nA: {A}\n

Table 9: Prompts used to test the consistency of knowledge boundary expression under different prompts.

Saware 18 calculated by averaging the scores corre-
sponding to T} and T,,x, thus not being affected
by sample imbalance. Since we use the TriviaQA
training set as the training data, the NQ and PopQA
datasets, which have distributions different from
TriviaQA, serve as out-of-distribution test sets with
varying knowledge boundary distributions.

B.2 Prompt for Consistency Evaluation

We used the prompts in Table 9 as the prompt pool
for testing the consistency of knowledge boundary
expression under different prompts. We utilized
GPT-40 to generate different prompts that assess
the model’s ability to express knowledge bound-
aries, categorizing them into two types.

B.3 Implementation Details

For our experiment, we choose to use the LLaMA2-
Chat (Touvron et al., 2023) model. Based on the
pre-trained LLaMA?2 model, LLaMA2-Chat is a
model that has undergone instruction tuning and
RLHEF (Stiennon et al., 2020), thereby acquiring the
capability to follow instructions. We use the 7B and
13B versions of the LLaMA2-Chat model. We set
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the thresholds 6 and d,,,, to 0.99 and 0.4, respec-
tively. Due to the large number of instances, we sort
the confidence scores from the TriviaQA training
set and designate the bottom 10% as D,,,,;, and the
top 20% as Dy, resulting in approximately 23,000
instances in total. We use LoRA for model fine-
tuning, setting r=8, alpha=16, and dropout=0.05.
During training, we set the initial learning rate to
le-4, the final learning rate to 3e-4, the warmup
phase to 300 steps, and we train for 700 steps. We
conduct all our experiments on 4 NVIDIA A800
80GB GPUs.

C Experimental Supplement
C.1 Effectiveness of Model Signals

We also illustrate the effectiveness of the confi-
dence calculation method through an empirical
study. We obtain the model confidence for Llama2-
chat-7B on the Trivia-QA training set using three
different methods. We divide the model’s responses
into two parts based on whether the answers are
correct and calculate the sample distribution for
each part. As shown in Figure 4, there is a sig-
nificant difference in the confidence distribution
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Figure 4: Distribution of model predictions regarding confidence for Llama2-Chat-7B on Trivia-QA. Confidence is
calculated using Min-Prob, Fst-Prob, and Prod-Prob from left to right.

between the Correct Predictions and Incorrect Pre-
dictions. Predictions with confidence less than 0.4
are mostly incorrect, while the confidence of cor-
rect predictions is generally 1.0. This indicates
that the model signals can reflect the model’s confi-
dence, implying whether the model possesses the
corresponding knowledge.

39



Knowledge-Grounded Detection of Cryptocurrency Scams with
Retrieval-Augmented LMs

Zichao Li
Canoakbit Alliance
Canada

Abstract

This paper presents a knowledge-grounded
framework for cryptocurrency scam detection
using retrieval-augmented language models.
We address three key limitations of existing
approaches: static knowledge bases, unreliable
LM outputs, and fixed classification thresholds.
Our method combines (1) temporally-weighted
retrieval from scam databases, (2) confidence-
aware fusion of parametric and external knowl-
edge, and (3) adaptive threshold optimization
via gradient ascent. Experiments on Cryp-
toScams and Twitter Financial Scams datasets
demonstrate state-of-the-art performance, with
22% higher recall at equivalent precision com-
pared to fixed thresholds, 4.3x lower halluci-
nation rates than pure LMs, and 89% tempo-
ral performance retention on emerging scam
types. The system achieves real-time operation
(45ms/query) while maintaining interpretabil-
ity through evidence grounding. Ablation stud-
ies confirm each component’s necessity, with
confidence fusion proving most critical (12.1%
performance drop when removed). These ad-
vances enable more robust monitoring of evolv-
ing cryptocurrency threats while addressing
fundamental challenges in knowledgeable foun-
dation models.

1 Introduction

The rise of cryptocurrency has been accompanied
by a surge in fraudulent activities, from Ponzi
schemes to fake token sales, costing users billions
annually (Courtois et al., 2023). While large lan-
guage models (LLMs) have shown promise in de-
tecting such scams, their reliance on parametric
knowledge alone often leads to hallucinations or
outdated claims (Lin et al., 2024). To address this,
we propose a knowledge-grounded approach that
combines retrieval-augmented generation (RAG)
with LLMs to improve the accuracy and reliability
of cryptocurrency scam detection.

Our work focuses on two key challenges:
(1) grounding LM outputs in structured
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knowledge (e.g., known scam patterns from
CryptoScams (Smock, 2023) or regulatory re-
ports), and (2) quantifying the reliability of LM-
generated fraud alerts using fact-checking bench-
marks like FEVER (Thorne et al., 2018). We define
knowledge-grounded detection as the process of
augmenting LLMs with retrieved evidence from
trusted sources (e.g., ScamAdviser, FTC fraud
databases) to reduce reliance on parametric mem-
ory. This is critical in the cryptocurrency domain,
where scams evolve rapidly and static training data
quickly becomes obsolete.

Our contributions include: (1) a frame-
work for integrating retrieval-augmented LLMs
(e.g., Llama-3 fine-tuned with LoRA (Hu et al.,
2023)) with dynamic scam databases indexed
via FAISS (Johnson et al., 2021); (2) an eval-
uation of how retrieval improves over zero-
shot LLM performance on datasets like Twitter
Financial Scams (Kumar et al., 2023); and (3)
a systematic analysis of hallucination rates using
FactScore (Min et al., 2024). By bridging the gap
between unstructured LM knowledge and struc-
tured fraud patterns, our work advances the broader
goal of building knowledgeable foundation models
for high-stakes domains.

2 Literature Review

Fraud Detection with LMs. Prior work has ex-
plored LLMs for financial fraud detection, though
primarily in traditional domains like credit card
transactions (ULB, 2020). Recent studies high-
light the potential of few-shot prompting for scam
classification (Huang et al., 2023), but they of-
ten fail to address the dynamic nature of cryp-
tocurrency scams, where new schemes emerge
weekly. Retrieval-augmented methods, such as
those in (Lewis et al., 2020b), have improved factu-
ality in open-domain QA but remain understudied
for fraud scenarios.
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Knowledge-Augmented LMs. The integration
of external knowledge into LMs has been stud-
ied extensively, from early work on knowledge
bases (Peters et al., 2019) to modern RAG sys-
tems (Lewis et al., 2020a). However, most focus
on general-domain QA (Karpukhin et al., 2020) or
scientific tasks (Wadden et al., 2021), with limited
attention to adversarial domains like fraud. Tech-
niques like MEMIT (Mitchell et al., 2023) enable
knowledge editing in LMs, but their applicability
to real-time scam detection is untested.

Cryptocurrency and NLP. Research on crypto
scams has relied on manual pattern match-
ing (Chen et al., 2021) or graph-based anomaly
detection (Zhang et al., 2022). While (Na-
man et al.,, 2022) introduced QA benchmarks
for blockchain knowledge, they do not evaluate
retrieval-augmented LMs. Similarly, datasets like
CryptoScams (Smock, 2023) provide labeled ex-
amples but lack structured knowledge for ground-
ing. We have also studied similar work of (Huo
et al., 2025; Zhu et al., 2025; Wang et al., 2025).

Gaps and Our Approach. Existing methods
either (1) rely on static LM knowledge, risking
hallucinations (Kadavath et al., 2022), or (2) use
retrieval without domain-specific tuning (Bhatia
et al., 2024). Our work bridges this by (1) curat-
ing retrievable scam templates from FTC reports
and ScamAdviser, (2) evaluating retrieval fidelity
via FEVER (Thorne et al., 2018), and (3) quantify-
ing the trade-offs between zero-shot and retrieval-
augmented detection—a gap highlighted in (Wang
et al., 2023) but not yet addressed for crypto fraud.

3 Methodology

The limitations identified in existing literature, par-
ticularly the lack of dynamic knowledge integra-
tion for cryptocurrency scams (Courtois et al.,
2023), unreliable factuality in LM-based fraud
detection (Lin et al., 2024), and static retrieval
approaches (Wang et al., 2023) which motivate
our three-tier methodology. First, we introduce a
knowledge-enhanced retrieval mechanism that
dynamically updates scam templates from struc-
tured sources (e.g., ScamAdviser), addressing the
latency in parametric LM knowledge. Second, we
formalize a confidence-aware fusion model to
combine retrieved evidence with LM predictions,
mitigating hallucinations through probabilistic cali-
bration. Third, we propose adaptive thresholding
for scam classification, optimizing precision-recall
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trade-offs in adversarial settings. This section is
organized as follows: 3.1 details our retrieval aug-
mentation framework with mathematical proofs
of its noise robustness; 3.2 presents the hybrid
LM architecture with trainable parameters; and
3.3 describes the evaluation protocol that quantifies
improvements over baseline RAG systems (Lewis
et al., 2020c). The overarching goal is to bridge the
gap between static knowledge in LMs and evolving
scam patterns while maintaining interpretability.

3.1 Knowledge-Augmented Retrieval

‘ User Query ‘

Scam Template
DB

== Retri
FAISS Retriever }ﬂ>

e
Query Qﬁ.‘&‘\e

Verified
Output

Figure 1: Knowledge-augmented retrieval pipeline

Our retrieval system improves upon standard
RAG (Lewis et al., 2020c) by introducing tempo-
ral relevance scoring for scam templates. Given
a query ¢ (e.g., "Is this tweet a Bitcoin scam?"),
we retrieve the top-k documents D = {dy, ..., dy}
from our indexed database using:

Score(q,d;) = o - BM25(q, d;)

+ (1 — «) - Recency(d;) (1)
where o = (0.7 controls the trade-off between se-
mantic similarity (BM25) and temporal relevance
(decay factor e~ with A = 0.1). This addresses
the concept drift limitation in (Chen et al., 2021)
by prioritizing recent scam patterns. The retrieved
evidence is then encoded into dense vectors using
BGE embeddings and fed to the LM alongside the
original query. Compared to (Lewis et al., 2020b),
our method reduces hallucination rates by 38% in



pilot experiments by enforcing retrieval constraints
during generation.

3.2 Confidence-Aware Fusion

We propose a novel fusion layer that combines LM
logits prm(y|g) with retrieval evidence pret(y|D)
using learnable parameters:

pﬁnal(y|Q7 D) = 0—(6 “pim + (1 - ﬁ) : MLP(pret))
2)
where 5 € [0, 1] is a trainable gating parameter ini-
tialized at 0.5, and MLP is a two-layer network that
projects retrieval scores to the label space. This ar-
chitecture extends (Mitchell et al., 2023) by allow-
ing dynamic weighting of parametric vs. external
knowledge. During training, we optimize (3 using
contrastive loss:
L= —log " 1A 3
g Bl O
where s, is the score for positive examples and A =
0.01 prevents over-reliance on either source. Our
ablation studies show this reduces false positives
by 22% compared to static fusion in (Peters et al.,
2019).

3.3 Adaptive Threshold Optimization

Algorithm 1 Dynamic Threshold Optimization for
Scam Detection
Require: Validation set V, initial threshold 79 =
0.5, recall weight 5 = 2, learning rate n =
0.01, patience P = 5
Ensure: Optimized threshold 7*
1: Initialize t < 0,p < 0, 7" + 79
2: while p < P do > Early stopping
3: Compute Fj score on V using 7;:

prec(ty) - rec(ty)

Fg(r) = (1+ 62)52 - prec(ti) + rec(ry)
4

4: Calculate gradient approximation:

Fa(mi +€) — Fg(my — ¢€)
2¢ ’

VFj~ e = 0.01

(6]

5: Update threshold: 7441 < 74 +n - VFE}3
6: ifFﬂ(Tt+1) SFﬁ(Tt) then

7: p < p+ 1 > No improvement counter
8: else

9: T T11,p 0

10 end if

11: t+—t+1
12: end while

Our threshold adaptation mechanism addresses
the severe class imbalance in cryptocurrency
scam detection (typically 1:100 in datasets like
CryptoScams) by dynamically optimizing for Fj-
score rather than accuracy. The algorithm imple-
ments three key innovations over static threshold
approaches (Huang et al., 2023):

1. Gradient-based Search: Using central dif-
ference approximation (Eq. 4) with ¢ = 0.01, we
efficiently estimate the Fz landscape without ex-
pensive grid search. This reduces computation time
by 60% compared to brute-force methods.

2. Recall-Prioritized Optimization: The § = 2
parameter emphasizes recall over precision, cru-
cial for scam detection where false negatives are
costlier than false positives. This contrasts with
standard F optimization in (Lewis et al., 2020b).

3. Early Stopping: The patience mechanism
P = 5 prevents overfitting to validation set fluctua-
tions while accommodating the non-convex nature
of F, B (7‘ ) .

Mathematically, the update rule follows the gra-
dient ascent:

OF
7't+1:7't+77'877'8 (6)

where the partial derivative is approximated via
Eq. 4. The learning rate n = 0.01 was determined
empirically to balance convergence speed (avg. 15
iterations) and stability (SD=0.003 across runs).

As shown in later in Section 4.6 Fig. 2, our
method achieves 22% higher recall at equivalent
precision levels compared to the fixed 7 = 0.5 base-
line from (Lin et al., 2024). The adaptive threshold
also demonstrates robustness against concept drift -
when evaluated on scam templates from Q3 2024
(unseen during training), it maintains 89% of its
performance versus 61% for static thresholds. We
will discuss more in Section 4.6.

3.4 Model Improvements Over Baselines
¢ vs. Pure RAG (Lewis et al., 2020c): Our tem-

poral scoring (+12% accuracy on new scams)

« vs. Static LMs (Lin et al., 2024): Confidence
fusion reduces hallucinations by 38%

* vs. Graph-based (Chen et al., 2021): Lower
latency (2ms vs. 50ms per query)

Our methodology demonstrates significant im-
provements over existing approaches across three
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critical dimensions of cryptocurrency scam detec-
tion. Compared to traditional retrieval-augmented
generation (RAG) systems (Lewis et al., 2020c),
which suffer from static knowledge bases and
concept drift, our temporal scoring mechanism
(Section 3.1) achieves a 12.4% higher F1 score
on emerging scam patterns in the CryptoScams
dataset, as quantified through time-stratified cross-
validation. The confidence-aware fusion layer (Sec-
tion 3.2) reduces hallucination rates by 38.2% com-
pared to standalone LLMs (Lin et al., 2024), as
measured by FactScore on 500 manually-verified
scam claims. Where graph-based methods (Chen
et al., 2021) require expensive subgraph extraction
(O(n?) complexity), our approach maintains linear
time complexity O(n) while improving explain-
ability through template-based justification genera-
tion. These advances directly address the key limi-
tations identified in Section 2: (1) the knowledge
staleness in static RAG systems, (2) unreliability of
parametric LM knowledge, and (3) computational
inefficiency of graph-based detection. Ablation
studies confirm that each component contributes
significantly to overall performance, with removal
of temporal scoring causing the largest degradation
(15.7% drop in recall for novel scam types).

3.5 Semantic-Aware Retrieval

We address lexical gaps in BM25 through:

* Crypto-Specific Query Expansion:
Augment queries with synonyms from
CryptoGlossary (e.g., "rug pull" — "exit
scam") using CoinGecko’s ontology

* Specialized Embeddings: Fine-tune BGE on
CryptoScams with contrastive learning:

st
e
S Y (1
€5++Ze5’ + AcL||0]]
(7

where sT/s™ are positive/negative scam tem-
plate pairs

Eadapt = - log

Traditional BM25 suffers from vocabulary mis-
match in cryptocurrency scams (e.g., "dusting at-
tack" vs "wallet spam"). Our two-pronged solution
first expands queries using a hand-verified ontology
of 1,200+ crypto-specific terms (precision@5 im-
proved by 18% in validation). For embeddings, we
fine-tune on triplets (q,d",d~) where negatives
are hard-mined from semantically similar but non-
fraudulent posts. The contrastive loss (Eq.3) forces
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<0.2 cosine distance between variant expressions
of the same scam type, while maintaining >0.5 dis-
tance from legitimate content. This achieves 92%
accuracy on lexical variation cases where vanilla
BGE scored 63%.

4 Experiments and Results

Our evaluation bridges the methodology’s theoreti-
cal contributions with empirical validation across
three key dimensions: (1) Detection Accuracy
compares our system against state-of-the-art base-
lines on scam classification tasks; (2) Knowl-
edge Reliability quantifies hallucination reduc-
tion through factuality metrics; and (3) Compu-
tational Efficiency analyzes latency and resource
requirements. Each subsection connects to spe-
cific methodological components: temporal scor-
ing (Section 3.1) is validated through time-stratified
testing, confidence fusion (Section 3.2) via abla-
tion studies, and threshold adaptation (Section 3.3)
through precision-recall trade-off analysis. We em-
ploy six benchmark datasets to ensure comprehen-
sive coverage of cryptocurrency fraud scenarios.

4.1 Adaptive Temporal Weighting

Replace static decay with:

* Cycle-Aware Scoring:

Score(q,d;) = o - BM25+
(I1—a)-[y - Recency + (1 — ) - Cyclicity]

TemporalComponent

(®)

where Cyclicity uses Fast Fourier Transform
(FFT) to detect repeating patterns

* Parameter Adaptation: )\ dynamically ad-
justs via:

At = Sigmoid(Trend(d;)) - Apase  (9)

The exponential decay assumption fails for
scams with weekly/monthly recurrence (e.g., "NFT
mint" scams peaking every Friday). Our FFT-based
cyclicity detector identifies dominant frequencies
in scam appearance patterns (Fig. ??), then com-
bines them with recency using learnable mixing
weight . For emerging scams lacking periodicity
(e.g., "Al arbitrage bots"), the trend-adaptive Ay
automatically increases recency weighting.



4.2 Datasets and Baselines

CryptoScams (Smock, 2023) contains 4,201 la-
beled tweets spanning Ponzi schemes (32%), fake
giveaways (41%), and phishing (27%), collected
via Twitter API v2 from 2022-2024. Each entry
includes metadata (user credibility scores, times-
tamps) for temporal analysis. We compare against:

¢ RAG-Fin (Lewis et al., 2020b): A financial-
domain RAG baseline using FiQA embed-
dings

* GraphFraud (Chen et al., 2021): Graph neu-
ral network with transaction pattern features

¢ LLM-ZS (Lin et al., 2024): Zero-shot Llama-
3-70B without retrieval

Twitter Financial Scams (Kumar et al., 2023)
provides 10,112 expert-annotated tweets with fine-
grained scam types (e.g., "double your Bitcoin"
vs. "wallet drainers"). The benchmark includes
temporal splits (2021-2023) to test concept drift
robustness. Our primary baseline here is Crypto-
Guard (Huang et al., 2023), which uses static rule
matching combined with BERT classifiers.

4.3 Detection Accuracy

Table 1: Scam classification performance (F1 scores)

Table 2: Hallucination rate comparison (%)

Method  Claim Support Factual Consistency
LLM-ZS 38.2 61.5
RAG-Fin 22.1 78.3
Ours 9.7 91.4

4.4 Knowledge Reliability

Table 2 validates our confidence fusion mecha-
nism’s impact on factuality. The 9.7% hallucination
rate represents a 4.3 X improvement over pure LLM
usage, with particularly strong gains in factual con-
sistency (91.4% vs 61.5%). Manual analysis of 200
error cases shows that most remaining inaccuracies
stem from ambiguous scam descriptions rather than
system failures. This confirms our hypothesis in
Section 3.2 that parametric knowledge requires ev-
idence grounding in high-stakes domains.

4.5 Temporal Robustness

Table 3: Performance decay on unseen quarterly data
(%)

Method Q1 Q2 Q3 Avg.
2024 2024 2024  De-
cay

RAG-Fin -152 -21.7 -284 -21.8

GraphFraud -9.8 -143  -189 -143
Ours 4.1 -6.7 -11.2 73

Table 3 demonstrates our method’s resilience to
concept drift, with 3x slower performance decay

Method Crypto Twitter Fin Avg.
Scams  Scams  Fraud
RAG-Fin 0.72 0.68 0.71 0.70
GraphFraud 0.81 0.63 0.78 0.74
LLM-ZS 0.85 0.77 0.82 0.81
Ours 0.91 0.89 0.90 0.90

compared to RAG-Fin. The quarterly evaluation
tests generalization on completely unseen scam
templates (e.g., "Al arbitrage bots" in Q3). Our
temporal scoring maintains 88.8% of original per-

The results in Table 1 demonstrate consistent su-
periority of our approach across all datasets, with
particular gains in TwitterScams (+12% over RAG-
Fin) where temporal patterns are most volatile. No-
tably, while LLM-ZS performs well on general
financial fraud (FinFraud), its performance drops
by 8% on cryptocurrency-specific scams due to
domain knowledge gaps. Our method’s temporal
scoring mechanism (Section 3.1) shows strongest
impact on CryptoScams, where scam tactics evolve
weekly. The 0.90 average F1 represents a 19%
error reduction compared to GraphFraud’s graph-
based patterns, proving that dynamic retrieval out-
performs static topological features.
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formance by Q3, while baselines drop below 72%.
This empirically validates Eq. (1)’s recency weight-
ing (A = 0.1) as optimal for cryptocurrency fraud
dynamics.

4.6 Threshold Adaptation Performance

Table 4 validates three key claims from Section 3.3:
(1) Our adaptive threshold achieves 22% higher
recall (0.89 vs 0.67) at equivalent precision (0.81
vs 0.82) compared to the standard 7 = 0.5 base-
line, while maintaining superior Fg scores (0.86
vs 0.71); (2) The method shows remarkable robust-
ness to concept drift, retaining 89% of its training-
time performance on Q3 2024 scams versus 61%
for fixed thresholds; and (3) It outperforms exhaus-



Table 4: Adaptive vs. fixed threshold performance on
Q3 2024 scams

Method Recall Precision F3g=2  Perfor-
mance
Reten-
tion

Fixed 7 = 0.67 0.82 0.71 61%

0.5

Fixed 7 = 0.52 0.89 0.60 58%

0.7

Grid 0.73 0.80 0.75 83%

Search

Ours 0.89 0.81 0.86 89%

(Adap-

tive)

tive grid search by 11% in Fg while being 8 x faster
in threshold computation. The performance reten-
tion metric is calculated as:

test

Retention = x 100%

(10)

Ftrain

B

Error analysis reveals that fixed thresholds fail
particularly on emerging scam templates (e.g.,
"Al trading bot" scams in Q3 2024), where
our method’s dynamic adjustment prevents under-
confidence in predictions. The 0.81 precision
demonstrates that higher recall doesn’t come at the
cost of increased false alarms - a critical require-
ment for financial applications. Compared to (Lin
et al., 2024)’s static approach, our gradient-based
optimization reduces the "threshold tuning burden"
by automatically adapting to new data distributions.

Precision-Recall Trade-off Across Threshold Strategies

100.0%

Criical Precision (0.8)

Fixed Threshold Range
70.0% et Our Adaptive Method

0% 20% 40% 60%% 80%

Recall —
(+22% Recall Gain |

Figure 2: Precision-Recall trade-off across threshold
strategies. Our adaptive method (red) dominates the
Pareto frontier.

Fig. 2 visualizes the precision-recall trade-off,
showing our method’s superiority across all operat-
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ing points. The shaded region represents the perfor-
mance envelope of fixed thresholds, highlighting
how adaptation expands the achievable frontier. At
the critical 0.8 precision level (dashed line), our
method gains 0.17 recall points over the best fixed
alternative. This directly translates to detecting
17% more scams without increasing warning fa-
tigue for end-users.

4.7 Threshold Optimization

Table 5: Adaptive threshold performance (F5=2)

Method Training Q3 Retention[ime
Test (ms)

FixedT7 = 0.71 0.43 61% 1.2

0.5

Grid 0.82 0.68 83% 38.5

Search

Ours 0.89 0.79 89% 4.8

The experimental results in Table 5 demon-
strate three fundamental advancements of our adap-
tive threshold mechanism over conventional ap-
proaches. First, the 89% performance retention
on Q3 2024 test data (vs. 61% for fixed thresh-
olds) validates our gradient-based optimization’s
resilience to temporal concept drift, directly ad-
dressing the knowledge staleness problem identi-
fied in Section 2. This 28-point improvement stems
from Eq. 5°s dynamic adjustment capability, which
automatically relaxes 7 when encountering novel
scam patterns (e.g., Q3’s "Al trading bot" schemes)
while maintaining 0.79 Ff score - outperforming
grid search by 11%. Second, the 8 x faster compu-
tation (4.8ms vs. 38.5ms) confirms our theoretical
complexity analysis: the central difference approx-
imation achieves O(n) convergence versus grid
search’s O(n?), making real-time deployment fea-
sible. The 1.2ms baseline, while faster, fails catas-
trophically on new data (61% retention). Third, the
0.89 training F 3 establishes a new state-of-the-art,
proving our method’s ability to find near-optimal
operating points without manual tuning. Error anal-
ysis reveals this stems from the gating parameter (3
in Eq. (2) effectively balancing precision (0.91) and
recall (0.87) during threshold adaptation. Practical
implications are significant: the 4.8ms inference
time enables processing 208 tweets/second on a
single V100 GPU, while the 89% retention rate
reduces monitoring blind spots by 3x compared to
industry-standard fixed thresholds. These results



collectively validate our hybrid neural-symbolic ap-
proach to threshold optimization in dynamic fraud
detection scenarios.

4.8 Computational Efficiency

Table 6: Inference latency comparison (ms)

Component RAG-Fin Ours
Retrieval 12.7 8.2
LM Inference 48.3 321
Thresholding 1.2 4.8
Total 62.2 45.1

Despite added threshold adaptation overhead,
Table 6 shows our system achieves 27% faster
end-to-end latency than RAG-Fin. Optimizations
like FAISS indexing (Section 3.1) and LoRA fine-
tuning (Section 3.2) contribute to these gains. The
45.1ms total satisfies real-world requirements for
Twitter scam monitoring.

4.9 Ablation Study

Table 7: Component ablation (F1 scores)

Variant CryptoScams
Full System 0.91

w/o Temporal Scoring  0.83 (-8.8%)
w/o Confidence Fusion 0.79 (-12.1%)
w/o Threshold Adapt 0.85 (-6.6%)

The ablation study in Table 7 provides critical in-
sights into the relative contributions of each system
component. The 12.1% performance drop when
removing confidence fusion (Section 3.2) demon-
strates its paramount importance, validating our hy-
pothesis that raw LLM outputs require calibration
against retrieved evidence in high-stakes scenar-
i0s. Error analysis reveals this variant particularly
struggles with "zero-day" scams (unseen during
training), where the un-gated LM generates false
positives at 3.2x the rate of the full system. The
8.8% degradation without temporal scoring (Sec-
tion 3.1) confirms the necessity of dynamic knowl-
edge updates, with performance gaps widening to
15.3% on Q3 2024 data - underscoring cryptocur-
rency scams’ rapidly evolving nature. Interestingly,
the 6.6 % reduction when using fixed thresholds
persists even with other components intact, prov-
ing that threshold adaptation provides orthogonal
benefits beyond basic retrieval-LM fusion. The

full system’s 0.91 F1 represents an optimal synthe-
sis of these capabilities: temporal scoring main-
tains knowledge freshness (Eq. (1)’s A = 0.1 de-
cay factor), confidence fusion prevents hallucina-
tion (Eq. (2)’s B gating), and adaptive thresholds
optimize the precision-recall trade-off (Algorithm
I’s gradient ascent). Practical deployment scenar-
ios should prioritize maintaining all three compo-
nents, as their combined effect is superadditive
- the 0.91 F1 exceeds the sum of individual im-
provements (predicted 0.87 if components acted
independently). This comprehensive validation ad-
dresses the component interaction concerns raised
in (Wang et al., 2023), proving our architecture’s
carefully balanced design.

5 Conclusion

We have developed and validated a dynamic frame-
work for cryptocurrency scam detection that effec-
tively combines retrieval augmentation with adap-
tive confidence calibration. The system’s 89% per-
formance retention on unseen scam types demon-
strates superior robustness to concept drift com-
pared to fixed approaches (61%). Key innovations
include temporal scoring of scam templates, gated
knowledge fusion, and gradient-based threshold
optimization - each empirically shown to provide
non-redundant benefits. While focused on financial
fraud, our methodology offers broader implications
for high-stakes applications of large language mod-
els, particularly in domains requiring continuous
knowledge updates. Future work should explore
federated learning for scam pattern sharing while
preserving privacy.
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Abstract

Evaluating foundation models for crystallo-
graphic reasoning requires benchmarks that
isolate generalization behavior while enforcing
physical constraints. This work introduces,
xCrysAlloys, a multiscale multicrystal dataset
with two physically grounded evaluation
protocols to stress-test multimodal generative
models. The Spatial-Exclusion benchmark
withholds all supercells of a given radius from
a diverse dataset, enabling controlled assess-
ments of spatial interpolation and extrapolation.
The Compositional-Exclusion benchmark
omits all samples of a specific chemical
composition, probing generalization across sto-
ichiometries. Nine vision—language foundation
models are prompted with crystallographic im-
ages and textual context to generate structural
annotations. Responses are evaluated via (i)
relative errors in lattice parameters and density,
(i) a physics-consistency index penalizing
volumetric violations, and (iii) a hallucination
score capturing geometric outliers and invalid
space-group predictions. These benchmarks
establish a reproducible, physically informed
framework for assessing generalization,
consistency, and reliability in large-scale
multimodal models. Dataset and implemen-
tation are available at https://github.
com/KurbanIntelligenceLab/
StressTestingMMFMinCR.

1 Introduction

Crystalline solids underpin a wide range of modern
technologies. Their periodic atomic arrangements
determine the band gaps of semiconductors, the
ion-transport channels in battery electrodes, and the
phonon spectra that govern thermal conductivity
in microelectronics (Wyckoff, 1963a; Bhadeshia,
2001). Even a single misassigned lattice parameter
can cascade through simulation pipelines, distort-
ing derived physical models and impeding mate-
rials discovery (Levi and Kotrla, 1997; Lubarda,
2003). Structural resolution has traditionally re-
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lied on labor-intensive diffraction techniques or
exhaustive structure enumeration followed by den-
sity functional theory (DFT) relaxation (Kohn and
Sham, 1965). Synthesis methods such as hydrother-
mal growth (Baruah and Dutta, 2009), chemi-
cal vapor deposition (Carlsson and Martin, 2010),
and high-pressure processing (Bertucco and Vetter,
2001) further introduce domain-specific variability
by accessing distinct thermodynamic regimes and
defect topologies.

Recent progress in generative modeling, partic-
ularly autoregressive language models capable of
emitting crystallographic information files (Hall
et al., 1991), enables rapid lattice generation with
chemically plausible compositions. However, ex-
isting materials databases—such as AFLOW (Cur-
tarolo et al., 2012), the Materials Project (Jain et al.,
2013), and OQMD (Saal et al., 2013)—remain
predominantly unimodal and typically lack expert-
written, human-interpretable descriptions of crystal
chemistry. This absence of multimodality impedes
systematic evaluation of large vision—language
models and language models in crystallographic
reasoning. Current scientific multimodal bench-
marks are limited in scale, visually simplistic, and
textually sparse, constraining analysis of factual
accuracy, hallucination patterns, and compliance
with physical laws.

To overcome these limitations, xCrysAlloys, a
new multimodal dataset of crystalline alloy mate-
rials is presented, accompanied by two physically
grounded benchmarking protocols. The spatial-
exclusion (SE) benchmark withholds supercells of
a specific radius from the set { Ry, };2., enabling
controlled evaluation of spatial interpolation (inte-
rior radii) and extrapolation (boundary radii). In
parallel, the compositional-exclusion (CE) bench-
mark withholds all samples corresponding to a
target chemical composition, assessing general-
ization across compositional space. State-of-the-
art foundation models are evaluated under both
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benchmarks by generating structural annotations
from crystallographic images and textual prompts.
Model outputs are parsed into a structured MA-
TERIAL PROPERTIES schema and assessed for ge-
ometric accuracy, consistency with physical con-
straints, and hallucination risk. These benchmarks
provide a reproducible, domain-informed frame-
work for measuring generalization and reliability
in large-scale generative models, and contribute to
emerging efforts to probe, refine, and safely deploy
scientific knowledge at scale.

The remainder of the manuscript is structured as
follows. Section 2 surveys the theoretical founda-
tions and related literature. Section 3 details the
methodological framework. Section 4 describes
the dataset construction, evaluation metrics, and
experimental procedures. Section 5 presents the
empirical findings. Section 6 discusses the study’s
limitations, and Section 7 concludes with final ob-
servations.

2 Background

2.1 Materials Modeling: From
First-Principles to Data-Driven

Representations

Accurate modeling of crystal structures has long
relied on first-principles approaches such as DFT,
which provides access to ground-state electronic
properties, total energies, and atomic forces in pe-
riodic solids (Jensen and Wasserman, 2018). DFT
remains the cornerstone of computational materials
science, particularly for predicting band structures,
charge distributions, and structural relaxations.
However, its cubic scaling with respect to system
size poses significant limitations for large supercell
or high-throughput investigations (Hourahine et al.,
2007).

To mitigate this computational burden, semi-
empirical methods such as density functional tight
binding (DFTB) (Gaus et al., 2011) offer an effi-
cient approximation by expanding the Kohn—Sham
energy around a reference density. Modern en-
hancements, including Slater—Koster parameteriza-
tions and self-consistent charge corrections (Papa-
constantopoulos and Mehl, 2003), have extended
DFTB’s usability to heavier elements and time-
dependent simulations. Nevertheless, both DFT
and DFTB still require significant computational
resources, especially when scaling across diverse
compositions and large atomic configurations.

This work adopts an alternative route grounded
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in experimental crystallographic data. Rather than
performing relaxation via electronic structure the-
ory, all unit cell parameters are sourced from peer-
reviewed literature. These serve as the foundation
for constructing supercells and nanocluster models
at varying spatial scales, enabling physically consis-
tent benchmarking without reliance on simulation-
based optimization.

2.2 Machine Learning and Multimodal
Foundation Models in Materials Science

In parallel to physics-based approaches, machine
learning has emerged as a powerful tool in ma-
terials discovery pipelines. Graph neural net-
works, such as SchNet (Schiitt et al., 2017),
DimeNet (Gasteiger et al., 2020), and FAENet (Du-
val et al., 2023), operate directly on atomic graphs
to predict structural and functional properties with
increasing fidelity (Zheng et al., 2018; Rane, 2023;
Liao et al., 2023; Kurban et al., 2024). Despite their
promise, these models often suffer from limitations
related to data sparsity, distribution shift, and lack
of interpretability.

Recent efforts focus on unifying visual, textual,
and structural modalities via large multimodal mod-
els. Such systems—exemplified by ChemVLM (Li
et al., 2025), MatterChat (Tang et al., 2025), and
xChemAgents (Polat et al., 2025b)—are designed
to capture complex structure—property relation-
ships while supporting interactive reasoning tasks.
Supporting benchmarks such as ScienceQA (Lu
et al., 2022), MoleculeNet (Wu et al., 2018), and
ChemLit-QA (Wellawatte et al., 2024) provide
curated evaluation settings across physics, chem-
istry, and biology. In materials science specif-
ically, TDCM25 (Polat et al., 2025a) and LAB-
Bench (Laurent et al., 2024) advance this trend by
offering multimodal, multi-property datasets.

While these efforts signal progress, current mul-
timodal systems still exhibit limited capability in
physical reasoning, compositional generalization,
and geometric consistency (Miret and Krishnan,
2024). This motivates the development of targeted
benchmarks—such as the Spatial-Exclusion and
Compositional-Exclusion protocols introduced in
this study—to systematically probe the crystallo-
graphic reasoning capabilities of foundation mod-
els at multiple scales.



3 Methods

3.1 Crystal Structure Generation

This study utilizes experimental lattice parame-
ters from peer-reviewed literature to reconstruct
unit cell geometries for ten crystalline materials:
Ag, Au, CH3NH3PbIg, FCQOg, MOSQ, PbS, SDOQ,
SrTiO3, TiO2, and ZnO. The reported crystallo-
graphic space groups and cell constants for each
compound are listed in Appendix A.1.

For each material, a large periodic supercell of di-
mensions 30 x 30 x 30 unit cells was constructed to
approximate a bulk crystalline environment. This
bulk structure served as the foundational source for
subsequent nanoscale structure generation. Spher-
ical nanoclusters were then carved from the cen-
ter of this supercell using a radial cutoff criterion:
atoms located within a prescribed distance from
the geometric center were retained, while atoms
beyond the cutoff were excluded.

To ensure systematic evaluation across mul-
tiple spatial scales, four target radii R €
{0.7,0.8,0.9,1.0} nm—Iabeled R7-R10—were
selected. For each material, spherical nanoclus-
ters of increasing size were carved out based on
these radii. The resulting atom counts varied de-
pending on the underlying crystal structure and unit
cell complexity, typically yielding configurations
with tens to hundreds of atoms. This procedure pre-
serves the lattice symmetry and local coordination
environments while introducing surface-dominated
features relevant to nanoscale crystallographic rea-
soning.

3.2 Orientation Sampling and Rendering

To evaluate rotational invariance and visual robust-
ness, each supercell was rendered under ten unique
orientations. These include one canonical pose
and nine additional orientations sampled using the
Fibonacci-sphere algorithm (Stanley, 1975) to ap-
proximate uniform SO(3) coverage.

For each orientation, atomic configurations were
orthographically projected onto the xy-plane. Vi-
sualization was performed by mapping atoms to
Gaussian-blurred disks, scaled by covalent radius
and colored using a CPK-inspired palette. This
consistent rendering pipeline generated standard-
ized 2D crystallographic images (64 x 64 px) that
serve as visual input to the foundation models.
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3.3 Structured Text Annotation

Each atomic structure is paired with a textual anno-
tation formatted under a standardized MATERIAL
PROPERTIES schema. Annotations include scalar
properties—such as atom count, lattice parameters,
supercell volume, and bulk density—as well as
categorical attributes like space group and crystal
system.

To support robust evaluation, each annotation
also includes primitive-cell parameters, average
nearest-neighbor distance, and a descriptive para-
graph summarizing the crystal’s physical charac-
teristics. This structured multimodal representa-
tion enables the computation of multiple evaluation
metrics—including geometric error, physical-law
consistency, and hallucination rate—described in
Section 4.

4 Experiments

Dataset. xCrysAlloys, comprises ten crystalline
compounds of technological relevance: Ag, Au,
CH3NH3Pb13, F6203, MOSQ, PbS, SHOQ, SI‘TiO3,
TiO2, and ZnO. For each material, spherical nan-
oclusters were extracted at four target radii R €
{0.7,0.8,0.9, 1.0} nm (R7-R10), yielding a multi-
scale corpus of 3D atomic structures.

Each nanocluster was rendered in ten orienta-
tions—one canonical and nine using Fibonacci-
sphere rotations—to ensure quasi-uniform cov-
erage over SO(3). This process generated over
400 crystallographic images per material—derived
from 4 radius levels and 10 orientations per struc-
ture (i.e., 4 x 10 = 40 images per material-radius
combination)—paired with expert-curated annota-
tions conforming to the MATERIAL PROPERTIES
schema. Full details on structure generation are
provided in Section 3.1. An overview is shown in
Figure 1.

Evaluation Metrics. PERCENT ER-
ROR for each numerical property p €
{NatomS7 V;:elb a, b7 C, P, Ap, bpa Cp} is com-

puted as:

|pgen o pref|
Ap [%] == 100 . W

SPACE-GROUP MATCH is defined as:

Isc = 1(SGE™ = SG™).
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Figure 1: Gallery of atomic structures for each material in xCrysAlloys. The first column shows the primitive unit
cell for each material, while the subsequent columns display nanocluster structures with increasing radii (R7, RS,
R9, R10). Each structure is visualized in a canonical orientation, with the number of atoms indicated in each panel.
Materials are sorted by the atom count of their largest (R210) nanocluster.

Group statistics over n examples are:

1< :
Hp = n;%Aé)7
1 < ; 2
o= n—1§:(%A9_“O’
i=1
Clgs = p1 +£1.96 - 2.

Vn
PREDICTION CONSISTENCY (ROTATIONS) is com-
puted by:

)

where 1, and o, are the mean and standard devia-
tion of a rotation-specific error set.
PHYSICAL-LAW COMPLIANCE is evaluated for:

Or
—, 1

Cpred = 1 — min (
Moy

b c (b c
b € Py =y 5\ = 9 (7) X
a a a prim a/ prim
using:

5 |pgen _pref|

p pref ’
1.0 5, < 0.10,

sp=1405 0.0 <6, < 0.25,

0.0 9, > 0.25 or on error.
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Aggregate score:

%Zpsp N >0,

S pum—
phys 0.0 N = 0 or missing.

HALLUCINATION SCORE is defined for all the per-
cent error properties p. Let g = p&" and r = p*f,

then:

1.0 ¢g <0 (non-physical),
L 1o %%>0%,
" o5 010< 2 <025,
0.0 l=rl <o.10.

7|
Let M be the number of valid checks:

= Sphpy M >0,

0.0 M =0,

1.0 if input is None.

Shall =

Additional metric definitions are provided in Ap-
pendix A.2.

Spatial-Exclusion Protocol. SE protocol mea-
sures extrapolation across length scales. For each
material m; with radius set R,,,, one radius R, €
R, 1s held out. The model context includes:

R \ (R} x 5

examples (5 rotations for each of the remaining
radii). Each test instance uses only the Cartesian



coordinates of (m;, R, k), and the model must
generate predictions without seeing any data at R..
The overall SE error is:

1

MY R | x5

4
XZ Z Zg(ﬁi,m,k, YiRu k)

i Ri€Rpm; k=0

Esg

where / is the percent error loss.

Compositional-Exclusion Protocol.  CE pro-
tocol assesses generalization across compositions.
For each material m;, all of its data are excluded
from the context. The context size becomes:

(Y 1Rml) x5

m;#m;
At test time, only the Cartesian coordinates of
(m4, Ry, k) are given. The transfer error is:

1
MY Rm,| x5

4
XZ Z Zg(ﬂi,m,k, YiRu k)

i Ri€Rm; k=0

Ecgk

which captures model performance when required
to infer from disjoint compositions. Comparing
FEcg and FEsg helps isolate failure modes in spatial
vs. chemical generalization.

5 Results

SE Evaluation. In SE evaluation, each language
model was assigned the task of predicting a held-
out radius value (R;—R;o) for a given crystalline
material, and its outputs for atom count (N ), cell
volume (V), lattice constants (a, b, ¢), and den-
sity (p) were compared against reference structures.
Percent errors (%A) were averaged across all mod-
els and five random 3D orientations per configura-
tion. As shown in Table 1(a), the resulting error
rates remain consistently high, particularly for key
physical properties—exceeding thresholds that ren-
der predictions scientifically unreliable.

These discrepancies reveal a fundamental limita-
tion: the models fail to internalize core geometric
and physical constraints that govern crystal struc-
tures. The inability to extrapolate structural prop-
erties across radii highlights the need for architec-
tural enhancements, including explicit domain con-
straints, physical priors, and robust error-correction
strategies to prevent hallucinated outputs and en-
force consistency in atomic-scale reasoning.
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CE Evaluation. In the CE evaluation, each lan-
guage model received structural data from nine
materials at a fixed radius R and was tasked with
predicting N 4, primitive cell lengths (ay, by, ¢;),
and angles (o, By, ¥p) for a held-out material. To
ensure robustness, predictions were averaged over
five random 3D orientations and multiple model
variants. As reported in Table 1(b), percent errors
in cell lengths frequently exceed 15%, and atom
count errors surpass 30% for complex compounds
at smaller radii—suggesting a failure to generalize
geometric patterns across novel chemistries.

Additionally, absolute deviations in primitive
angles often exceed 5° and reach beyond 20° in
certain cases, reflecting substantial geometric in-
consistencies and a tendency to hallucinate phys-
ical details. These results reinforce that purely
data-driven training is insufficient for capturing
atomic-scale regularities. Embedding explicit do-
main constraints, structured knowledge priors, and
uncertainty-aware mechanisms is essential for en-
forcing physical plausibility and mitigating halluci-
nation in generative crystallography.

Knowledge Transfer. CE evaluation reveals that
current multimodal LLMs rely heavily on mem-
orized numeric templates rather than internalized
crystallographic principles. In the control setting
(SE), all eight models achieve low mean percent
errors (0.04 < SE < 0.18). However, when eval-
uated on withheld compounds, performance col-
lapses: the average error increases by several orders
of magnitude, and the transfer ratio T = CE/SE
surges from 2.2 x 103 to 2.3 x 10%, with one model
diverging entirely (1" = o0).

A consistent failure pattern emerges across sys-
tems: six models record their largest relative er-
ror on the primitive-cell b-axis (%Ab,), while the
remainder fail on %Aa,. PbS is the most chal-
lenging composition, ranked worst by all models
except one, which instead fails on Fe;O3. The rock-
salt symmetry of PbS demands reconciliation be-
tween cubic crystal geometry and its serialized rep-
resentation; instead, most models generate incon-
sistent or arbitrary lattice parameters. These find-
ings underscore that in-distribution performance
does not imply genuine crystallographic reasoning.
Even modest compositional perturbations desta-
bilize the geometric priors learned by large-scale
vision—language models, revealing a brittle founda-
tion for generalization.



(a) Spatial-Exclusion (SE)

Material R7 R8 R9 R10
Y%ANas %AV %Aa  %Ab  %Ac  %Ap  N%ANa %AV %Aa  %Ab %Ae  %Ap  %ANa KAV %dAa  %Ab  %Ac  %Ap  NANa %AV %Aa  %Ab %Ae  %Ap
Ag 26.53 9.21 13.00 21.32  14.00 10.21 14.59 5.11 5.98 8.12 13.63 7.31 15.00 7.88 8.52 7.96 7.48 9.64 5.65 5.07 9.81 8.36
Au 28.21 10.18  13.44 2248 1547 11.26 14.20 5.43 6.55 6.42 11.38 9.19 12.26 6.26 7.51 9.37 8.58 15.40 17.61
CH3NH3Pbl3 10.85 16.83 20.28 7.08 20.85 17.58 8.52 8.51 22.72 13.45 8.44 9.11
Fe203 26.21 8.92 10.46 13.42 20.18 6.80 7.31 11.34 12.23 15.81 5.84 6.60 5.18 10.46 11.92 5.23 4.97 6.93
MoS:2 15.48 9.21 9.17 16.80 14.31 5.84 5.53 16.10 9.59 17.76 7.18 7.67 7.22 9.63 X 7.79 10.97 19.16
PbS 17.54 9.07 10.78 18.66 6.16 7.38  11.53 1991 12.90 22.60 8.78 9.62 12.27 7.25 5.99 8.00 13.85
SnO2 29.48 8.25 7.02 9.78 18.99 4.04 9.33 7.56 8.24 12,57  5.32 6.90 7.21 6.80 4.15 8.57 8.34
SrTiO3 30.59 15.59 20.10 712 777 8.25 22.56 7.87 7.19 756 17.26 6.84 6.80 7.36 16.79
TiO2 23.54 22.99 4.48 4.09 6.39 5.92 4.75 5.76 4.84
ZnO 1047 9.28 12.74 1242 4.96 5.23 6.98  11.04 9.63 5.05 6.01 8.50 8.91 19.57 6.21 7.49 8.89 20.74
(b) Compositional-Exclusion (CE)
Material R7 RS R9 RI10
ap  %Ab, %Ac, |Aayl BB Ay %ANa  %Da, %Ab, %Ac, |Aay| |AG Ayl %ANs  %Aa, %Ab, %Ac, [|Aayl MBS Ayl %ANa  %Aa, %Ab,  %Ac, |Aagl B Ayl
Ag 10.49 10.49 7.50 7.50 7.50 10.48 10.48 10.48 7.50 7.50 7.50 4.28 1047 10.47 10.47 7.50 7.50 7.50 14.09 13.76 13.76 13.76 6.75 6.75 6.75
Au 17.79 17.79 6.00 6.00 6.00 4.89 15.63 15.63 15.63 1.50 4.50 4.50 16.76 16.76 16.76 1.50 4.50 4.50 16.65 16.65 16.65 4.50 4.50 4.50
CH3NH;Pbl; 1046 23.36 1.50 1.86 3.75 37.87 5.04 9.27 9.52 4.68 5.04 4.68 46.59 11.51 16.15  21.65 3.07 3.43 3.07 12.27 12.39 10.45 1.55 1.91 6.80
2! 110 8.65 1.50 1.50 5.25 27.82 2.77 9.70 0.75 0.78 5.25 26.00 3.46 3.46 11.38 1.50 1.50 6.00 19.60 5.01 3.36 10.34 174 1.74 6.24
MoS; 23.42 745 742 3.72 0.03 2.25 18.61 0.02 26.55 0.04 0.03
PbS 40.57 40.13 39.16 41.16 41.16 44.59 40.11 40.11
SnO2 0.78 3.08 19.79 5.67 13.80 ! 1.33 2.42 0.40 1.59 16.14 2.36 0.39 1.55 0.75
SiTiO3 4.44 5.79 0.43 0.43 0.43 2248 11.82 11.74 13.02 0.06 7.52 9.53 3.81 7.68 0.60 19.49 1.53 1.52 1.54 0.01
TiO: 18.81 1.50 19.81 19.62 2.2 2.06 19.12 1.50 20.75 21.12 3.75
Zno 2.66 1.03 1.50 23.26 5.86 7.34 0.02 2.25 31.50 24.59 3.02 0.75

Table 1: Mean percent errors (%A) for (a) the spatial-extension (SE) protocol—evaluating extrapolation to unseen
supercell radii—and (b) the compositional-exclusion (CE) protocol—evaluating cross-material transfer. Part (a)
reports errors on atom count N4, cell volume V/, lattice parameters a, b, ¢, and density p; part (b) reports errors
on N4, primitive cell edges ap, by, ¢p, and absolute angular deviations |Acy,|, |AB,|, |Av,|. Results are shown
for each material and radius value (R7-R10), averaged over five random rotations per configuration and across all
models. Lower values indicate better agreement with reference structures. These complementary metrics illustrate
the model’s capacity to capture atomic-scale patterns across variations in supercell size and material composition.
Contrasting SE and CE errors highlights whether performance limitations stem from radius extrapolation or cross-
material generalization. Colours indicate predictive difficulty: marks the material with the lowest prediction
error (easiest to predict), while red marks the material with the highest prediction error (hardest to predict).

Model SE_CE Tx10° Guax x10 tse tee validation regime rather than intrinsic data asymme-
Claude Opus 4 (Anthropic) 0.06 091 2.17 3.04 12.86 13.91 . : : 1; : VL : : :
Claude Sonnet 4 (Anthropic)  0.04 068 393 304 643 823 tries. This bidirectional sensitivity highlights a crit-
DeepSeek-Chat (DeepSeek) 0.09 1.79 14.16 6.47 2497 13.71 : . :

OP a1 Mint (OpeniD 018 053 s 600 S08 726 ical weakness: current foundation models preserve
Gemini 2.5 Flash (Google) ~ 0.05 1.32 2138 3.04  3.06 500 certain geometric relationships under run-wise ex-
Grok 2 (X.ai) 0.07 234 15.55 3.04 637 899 . ’ T .

Grok 2 Vision (X.ai) 006 202 2254 647 732 950 clusion but fail to maintain deeper physical depen-
Llama-4 Maverick (Meta) 0.09 0.89 3.70 3.00 433 672

Mistral Medium 3 (Mistral AI) 0.05 0.92 1124 3.00 1478 1545 dencies—such as energetic coherence—when fac-
ing unfamiliar chemistries. The instability of error
correlations under different evaluation settings un-

Table 2: Transfer degradation analysis with mean per-

cent errors (% A) for the SE and CE splits. T = CE/SE; ) e
. . X dermines the robustness of model generalization
Gmax 18 the largest absolute error observed in any single

prediction. tgr and tc g represents the each models la- and f?mphas.izes.the need for empedding invaria.nt
tency in seconds for SE and CE task, respectively. Bold ~ Physical priors into model architecture and train-

indicates the top-performing model, while underlining  1ng.

denotes the runner-up.
P Compliance and Hallucination. The models

consistently struggle to enforce fundamental physi-

Correlation Shift. Table 3 reports the average er-  cal constraints and frequently fabricate ungrounded
ror—error correlation coefficients for fourteen prop-  details, as quantified in Table 4. Physical-law com-
erty pairs under the SE and CE protocols, along  pliance scores fall below acceptable thresholds for
with their differences. Notably, the transition from  most materials, with particularly poor performance
SE to CE increases the correlation between pro- on TiOs, where nearly half the predictions vio-
jected lattice constants a,, and b, by 0.59, sug- late basic geometric or density-based relationships.
gesting that prediction errors for these geometric ~ Concurrently, hallucination scores indicate that a
features become more aligned when the model is  significant fraction of predicted properties—often
exposed to entirely novel compositions. In con-  over 40%—deviate substantially from reference
trast, the correlation between volume V' and aver-  values or represent nonphysical outputs. The co-
age formation energy € drops by —0.64, indicating  occurrence of constraint violations and fictitious
a breakdown in the learned volume—energy cou-  property generation highlights systemic limitations
pling under compositional generalization. in current architectures. These results reinforce the
These shifts reverse when comparing CE to SE,  need for models that integrate structural priors, con-
confirming that the observed effects stem from the  servation rules, and uncertainty-aware mechanisms
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(a) SE = CE

Natoms V. V@ Veap o€ aoré acrp asrb aper by aperc, bré barp byerep ¢ & ceorp
€SE +0.28 +0.81 +0.34 +0.52  +0.13  +0.32 +0.09 +0.09 +0.50  +0.17 +0.09 +0.57 +0.21
€CcE +0.02 +0.17 +0.22  +0.09 +0.69 +0.44 +0.07 +0.44  +0.10
A +0.22 +0.59 +0.35 +0.35

(b) CE = SE

Natoms V' Ve Vearp peré aecré asrp aeorb apeor by, apsrcp b e borp byircy c2E cop
€CE +0.02 +0.17 +0.22  +0.09 +0.69 +0.44 +0.07 +0.44  +0.10
€SE +0.28 +0.81 +0.34 +0.52  +0.13  +0.32 +0.09 +0.09 +0.50  +0.17 +0.09  +0.57 +0.21
A +0.27 +0.64 +0.40 +0.44  +0.22 +0.32 +0.43  +0.22 +0.47  +0.35

Table 3: Largest shifts in error—error correlation coefficients when transferring between SE and CE annotation
protocols. Each sub-table displays the top 14 property pairs (ordered alphabetically) exhibiting the largest absolute
changes in pairwise correlation, averaged over all models, materials, and R7—R10. Panel (a) shows the shift from
SE to CE (A = pcg — psk), while panel (b) shows the reverse (CE to SE, A = psg — pcg). For each property pair,
the table reports the correlation coefficients under each protocol and their difference A. Cells are color-coded: green

for positive A (stronger coupling under the target protocol) and

for negative A (weaker coupling), highlighting

which structural or physical property relationships are most sensitive to the choice of annotation protocol.

Material Physical Law Compliance Hallucination Score
Ag 0.82 4+ 0.03 0.21 £0.04
Au 0.84 +0.03 0.24 £ 0.02
CH3NH3Pbl;3 0.72 £0.03 0.42 £0.05
Fe,03 0.74 £0.03 0.23 £0.02
MoS, 0.78 £0.03 0.18 + 0.01
PbS 0.77 £0.03 0.53 £0.02
SnO, 0.74 £0.03 0.24 £0.04
SrTiO3 0.77 £0.02 0.28 £0.03
TiOo 0.46 £ 0.02 0.43 £0.03
ZnO 0.77 £ 0.02 0.21 4 0.02

Table 4: Mean # std physical-law compliance and hal-
lucination scores for each material, averaged over all
models and five runs per material-radius under both SE
and CE protocols. Physical-law compliance measures
adherence to fundamental structural constraints (e.g.,
density and lattice-parameter ratios), while the halluci-
nation score quantifies the frequency of non-physical or
highly erroneous predictions across a set of key prop-
erties. Bold denotes the material with the highest pre-
diction accuracy, while underlining denotes the material
with the second highest accuracy.

to produce physically plausible and trustworthy
predictions at the atomic scale.

Model Latency. Table 2 presents the average in-
ference latencies per sample across the SE and
CE protocols. Gemini 2.5 Flash exhibits the low-
est latency, requiring only 3.06s under SE and
5.00s under CE, making it well-suited for time-
sensitive applications such as high-throughput ma-
terials screening. Llama-4 Maverick and GPT-4.1
Mini follow in the next performance tier with mod-
erate latency (4 s to 8 s), while most other models
cluster between 6s to 15s. DeepSeek-Chat is the
slowest model in the SE evaluation (25 s), and Mis-
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tral Medium 3 exhibits the highest latency in CE
(15.5s). These trends broadly correlate with model
size and architecture, where larger context win-
dows and multimodal inputs tend to incur higher
computational overhead. Although latency is not
the primary evaluation criterion in this study, the
results offer practical insights for downstream de-
ployment scenarios, especially when balancing pre-
dictive accuracy against throughput constraints.

6 Limitations

This study isolates two complementary gen-
eralization regimes—geometric interpola-
tion/extrapolation and chemical extrapola-
tion—using a curated dataset of ten crystalline
materials across four radii. While representative,
this selection captures only a limited region of
compositional and structural diversity present in
real-world materials. All models are evaluated
in a zero-shot setting with default decoding
configurations, without fine-tuning, retrieval
augmentation, or domain adaptation, which may
underrepresent their full capabilities.

Evaluation emphasizes first-order structural
properties such as lattice constants, density, and sto-
ichiometry, along with a single volumetric consis-
tency index. Higher-order descriptors—including
phonon spectra, band topology, or symmetry-
preserving deformations—are not considered. The
analysis focuses on static prediction quality and
does not measure model responsiveness to feed-
back, learning curves under domain supervision, or
variance across decoding seeds.



7 Conclusion

This work introduces xCrysAlloys and its two com-
plementary benchmarks—SE and CE—that isolate
geometric interpolation and chemical extrapolation
in crystallographic prediction. The evaluations re-
veal that current vision—language foundation mod-
els struggle to internalize core physical principles,
as evidenced by high relative errors, substantial
degradation in transfer settings, and disrupted inter-
property correlations. The prevalence of halluci-
nated outputs and violations of basic physical laws
further underscores the limitations of purely data-
driven training in scientific domains.

To advance reliability and generalization, fu-
ture models must incorporate explicit physical con-
straints, symmetry priors, and uncertainty-aware
reasoning. The proposed benchmarks provide a
reproducible and physically grounded testbed for
evaluating model robustness in structured scien-
tific settings. By bridging multimodal language
understanding with domain-specific inductive bi-
ases, this work aims to foster the development of
more trustworthy foundation models for materials
science and beyond.
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A Appendix

A.1 Crystal Parameters

Silver (Ag). Silver adopts an FCC lattice with
lattice constant a = 4.0857 A. The cubic crystal
belongs to space group Fm3m (No. 225), Pearson
symbol cF4, and Schoenflies notation O?l. A sin-
gle Ag atom occupies the origin of the primitive
cell (King, 2002a).

Gold (Au). Gold similarly adopts an FCC ar-
rangement with lattice constant ¢ = 4.0782 A.
It crystallizes in space group Fm3m (No. 225),
reflecting equivalent high symmetry. One Au
atom resides at the (0,0,0) position within the unit
cell (King, 2002b).

Methylammonium Lead Iodide (CH3;NH3Pbl3).
The hybrid perovskite CH3NH3Pbls forms a
pseudo-cubic lattice with parameters a = 6.290 A,
b=6.274 A, ¢ =6.297 A and angles close to 90°.
It crystallizes in space group P1 (No. 1), accom-
modating slight distortions and dynamic disorder
typical of organic—inorganic frameworks (Walsh
etal., 2019).

Hematite (FeoO3). Hematite (FeoO3) exhibits a
rhombohedral structure with lattice constants a =
= 5.0346 A, ¢ = 13.7473 A, and angles o =
B =90°, v = 120°. It belongs to space group R3c
(No. 167), underpinning its antiferromagnetic and
catalytic properties (Finger and Hazen, 1980).

Molybdenum Disulfide (MoS3). Molybdenum
disulfide (MoS2) adopts a layered hexagonal lattice
with parameters a = 3.1604 A, c=12.295 A, and
angles « = 8 = 90°, v = 120°. It crystallizes
in space group P63/mmec (No. 194), reflecting
its van der Waals—bonded layers (Wyckoff, 1963b;
Grau-Crespo and Lopez-Cordero, 2002).

Galena (PbS). Galena (PbS) forms a rock-
salt—type FCC structure with lattice constant a =
5.9362 A. The cubic crystal belongs to space group
Fm3m (No. 225), with Pb and S atoms occupying
alternating FCC sites (Wyckoff, 1963c).

Cassiterite (SnQs). Cassiterite (SnOz) displays
a tetragonal rutile—type lattice with constants a =
4.738 A, ¢ = 3.1865 A. It crystallizes in space
group P49 /mnm (No. 136) and features an oxy-
gen sublattice coordinating the Sn atoms (Baur
etal., 1971).
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Strontium Titanate (SrTiOj3). Strontium ti-
tanate (SrTiOj3) crystallizes in a cubic perovskite
structure with lattice constant ¢ = 3.9053 A and
space group Pm3m (No. 221). Its ideal symmetry
underlies its prototypical ferroelectric and quan-
tum paraelectric behavior (Mitchell and Carpenter,
2000).

Titanium Dioxide (TiO,—Anatase). Anatase
TiO5 exhibits a body-centered tetragonal structure
with ¢ = 3.7842 A, ¢ = 9.5146 A. It belongs
to space group 14 /amd (No. 141), characteristic
of the anatase polymorph’s photocatalytic activ-
ity (Horn et al., 1972).

Zinc Oxide (ZnO—Zincite). Zinc oxide (ZnO)
in the zincite phase adopts a hexagonal wurtzite lat-
tice with parameters a = 3.2495 A, ¢ = 5.2069 A
and space group P63mc (No. 186). This polar
structure underpins its piezoelectric and optoelec-
tronic applications (Wyckoft, 1963a).

A.2 Additional Metric Definitions

Absolute-error (angles).
angle 0, € {ap, Bp, W}

For each primitive-cell

|AG,| = |05 — 05|

Per-example mean error.
the set of properties P, then

If an example contains

— 1
%A:WZ%AI,.

peEP

Format faithfulness. Let F..r and Fge, be the
non-null field sets, and Fr = Fref N Fgen. The
following definitions are considered:

_ A
Spresence = ‘fref}
1
Stype = T=7 Z 1(typegen(f) = typeref(f))’
‘fm‘ fEFn
and

Sformat =07 Spresence +0.3 Stype-
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Abstract

We present a novel visual instruction tuning
strategy to improve the zero-shot task gener-
alization of multimodal large language mod-
els by building a firm text-only knowledge
base. Existing work lacks sufficient experimen-
tation on the importance of each modality in
the instruction tuning stage, often using a ma-
jority of vision-language data while keeping
text-only data limited and fixing mixtures of
modalities. By incorporating diverse text-only
data in the visual instruction tuning stage, we
vary vision-language data in various controlled
experiments to investigate the importance of
modality in visual instruction tuning. Our com-
prehensive evaluation shows that the text-heavy
instruction tuning approach is able to perform
on-par with traditional vision-heavy mixtures
on both modalities across 12 general datasets
while using as low as half the total training
tokens. We find that simply increasing suf-
ficiently diverse text-only data enables trans-
fer of instruction following ability and domain
knowledge across modalities while being more
efficient than the vision-language approach.

1 Introduction

Multimodal large language models (MLLMs)
have advanced and enabled a wide range of
vision-language tasks such as visual question an-
swering and image captioning (Liu et al., 2023b;
Alayrac et al., 2022; Li et al., 2023b; Lin et al.,
2023; Bai et al., 2025). Their zero-shot general-
ization ability to unseen tasks has the potential to
further revolutionize broader real-world applica-
tions (Driess et al., 2023; Zhu et al., 2023; Li et al.,
2023a). To construct MLLMs, vision-language pre-
training is performed on a large scale with image-
text data, aligning the modalities before visual in-
struction tuning aligns the model with human pref-
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erences (Liu et al., 2023a; Dai et al., 2024; Lin et al.,
2023). The importance of strong vision-language
pretraining is established, with more data resulting
in greater improvements in instruction-following
abilities and downstream performance (McKinzie
et al., 2024; Zhang et al., 2024a). However, current
visual instruction tuning practices overwhelmingly
rely on image-text pairs and large-scale vision-
language datasets. This emphasis introduces a sig-
nificant distributional shift from the language-rich
corpora used during pretraining, often degrading
the model’s general language understanding and
leading to catastrophic forgetting of core knowl-
edge (Zhang et al., 2024b). Given the similarity in
instruction tuning data across modalities and the
strong modality alignment achieved with vision-
language pretraining, we believe text-only data is
underutilized in existing training mixtures. Addi-
tionally, various design choices regarding the in-
struction tuning dataset composition with respect
to modalities are underexplored.

In this work, we introduce MLAN
(Multimodal LLANguage-based instruction tuning),
a new perspective in vision instruction tuning
that treats language as the primary way to unlock
knowledge during instruction tuning (Figure 1).
Our key insight is that instruction-following abili-
ties and domain knowledge, once acquired through
diverse language-only tasks, can generalize
across modalities with minimal vision-language
supervision. By grounding vision capabilities in
a small number of targeted image-text examples,
we maintain high performance across both vision
and text tasks while significantly reducing training
costs. Specifically, with MLAN we unlock vision
instruction following abilities by teaching a pre-
trained model to execute text-only instructions and
then complementing the dataset with a relatively
small portion of vision-language examples in a
domain adaptation fashion.

To demonstrate MLAN’s effectiveness, we pre-
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(b) Main results on evaluation tasks, averaged over text-only and
vision-language performance.

Figure 1: Overview of MLAN. (a) MLAN represents a shift in perspective towards text during instruction tuning.
After vision-language pretraining, we include diverse text-only data in our instruction tuning mixture spanning many
tasks. We emphasize including text-only data to show the transferability of instruction tuning across modalities.
For evaluation, we select ample text-only and vision-language datasets, allowing us to compare performance
changes across modalities. (b) We evaluate MLAN on two pretrained multimodal models based on Llama-3.2-3B
and Llama-3.1-8B across unseen language and vision benchmarks, achieving comparable performance at higher
training efficiency (up to almost 2x as efficient compared to standard vision-heavy instruction tuning) with our

language-based approach.

train MLLMs over a variety of settings based on
Llama-3.2-3B (Meta Al, 2024) and Llama-3.1-
8B (Dubey et al., 2024), following the state of
the art multimodal training mechanism (Liu et al.,
2023b,a), varying only the dataset. We then ap-
ply MLAN to the MLLMs and observe the follow-
ing key insights over both models on average dur-
ing evaluation on 12 comprehensive benchmarks
across language and vision modalities. (1) Com-
pared with the traditional vision-heavy finetun-
ing approaches of LLaVA (Liu et al., 2023a) and
Cambrian-1 (Tong et al., 2024), our models fine-
tuned with MLAN demonstrate a matching or better
performance on downstream vision-language tasks
while seeing less than half of the images and consis-
tently showing better text-only performance. We
show that text-only data is imperative to obtain
world knowledge and understanding of complex in-
structions, even in the vision domain. (2) Text-only
instruction tuning is more cost-effective. The rich
and dense information compensates for the lim-
ited diversity in public vision datasets, allowing
for superior performance while reducing the total
number of processed training tokens by half. (3)
Neither language nor vision alone is enough for
a generalist MLLM. Our experiments show that
while instruction following abilities may transfer
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across modalities, their impact on the other modal-
ity is limited: certain vision-language tasks do not
benefit from text-only tuning and vision-language
tuning can result in severe degradation of language
abilities. However, mixing bi-modal data, even
at a small percentage, leads to surprising perfor-
mance boosts and achieves the best results in both
modalities. We hope our findings will foster fu-
ture research on language-centered training and
instruction tuning, paving the way for fundamental
advancements in large MLLMs.

2 Approach

MLAN views vision instruction following abilities
as a natural extension of text-only abilities, a trans-
fer that can occur due to the extensive multimodal
pretraining used in MLLMs.

We begin by motivating our method through
an empirical analysis of similarities in text-only
and vision-language instruction tuning data, which
leads to our hypothesis that text-only data can
largely replace vision-language data to improve
performance on general tasks. Then, we detail our
training, following the standard design of existing
instruction tuning methods (Wei et al., 2022; Xu
et al., 2023; Dai et al., 2023; Liu et al., 2023b)
in four stages: selecting training data, format-



-0.1 0.0 0.1 0.2 0.3

Similarity Score

0.4 0.5

(a) Distribution of cross-modal similarity scores between modalities

with a non-negative mean by z-test (p < 0.001).

== Mean = 0.1646

Vision-Language Instructions

INSTR 1: Your task involves classifying object images into their
respective categories like Bed, Sin!<, Sneakers, Table, TV and so on...

INSTR N: Each image has someth'ing going on. Carefully analyze the
image and generate 5 captions for each image.

CONTEXT: <image>
OUTPUT: <text>

Text-Only Instructions

INSTR 1: Given a text passage... your task is to cIassifY the item
being sold into exactly one of these categories: 'housing', 'furniture’,
'bike’, 'phone’, 'car', 'electronics'....

INSTR N: In this task, you are giv'en a conversation, and your task is
to generate a summary from the information present in the given
conversation...

CONTEXT: <text>

OUTPUT: <text>

0.6

(b) Examples of instructions across modalities that
share similar goals.

Figure 2: Similarity between text-only and vision-language instruction tuning data shown both (a) quantita-

tively with similarity scores and (b) qualitatively with examples.

100k instructions are sampled from the

Super-NaturalInstructions (Wang et al., 2022b) and Vision-Flan (Xu et al., 2024) datasets and embedded by a
pretrained sentenceTransformer, all-mpnet-base-v2 (Song et al., 2020). The red vertical line denotes the mean score.
We then randomly sample and display two instructions with high cosine similarities (0.53 & 0.38).

ting the data with instructions, fine-tuning a pre-
trained MLLM on the training set (Sec. 2.2), and
evaluating the instruction tuned model on stan-
dard academic benchmarks in the zero-shot setting
(Sec. 2.3).

2.1 Natural Correspondence between
Text-Only and Vision-Language
Instructions

While the image-text and the text-only distribu-
tion of instructions significantly differ from each
other, we observe shared semantics and structure
on the task level when comparing wild instruction-
response pairs in both modalities.

Semantic Similarity We study two com-
prehensive  large-scale instruction  tuning
datasets with one from each modality, namely
Super-Naturallnstructions (Wang et al., 2022b)
and Vision-Flan (Xu et al., 2024), which are
representative of common structures and tasks.
We show vision-language and text-only tasks are
similar by randomly sampling 100k instances from
each dataset and examining the distribution of the
cosine similarities between embedded instructions
as shown in Figure 2(a). A significantly non-
negative mean cosine distance provides evidence
that the tasks performed in either domain are
somewhat similar, based on the belief that tasks
are defined by the instructions. Additionally, there
is a small yet nonzero chance to even see a pair of
tasks that are comparable with high similarities
(>0.3) in the language and vision domain. To
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qualitatively demonstrate this, in Figure 2(b) we
show two pairs of semantically similar instructions
from each datasets with a similarity score of 0.53
and 0.38, respectively. While the first example is
a classical classification task, the second requests
a concise representation of the context, where
the context may be a text paragraph or an image.
We reason that if the ability to describe a casual
conversation is acquired, the ability to caption an
image can be readily obtained.

Structural Similarity The well-established prob-
lem of solving zero-shot tasks can be split into
a user prompt followed by a model’s response
for both modalities. While some text-only tasks
appeal to a model’s internal knowledge, such as
ARC (Bhakthavatsalam et al., 2021), the task of
open-book question answering is analogous to vi-
sion question answering in the sense that additional
inputs are provided to serve as the reference where
the final answer is derived. If the vision and the
text modalities are well aligned, it makes sense for
a model to easily refer to the details in an image
as the image tokens are no different than the native
word tokens in its embedding space.

2.2 Training Details

Our approach, MLAN, is simple, changing the
dataset composition across modalities compared
to traditional MLLM instruction tuning. We fine-
tune a multimodal pretrained LLM in the FLAN-
style (Wei et al., 2022) and further train on a small
portion of vision instruction data (compared to the



number of text-only instances) to adapt the model
to vision-language queries. While mainstream
methods, including LLaVA (Liu et al., 2023b) and
Cambrian-1 (Tong et al., 2024), also include some
text-only examples in their vision instruction tuning
dataset, their primary goal has been providing lan-
guage as a form of regularization to prevent catas-
trophic forgetting. Our method differs by approach-
ing vision instruction tuning from the other way
around: we build strong language-only instruction-
following abilities to build a robust knowledge base,
and then introduce a small number of vision in-
stances solely for grounding and domain adapta-
tion. To demonstrate that adjusting the data compo-
sition alone is a viable substitute for vision-heavy
instruction tuning, we use a fixed size budget and
shared data sources for all our experiments, thus
controlling the effect of longer training sessions
and variable data quality.

Dataset Selection Inspired by the similarity in
instruction tuning across modalities, we use the
same two diverse datasets to train with, encom-
passing a multitude of tasks in each modality.
For text-only data we sample from the over 1600
tasks in Super-Naturallnstructions (Wang et al.,
2022b), while for vision-language data we sam-
ple from the 187 tasks in Vision-Flan (Xu et al.,
2024). This gives us ample coverage across many
text-only and vision-language tasks. For all of
our experiments, we use a fixed data budget of
186,000 instances, which can come from either
Super-Naturallnstructions or Vision-Flan depend-
ing on the setting.

Models and Multimodal Pretraining We fol-
low the architecture design of LLaVA (Liu et al.,
2023a) that connects a visual encoder with a projec-
tor that enables the LLM to use the outputs of the
visual encoder to process image inputs in addition
to texts. We choose CLIP-ViT-L/14@336 (Rad-
ford et al., 2021) and a two-layer MLP with GELU
activation as the visual encoder and the projector,
respectively. We select the base LLMs as Llama-
3.2-3B (Meta Al, 2024) and Llama-3.1-8B (Dubey
et al., 2024), both the non instruct versions. We
conduct multimodal pretraining for both models
on LLaVA-Pretrain-558K using the same hyper-
parameters as in Liu et al. (2023a). These models
are then finetuned on our language-heavy training
dataset for one epoch using a global batch size of
128, a cosine learning schedule, a learning rate of
2e-5, a warm-up ratio of 0.03, and no weight de-
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cay. Both the visual encoder and LLM are frozen
throughout the pretraining session while the pa-
rameters in the MLP projector are updated. After
pretraining, the visual encoder and the projector
function as a visual tokenizer that turns an image
into tokens compatible with the LLM.

Instruction Tuning To test our instruction tun-
ing methodology, we finetune MLLM check-
points using a controlled mixture of text-only and
vision-language data, focusing on the former. This
is because language, rather than vision, remains the
primary medium for users to interact with models
when they specify their needs. In contrast, most ex-
isting multimodal instruction tuning approaches pri-
oritize vision-language data and include language-
only tasks merely to mitigate forgetting. (Liu et al.,
2023a; Bai et al., 2023; Ye et al., 2023; Luo et al.,
2024; Tong et al., 2024). These approaches require
many more training tokens and rely on a greater
number of vision-language datasets. See Table 8
in Appendix D.1 for the percentage of text-only
data included during instruction tuning for various
state of the art MLLMs. Current instruction tuning
mixtures across models vary substantially in lan-
guage content, yet few of these design choices are
grounded in systematic empirical comparison. Our
method systematically tests the effectiveness of the
composition of instruction tuning data by modal-
ity, then anchors in a shift in perspective, treating
language as the foundation in instruction tuning.

2.3 Evaluation Tasks

Our evaluation suite covers diverse text-only and
vision-language tasks for zero-shot evaluation that
are not seen during training. The text-only bench-
marks include Commonsense understanding,
Reasoning, Reading comprehension and Scien-
tific knowledge testing. Similarly, the selected
vision-language benchmarks primarily test Scene
Understanding and Image Reasoning. Notably,
MMLU (Hendrycks et al., 2020), MMMU (Yue
et al., 2024), and MME (Fu et al., 2023) are large
multidisciplinary benchmarks covering wide do-
mains. We craft suitable instruction templates for
each dataset in the same way as for the training
datasets, using the same collection of instruction
prompts. The final evaluation collection includes 7
text-only datasets and 5 vision-language datasets.
The answer types cover short-response, multiple-
choice, and true/false questions. Appendix C pro-
vides a brief description of each dataset.



Vision Benchmarks
Models Method POPE ScienceQA-IMG MMMU MME MMBench Avg.
Pretrain 66.67* 43.73 26.44 700* 51.10 42.59
Llama-3.2-3B  MIX-LLaVA-1.5 | 80.10 64.65 29.00 1293.56 67.71 57.53
MIX-Cambrian-1 | 81.90 65.94 28.67 1367.38 67.48 58.57
MLAN 83.17 65.94 29.33 1405.53 67.01 59.13
Pretrain 66.67* 63.81 27.67 700* 62.81 49.61
Llama-3.1-8B  MIX-LLaVA-1.5 | 79.90 67.97 30.89 1354.52 70.29 59.49
MIX-Cambrian-1 | 82.57 70.55 36.00 1408.02 73.50 62.58
MLAN 81.84 71.15 34.44 1436.83 72.51 62.25

Table 1: Zero-shot results on the held-out vision-language datasets for Llama-3.2-3B and Llama-3.1-8B. We
compare Pretrain, MIX-LLaVA-1.5, MIX-Cambrian-1, and MLAN (ours). * denotes that the pre-trained models
fail to generate meaningful responses other than all "yes" or "no". ScienceQA (Lu et al., 2022) is included in
Vision-Flan but excluded in experiments. The MME scores are normalized by dividing by the maximum value

(2800) when computing the average.

Language Benchmarks
Models Method ARC-E  ARC-C CommensenseQA PIQA RACE BoolQ CosmosQA MMLU Avg.
Pretrain 62.42 42.41 63.72 76.77 7037 6291 67.77 24.09 58.81
Llama-3.2-3B  MIX-LLaVA-1.5 69.40 43.34 58.39 78.40 5857 68.93 47.57 44.65 58.66
MIX-Cambrian-1 | 71.68 46.25 60.85 79.27 6798 71.59 59.40 48.39  63.18
MLAN 71.30 46.93 66.18 79.11 7027 68.44 64.76 49.03 64.50
Pretrain 71.09 50.00 70.19 80.14 7941 64.89 76.65 39.79  66.52
Llama-3.1-8B  MIX-LLaVA-1.5 72.60 48.81 66.20 79.43 7144 7538 59.53 50.51 6549
MIX-Cambrian-1 | 72.80 48.81 68.88 80.03 7422 7722 64.42 55.69  67.76
MLAN 74.79 50.17 73.05 81.23 7991 78.53 76.68 58.18 71.57

Table 2: Zero-shot results on the held-out text-only datasets for Llama-3.2-3B and Llama-3.1-8B. We compare
Pretrain, MIX-LLaVA-1.5, MIX-Cambrian-1, and MLAN (ours).

3 Experiments

In this section, we show that MLAN is both more
effective and training efficient compared to the pre-
trained MLLMs as well as state of the art multi-
modal instruction tuning mixtures across all the
tasks we evaluate. Additional details of the train-
ing and experimental setup are described in Ap-
pendix B.

3.1 Main Results

We compare various instruction tuning methods
built upon our multimodal pretrained Llama-3.2-
3B and Llama-3.1-8B. We include the following
settings, all using our specified training method-
ology, only varying composition: (1) Pretrain:
The MLLM after multimodal pretraining with
no instruction tuning. (2) MIX-LLaVA-1.5 and
MIX-Cambrian-1: We use our training dataset
along with the multimodal instruction tuning
mixture recipes of LLaVA (Liu et al., 2023a)
and Cambrian-1 (Tong et al., 2024), i.e., with
6% and 25% text-only instruction data, respec-
tively. (3) MLAN: Our text-first instruction tuning
method with a composition heavily favoring (75%)
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text-only data.

Cross-Task Generalization We report the scores
of pretrained MLLM and instruction tuned mod-
els on 12 benchmarks in Tables 1 and 2, respec-
tively. Compared with MIX-Cambrian-1, MLAN
yields the best performance in the 3B setting and
matches the best score in the 8B setting, only
falling behind by 0.33%, despite being trained on
less than half of the images. The competitive vision
performance shows effective cross-modal trans-
fer. MLAN consistently improves performance
on knowledge-intensive tasks such as MMLU, Cos-
mosQA, and ARC-C, demonstrating stronger inter-
nal knowledge retention compared to vision-heavy
baselines.

Knowledge Erosion We note that both
MIX-LLaVA-1.5 and MIX-Cambrian-1 suffer
from catastrophic forgetting, especially on
CommonsenseQA (Talmor et al., 2019) and Cos-
mosQA (Huang et al., 2019), showing performance
degradations up to 5.3% and 20.2%. However,
MLAN is more resilient against forgetting. In
the only case where its performance decreases in
CosmosQA, the decline is significantly smaller



than other models (3.1% vs. 20.2% & 8.37%). On
all other benchmarks, including vision, our method
shows a solid positive gain. Such an observation
unveils an asymmetrical interaction between vision
and text modalities, where the text ability is more
susceptible to forgetting, but the vision ability
generally benefits from language-based tuning.
This trend is explored again in Section 3.2.

Method Number of Tokens
Text-Only IT 37,906,142
MLAN 60,112,680
MIX-Cambrian-1 101,480,339768.8%
MIX-LLaVA-1.5 117,220,955195.0%

Full Vision-Language IT  122,054,7581103.0%

Table 3: All token counts for various training settings
with 186,000 total instances. The percentage score indi-
cates the size increase relative to the MLAN setting.

3.2

A major advantage of our method is that it signifi-
cantly reduces the computational cost measured by
the number of training tokens processed by the base
LLM compared to vision-based instruction tuning.
Table 3 details the number of training tokens, in-
cluding those in the visual prefix. Visual inputs
drastically increase the training burden as an image
is converted to hundreds of visual tokens (576 to-
kens with CLIP-ViT-Large-patch14 @336 (Radford
et al., 2021)) before being processed along with
regular text tokens. Therefore, MLAN stands out as
a more efficient vision instruction-tuning approach
that avoids excessive instruction tuning on images.

Training Efficiency

3.3 Knowledge Transfer Curve

To better understand the role of language, we per-
form a controlled study by varying the proportion
of language-only data in the instruction tuning mix-
ture, increasing it in 12.5% increments. We show
the performance of Llama-3.2-3B-based MLLMs
with different amounts of language instruction data
in Figure 3. Notably, we observe that even a
small amount of language data (12.5%) leads to a
sharp increase in both text and vision performance,
suggesting that foundational knowledge acquired
through language tuning quickly transfers across
modalities. As the proportion of language data
increases further, text performance continues to
improve, whereas vision performance peaks and
then slightly declines. Full vision-language tun-
ing fails to match the peak vision performance
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achieved with a balanced mix, indicating that
language-based knowledge is not only transferable
but also essential for efficient vision instruction tun-
ing. This analysis reinforces our central claim: lan-
guage acts as a scaffold for multimodal reasoning,
and a moderate inclusion of vision data is sufficient
for grounding.
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Figure 3: Average scores on Llama-3.2-3B based
MLLMs with respect to the percentage of language
data mixed in. The percentage denotes the amount of
language data.

Base LLM Variant Text Avg.  Vision Avg.
Llama-3.2-3B° +MLAN 64.50 59.13
+Instruct LLM 67.74 60.98
-25% tasks 65.68 55.71
-50% tasks 65.98 55.73
-75% tasks 66.35 56.79

Table 4: Ablation study on Llama-3.2-3B with different
instruction tuning variants and fewer tasks.

3.4 Additional Instruction Tuning Factors

Instruction Tuned Base Models We use base
(non instruction tuned) models in our experiments
to show the impact of text-only data while control-
ling the amount of text instruction tuning. How-
ever, mainstream vision instruction tuning methods
mostly choose instruction-tuned (chat) models as
the default LLM backbone (Liu et al., 2023b; Dai
et al., 2024; Lin et al., 2023). Table 4 shows that
finetuning the instruction tuned variant instead of
the pretrained model readily boosts both text and vi-
sion performance by 2-3%, even when we continue
to emphasize text-only data in the visual instruc-
tion tuning phase. This provides more evidence
that the text-first approach throughout training is
beneficial. A possible explanation for this is that
the model adapts to the instruction following for-
mat and eliminates the distributional shift from the
pretraining to the instruction tuning corpus.

Task Diversity within Datasets Prior work has
emphasized the importance of diversity within in-



struction tuning datasets (Li et al.; Xu et al., 2024;
Wei et al., 2022). We conduct a controlled fine-
tuning experiment by reducing the proportion of
included tasks (25%, 50%, 75%, 100%) while keep-
ing the total number of training instances fixed.
Surprisingly, text performance slightly improves
with fewer tasks, peaking at 25%, while vision per-
formance only improves with full task coverage.
This suggests that task diversity does not uniformly
benefit all modalities: some tasks may be less help-
ful, and that over-diversification may dilute useful
supervision, especially for language.

Base LLM PT

LLaVA

IT
Vision-Flan
Super-Natural
Vision-Flan
Super-Natural
Vision Flan
Super-Natural
Vision Flan
Super-Natural

Text Avg.
55.14
64.89
58.05
64.48
63.08
72.05
58.27
71.76

Vision Avg.
57.61
46.95
58.26
50.20
54.77
52.55
56.84
50.76

Llama-3.2-3B ShareGPT4V

LLaVA

Llama-3.1-8B ShareGPT4V

Table 5: Average performance across different vision
pretraining (PT) and instruction tuning (IT) strategies.

3.5 Interaction between Pretraining and
Single-Modal Instruction Tuning

Before visual instruction tuning, the vision pretrain-
ing step aims to align the text and vision modali-
ties. Increasing pretraining data has been shown
to increase post instruction tuning performance
given the same corpus (McKinzie et al., 2024), but
changes in pretraining data have been shown to
have minimal effects (Cocchi et al., 2025). To
investigate how the pretraining dataset affects in-
struction tuning on various modalities, we conduct
experiments using single-modality instruction tun-
ing datasets on another pretraining dataset (Table 5).
Although we expect models to benefit from higher
quality samples and longer training sessions due
to ShareGPT4V (Chen et al., 2023a), the results
demonstrate that this is only consistently true when
the model is finetuned with vision-text instruction
data. More vision pretraining has a mixed effect on
the text performance, boosting the 3B model’s text
score while hurting the 8B model’s performance.
Additionally, scaling up the model size effectively
increases the text scores but leaves the vision scores
roughly on the same level.

Diversity in Training Data In Section 2.1, we
explored the similarity between instruction tun-
ing using text-only and vision-language data. We
now compare the mean cosine distances in two
intra-dataset and one inter-datasets settings. Fig-
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ure 4 reports the mean cosine similarities. The
vision-language appears more homogeneous, with
a higher mean, while the language data is more
diverse. This observation aligns with the fact that
vision-language datasets typically contain fewer
distinct task types and tend to emphasize perceptual
grounding, whereas language-only corpora encom-
pass a broader spectrum. Importantly, the similarity
scores between language-only and vision-language
instructions are comparable to those within the
language-only set, suggesting that diverse lin-
guistic tasks inherently support better generaliza-
tion—even across modalities. This could imply
that language data, at least in our training data, bet-
ter generalizes to vision datasets thanks to greater
heterogeneity. Notably, though we use a diverse set
of text-only and vision-language data, there is still
a gap between the similarities, meaning text-only
data that aligns better with vision-language can
likely be constructed, which may improve perfor-
mance even more.
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Figure 4: Distribution of the cosine similarity of
random question pairs sampled in the language and
vision-language settings. The stars (***) indicate sig-
nificant differences (p < 0.001) between the mean sim-
ilarity supported by the t-test.

4 Related Work

Multimodal large language models (MLLM) are
language models endowed with the ability to use
multiple modalities, such as images, videos, and
audio (OpenAl, 2024; Meta Al, 2024; Team et al.,
2023; OpenAl et al., 2024; Rubenstein et al., 2023;
Zhang et al., 2023a; Ataallah et al., 2024; Bai
et al., 2025; Li et al., 2024b; Liu et al., 2025b;
Agrawal et al., 2024; Deitke et al., 2024; Chen
et al., 2025). The most widely adopted are vision
enhanced LL.Ms, where many design choices are



already extensively studied (Liu et al., 2023a; McK-
inzie et al., 2024; Lin et al., 2023; Laurencon et al.,
2024; Tong et al., 2024; Karamcheti et al., 2024;
Cocchi et al., 2025; Li et al.). A prevalent approach
to building such MLLMs links pretrained visual
encoders (Radford et al., 2021; Oquab et al., 2023)
to LLMs (Touvron et al., 2023; Zheng et al., 2023;
Chiang et al., 2023) via an adapter, thus transform-
ing deep image features into soft prompts for the
base LLM. In our work, we focus on one of the
simplest yet high-performing and widely adopted
MLLMs, using only a multi-layer perceptron as the
adapter (Liu et al., 2023b,a, 2024a; Li et al., 2024a;
Driess et al., 2023; Lin et al., 2023; Zeng et al.,
2024).

Inspired by the success of instruction tuning
in LLMs in zero-shot generalization (Wei et al.,
2022; Wang et al., 2022a; Zhang et al., 2023c;
Ouyang et al., 2022), following a pretraining step
for vision-language feature alignment, there is a
multimodal instruction tuning step to improve zero-
shot performance on multimodal tasks (Xu et al.,
2023; Li et al., 2024c). Notably, InstructBLIP (Dai
et al., 2023) and LLaVA (Liu et al., 2023b) trans-
form existing datasets into multimodal instructions
using manual templates and synthetic data, a prac-
tice expanded upon in subsequent work (Tong et al.,
2024; Chen et al., 2024b; Lin et al., 2023). Fur-
ther work investigates how instruction tuning varies
under different settings, e.g., how different compo-
nents of the MLLM should learn differently dur-
ing instruction tuning (Wu et al., 2024) and how
instruction tuning works in a continual learning
setting with many new tasks (Chen et al., 2024a).
However, there lacks a comprehensive set of exper-
iments that varies the composition of each modality
in instruction tuning.

Though the primary goal of multimodal instruc-
tion tuning is to improve vision-language perfor-
mance, text-only data is often included in both pre-
training (McKinzie et al., 2024; Lin et al., 2023)
and finetuning (Liu et al., 2023a; Huang et al.,
2023; Bai et al., 2023; Ye et al., 2023, 2024; Luo
et al., 2024; Lin et al., 2023; Tong et al., 2024; Dai
et al., 2024; Bai et al., 2025; Li et al.; Zhang et al.,
2024a,b) to prevent catastrophic forgetting and im-
prove language performance. Many such papers
disregard the impact of finetuning with text-only
data on vision performance, focusing solely on lan-
guage performance when ablating text-only data
away, though there are notable exceptions (Huang
etal., 2023; Ye et al., 2023, 2024; Lin et al., 2023;
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Dai et al., 2024; Zhang et al., 2024a). In these
cases, there is modest evidence of transferability
between modalities, where finetuning on both lan-
guage and vision data exhibits about equal or better
performance than training on one modality alone.
However, in each of the existing work that fine-
tune with text-only data alongside vision data, this
performance boost is achieved by increasing the
dataset size without consideration of how such data
will increase the training cost (with the exception
of Zhang et al. (2024a), which only tests with a
low amount of text-only data). Hence, even though
better performance is obtained when increasing the
dataset size to train on text-only data, the instruc-
tion tuning step is more costly.

Due to the general cost of instruction tuning a
MLLM, many approaches aims to decrease the
cost of instruction tuning in the multimodal setting.
These primarily include using lightweight adapters
to decrease the number of parameters (Luo et al.,
2024; Zhang et al., 2023b; Liu et al., 2025a) and
choosing a subset of the training data using the
MLLM itself or other methods (Chen et al., 2024c;
Wei et al., 2023; Lee et al., 2024; Liu et al., 2024c;
Safaei et al., 2025; Bi et al., 2025). A simpler
way to decrease the cost is to instruction tune with
a focus on text-only data. Since training on lan-
guage instruction data is cheaper than training on
the same number of vision instances, and language
is foundational to the functioning of MLLMs, we
focus on such a language-based approach.

5 Conclusion

We present MLAN, a language-based multimodal
instruction tuning strategy for MLLMs that en-
hances zero-shot generalization and promotes ef-
fective knowledge transfer across modalities. We
demonstrate—through controlled ablations under
fixed training budgets—that language-based tuning
establishes a robust knowledge foundation, even
for tasks requiring visual understanding. Crucially,
MLAN achieves strong performance on both lan-
guage and vision benchmarks while significantly
reducing reliance on image supervision. Our re-
sults show that language is not only sufficient but
essential for efficient and generalizable multimodal
learning. With MLAN, we hope to bring attention
to the importance of language in MLLMs in visual
instruction tuning, which we believe can be used
in future work to improve training efficiency and
performance.



6 Limitations

Our experiments are performed on models with
the same multimodal architecture and pretrain-
ing procedure, not accounting for more advanced
architecture or large-scale multimodal pretrain-
ing. Though we evaluate on a comprehensive
set of vision-language benchmarks, we do not
evaluate on specialized out of distribution tasks
like OCR or captioning, focusing only on gen-
eral tasks where the transferability is motivated.
We invite future work to explore other methodolo-
gies to find where such specialized text-only and
vision-language tasks align. Our analysis could
also use experiments testing how instruction tuning
varies when different tasks are trained on versus
held-out, or on sequential finetuning versus sam-
pling text-only and vision-language data. Further-
more, the instruction tuning experiments have the
same data budget of 186,000 instances, while exist-
ing instruction tuning data may contain hundreds of
thousands or even multi-million instances, which
we leave to future work.
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A Additional Implementation Details

For language-based instruction tuning, we use our
carefully crafted dataset with tasks across modal-
ities. To avoid data contamination, only the train
split of each dataset is used for finetuning, and the
test split, or the validation split if the test split is
not publicly available, is reserved for evaluation.
Similar to various multimodal instruction tuning
work (Xu et al., 2023; Dai et al., 2023), we select
unseen datasets of both modalities for evaluation.
They are used to quantify performance in a general
setting.

We maintain a fixed data budget of 186,000
instances throughout the training sessions.
All training instances are sampled from
Super-Naturallnstructions  and  Vision-Flan,
according to the designated ratio. For the former,
to prevent overfitting to a specific task, we sample
an equal number of instances from every task.
For the latter, since ScienceQA (Lu et al., 2022)
is included in the training set, we manually
remove them for evaluation purposes so there is no
contamination. For finetuning, we apply the same
chat template to all models in the following format:
"USER:<query>ASSISTANT: <response>".
The same prompt is used to format inputs during
evaluation.

B Additional Training Details

We finetune pretrained MLLMs on the text-only
data and denote those with a 75% text-only/25%
vision-language split as MLAN. Acknowledging
the recent trend of including a small portion of
text-only data into vision instruction tuning data,
we establish two additional baselines by finetuning
on two separate versions of our training dataset that
contain only 6% and 25% language instruction data,
similar to the ratio in Liu et al. (2023a) and Tong
et al. (2024). For a fair comparison, we limit the
total number of training sequences in all settings to
186,000 samples from our training data.

C Dataset Summary

In Tables 6 and 7 we provide information about all
12 benchmarks used for evaluation. Note that in
the main body we present results on 13 datasets, as
we do not combine ARC-E and ARC-C.

D Additional Related Work

Our work focuses on choosing a simple multi-layer
perception as the adapter in LLaVA (Liu et al.,
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2023b,a). In contrast, BLIP-2 (Li et al., 2023b) and
Flamingo (Alayrac et al., 2022) design attention-
based modules to attentively pool visual features,
among a variety of other choices that combine ex-
isting methods or create new ones (Zhu et al., 2023;
Chen et al., 2023b; Laurencon et al., 2024). To
train the model, most often there is a pretraining
step focusing on aligning the multimodal features
with a modality connector (Yin et al., 2023), though
some models are trained from scratch (Huang et al.,
2023; Xiao et al., 2024). A main design choice
in MLLMs is whether to freeze or unfreeze the
LLM during finetuning. Unfreezing the LLM ef-
fectively prevents catastrophic forgetting by main-
taining text-only performance (Meta Al, 2024;
Driess et al., 2023; Alayrac et al., 2022), but re-
sults in worse vision-language performance (Lin
et al., 2023; Dai et al., 2024). In our work, we
show that with an unfrozen LLM, training on
a strong language-based dataset on a fixed data
budget improves performance across modalities.
To evaluate MLLMs, there are a wide variety of
vision-language tasks (Xu et al., 2023; Dai et al.,
2023; Tong et al., 2024). However, Cambrian-
1 (Tong et al., 2024) demonstrate that certain
vision-language datasets, including some we used
(AI2D and RealWorldQA), exhibit only a minor
drop in performance of around 5% if vision is dis-
abled, suggesting that current vision-language eval-
uations may be more language-focused. Though
there is a need for more vision-centric analysis, this
emphasizes how important language is in many vi-
sion tasks, a fact central to our work.

D.1 Text-Only Data in Existing Work

Table 8 lists dataset sizes as well as the splits be-
tween vision-language and text-only data in popu-
lar models that use both. We note that most models
instruction tune with a majority of vision-language
data, with the exception of Kosmos-1 (Huang et al.,
2023) being a model that uses language alone,
though it has an extensive pretraining step that
differs from the simple MLLM adapter paradigm.
Ultimately, many papers do not share their overall
composition, and the ones that do vary greatly. We
hope our work prompts the community to be more
open in sharing their results and to do more work
finding an effective and efficient ratio that can be
used successfully across models.



Dataset Modality | Split Answer Type Dataset Type | Size
ARC-Easy (Bhakthavatsalam et al., 2021) Text Test Multiple Choice | Held-out 2.2k
ARC-Challenge (Bhakthavatsalam et al., 2021) | Text Test Multiple Choice | Held-out 1.2k
BoolQ (Clark et al., 2019) Text Validation | True/False Held-out 3.2k
CommonsenseQA (Talmor et al., 2019) Text Validation | Multiple Choice | Held-out 9.7k
PIQA (Bisk et al., 2020) Text Validation | Multiple Choice | Held-out 16.1k
MMLU (Hendrycks et al., 2020) Text Test Multiple Choice | Held-out 14.0k
RACE (Lai et al., 2017) Text Test Multiple Choice | Held-out 1.05k
CosmosQA (Huang et al., 2019) Text Validation | Multiple Choice | Held-out 3.0k
POPE (Li et al., 2023c¢) Vision Test True/False Held-out 9.0k
ScienceQA-IMG (Lu et al., 2022) Vision Test Multiple Choice | Held-out 5.0k
MMMU (Yue et al., 2024) Vision Validation | Multiple Choice | Held-out 1.5k
MME (Fu et al., 2023) Vision Test True/False Held-out 2.8k
MMBench (Liu et al., 2024b) Vision Dev Multiple Choice | Held-out 5.2k

Table 6: Overview of evaluation datasets.

Dataset

Descriptions

CosmosQA (Huang et al., 2019)

Questions require reasoning based on people’s everyday narratives to deduce the causes and
effects of pertinent events.

CommonsenseQA (Talmor et al., 2019)

CommonsenseQA contains questions without context about understanding and relations
between common objects.

ARC (Bhakthavatsalam et al., 2021)

ARC consists of grade-school level multiple-choice questions about understanding scientific
concepts. Both easy and challenge splits are used.

RACE (Lai et al., 2017)

Race contains questions about long paragraphs collected from K12 English examinations in
China.

BoolQ (Clark et al., 2019)

BoolQ asks whether a statement about a given long context is correct.

MMLU (Hendrycks et al., 2020)

A benchmark testing multi-task language understanding across 57 subjects, assessing model
performance on expert-level multiple-choice questions.

PIQA (Bisk et al., 2020)

PIQA evaluates physical commonsense reasoning by selecting the most plausible solution to
everyday scenarios.

MME (Fu et al., 2023)

MME is a multimodal benchmark for assessing cognition and perception capabilities of
MLLMs across multiple domains with yes and no questions.

MMMU (Yue et al., 2024)

A multi-disciplinary benchmark testing on expert-level knowledge with vision and question
queries. Questions types contain short response and multiple choice.

MMBench (Liu et al., 2024b)

A comprehensive multimodal benchmark that evaluates scientific knowledge with multiple
choice questions.

POPE (Li et al., 2023c)

POPE asks to determine whether an object is present in the scene. We use adversarial,
popular, and random splits for evaluation.

ScienceQA (Lu et al., 2022)

ScienceQA contains both vision-language and text-only questions about scientific concepts.
We use all questions to test the overall ability of our models.

Table 7: Short descriptions for the evaluation benchmarks in our study.
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Name Text-Only Size Total Size text-only (%)

LLaVA-1.5 (Liu et al., 2023a) 40k 665k 6.0%
QwenVL (Bai et al., 2023) N/A 350k N/A
QwenVL2.5 (Bai et al., 2025) ~1M ~2M 50%
NVLM (Dai et al., 2024) N/A N/A N/A
VILA (Lin et al., 2023) M N/A N/A
mPLUG-Owl (Ye et al., 2023) 242k 392k 61.7%
mPLUG-OwI2 (Ye et al., 2024) 558k 1.23M 45.4%
PrismaticVLM (Karamcheti et al., 2024) 40k 665k 6.0%
MMI1 (McKinzie et al., 2024) N/A 1.45M N/A
MM1.5 (Zhang et al., 2024a) - - 10%
Kosmos-1 (Huang et al., 2023) 122.5k 122.5k 100%
LaVIN (Luo et al., 2024) 52k 204k 25.5%
Cambrian-1 (Tong et al., 2024) — Cambrian-7M 1.68M ~TM 23.8%
Eagle 2 (Li et al.) — Stage 1.5 4.75M 21.6M 22.0%
LLaVA-OneVision (Li et al., 2024b) — Single-Image Data 457.6k 3.2M 14.3%

Table 8: Language instruction tuning dataset sizes in existing MLLMs. N/A means the number is either not presented
in the paper or is unclear. A dash means the size is unclear.
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Abstract

Artificial intelligence agents when deployed
to solve complex problems, need to first de-
compose the task into smaller manageable sub-
tasks, and further associate tools if one is re-
quired to solve the sub-task. If the size of the
set of tools to chose from is large, a retrieval
system is usually employed to narrow down the
tool choices before the LLM can proceed with
associating tools to the sub-tasks. This paper
focuses on the retrieval problem to identify the
set of relevant tools to solve a complex task
given a large pool of tools to chose from us-
ing retrieval augmented generation (RAG) and
we refer to it as ToolReAGT. The proposed ap-
proach employs ReAct prompting to perform
the retrieval in an iterative fashion to first iden-
tify if a tool is required and then associate one
or more tools for each intermediate step, also
referred to as a sub-task. This deviates from
conventional RAG where an n-best list of tools
are identified given the complex task directly.
Experiments are presented on the UltraTool
benchmark corpus with 1000 complex tasks
and over 2000 tools to select from. A conven-
tional RAG-system is established as baseline
and compared to the ToolReAGt approach, re-
sulting in an 8.9% improved retrieval accuracy
score recall @5.

1 Introduction

The ability of current Al systems utilizing the lan-
guage understanding and reasoning capabilities of
LLMs in combination with individual tools de-
signed for solving specific tasks, has greatly ex-
panded the application range and capacity of these
systems (Parisi et al., 2022; Qin et al., 2023b;
Schick et al., 2023; Qin et al., 2023a; Patil et al.,
2023; Li et al., 2024; Wang et al., 2024; Kong et al.,
2024; Qu et al., 2025). Tools which can provide
tailored information such as up-to-date temperature
measurements, compute mathematical equations or
identify objects in images can each contribute to
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solve an overarching complex task and result in
powerful Al agents. However, the efficacy of these
systems in completing complex tasks heavily re-
lies on their ability to accurately select appropriate
tools for solving individual sub-tasks.

Figure 1 illustrates the flow diagram of a sys-
tem that can solve a complex task. The Planner
is internally made of a Task Decomposition mod-
ule that decomposes the complex task into smaller
manageable sub-tasks, the Tool Selection module
can dive into a database of tools and retrieve the
relevant tools that can solve the sub-tasks and a
Tool Calling module that can compose and call the
retrieved tools in a specific order to solve the com-
plex task, which we refer to as a solution. Every
module can introduce dependencies that the other
modules need to adhere to in deriving a solution
to solve the complex task. In this paper, we fo-
cus on the Tool Selection module and investigate
tool retrieval in depth, with the aim to support the
planner in solving complex tasks. The main chal-
lenges in tool retrieval are: a) understanding the
requirements of the task to be solved and formu-
lating an adequate query to find a suitable tool, b)
comprehending the functionality of a tool from its
description, and c) ability to distinguish between
similar tools to choose the most suitable one.

In this paper, we introduce a training-free
Retrieval-Augmented Generation (Lewis et al.,

Proceedings of the 3rd Workshop on Towards Knowledgeable Foundation Models (KnowFM), pages 75-83
August 1, 2025 ©2025 Association for Computational Linguistics



2021) architecture called ToolReAGt. The proposed
approach employs ReAct prompting to enhance re-
trieval using iterative refinement of the prompts.
We will also present investigations on the impor-
tance of context information when solving a com-
plex task. We present our investigations using the
UltraTool (Huang et al., 2024) benchmark corpus
that has over 2000 tools to choose from and com-
pare with traditional RAG approaches as well as
more recent iterative based approaches that also
involve training the retriever. We show through
experiments on the UltraTool corpus that the pro-
posed training free approach can outperform exist-
ing methods. The rest of the paper is organised as
follows: An overview of related work is presented
in the next section, followed by the description of
the conventional RAG system and the ToolReAGt
model. Then, the benchmark corpus is described
and the set-up of the evaluation which is followed
by the presentation of results and their discussion,
and finally conclusions.

2 Related work

A simple and straight forward approach to selecting
the relevant tools is to provide all the tool descrip-
tion in the prompt (Yuan et al., 2024; Mu et al.,
2024; Du et al., 2024), which can be further com-
bined with fine-tuned retrieval systems (Qin et al.,
2023b; Hao et al., 2023; Gao et al., 2023). But a
major limitation of these methods is when the pool
size of the tools to chose from increases drastically,
that limits to include all the tool descriptions into
the prompts. A potential solution is to first build a
smaller pool of relevant tools using RAG and then
proceed to solving the complex task, which is one
of the motivations for the method presented in this
paper.

In Zhang et al. (2024), the authors propose to
leverage reinforcement learning to enhance the
alignment between user queries and tools in LLM:s.
This method focuses on retrieving n-best tools re-
lated to the query using query re-writing. It also
requires training the retriever using reinforcement
learning. In contrast the proposed method follows
an iterative prompt refinement and is more focused
on solving a complex task, where tools are retrieved
in a step-by-step fashion. Also, we follow a train-
ing free approach.

An adaptive truncation of retrieval results is pre-
sented in Zheng et al. (2024) which treats seen
and unseen tools differently to ensure more rele-
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tion.

vant tools are prioritized. Additionally, it intro-
duces a hierarchy-aware reranking which refines re-
trieval results by concentrating them for single-tool
queries and diversifying them for multi-tool queries.
While the adaptive truncation method effectively
manages unseen tools, our method explores the use
of the ReAct framework that inherently performs
re-ranking of the relevant tools, but also explores
the use of a varied context during retrieval at (a
more fine-grained) sub-task level.

An approach in which fine-tuned LLMs are used
to capture relationships between user queries and
tool descriptions is introduced in Qu et al. (2024).
The method constructs bipartite graphs among
queries, scenes, and tools, and it uses a dual-view
graph collaborative learning framework to capture
intricate collaborative relationships among tools.
In this work, we assume that the planner is look-
ing into the relations between tools, where the tool
retriever is one of the components of the planner.
This is done in a training free fashion and it should
generalise to unseen tasks.

In Xu et al. (2024), authors propose iterative
LLM feedback to improve tool selection, but use
a trained dense retriever without the RAG-specific
generation part. In our method we avoid training
the retriever and the iterative refinement is done
through a ReAct-agent.

3 Methods

We will first present the general RAG architecture
and how it can be employed to perform tool re-
trieval, which we will refer to as Conventional RAG
and is used as a baseline in our study. Further we
introduce the proposed 700lReAGT method and
present the design changes that are introduced con-
trasting with the conventional RAG.

3.1 Conventional RAG

Figure 2 illustrates the basic RAG-architecture for
tool retrieval and includes two main components:
the retriever and generator. Given a task as input
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query, the retriever, typically leveraging an embed-
ding based dense retriever, retrieves a subset of
tools. A distance measure (for example the co-
sine similarity) is computed between the query em-
bedding and the tool embeddings to retrieve the
relevant tools from the vector index. The list of
retrieved tools is propagated into the prompt for
the generation module (including the task and in-
structions) to output the final response, i.e. tool(s)
selected for the given query.

3.2 ToolReAGt

Figure 3 illustrates the proposed ToolReAGt ar-
chitecture. Input can consist of a complex task
and optionally task decomposition into sub-tasks
(provided by a planner which is not part of the
ToolReAGt system). The ReAct-agent can flexi-
bly operate with only the complex task as input
and decompose into the intermediate steps by it-
self or, if provided, utilize a given task decompo-
sition from a planner. The ToolReAGt system is
guided by a ReAct-agent leveraging a sequence
of Thought->Action->Observation steps (see Ap-
pendix B). Firstly, the system calls the tool re-
triever with a tailored query for the given sub-task
(or internal decomposition step) and retrieves a
top_k = {t1,ta,...,tx} list of tools. The ReAct-
agent is instructed to always call the retriever as a
mandatory tool, to provide it with a list of relevant
candidates from the set of available tools. The re-
trieved tool list is then inspected in the Observation
step and depending on whether the system decides
that at least one of the retrieved tools is suitable to
solve the sub-task (or internal decomposition step)
it will proceed to give the answer (indicated by the
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green tick), i.e. either one tool or multiple tools for
each sub-task, or otherwise enter another iteration
including a new tool retrieval call.

By using the ReAct technique the complex
prompt can be interpreted by the LLM and a more
targeted question is formulated for finding the best
tool for the current sub-task (or intermediate step).
Conversely, the conventional RAG employs the
input prompt only. Then, the Thought->Action-
>Observation loop can be executed until either a
suitable tool has been found or the max number
of iterations (set to 10) is reached. As such, an
iterative refinement can take place which is likely
to be beneficial for both tool retrieval and the final
generation output.

4 Data

For evaluation, we used the UltraTool (Huang et al.,
2024) corpus which provides a rich number of com-
plex tasks (5824) from 22 domains (e.g. finance,
travel, documents, etc.) with a large tool set of
2032 tools. The corpus comes divided into a test
set (1000 tasks) and a development set (4824 tasks).
For evaluation we employ the 1000 tasks test set
which consists of 436 tools (TEST-436). In addi-
tion, we perform evaluation on the same test set
using the full (test+dev) 2032 tool set (TEST-2032).

The test tasks include an average number of 2.4
tools per task with the following distribution: 1:
188, 2: 496, 3: 205, 4: 83 and the remainder re-
quiring >5 tools (up to a maximum of 10 tools).
A major reason to choose UltraTool benchmark
is that, it has annotations with reference solution
plans, i.e. decomposition into sub-tasks, including
tool-requiring sub-tasks and their respective tools,



enabling objective evaluation via retrieval metrics.
This helps us to investigate how the retrieval per-
formance can vary when task decomposition from
planner is available apriori.

Solution plans contain on average 12.1 steps
which means there is a high proportion of tool-free
steps. For brevity, we chose the English version of
the corpus which was originally collected in Chi-
nese. Contrary to UltraTool’s original evaluation
methods which encompass planning, tool creation
and fool usage, we are using the corpus for evalu-
ating tool selection performance of RAG-systems
with and without using the provided sub-tasks.

5 Evaluation setup

The experiments conducted in this study employ
the Llamalndex-framework! for implementing the
RAG pipeline. The basic workflow to create a
RAG-system contains the preparation of source
data from which information will be retrieved (typ-
ically in the form of documents, i.e. tool descrip-
tions here), ingesting this data into a vector index
leveraging an embedding model, defining a query
agent together with an LLM, and formulating input
prompts. These steps will be described next.

5.1 Tool representation

Tools provide specific functionalities such as cur-
rency conversions or getting up to date weather
information and are crucial helpers in a system de-
signed to combine their abilities for solving more
complex tasks. As such, understanding tool func-
tionalities, including their required input param-
eters and their generated output, is essential for
successful tool selection. In Ultralool, tools are
described in the widely used JSON-format and in-
clude "name", "description", "arguments" (type and
format of input(s)) and "results" (type and format
of output(s)). Considering each tool as a separate
entity, each of the 2032 tool descriptions was stored
in a separate file named with the tool name (e.g.
"check_weather.json"). The following shows an ex-
ample of a tool description for the check_weather
tool which provides weather information such as
temperature and precipitation probability, for a
given location and a specific date:

"Check the

weather forecast for a specified date and location",

"name": "check_weather", "description":

argu-

neon

ments": {"type":

object","properties": {"date": } {"type":

non

"string", "description": "Specified date"}, "location": {"type":

"https://docs.1lamaindex.ai/en/stable/
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non

"string", "description": "Weather query location"}}}, "re-

sults": {"type": "object", "properties": {"weather_status":

string",

{"type":
perature": {"type": "

description": "Weather condition"},}, "tem-

non

string", "description": "Temperature"},

"precipitation": {"type": "string", "description": "Proba-

bility of precipitation"}, "weather_info": {"type": "string",
"Weather forecast information"}, "sugges-

tions": {"type":

"description":

non

string", "description": "Suggestions based

on weather conditions"} } }

5.2 Vector index

A vector index is an essential component in a RAG-
system providing an efficient way of retrieving rel-
evant information from a potentially large amount
of data to enhance the responses generated by the
LLM. In the current study, the vector indices were
built on the tool descriptions in JSON-format. Two
different vector indices were built: one based on
all the 2032 tools and another using the subset of
436 tools which appear in the test set. This was
intended to shed some light on the impact of tool
corpus size on retrieval performance. Vector in-
dices were created by converting tool descriptions
into high-dimensional vectors of dimension 768
using the bge-base-en-v1.5 > embedding model.
Additional information in the form of metadata,
such as data classes or file name, can be attached to
each tool description which can support retrieval.
For our vector indices the file name was added as
metadata because it included the unique tool name
which was deemed to be helpful for retrieval. For
ingesting tool descriptions into the vector index,
the text was split with a token text splitter using a
chunk size of 512 tokens and a chunk overlap of
128 tokens.

5.3 Impact of input information

Different prompt types were created to evaluate the
impact of input information on the retrieval perfor-
mance. For the first one, no sub-task decomposition
information is provided, while for the other ones,
the various levels of information from the corpus
are included:

e plain_fulltask: full task without sub-task
decomposition

* subtask: only the sub-task that is annotated
in the corpus without full task decomposition

subtask +
but no full sub-task

* subtask+fulltask:
plain_fulltask ,

2https://huggingface.co/BAAL/bge-base-en-v1.5


https://docs.llamaindex.ai/en/stable/
https://huggingface.co/BAAI/bge-base-en-v1.5

Data Input Retrieval
R@l R@2 R@5 R@I10
TEST-2032 | plain_fulltask 16.8 292 511 66.6
subtask 4.6 6.8 12.6 18.2
subtask+fulltask | 14.9 284  44.1 57.5
fulltask+decomp | 20.7 365 594 76.8

Table 1: Impact on tool retrieval performance using Conventional RAG with varied contextual information

decomposition

e fulltask+decomp: plain_fulltask with
full sub-task decomposition

Examples for each of the prompts used in the ex-
periments are provided in Appendix A.

The LLMs used for evaluation are the 8-bit quan-
tized GGUF-version of the Mistral-7b-instruct’®
LLM, i.e. mistral-7b-instruct-v0.2.Q8_0 from Hug-
gingface # and the 4-bit quantized GGUF-version
of the Mistral-Large-Instruct-2411° model which
are publicly available for research and provide
a 32k and 128k tokens context window respec-
tively. The LamaCPP® library was employed to run
the LLM. Experiments were run on four NVIDIA
A100 GPUs with 80GB of memory.

6 Results

6.1 Evaluation metrics

Tool retrieval accuracy can be measured either at
the output of the Retriever or at the output of the
Generator stages of RAG-system. UltraTool pro-
vides reference tools for each sub-task, making
evaluation straightforward, by checking if the list
of retrieved tools at different top_k values includes
the reference tools.

To measure the tool retrieval performance at the
output of the Retriever, the recall QN metric was
chosen (see equation 1), where N = 1,2,5,10, 20
indicate whether the required tool was selected in
the top_N retrieved tools.

Number of relevant tools retrieved in top_N

(D
For the Generator stage, we report accuracy, i.e.
how often the searched for tool was actually chosen

Recall@N =
Total number of relevant tools

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v@.2
4https://huggingface.co/TheBloke/
Mistral-7B-Instruct-v@.2-GGUF
5https://huggingface.co/mistralai/
Mistral-Large-Instruct-2411
https://github.com/ggerganov/1lama.cpp
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from the list of tools provided by the Retriever. In
our evaluations, we report results where the Gen-
erator was forced to output only one tool for each
tool requiring sub-task or it was given the freedom
to choose multiple tools to be associated with the
same sub-task.

To compare the performance of the proposed
method with the method in (Xu et al., 2024), we
also report the Normalized Discounted Cumulative
Gain (NDCG@Xk) (Jarvelin and Kekilédinen, 2002)
metric.

We also checked the impact of multiple runs
upon retrieval scores and found that there was no
variation in retrieval scores in the baseline RAG-
system when prompts were kept identical. For the
variation in generation accuracy, the baseline RAG-
system showed no measurable variation and the
ToolReAGt system showed marginal variation in
both retrieval (average StdDev: 0.186) and genera-
tion scores (average StdDev: 0.212).

6.2 Discussion

To remind, the UltraTool corpus comes with anno-
tation of task decomposition for the complex task
and has annotations about which of the sub-tasks
require a tool. We will use this additional knowl-
edge in the prompt to understand the impact on
the retrieval using Conventional RAG and Mistral-
7B model. We measure the retrieval scores by a)
only presenting the full task (plain_fulltask) de-
scription without any sub-task decomposition, b)
only presenting the sub-task (subtask) that requires
a tool without any additional context c) presenting
the full task description along with only a single
sub-task subtask+fulltask, and d) presenting the
full task description along with the complete task
decomposition fulltask+decomp.

The results are presented in Table 1. One
can observe that providing subtask information
in isolation without the complete task decompo-
sition seems to perform inferior than just using the
plain_fulltask as input. On the other hand, when
using the full task along with the complete task


https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF
https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF
https://huggingface.co/mistralai/Mistral-Large-Instruct-2411
https://huggingface.co/mistralai/Mistral-Large-Instruct-2411
https://github.com/ggerganov/llama.cpp

Input Output ConvRAG ToolReAGt

R@5 Acc | R@5 Acc
plain_fulltask by full task, single | 74.2 684 | 77.4 735
fulltask+decomp | by sub-task, single | 81.7 719 | 90.6  73.7
fulltask+decomp | by sub-task, multi | 81.7 745 | 90.5 874

Table 2: Results for tool selection contrasting Conventional RAG and ToolReAGT on TEST-436

decomposition (fulltask+decomp) it seems to im-
prove the retrieval performance. This indicates that
having access to complete task decomposition on
how to solve the complex task should help the re-
triever identify the correct tools better than when
presented only with the complex task description
as input, which is intuitive. One can also observe
that retrieving more tools at each intermediate step
can also boost the retrieval performance. These ini-
tial investigations were performed on TEST-2032.
Moving forward, all the results will be presented
on the actual test set of the UltraTool corpus and is
referred to as TEST-436.

In Table 2, we contrast the performance of the
Conventional RAG with the proposed ToolReAGt
described in Section 3. We report both the retrieval
(R@5) and generation performance in this table.
Variations in the input prompts and how many tools
the generator should output (either single or multi-
ple) can further influence the retrieval performance.
The plain_fulltask refers to providing only the com-
plex task description as input without any decompo-
sition. By doing so, we can measure how the LLM
will handle the complex task and assign relevant
tools without any additional information. This is
used as a baseline to understand the impact of any
variations that we might introduce either into the
input prompt in the form of additional context or
apply the ReAct prompting or change the output of
the generator, which are all presented in this table.
Comparing the RAG baseline and the ToolReAGt
system for the plain_fulltask input shows that the
ToolReAGt system achieves a 3.4% better R@5 and
an increased accuracy in generation (+5.1%).

System Retrieval

N@l N@3 N@5
ToolRetriever(Xu et al., 2024) | 48.2 47.7 53.0
Xu-et-al(Xu et al., 2024) 493 475 54.3
RAGbaseline [plain_fulltask] 54.8 59.2 66.3
ToolReAGt [plain_fulltask] 60.6  63.8 69.3

Table 3: Results using NDCG metric comparing differ-
ent retrieval methods on the UltraTool TEST-436
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The addition of contextual information by
adding the decomposition of the complex task
into individual sub-tasks including the information
which sub-tasks require tools, increased both re-
trieval and generation scores for both systems, with
an increase in R@5 of 7.5% for the RAG baseline
and a boost of 13.2% for the ToolReAGt system,
leading to an 8.9% absolute improvement for Tool-
ReAGt, while the increases in generation accuracy
were smaller, indicating that the improved retrieval
scores did not directly propagate into improved gen-
eration accuracy. However, by asking the systems
to select more than one tool in the generation output
("By sub-task, multi") both systems achieve higher
accuracy, but the ToolReAGt system shows a much
higher improvement than the baseline system, i.e.
RAG baseline +2.6% and ToolReAGt +13.7%, in-
dicating that it is capable to transfer more relevant
tools also in the generation output.

Table 3 presents the retrieval results measured
using Normalized Discounted Cumulative Gain
(NDCG@k) (Jarvelin and Kekéldinen, 2002) with
k = {1,3,5}, comparing the retrieval method of
Xu et al. (2024) in literature with the proposed Tool-
ReAGT. ToolRetriever introduces a model that has
been trained on the ToolBench corpus (Qin et al.,
2023b) and corresponds to out-of-domain evalua-
tion on the UltraTool benchmark as reported in Xu
et al. (2024). For fair comparison to the results
presented in Xu et al. (2024), the performance of
ToolReAGT using only the plain_fulltask as input
without sub-task decomposition is presented here.
It is surprising that RAGbaseline already surpasses
the performance of Xu et al. (2024). The Tool-
ReAGt method achieves the highest NDCG scores
across all k-values.

7 Conclusion

The paper presented a training free Retrieval-
Augmented Generation architecture called Tool-
ReAGt to improve tool retrieval performance in the
framework of solving complex tasks. The proposed
approach employed ReAct prompting to perform



an iterative and targeted retrieval of tools, is able to
run with and without given task decomposition and
showed that the retrieval performance improved on
the UltraTool benchmark. It is also clearly evident
that having access to the task decomposition in ad-
vance can greatly benefit the retriever in identifying
the relevant tools. Results showed the advantage of
the proposed approach against Conventional RAG
as well as against other methods in literature that
also followed an iterative approach to solving tool
retrieval.

Limitations

ToolReAGt is motivated to solve complex tasks and
when faced with a large tool set to choose from.
The study in this paper is limited to investigate the
performance of retriever in depth. It will be inter-
esting to evaluate the task completion performance
as a whole where the retriever should support the
planner in deriving the correct solution. We believe
this will be a natural extension and will form the
course for our future work.

In terms of run time, ToolReAGT is slower than
conventional RAG architectures due to its iterative
design and reliance on a 123B-parameter LLM,
which demands significantly more computational
resources which might have to be taken into ac-
count for practical use cases. Investigating the re-
liance on a smaller LLM and efficiently terminating
the iterative loop of ReAcT is something that has
not been explored in the current work.
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A Prompts

The following lists examples of prompts used as
input to the RAG-systems evaluated in this paper:

plain_fulltask Only the full task for which tools
had to be retrieved and no other information. Ex-
ample: "Given the following complex task: "I need you to
help me create a file called *"Work_Tasks.txt’ on the desktop,
and then write ’Preparation for Tomorrow’s Meeting’ into it."
and the list of tools in the context, select the best tools to solve

the complex task."

82

sub-task Only the sub-task for which a tool had
to be retrieved. Example: "Given the following task:
"step": "1.2 Use file writing tool to create and write con-
tent" , select the best tool provided in the context to solve
the task. For an example this could be step "1.2 Query the
current exchange rate", and the response format would then

"non

be: [{"step": "1.2 Query the current exchange rate", "tool":
"currency_exchange_rate"}]}. Provide your answer exactly
in the same format as in the example and do not add anything

else.”

+fulltask sub-task plus full task, but no task de-
composition. Example: "Given the following task: "I
need you to help me create a file called *Work_Tasks.txt” on
the desktop, and then write ’Preparation for Tomorrow’s Meet-
ing’ into it.", select the best tool provided in the context to
solve the following substep: [ "step": "1.2 Use file writing tool
to create and write content” ]. For an example this could be
step "1.2 Query the current exchange rate", and the response
format would then be: [{"step": "1.2 Query the current ex-

non

change rate", "tool": "currency_exchange_rate"}]}. Provide
your answer exactly in the same format as in the example and

do not add anything else."

(fulltask)+decomp, single sub-task, full task,
and task decomposition; single tool output in gen-
eration. Example: "Given the following task: "I need
you to help me create a file called *Work_Tasks.txt’ on the
desktop, and then write *Preparation for Tomorrow’s Meeting’
into it." and its decomposition into sub-tasks here: [{"step":
"1. Create file"}, {"step": "1.1 Get file creation information
(File path: Desktop/Work_Tasks.txt, File content: Preparation
for Tomorrow’s Meeting)"}, {"step": "1.2 Use file writing
tool to create and write content”, "tool": ""}, {"step": "1.3
Confirm file creation and content writing success"}] , select
the best tool provided in the context to solve the following
substep: [ "step": "1.2 Use file writing tool to create and write
content” ]. For an example this could be step "1.2 Query the
current exchange rate", and the response format would then

non

be: [{"step": "1.2 Query the current exchange rate", "tool":
"currency_exchange_rate"}]}. Provide your answer exactly
in the same format as in the example and do not add anything

else."

fulltask+decomp, multi sub-task, full task, task
decomposition; allowing multiple tools in gener-
ation. Example: "You are an expert in selecting tools
to solve a given task. The task is typically a sub-task of a
more complex task and you are given the complex task, its
decomposition into sub-tasks and the sub-task you are asked
to select tools for by calling the "ultratools_json_tools" tool
with a suitable query. So here is the complex task: "I need

you to help me create a file called *Work_Tasks.txt’ on the
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desktop, and then write ’Preparation for Tomorrow’s Meet-
ing’ into it." and its decomposition into sub-tasks: [{"step":
"1. Create file"}, {"step": "1.1 Get file creation information
(File path: Desktop/Work_Tasks.txt, File content: Preparation
for Tomorrow’s Meeting)"}, {"step": "1.2 Use file writing
tool to create and write content”, "tool": ""}, {"step": "1.3
Confirm file creation and content writing success"}]. Given
this context, and the list of tools provided to you by calling
the "ultratools_json_tools"-tool, select the best tools to solve
the following substep: [ "step": "1.2 Use file writing tool to
create and write content” ]. For an example this could be
step "1.2 Query the current exchange rate", and the response
format would then be: [{"step": "1.2 Query the current ex-
change rate", "tool1": "currency_exchange_rate"}", "tool2":
"currency_exchange_tool"}]. You can provide multiple tools
ranked by their order of relevance when you think there are
multiple tools capable to solve the task. Provide your answer
exactly in the same format as in the example and do not add

anything else."

B ReAct prompt template

Below is the ReAct prompt template provided in the

Llamalndex’ version utilized in the experiments.

You are designed to help with a variety of tasks, from
answering questions to providing summaries to other types of
analyses.

## Tools

You have access to a wide variety of tools. You are respon-
sible for using the tools in any sequence you deem appropriate
to complete the task at hand. This may require breaking the
task into sub-tasks and using different tools to complete each
sub-task.

You have access to the following tools:

{tool_desc}

{context_prompt}

## Output Format

Please answer in the same language as the question and use
the following format:

Thought: The current language of the user is: (user’s lan-
guage). I need to use a tool to help me answer the question.
Action: tool name (one of {tool_names}) if using a tool. Ac-
tion Input: the input to the tool, in a JSON format representing
the kwargs (e.g. {{"input": "hello world", "num_beams": 5}})

Please ALWAYS start with a Thought.

NEVER surround your response with markdown code
markers. You may use code markers within your response if
you need to.

Please use a valid JSON format for the Action Input. Do
NOT do this {{’input’: "hello world’, 'num_beams’: 5} }.

If this format is used, the tool will respond in the following
format:

"https://docs.1lamaindex.ai/en/stable/

&3

Observation: tool response

You should keep repeating the above format till you have
enough information to answer the question without using any
more tools. At that point, you MUST respond in one of the
following two formats:

Thought: I can answer without using any more tools. I'll
use the user’s language to answer

Answer: [your answer here (In the same language as the
user’s question)]

Thought: I cannot answer the question with the provided
tools.

Answer: [your answer here (In the same language as the
user’s question)]

## Current Conversation
Below is the current conversation consisting of interleaving

human and assistant messages.


https://docs.llamaindex.ai/en/stable/
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Abstract

Large language models (LLMs) often demon-
strate strong performance by leveraging im-
plicit knowledge acquired during pretraining.
Analogical reasoning, which solves new prob-
lems by referencing similar known examples,
offers a structured way to utilize this knowl-
edge, but can also lead to subtle factual er-
rors and hallucinations. In this work, we in-
vestigate whether LLLMs can recognize the re-
liability of their own analogical outputs us-
ing black-box uncertainty estimation (UE). We
evaluate six UE metrics across two reasoning-
intensive tasks: mathematical problem solving
and code generation. Our results show that
Kernel Language Entropy (KLE) and Lexical
Similarity (LexSim) are the most robust indica-
tors of correctness. Moreover, while analogical
prompting lowers model uncertainty over direct
prompting, most uncertainty arises during the
analogy transfer step. These findings highlight
the limitations of analogical knowledge transfer
in LLMs and demonstrate the potential of UE
methods for detecting hallucinated reasoning
in black-box settings.

1 Introduction

Recent advances in large language models (LLMs)
have highlighted their surprising ability to uti-
lize internalized knowledge for solving complex
tasks. This ability, often acquired through large-
scale pretraining, enables models to answer fac-
tual questions, reason about concepts, and even
perform domain-specific tasks without explicit re-
trieval (Yang et al., 2024; Zhang et al., 2025). How-
ever, such knowledge utilization remains opaque
and error-prone. In particular, LLMs frequently
produce responses that are fluent and confident but
factually incorrect, which is a phenomenon known
as hallucination (Qin et al., 2025).

To better understand how knowledge is used,
represented, and sometimes misapplied by LLMs,

*Corresponding author
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we focus on a specific form of structured reasoning:
analogical reasoning. This strategy encourages the
model to solve a target problem by referencing a
related, known problem. Analogical reasoning has
roots in human cognition (Vosniadou and Ortony,
1989) and has been shown to enhance LLM perfor-
mance across domains (Yasunaga et al., 2024; Yang
et al., 2024; Zhang et al., 2025). Conceptually, it
involves two stages: retrieving or constructing an
analogy, and transferring it to the new context (Ra-
machandran, 2012).

Despite its potential, analogical reasoning is also
prone to hallucination-like failure. Models may
select an irrelevant analogy, or fail to adapt it cor-
rectly, leading to incorrect answers that nonetheless
appear coherent and justified. These subtle errors
are particularly dangerous in deployment settings,
as they can undermine user trust in the model’s
reasoning ability. This raises a key research ques-
tion: can LLMs recognize when their analogical
reasoning is unreliable?

We address this question by investigating the
utility of black-box uncertainty estimation (UE)
metrics. These methods aim to quantify model un-
certainty based solely on output patterns, without
requiring access to internal activations or probabili-
ties (Fadeeva et al., 2023). Prior work has applied
UE to tasks such as translation and summariza-
tion (Fomicheva et al., 2020), but its effectiveness
in analogical reasoning, where hallucinations arise
from multi-step failures, remains underexplored.

In this paper, we evaluate six representative UE
metrics in the context of analogical prompting. Our
experiments span two reasoning-intensive bench-
marks: GSM8K for mathematical problem solving,
and Codeforces for code generation. We further
dissect analogical responses into their subcompo-
nents to understand where uncertainty arises: in the
analogy itself or in its transfer. This work makes
three main contributions:

Proceedings of the 3rd Workshop on Towards Knowledgeable Foundation Models (KnowFM), pages 84-93
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ri'p DataSets

Math:
GSM8K
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Code:
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BigBench
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Prompt
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03 A8
Solve the Initial
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Solve this problem: ..

E Evaluate on all UE metrics

Human Label Accuracy arPRR

E anPRR
Evaluate on selected UE metrics

Human label Accuracy dpPRR

Figure 1: Overall procedure of our method. The first row illustrates the process for identifying robust uncertainty
estimation metrics. The latter two rows demonstrate the steps of calculating the uncertainty in analogical reasoning.

* We present the first systematic evaluation of
uncertainty estimation metrics for analogical
reasoning in black-box LLMs.

* We identify two metrics, Kernel Language En-
tropy (KLE) and Lexical Similarity (LexSim),
that best predict factual correctness.

* We show that analogical reasoning decreases
model uncertainty, but most uncertainty arises
from the transfer step.

Our findings provide insights into the mech-
anisms and limits of knowledge utilization in
LLMs, and offer a practical pathway toward detect-
ing hallucinated reasoning in analogical contexts.
Our code can be found in https://github.com/
Bellafc/analogyUE/.

2 Related Work

2.1 Analogical Reasoning

Analogical reasoning is a procedure of: 1) retriev-
ing knowledge for obtaining similarities among
questions, and 2) transferring the knowledge from
the known source to the unknown target (Ra-
machandran, 2012). Analogical reasoning first
identifies deep relational similarities (e.g., batteries
and reservoirs both store and release energy, be-
yond surface differences). It then transfers these
higher-order structures to the unknown problems
(e.g., the “central force-orbital motion” in solar
system-atom analogies) while ignoring superficial
features (Gentner, 1983).

Recent studies have applied analogical reason-
ing to mathematical problem-solving and code gen-
eration by prompting LLMs to generate relevant
exemplars or knowledge, thereby enhancing reason-
ing performance (Yasunaga et al., 2024). However,
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while analogical reasoning effectively leverages im-
plicit pretrained knowledge, it may introduce fac-
tual errors or hallucinations (Qin et al., 2025). This
paper aims to investigate the reliability of LLMs
in analogical reasoning, uncovering the sources of
uncertainty.

2.2 Uncertainty Estimation

With the widespread adoption of LLMs, their gen-
erated outputs are prone to hallucination (Xiao and
Wang, 2021; Dziri et al., 2022). Uncertainty es-
timation methods address this issue by quantify-
ing the confidence of model predictions, enabling
users to identify unreliable outputs and thereby
enhancing the safety and reliability of LLM de-
ployments (Fadeeva et al., 2023).

Uncertainty estimation mainly includes two
methods: white-box and black-box.  White-
box methods, requiring access to internal model
states, include information-theoretic approaches
like maximum sequence probability and seman-
tic entropy (Kuhn et al., 2023), ensemble-based
techniques (Malinin and Gales, 2021) using cross-
model prediction variances, and density estimation
methods such as Mahalanobis distance (Lee et al.,
2018) for out-of-distribution detection. Black-
box methods, which operate solely on gener-
ated text outputs, encompassing semantic diver-
sity analysis (Lin et al., 2024) that evaluates un-
certainty by computing similarity matrices across
multiple responses, as well as graph-theoretic ap-
proaches (Fadeeva et al., 2023). In contrast to
white-box approaches, this paper focuses specif-
ically on black-box uncertainty estimation for ana-
logical reasoning, enabling reliable hallucination
detection without access to internal model states.


https://github.com/Bellafc/analogyUE/
https://github.com/Bellafc/analogyUE/

—[ Analogy Reasoning Prompt for GSM8K ]—

—__Analogy Reasoning Prompt for Codeforces

]_

Your task is to tackle code problems. When presented with a
code problem, recall relevant problems as examples. Afterward,
proceed to solve the initial problem.

#Initial Problem: [The target problem)

#Instructions:
Make sure that your response follows the instructions below.

## Analogous Problems:

Offer one diverse examples of math problems that are relevant
or analogous to the initial problem. For each problem, elaborate
on the solution and conclude with the ultimate answer (enclosed
in \boxed{}). For each problem:

- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer
in \boxed{}.

## Solve the Initial Problem:

Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in
\boxed{} here.

Your goal is to write Python3 code to solve competitive
programming problems. Given a problem, explain the core concepts
in it and provide other relevant problems. Then solve the original
problem.

#Initial Problem: [7he target problem)

#Instructions:
Make sure that your response follows the instructions below.

## Analogous Problems:

Identify the core concepts or algorithms used to solve the problem.
And write a tutorial about these algorithms. Then provide one
example of relevant competitive programming problems that involve
these algorithms. Describe the problem, explain the solution in detail,

and then write the correct Python3 code.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here:
A: Python3 code to solve the problem:

Figure 2: Analogical Reasoning Prompts for GSM8K and Codeforces.

3 Method

The overall experimental pipeline is illustrated in
Figure 1. As part of this procedure, we apply
analogical prompting to two reasoning-intensive
datasets: GSM8K for mathematical problem solv-
ing and Codeforces for code generation. The spe-
cific analogical prompts used for these two datasets
are provided in Figure 2.

3.1 Common UE metrics for black-box LLMs

To evaluate the uncertainty of model-generated re-
sponses in a black-box setting, we adopt six repre-
sentative UE metrics, implemented via the library
introduced in (Fadeeva et al., 2023). These metrics
capture diverse statistical and structural properties
of language model outputs. A brief overview is
provided below.

* Sum of Eigenvalues of the Graph Lapla-
cian (EigV) (Lin et al., 2024): This metric
computes the sum of eigenvalues of the Lapla-
cian matrix L constructed from a token-level
similarity graph of the generated text. Intu-
itively, higher spectral mass reflects lower un-
certainty.

n
EigV(z) =Y A where Lz = Az (1)
i=1
* Degree Matrix (Deg) (Lin et al., 2024): De-

fined as the sum of degrees in the token simi-
larity graph, this metric serves as a proxy for
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local cohesion in the response.

Deg(x) = Z deg(v;) 2)

* Eccentricity (Ecc) (Lin et al., 2024): This
metric computes the maximum shortest-path
distance from any node to all other nodes in
the graph. Lower eccentricity indicates more
centralized (and potentially more confident)
responses.

3)

E = ind
ce(x) max min (v, u)

* Lexical Similarity (LexSim) (Fomicheva
et al., 2020): Based on pairwise cosine sim-
ilarity among token embeddings, this metric
reflects lexical cohesion in the output.

2 Z cos(€;, €5) (4)

LexSim(x) = Y E—
i<j

* Kernel Language Entropy (KLE) (Nikitin
et al., 2024): This metric estimates the entropy
of the response using a kernel-based density
estimation over token embeddings. Lower
entropy typically indicates lower uncertainty.

KLE(z) = = log [ Y K(xi, )
g J
®)



« LUQ (Local Uncertainty Quantifica-
tion) (Zhang et al., 2024): A recent metric
that quantifies uncertainty by measuring
the variance in local regions of the output
embedding space.

LUQ(z) = ;ZVar(Nk(xi)) ©)

where Ny (z;) denotes the k-nearest neighbors
of token ;.

3.2 Identify Robust UE Metrics

We begin by evaluating the reliability of six UE
metrics in assessing the correctness of analogi-
cal reasoning outputs. Our study is conducted on
two reasoning-intensive benchmarks introduced
in (Yasunaga et al., 2024): GSMS8K for mathe-
matical problem solving (Cobbe et al., 2021), and
Codeforces for code generation (Majd et al., 2019).
From each dataset, we randomly sample 200 exam-
ples and apply the analogical reasoning prompting
strategy proposed in prior work.

For each generated response, we compute six
UE scores using the following black-box estima-
tors: sum of graph Laplacian eigenvalues (EigV),
degree matrix (Deg), eccentricity (Ecc), lexical sim-
ilarity (LexSim), kernel language entropy (KLE),
and LUQ (Lin et al., 2024; Fomicheva et al., 2020;
Nikitin et al., 2024; Zhang et al., 2024). In parallel,
we conduct human evaluation on all 400 analog-
ical reasoning responses, where each response is
assigned a score from 0 to 100 based on its fac-
tual correctness and reasoning quality. One of the
author and a student research assistant jointly an-
notated the responses. These human scores serve
as the ground-truth accuracy proxy.

To assess how well each UE metric correlates
with human judgment, we compute the Predictive
Rate Ratio (PRR) for each metric:

AUCPRunc
AUCPRoracle

This ratio measures the area under the precision-
recall curve (AUCPR) when ranking predictions
by their uncertainty values, normalized by the ora-
cle AUCPR (i.e., ideal ranking using ground-truth
labels). A higher PRR indicates a stronger abil-
ity to distinguish between correct and incorrect
responses based on uncertainty alone. We select
the top-2 metrics with the highest PRR scores for
use in subsequent stages.

PRR = 7)
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3.3 Uncertainty Loss in Analogies

Building on the previous step, we further examine
the interaction between analogical prompting and
uncertainty estimation. Specifically, we aim to
evaluate whether analogical reasoning lowers the
uncertainty in LLM outputs and to what extent
uncertainty varies across prompting strategies.

For each of the same 200 samples per dataset,
we perform three types of evaluation:

Analogical Prompting (ar): Full analogical rea-
soning prompt used to generate response 7.

Direct Prompting (dp): A baseline prompt
without analogical structure, producing 7gp.

Analogy-Only (an): The analogy section (e.g.,
retrieved or constructed examples) extracted from
Tar, yielding 7,y.

For each of these three prompting modes, we
compute the UE scores using only the top-2 metrics
identified in the previous step. Human evaluators
also score 7qp and r,, to provide corresponding
correctness labels (aqp and a,p).

This setup allows us to compute three sets of
PRR scores:

arPRR: PRR from analogical reasoning outputs.

dpPRR: PRR from direct prompting outputs.

anPRR: PRR from analogy-only segments.

By comparing these three PRR scores, we can
isolate the contribution of analogical structure to
model uncertainty and quantify its influence on UE
metric behavior.

3.4 Overall Procedure

Algorithm 1 outlines the complete evaluation
pipeline. For each sample, we first generate a re-
sponse using analogical prompting. We then eval-
uate this response using all six UE metrics, result-
ing in six corresponding uncertainty scores u;..
Human annotators assess the correctness of each
analogical response to yield the score a,. Using
these uncertainty-accuracy pairs, we compute the
analogical reasoning PRR scores arPRR,,, for all
metrics and identify the top two performing metrics.
Subsequently, we evaluate the same sample with
direct prompting and analogy-section-only extrac-
tion. For each of the direct prompting results and
the analogy-section only extraction, we apply only
the top-2 UE metrics selected based on arPRR. The
resulting responses are scored for correctness (aqp
and a,y), and corresponding uncertainty estimates
(ugy and ugz,) are computed for each selected metric
m. Finally, we compute the corresponding PRRs



Algorithm 1 Evaluation Pipeline for Analogical
Reasoning uncertainty Analysis

1: for each sample in dataset do

2 // Analogical Reasoning Prompt

3: Tar < LLM(AnalogicalPrompt(sample))

4 for each UE metric m in {EigV, Deg, Ecc,
LexSim, KLE, LUQ} do

5 ullt < UE,,(rar)

6: ayr <— HumanScore(r,;)

7: end for

8: end for

9: // Compute arPRR for all metrics

10: for each metric m do

11: arPRR,,, <— ComputePRR (u}’, a,r)

12: end for

13: // Select top-2 metrics based on arPRR

14: Top2Metrics < SelectTopK({arPRR,,, }, k =

2)

15: for each sample in dataset do

16: // Direct Prompting

17: Tgp <— LLM(DirectPrompt(sample))

18: // Extracted Analogy Section

19: ran < ExtractAnalogySection(r,;)
20: for each metric m in Top2Metrics do
21: ugy < UEp(rap)

2 Wl < UEp, (ron)

23 adp < HumanScore(rgp)

24: aan < HumanScore(7yy,)

25: end for

26: end for

27: // Compute PRRs for top-2 metrics
28: for each metric m in Top2Metrics do
29: dpPRR,,, +— ComputePRR (v, adp)
30: anPRR,,, +— ComputePRR (u}!, aap)
31: end for

for both direct prompting (dpPRR) and analogy-
section-only (anPRR), allowing us to compare the
predictive utility of uncertainty estimates across
prompting strategies.

4 Results

4.1 KLE and LexSim are Robust UE metrics

Table 1 reveals that KLE and LexSim outperform
other UE metrics across benchmarks. This diver-
gence stems from the distinct demands of analogi-
cal reasoning:

1. KLE’s Robustness to Semantic Diversity
Analogical reasoning often involves structurally
valid but lexically diverse solutions (e.g., different

algorithmic implementations for the same program-
ming problem). KLE’s semantic kernel captures
this structural coherence by encoding logical rela-
tionships beyond surface features. For instance, in
Codeforces, valid code analogies may share no lex-
ical overlap (e.g., recursive vs. iterative solutions)
but exhibit high semantic similarity in control flow
or data structures. KLE’s entropy quantifies this
implicit consistency, making it task-agnostic.

2. LexSim’s Domain-Specific Utility LexSim
excels in mathematical reasoning (GSMSK), where
answers often follow rigid templates (e.g., arith-
metic expressions like 3z + 5 = 20). Here, correct
analogies inherently share high lexical overlap (e.g.,
repeated operators or variables), aligning LexSim
with human judgment. However, its reliance on
surface patterns fails in tasks requiring flexible
logical expression, leading to poor performance
(PRR=0.092).

3. Failure of Graph-Based and NLI Metrics

* EigV/Deg/Ecc: These graph-based metrics as-
sume that semantic similarity correlates with
logical validity. However, analogical reason-
ing allows structurally distinct but logically
equivalent answers (e.g., different proof paths
in math), violating this assumption.

* LUQ: NLI models struggle to assess bidirec-
tional entailment in complex analogies (e.g.,
code logic), often misclassifying valid varia-
tions as contradictions.

4.2 Analogical Reasoning Lowers the
Uncertainty, but Transfer Reduces It

The results presented in Table 2 show the relation-
ship of anPRR, arPRR, and dpPRR, with the
measurement of the selected two UE metrics. As
mentioned in Section 3, anPRR measures the
uncertainty of the whole uncertainty reasoning pro-
cess, while anPRR focuses on the uncertainty of
the analogous questions and answers. dpPRR
evaluates the uncertainty estimate for responses
generated through direct prompting, without any
analogical reasoning component.

The results show that the anPRR values are con-
sistently higher than the arPRR values across all
datasets. This suggests that the LLM is more confi-
dent in the analogous questions and answers. The
model is likely confident in identifying relevant
analogies and applying them to the problem at hand.



GPT-3.5-Turbo GPT-4

UE Method GSMS8K Codeforces Avg GSMS8K Codeforces Avg

KLE 0.187+£0.013  0.200£0.015 0.194 | 0.201£0.008 0.215+0.019  0.208
LexSim 0.285+0.014 0.101£0.013  0.193 | 0.296+£0.021 0.113£0.018  0.205
EigV 0.032+£0.015  0.023£0.013  0.028 | 0.039£0.011 0.027+0.019  0.033
Ecc -0.014£0.013  0.014+0.013  0.000 | -0.005+0.012 0.021£0.012  0.008
Deg -0.135+£0.010 = -0.018+0.012 -0.077 | -0.127+£0.008 -0.012+£0.014 -0.070
LUQ -0.106£0.012  -0.136+0.010 -0.121 | -0.101+0.021 -0.130£0.019 -0.116

Table 1: Performance of UE methods on two datasets (arPRR and its variance), comparing gpt-3.5-turbo and
gpt-4. Values are color-coded from light blue (lowest) to dark blue (highest) within each column group.

Model Dataset Metric KLE LexSim
GPT-3.5-Turbo GSMS8K arPRR 0.187 0.285
anPRR 0.354 0.372
dpPRR 0.103 -0.002
GPT-3.5-Turbo Codeforces arPRR 0.200 0.028
anPRR 0.289 0.163
dpPRR 0.098 0.009
GPT-4 GSMSK arPRR 0.201 0.310
anPRR 0.389 0.402
dpPRR 0.115 0.011
GPT-4 Codeforces arPRR 0.215 0.075
anPRR 0.317 0.190
dpPRR 0.121 0.023

Table 2: UE metric values (arPRR, anPRR, dpPRR) across datasets and models for KLE and LexSim.

However, the lower arPRR values indicate that
the model’s uncertainty increases when it comes
to transferring the solution from the analogy to
the original problem. This could be because the
process of adapting and applying the analogy to
the new context introduces additional uncertainty.
The higher anPRR values suggest that analogical
reasoning is an effective strategy for lowering the
uncertainty, whereas the low dpPRR values em-
phasize the limitations of direct prompting without
such reasoning.

5 Discussion

Our findings highlight two key insights into UE
in analogical reasoning tasks. First, KLE (Nikitin
et al., 2024) and LexSim (Fomicheva et al., 2020)
emerge as robust and complementary UE metrics,
each excelling in different domains due to their
underlying assumptions about semantic and lexi-
cal similarity. Second, analogical reasoning lowers
model uncertainty, but this uncertainty increases
during the transfer phase, underscoring a critical
bottleneck in applying analogies to novel problems.
Graph-based metrics (e.g., EigV, Deg, Ecc) and

NLI-based LUQ underperform, suggesting a mis-
alignment with the nature of analogical reasoning.
These methods assume that surface-level similar-
ity or binary entailment captures uncertainty ef-
fectively. However, analogical tasks often require
recognizing logically valid yet structurally diverse
answers. Their poor average scores and high vari-
ances confirm their inadequacy in capturing nu-
anced analogical consistency.

The second set of results reveals that analogi-
cal reasoning lowers the model’s self-assessed un-
certainty (as reflected by higher anPRR), yet this
uncertainty loss does not fully translate into suc-
cessful application (lower arPRR). This divergence
points to a key challenge: while models can iden-
tify useful analogies, the process of adapting them
to new contexts introduces epistemic uncertainty.
The lowest scores observed in the dpPRR condi-
tion further reinforce the value of analogy-based
prompting over direct prompting. However, the
drop from anPRR to arPRR indicates that the anal-
ogy transfer step is a critical weakness in current
LLM capabilities.

These findings suggest that future uncertainty

89



metrics should better account for the two-step na-
ture of analogical reasoning: analogy retrieval and
transfer. While KLE and LexSim provide partial
solutions, hybrid models or adaptive metrics that
dynamically weigh lexical and semantic coherence
may further improve reliability.

Limitations

While our study presents a systematic evaluation
of black-box uncertainty estimation in analogical
reasoning, several limitations remain.

First, our analysis is restricted to two datasets,
which, although representative of mathematical and
algorithmic reasoning, may not fully capture the
diversity of analogical tasks across domains such
as law, science, or creative writing. Extending
our evaluation to other datasets like BigBench or
domain-specific benchmarks would strengthen the
generalizability of our findings.

Second, our evaluation focuses exclusively on
black-box LLMs, namely GPT-3.5-Turbo and GPT-
4, due to API access and usage constraints. While
this reflects realistic deployment conditions, it ex-
cludes signals from white-box techniques such
as self-consistency voting or intermediate acti-
vation inspection. Hybrid approaches that com-
bine surface-level uncertainty metrics with internal
model signals may further improve performance,
especially during the analogy-transfer stage where
uncertainty loss is limited.

Third, all human annotations were conducted by
one author, supplemented by DeepSeek-V3-0324
model suggestions. To ensure label reliability, we
verified a randomly sampled subset and observed
high agreement (v > 0.8). Nonetheless, future
studies could benefit from a full multi-annotator
protocol with inter-annotator agreement reporting.

Lastly, while we adopt the term ‘“uncertainty
loss” to describe reductions in estimated uncer-
tainty, this does not directly equate to calibrated
model confidence. Our measurements are inher-
ently proxy-based and reflect surface-level out-
put coherence rather than epistemic access to the
model’s belief state. Future work may explore adap-
tive uncertainty metrics or calibration techniques
that better align with the two-stage nature of ana-
logical reasoning.
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Dataset

GSM8K

Initial Problem

Mary does her grocery shopping on Saturday. She does her shopping only at a
specific store where she is allowed a credit of $100, which must be paid in full
before her next shopping trip. That week she spent the full credit limit and paid
$15 of it on Tuesday and $23 of it on Thursday. How much credit will Mary
need to pay before her next shopping trip?

Analogical Rea-
soning  Answer
(r_ar)

Analogous Problems: Q1: Sarah has a $200 store credit limit. She spends the
full amount in one trip. She pays back $50 on Monday and $70 on Friday. How
much does she still owe? Al: Sarah starts with $200 of debt. She pays back
$50 + $70 = $120. So, the remaining debt is $200 - $120 =[80]. Solve the
Initial Problem: Q: Initial Problem A: Mary spent the full credit: $100. She
paid back $15 on Tuesday and $23 on Thursday. Total paid: $15 + $23 = $38.
Remaining to pay: $100 - $38 = @‘

Direct Prompt An- Total credit used: $100. Payment on Tuesday: $15. Payment on Thursday: $23.

swer (r_dp) Total paid so far: $15 + $23 = $38. Remaining credit to be paid: $100 - $38 =
$62. Mary will need to pay $62 before her next shopping trip.

Extracted Analog- QI: Sarah has a $200 store credit limit. She spends the full amount in one trip.

ical Section (r_an)

She pays back $50 on Monday and $70 on Friday. How much does she still
owe?Al: Sarah starts with $200 of debt. She pays back $50 + $70 = $120. So,
the remaining debt is $200 - $120 =80 |

Table 3: Example 1
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Field

codeforces200 Example

Dataset

codeforces200

Initial Problem

Misha and Vasya participated in a Codeforces contest. Each of them solved one problem,
submitted on first attempt. Misha solved a problem worth $a$ points at $c$ minutes, and
Vasya solved one worth $b$ points at $d$ minutes. The final score is computed as:
score = max(3p/10, p - (p*t)/250)

Determine who scored higher.

Analogical Rea-
soning  Answer
(r_ar)

Analogous Problem: Alice solves a 200-pt question in 30min. Bob solves a 150-pt one in
20min.

Alice: max(3%200/10, 200 - 200%30/250) = max(60, 176)
Bob:  max(3*150/10, 150 - 150%x20/250) = max(45, 138)
Result: Alice wins.

Mapping to Original Problem: This is analogous to comparing scores after time-adjusted
penalties.

Use the same scoring rule:

score = max(3p/10, p - (p*t)/250)

This is analogous to a disjoint set union (DSU) problem. We track original to current
handle via mapping. E.g., given a sequence of changes [ ("A", "B"), ("B", "C")] we
map original — final.

Python3 Code:

def track_handle_changes(n, changes):

original_to_current = {}

current_to_original = {}

for old, new in changes:

original = current_to_original.get(old, old)
original_to_current[original] = new

current_to_originallnew] = original

current_to_original.pop(old, None)

print(len(original_to_current))

for orig, final in original_to_current.items():

print(orig, final)

176
138

Direct Prompt An- To determine who scored more, compute both scores using:
swer (r_dp) score = max(3p/10, p - (p*t)/250)
for both Misha and Vasya. Compare the two results.
Extracted Analog- Analogous Problem: Alice solves a 200-pt question in 30min. Bob solves a 150-pt one

ical Section (r_an)

in 20min.

Alice: max(3*200/10, 200 - 200%30/250)
Bob: max(3x150/10, 150 - 150%20/250)
Result: Alice wins.

176
138

max (60, 176)
max (45, 138)

Table 4: Transposed example from codeforces200 showing reasoning and analogical mapping.
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Abstract

We present Meetalk, a retrieval-augmented
and knowledge-adaptive system for generat-
ing personalized meeting minutes. Although
large language models (LLMs) excel at sum-
marizing, their output often lacks faithfulness
and does not reflect user-specific structure and
style. Meetalk addresses these issues by in-
tegrating ASR-based transcription with LLM
generation guided by user-derived knowledge.
Specifically, Meetalk maintains and updates
three structured databases, Table of Contents,
Chapter Allocation, and Writing Style, based
on user-uploaded samples and editing feed-
back. These serve as a dynamic memory that
is retrieved during generation to ground the
model’s outputs. To further enhance reliability,
Meetalk introduces hallucination-aware uncer-
tainty markers that highlight low-confidence
segments for user review. In a user study in five
real-world meeting scenarios, Meetalk signifi-
cantly outperforms a strong baseline GFLYTEK
ASR + ChatGPT-40) in completeness, contex-
tual relevance, and user trust. Our findings
underscore the importance of knowledge foun-
dation and feedback-driven adaptation in build-
ing trustworthy, personalized LLM systems for
high-stakes summarization tasks.

1 Introduction

Large Language Models (LLMs) have shown im-
pressive capabilities in performing summarization
and generation tasks across a wide range of do-
mains. However, a fundamental question remains:
How do LLMs utilize knowledge, unstructured, in
real-world applications, and how can we ensure
that this knowledge is personalized, accurate, and
faithful? This question is especially critical in the
context of automated meeting minutes generation,
where information needs to be not only complete
and concise but also aligned with domain-specific
writing norms and user preferences.

Although existing approaches have used LLM
to generate abstractive meeting summaries, they
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often fall short in two key areas: (1) the inability to
adapt to user-specific structural and stylistic knowl-
edge and (2) the tendency to produce hallucinated
or generic outputs due to weak grounding. Fur-
thermore, traditional systems lack mechanisms for
learning from user feedback, leading to repeated
errors and suboptimal long-term performance in
repetitive meeting contexts.

In this work, we propose Meetalk, an adaptive
meeting minutes generation system that addresses
these challenges by tightly integrating retrieval-
augmented generation (RAG), user-driven knowl-
edge modeling, and hallucination-aware design.
Specifically, Meetalk builds and updates structured
knowledge bases, including chapter allocation map-
pings and writing style templates, learning from
user-provided examples and edits. At inference
time, these personalized knowledge modules are
retrieved and injected into LLM prompts to guide
faithful and stylistically consistent generation. In
addition, we incorporate uncertainty indicators
such as “[Not Sure]” labels to make the confidence
of the model interpretable to users, thus enabling
human-AlI collaboration in mitigating hallucinated
content.

To evaluate Meetalk, we conducted a controlled
user study in five real-world meeting scenarios.
Compared to a strong baseline (iFLYTEK ASR
+ ChatGPT-40), Meetalk consistently improves out-
put completeness, contextual relevance, and user
trust, while significantly reducing time and cog-
nitive load. Our findings suggest that adaptively
modeling and utilizing user-specific knowledge not
only enhances generation quality, but also provides
a promising paradigm for deploying trustworthy,
personalized LLM-based systems in professional
workflows.

Proceedings of the 3rd Workshop on Towards Knowledgeable Foundation Models (KnowFM), pages 94-110
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2 Backgrouond

2.1 Text-to-Minutes: Evolution from
Extractive Methods to Large Language
Models

Early research on meeting summarization pri-
marily employed extractive methods (Tur et al.,
2008) (Riedhammer et al., 2008) (Tixier et al.,
2017), though studies indicated a human prefer-
ence for abstractive summaries in conversational
content (Goyal et al., 2022) (Murray et al., 2010).
The rise of LLMs has brought strong semantic
capabilities to tasks like meeting minutes gener-
ation (Cao et al., 2024), but factual consistency
remains a key issue. Studies show that nearly 30%
of summaries generated by seq2seq models contain
inaccuracies (Cao et al., 2018)(Kryscinski et al.,
2019). LLMs also face challenges in adapting to
subjective preferences, crucial for meeting min-
utes. Biermann et al.(Biermann et al., 2022) found
that users prefer tools that align with their writing
styles, but Ippolito et al.(Ippolito et al., 2022)(Lin
et al., 2024) noted LLMs struggle to maintain or-
ganizational or individual style and format, further
complicating their use in this context. Therefore,
to develop an accurate and personalized meeting
minutes tool, we propose leveraging the capabili-
ties of LLMs while implementing strategic system
designs to enhance accuracy and adapt to personal
preferences.

2.2 Adaptively Personalized Minutes: RAG
and Summary-based Prompt Engineering

User preference modeling plays a crucial role in
understanding and adapting to user preferences,
thereby enabling the generation of personalized
meeting minutes. Researchers have applied ma-
chine learning-based user preference modeling in
various specific domains. Yang et al. proposed
a kernel probability model for color theme eval-
uation (Yang et al., 2024). Ma et al. introduced
CRNN-SA for extracting user music preferences
from listening history (Ma et al., 2022). Ma et al.
developed SmartEye, a deep learning system that
generates real-time photo composition suggestions
based on users’ previous photos and feedback (Ma
et al., 2019).

Recent advancements in LLMs have highlighted
the potential of Retrieval-Augmented Generation
(RAG) in user preference modeling (Lewis et al.,
2020). RAG enhances LLM performance by
providing relevant external information, reduc-
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ing hallucinations, and improving response accu-
racy. Summary-based prompt engineering for adap-
tive personalization leverages the power of text
summarization to create dynamic, user-tailored
prompts (Ait Baha et al., 2023). This approach ab-
stracts essential information conveniently without
capturing sensitive details (Friedman et al., 2013).
While users often struggle to distill key features
to refine their prompts, employing LLMs to ex-
tract these features and automatically incorporate
them into subsequent prompts offers a convenient
solution (Ait Baha et al., 2023). Recent studies
have shown that such adaptive systems can sig-
nificantly improve engagement and satisfaction in
various applications, from recommendation (Lyu
et al., 2023) systems to personalized learning plat-
forms (Ait Baha et al., 2023).

In the context of personalized meeting minutes,
RAG and summary-based prompt engineering can
be employed for retrieving users’ sample meeting
minutes and learning from user modifications on
the minute’s output.

3 System Design

3.1 Design Goals (DGs)

Motivated by the findings of formative study and
existing research, we aim to design an adaptively
personalized meeting minutes generation tool with
the following design goals (DGs):

DG1. To improve minutes quality while reduc-
ing time spent on meeting minute generation.

DG2. To integrate users’ personal preferences
in meeting minute formats and writing styles.

DG3. To leverage an adaptive approach that
streamlines the process for repetitive meeting tasks,
improving efficiency over time.

DG4. To enhance the visualizations for trust-
worthiness, increasing user confidence in the gen-
erated minutes.

3.2 Overall Workflow

Meetalk’s workflow can be visualized in Figure 1,
beginning with the user uploading a sample meet-
ing minutes file and the meeting audio to be pro-
cessed. The system analyzes the sample file to sug-
gest three key components: the Table of Contents
(ToC), Chapter Allocation Database, and Writing
Style Database. These components serve as adap-
tive references for the subsequent processing steps,
allowing Meetalk to tailor its output to each user’s
specific needs and preferences.
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Figure 1: Meetalk’s main process: Steps 1-2 sample file data analysis and suggestion, 3-7 transcribe audios, 8

allocates chapters, and 9 involves chapter-wise writing.

Next, Meetalk processes the meeting audio us-
ing ASR, dividing it into segments for transcrip-
tion, speaker diarization, and punctuation. As each
segment is processed, Meetalk performs chapter
allocation by referring to the Chapter Allocation
Database, labeling the text according to the existing
ToC or creating new chapters or sections as nec-
essary. If users find the chapter allocation results
inaccurate, they can pause the process and modify
the chapter allocation labels as easily as editing text.
By confirming the modifications, these changes are
incorporated into the Chapter Allocation Database
for future reference.

Once all audio is processed and allocated,
Meetalk generates content for each section based
on the Writing Style Database and the allocated
text. Similarly, if users are unsatisfied with the gen-
erated results, they can directly modify the content.
By confirming the modifications, Meetalk will ana-
lyze the modified parts at a high level and update
the Writing Style Database accordingly.

Throughout this process, Meetalk offers two
LLM options: OpenAl ChatGPT API (support-
ing all available versions), and a locally hosted
LLAMA3:8b. This flexibility allows users to
choose their preferred LLMs for various needs, bal-
ancing factors such as performance, privacy, and
cost.

3.3 Databases

Meetalk features three core databases. First, the
Table of Contents Database (ToC) is responsible
for storing the organizational structure of meeting
records, specifically the chapters and sections. Sec-
ond, the Chapter Allocation Database archives
historical associations between contents and spe-
cific chapters and sections. Third, the Writing
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Style Database establishes guidelines and stores
details for diverse writing styles. The writing styles
for different sections are displayed alongside their
corresponding sections in the ToC. These three
components can be populated through three meth-
ods. The first method is Referencing to Sample
Files: Meetalk processes reference documents by
examining their chapter layouts, recognizing the
content within, and summarizing the writing style
characteristics. The second method is Manual User
Input, where users can manually enter data for all
three databases. The third method involves Learn-
ing from User Modifications, Meetalk learns and
updates the databases based on user modification
on the output. These processes will be explained
in detail in a subsequent section.

3.3.1 Chapter Allocation Database

The Chapter Allocation Database is organized into
three columns: content, Label A, and Label B.
Both label columns follow the format "Chapter
XX, Section xX," serving to denote the hierarchical
chapter and section to which the content belongs.
The inclusion of two labels is based on our rig-
orous testing results. We conducted a systematic
study using a random sample of 200 sentences from
meeting transcripts, analyzed in conjunction with
their corresponding table of content. Two editors
independently labeled each sentence, considering
its contextual placement (Cohen’s Kappa = 0.92,
agreement ratio = 96.5%). Analysis of these labels
revealed that 78% of sentences corresponded to a
single section, while 22% belonged to two differ-
ent sections. Therefore, we’ve included a second
label column to accommodate these dual-labeled
sentences. For content requiring more than two
labels, users can split the same content item into



multiple rows for input, allowing additional labels
to be assigned to that content. For example, a con-
tent item needing 4 labels can be entered in two
rows, with 2 labels assigned to each row.

To allow wusers conveniently update the
databases, as shown in Figure 2, Meetalk provides
users with the flexibility to edit table contents, add
new entries, and modify chapter allocation outputs.
While minor changes need to be made, our database
can keep track on the preferences based on these
changes. After editing and confirming the edits,
users could click the “Save Data” button to upload
the edited database and save it as the current chap-
ter allocation database.

Chapter Allocation Manager

Figure 2: Chapter Allocation Databases, with buttons to
get chapter allocation data, add rows, delete rows and
save data.

The content column of the Chapter Allocation
Database is stored as embeddings (referred to as
"content embeddings" below). For each entry of
the "content" column, an embedding is generated
using the large multilingual E5 text embedding
model (referred to as "multilingual-e5-large” be-
low). The multilingual-e5-large model supports
93 languages, primarily English, enabling Meetalk
to process meeting minutes in multiple languages,
thereby enhancing its global applicability. These
embeddings are crucial as they provide a mathe-
matical representation of the text, facilitating later
comparison and retrieval.

3.3.2 Writing Style Database

To empower users with the capability to utilize and
preserve precise and tailored writing tags, we have
defined eleven indicators categorized into three
main types: Five for Writing Context, five for
Summary Variables, and one Difference.

Figure 3: Writing Style Databases, with 11 columns and
buttons to get writing style data, add rows, delete rows,
and save data.

Writing Context encompasses the foundational
elements necessary for creating the writing piece.
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These indicators were derived from a comprehen-
sive formative study on meeting minutes require-
ments across diverse industries, including: Input:
The scenario of the meeting. Participant: The
individuals or groups involved in the meeting, in-
cluding their roles and relevance to the discussion
topics. Writing Goal: The primary objective of
the meeting minutes, such as informing, decision-
making, or action planning. Writing Format: The
required structure or style of the meeting minutes,
such as paragraphs, bullet points, or numbers. Your
role: The viewpoints or roles that need to be repre-
sented in the minutes.

Summary Variables are mainly derived from
LIWC 2022 definitions, including: Analytical
Thinking: Measures logical and hierarchical think-
ing patterns. Clout: Reflects social status, confi-
dence, or leadership abilities. Authenticity: In-
dicates honesty, personal disclosure, and genuine-
ness. Emotional Tone: Assesses overall emotional
tone of the writing. Language: English, Spanish,
Traditional Chinese, etc.

And finally, the Difference variable is created to
store comparisons between user modifications and
original text.

The Writing Style Manager interface includes
three main buttons to interact with the writing style
data. The "Get Writing Style Data” button re-
trieves the current tag data from the database. Users
may then add, delete, or edit rows, uploading their
changes using the "Save Writing Style Data" but-
ton. With this approach, we enable dynamic and
iterative improvements in writing style prediction
and generation.

4 Knowledge Integration and Utilization
in Meetalk

In the era of large language models (LLMs), the
ability to effectively ground generation on struc-
tured and personalized knowledge is crucial to
enhancing output accuracy and trustworthiness.
Meetalk addresses this challenge by incorporating
a retrieval-augmented and user-adaptive knowledge
pipeline into its summarization workflow. This sec-
tion details how Meetalk constructs, retrieves, and
updates knowledge to enable personalized, faithful,
and hallucination-aware meeting minutes genera-
tion.



4.1 Knowledge as Structured Memory

We conceptualize knowledge in Meetalk as a struc-
tured memory composed of three user-specific
databases: the Table of Contents (ToC) database,
the Chapter Allocation database, and the Writing
Style database. These databases are derived from
user-provided sample minutes or previous inter-
actions, and encode the organizational structure,
topical segmentation, and preferred linguistic style
for each meeting domain. Unlike static templates,
these knowledge modules dynamically evolve as
users revise system outputs.

4.2 Retrieval-Augmented Prompting

To ensure faithful and stylistically consistent gener-
ation, Meetalk employs retrieval-augmented gener-
ation (RAG) techniques at multiple stages. During
chapter allocation, each segment of transcribed au-
dio is embedded and matched against prior con-
tent in the Chapter Allocation database to sug-
gest contextual labels. Similarly, in the writing
stage, the system retrieves style exemplars from the
Writing Style database to construct section-specific
prompts. These retrieved signals act as grounding
knowledge, guiding the LLM to produce outputs
aligned with both the user’s structural expectations
and domain-specific discourse.

4.3 Knowledge Updating via User Feedback

To support long-term adaptability, Meetalk treats
user modifications as implicit knowledge updates.
After each editing action—whether modifying
chapter boundaries or rewriting section texts—the
system summarizes the difference and updates the
corresponding database entry. In doing so, Meetalk
implements an interactive knowledge editing loop
that enables continual refinement of the structured
memory without requiring explicit reprogramming
or prompt engineering from the user.

4.4 Hallucination Awareness and Uncertainty
Markers

To further enhance trust and mitigate hallucinations,
Meetalk integrates a lightweight hallucination-
aware mechanism. When the system detects
uncertain or low-confidence segment-label map-
pings—based on retrieval inconsistencies or model
disagreement—it marks them with a “[Not Sure]”
tag in the interface. This allows users to prioritize
checking potentially unreliable content, offering a
human-AlI collaboration path for factuality verifi-
cation. These uncertainty annotations can also be
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logged for future benchmarking or fine-tuning, sup-
porting broader efforts in hallucination detection
and correction in knowledge-intensive generation
tasks.

In summary, Meetalk transforms user interac-
tions into a dynamic knowledge lifecycle: acquir-
ing knowledge from user examples, injecting it via
retrieval-augmented prompting, refining it through
feedback, and regulating output trustworthiness
through uncertainty cues. This design provides
a concrete pathway for realizing knowledgeable,
user-aligned LLM applications in high-stakes do-
mains such as meeting documentation.

5 [Evaluation

To evaluate the effectiveness of Meetalk in sup-
porting the generation of meeting minutes, we con-
ducted a within-subject study comparing Meetalk
with the conventional approach to automate meet-
ing minutes. As our baseline, we selected iFLYTEK
real-time ASR combined with ChatGPT-4o. Partici-
pants were asked to complete two tasks, using the
baseline method and Meetalk respectively.

To validate the optimization of our system for
handling the repetitive nature of meetings, partic-
ipants in each task processed three meeting au-
dios from a specific scenario, generating meeting
minutes in a consistent format. To assess the gen-
eralizability of Meetalk, we selected five different
scenarios and invited participants who were famil-
iar with these scenarios to complete the tasks.

Through these comparisons, we seek to evaluate
whether Meetalk outperforms the baseline method
in addressing the design goals derived from litera-
ture and the formative studies.

Eighteen (N=18) participants are invited to this
study, with five different real-world scenarios in-
cluded: legal consultations, study abroad coun-
seling, academic discussions, mock interviews,
and company pitches. Participants generally span
moderate to high levels of expertise within their
respective fields.

It is noteworthy that all participants demonstrate
high frequency of meetings and substantial usage
of language models in their professional contexts,
underscoring the relevance of this study to contem-
porary professional practices. If the audio contains
private conversations, any mentions of real names
have been cut out beforehand, and this removal
does not affect the main content of the meeting.



5.1 The Baseline Method

The baseline method combines two powerful tools:
Using iFLYTEK ASR to generate transcript from
the meeting audios, and using OpenAI’s ChatGPT-
4o to write meeting minutes from transcripts. This
approach requires users to switch between two sep-
arate tools and incurs significant costs.

5.2 Study Procedure

A remote study session for each participant lasted
up to 3 hours, divided into three parts: the pre-
study survey, the main study itself, and the post-
study interview. Participants accessed Meetalk via
a web browser on a researcher-provided computer
through remote control software. Simultaneously,
the experimenter communicated with the partici-
pants via Zoom or Lark video conferencing.

As for the main process, initially, communicate
with the participant to ensure they understand the
relationship and purpose of the above materials,
as well as the workflow of using Meetalk. Then,
proceed with two tasks while recording the time
taken for each: Task 1: Using the three transcripts
produced by iFLYTEK, create meeting minutes
similar to the sample meeting minutes file using
ChatGPT4o for each transcript. Instruct partici-
pants to pay close attention to the format and writ-
ing style, aiming to match the sample meeting min-
utes as closely as possible. Participants are allowed
to use various tools within ChatGPT4o to accom-
plish this task. Task 2: On Meetalk, upload the
sample meeting minutes file and click "suggest".
Allow participants to freely modify the suggested
database. Then, instruct them to click "submit"
for chapter allocation, again allowing free editing.
Finally, have them click "write" and permit further
modifications as needed. Remind participants that
their edits will be saved to the database, which may
influence the processing of subsequent audio files.

6 Results

In this section, we analyzed objective and subjec-
tive results by combining the final study minutes,
post-study questionnaires, and screen recordings
captured during the process. The subjective ratings
on minutes’ quality and the ML GUI Heuristics are
presented in Figure 4.
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Figure 4: Ratings for Meetalk(left) and the base-
line(right) method of the subjective 5-point Likert
rating results on minutes’ quality and user experience
based on the ML GUI Heuristics.

6.1 Q1: Meetalk improves writing quality
while reducing time

We recorded the time taken by 18 participants to
complete two distinct tasks in this study. The aver-
age time for each scenario was calculated and vi-
sualized in Figure 5. Overall, Meetalk consistently
utilizes less time than the baseline method across
all scenarios, (p = 0.0169, Cohen’s d = 1.7629),
with an average time reduction of 33.9%.
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Figure 5: Meetalk and the baseline method average
time comparison in five studied scenarios. Within a bar,
the different colors show the specific time proportion
of each stage. It is evident from the figure that the total
time used by Meetalk is lower than that of the baseline
method.

As shown in 1, the Flesch-Kincaid Reading Ease
scores indicate that Meetalk’s output has no signifi-
cant difference on the readability level compared to
the baseline’s output (p = 0.0688, lower scores in-
dicating easier-to-read text. Regarding word count,
Meetalk consistently demonstrates a higher word
count percentage across all domains compared to
the baseline (p = 0.0114, Cohen’s d = 1.9815). This
substantial difference in word count percentages in-
dicates that Meetalk consistently produces more ex-
tensive content than the baseline, suggesting more
detailed or comprehensive responses in each do-
main.

Based on the participants’ ratings of minutes
quality, Meetalk-generated minutes generally out-
performed those produced by the baseline method
on completeness (Mean = 3.56 > 2.94, p = 0.0022,
Cohen’s d = 1.1093), Context Relevance (Mean
=4.44 > 3.94, p = 0.0244, Cohen’s d = 0.7864),
and Accuracy(Mean = 4.00 > 2.89, p = 0.0010,
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Domain

Meetalk Baseline Meetalk

Baseline

Meetalk Baseline Meetalk  Baseline Meetalk Baseline

14.03 13.26
(0.23) (0.55)

16.47

Flesch-Kincaid Reading Ease Mean (SD) 1.72)

15.88 16.38
(1.92) (2.87)

18.00 13.36
(1.44) .27

15.20
(2.08)

15.18 10.81
(2.83) (1.69)

3825/17945 869/17945

Word Count Percentage —91.32% —4.84%

=51.6%

774/1500  476/1500
=31.73%

1480/3595  551/3595
=41.17% =15.32%

3566/13012  873/13012
=27.41% =6.71%

841/4406  151/4406
=19.09% =3.42%

Table 1: Comparison of Meetalk and Baseline across Flesch-Kincaid Reading Ease (The lower, the easier to read)

and the word count

Cohen’s d = 1.1971).
* Completeness:

Meetalk’s score generally outperforms the Base-
line’s score. Even though both methods cover the
main idea, Meetalk provides more details and in-
depth explanations, resulting in more comprehen-
sive and complete content. This difference can
be attributed to the different approaches Meetalk
takes in processing the long transcript. Meetalk
accurately extracts all sentences related to a spe-
cific section. Then, in a single LLM process, it
focuses only on these sentences and rewrites them.
By focusing on a specific section, Meetalk can
provide richer, more relevant content within a lim-
ited generation space. In comparison, the baseline
method adopts a full-text summarization, although
it touches on the solution part, but only provides
an overall summary. It is constrained by the to-
ken limit of the LLMs, resulting in limited space
allocated to the solution part in the summary.

* Conext Relevance: Likert results show that
Meetalk consistently achieves slightly higher con-
text relevance scores compared to the baseline
method. The low relevance in the baseline method
may be attributed to overgeneralization. When pro-
cessing large amounts of text, language models
often attempt to synthesize broad summaries, re-
sulting in vague or generic statements that lack
specific, pertinent details (Liu & Lapata, 2019).
This tendency towards overgeneralization leads to
output that, while broadly related to the input, fails
to address the nuances of the given query, signifi-
cantly reducing its relevance and utility to the user.

e Accuracy: Users rated Meetalk’s accuracy
slightly higher than the baseline’s. User feedback
indicated that while both methods generally han-
dle explicit numerical data well, the baseline often
introduces logical errors that reduce overall accu-
racy. This issue likely stems from the limitations of
traditional summarization techniques in handling
long-form content (Liu & Lapata, 2019), which
adapted by the baseline method.

6.2 Q2: Meetalk allows user-driven
customization to address personal
preferences

Two metrics in the ML GUI heuristics framework
showed noteworthy results. The Personal Align-
ment & Consistency metric showed a positive
trend favoring Meetalk over the baseline method
(Mean = 3.72 vs. 2.83, p = 0.1887, Cohen’s d
= 0.4472), although the difference was not statis-
tically significant. More compellingly, the User
Control and Freedom metric demonstrated a
highly significant advantage for Meetalk (Mean
=4.11 vs. 1.83, p < 0.0001, Cohen’s d = 1.9031).
These results strongly suggest that Meetalk effec-
tively empowers users to tailor their reading ex-
perience according to individual preferences and
habits, particularly in terms of providing enhanced
control and freedom.

Through user-driven customization, the system
achieves alignment consistency by ensuring that
formats and writing styles are consistent with both
sample files and user preferences. By allowing
users to define their own formats and create writing
style tags, the system maintains a seamless align-
ment with users’ desired outcomes and expecta-
tions. By allowing users to edit or delete suggested
content, and to modify Meetalk’s output as needed,
Meetalk ensures a high degree of user control and
freedom.

6.3 Q3: Meetalk streamlines repetitive meeting
tasks with adaptive learning

Given the repetitive nature of meeting minutes
tasks, it’s crucial for a system to leverage this char-
acteristic to enhance efficiency. Our study revealed
that Meetalk significantly outperformed the base-
line method in three critical areas: recognition
rather than recall (Mean 3.94 > 1.67, p < 0.0001,
Cohen’s d =2.5820), error prevention (Mean 4.33
>2.72, p <0.0001, Cohen’s d = 1.9437), and adap-
tation to user modification (Mean 4.67 > 2.61, p <
0.0001, Cohen’s d =2.2194). These results strongly
indicate that Meetalk effectively empowers users to
tailor their meeting minutes experience, leveraging
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the repetitive nature of the tasks to enhance overall
efficiency and user satisfaction.

Function suggestion significantly enhances this
aspect. P3 noted, "Meetalk’s ability to suggest
table of contents and writing styles from sample
files is incredibly helpful. I don’t have to remem-
ber everything or keep separate databases.”" P12
added, "It’s much easier than the baseline where
we had to maintain our own databases and then
figure out how to prompt ChatGPT correctly.” This
automated suggestion feature allows users to focus
more on minutes creation and understanding rather
than tedious memorization and retrieval.

6.4 Q4: Meetalk enhances visualizations for
trustworthiness

The trustworthiness of meeting minutes generation
is paramount to its usefulness. Meetalk outper-
formed the baseline in both Visibility of System
Status (Mean 4.00 > 3.28, p = 0.0198, Cohen’s
d = 0.8165) and Trustworthiness (Mean 4.78 >
2.89, p < 0.0001, Cohen’s d = 2.2356), according
to participant ratings.

* Visibility of System Status: Meetalk provides
visibility into three key areas: databases, progress
of the chapter allocation process, and final results.
P5 commented, "With Meetalk, I can see every-
thing from the databases being used to how far
along the process is. It’s so much more transparent
than just seeing input and output like with the base-
line.” P11 added, "Being able to track the chapter
allocation process in real-time gives me a sense of
control and understanding that I didn’t have with
ChatGPT." The high degree of visibility allows to
reduce uncertainty about system behavior. Users
are better able to anticipate and adjust processes,
resulting in greater efficiency and accuracy, making
participants more confident and proactive in using
LLMs.

* Trustworthiness: The enhanced visibility of
system status, coupled with Meetalk’s ability to
indicate uncertainties, fosters a true collaboration
between human and Al. P2 noted, "I appreciate
that Meetalk shows me what it’s unsure about. It
feels like we’re working together, rather than me
just correcting a finished product.” P14 elaborated,
"The constant feedback during the process makes
me trust Meetalk more. It’s not just a black box
spitting out results."

This approach to transparency and collaboration
significantly increases trustworthiness. As P8 sum-
marized, "With Meetalk, I feel like I'm part of the

process, not just an end-user. That makes me trust
the results much more than I did with the baseline
system."”

7 Conclusion and Discussions

Meetalk addresses the challenges of long meeting
minutes generation through innovative chunking
and adaptive personalization. By performing ASR
on 30-second audio segments and labeling tran-
scribed content for section allocation, Meetalk en-
hances completeness and relevance, allowing users
to review and modify labels in real-time. This pro-
cess reduces input length for LLMs, improving the
quality of summaries. Additionally, the system’s
flexibility accommodates various data types and
user preferences through RAG and summary-based
prompt engineering, enabling natural adaptation
to user behavior. Meetalk’s design also includes
an authenticity assessment mechanism that boosts
user trust with feedback labels like "[Not Sure]."
Overall, Meetalk’s approach and principles can be
generalized to other Al-driven applications beyond
meeting note-taking, enhancing user engagement
and facilitating multimodal processing tasks.

In conclusion, this study introduces Meetalk,
an innovative adaptive Al system for personal-
ized meeting minutes generation. By addressing
key challenges in automated minute-taking, includ-
ing effectively adapting to personal preferences,
Meetalk represents a significant advancement. The
system’s unique features, such as chapter alloca-
tion, chapter-wise writing, and adaptive learning
from user modifications, offer a flexible and user-
centric approach to generate meeting minutes. Our
comprehensive user study across diverse real-world
scenarios demonstrates Meetalk’s effectiveness in
producing high-quality, personalized minutes while
enhancing user experience and trustworthiness.
These findings validate Meetalk’s practical appli-
cability, and further contribute valuable insights to
the broader domain of personalized Al-assisted text
processing and summarization. As organizations
continue to rely heavily on meetings for informa-
tion exchange and decision-making, systems like
Meetalk have the potential to significantly improve
productivity and communication effectiveness. Fu-
ture research can build upon this foundation, further
exploring the integration of adaptive personaliza-
tion in various professional contexts and expanding
the capabilities of Al-assisted documentation sys-
tems.
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Limitations

One limitation for our work is that we chose per-
sonal computers as the primary device for Meetalk
in the user study, since we consider their common
use as meeting minute tools. However, we believe
that one of Meetalk’s core functionality, namely
converting speech into structured meeting minutes,
can be applicable to other devices, particularly
smartphones, which might offer more convenience
in audio recording and uploading. Nevertheless, us-
ing the system on smaller screens may require Ul
adjustments, and the user experience could differ.
For instance, content review and manual editing
might face more challenges, which potentially in-
creases the need for automated support.

Another limitation lies in the failure to use lo-
cally deployed LLMs for the user study. Although
we include LLAMAZ3:8b in the design of Meetalk,
we still used GPT-40 in our user study in order to
be consistent with the most commonly used meth-
ods mentioned by the participants in the formative
study.This choice, while facilitating a direct com-
parison of the results, also limits our understanding
of how the localized models perform in real-world
applications. Future research could explore sim-
ilar user studies using localized models such as
LLAMAZ3:8b to validate the effectiveness of our
proposed approach in real privacy-constrained en-
vironments.

Furthermore, we employed the Flesch-Kincaid
Reading Ease score and word count percentage
as objective measures to assess the quality of the
meeting minutes produced. While readability is a
crucial aspect of meeting minutes and it provides
valuable insights, it does not include all dimen-
sions of content quality. Additionally, word count
percentage could somehow refelect the complete-
ness of Meetalk’s generated minutes, but we did
not measure the quality of the large word counts.
Both these two measures provide extra results to
triangulate with the subjective assessment of text
quality.

Lastly, Meetalk, as a research prototype, has in-
herent limitations. Our system relies on advanced
LLMs like LLAMA3:8b or ChatGPT-4, both re-
quiring significant computing resources. In our ex-
periments, we either deployed LLAMAZ3:8b locally
on a 24GB NVIDIA RTX 4090 GPU or used the
ChatGPT-40 API. What’s more, the 8k limit of one-
sentence summarization, might lead to information
gap, in concluding the meeting scenarios. Addi-

tionally, the ASR component lacks an interactive
learning process, which means the transcription
errors can’t be automatically corrected based on
user modifications. Currently, the system doesn’t
support real-time audio input, only allowing for
audio file uploads. Furthermore, while powerful,
the LL.M-based text generation is not 100% accu-
rate and can occasionally produce hallucinations or
inaccuracies in the generated content.
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First segments (standard speaker lables)

SpkO: Hi, I'm the interviewer, my name is Alice.

Spk1: Hi, I'm Bella. Nice to meet you.

um &)

Refer

SpkO: Can | start to
answer?

Spk1: Yes, please, I'll
record.

Later segment example || Later seaments examble

Speaker
Identity
Dictionary

Adjust

Spk1: Can | start to
answer?

Sok0: Yes. please. I'll
record.

Figure 6: Meetalk’s speaker diarization example in an interview scenario: The initial segment identifies Speaker 0
as the interviewer and Speaker 1 as the interviewee, storing their utterances in a Speaker Identity Dictionary. In
later segments, even if speakers are initially mislabeled due to isolated analysis, the system corrects these labels by
referencing the Dictionary, ensuring consistent speaker identification throughout the interview.

h 4 N
Current segments Embedding similarity comparison (7) RAG &) LLM for authentication
' with the “content” column
. ) Current segments
Select the entries corresponding to
the k most similar contents
ya] :
) A K most similar entries
<
Ghapters and styles @ LLM “Are these examples
Current segments & authentic to support
Allocale these for labeling this
sentences to the

Lo st i . segments? Answer by

given table of T f False.”

I contents or create a Tue of False:
new section.”
K most similar entri
Table of Contents most similar enfries c B
\ AN J

current segment’s label

If “False”, label shown as red, with a
“[Not Sure]” sign;

If “Yes”, directly output the label

Figure 7: Chapter Allocation Procedure. Step A: Retrieve two entries with similar contents to the current segments.
Step B. Leveraging an LLM to judge whether the retrieved two entries are authentic or not. If False, the label will
be shown as red with a "[Not Sure]" sign. Step C. Request: Prompt ToC, current segments, last segment’s label, and
the retrieved two entries to an LLM, for generating the label for the current segment.
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Hi Ash, how are you? I'm doing good How are you? Doing well, thank you. Hi Aish, how are you? I'm doing good. How are you? Doing wel, thank you.
(abel i ici (label1:Chapterintroduction,SectionParticipant)

B e A 5 T s e e P e g e ST e
G D R AT A e GO e e T S D ATy excited to be doing this mock with you. Sure, sounds good. You can assume we a

and you are a PM at Amazon, and your task is to basically design a smart product that uses Amazon and you are a PM at Amazon, ond your task is to basically design a st mducl
Al for Kids (abel1:€ that uses Al for kids.(label1:Chapterintroduction,SectionParticipant)

‘You can assume ws are Amazon andyou are a P at Amazon, and your task s to basically You can assume we are Amazon and you are a PM at Amazon, and your task i to basically
design a smart product that uses Al for kids. So, as in my understanding, the mission of design a smart product that uses Al for kids. So, as in my understanding, the mission of
Amazon is to be Earth's most customer-centric company. We want to make it easy for Amazon i to be Earth's most customer-centric company. We want to make it easy for
customers o buy eveyting on amazon,com. customers to buy everything en amazon. com.

o, given that's the company mission, in my mind, our product mission statement
sheu\d be buil Idmg a product that caters to the needs of kids and makes it easy for them to.
‘access and buy what they need. It could be a hardware-based pmdu:t software, or it could jrocsssandlboy st theyjeed ico Dele nardnnis hasec Pt rotia s Gt
cven be s physical product. How does that sort o sound as an spprosch? oo hE;hv"{:Krg‘ product How doss that st of sound as an fiprosch
label1:ChapterConclusion,SectionSolution)
(label1:ChapterConclusion SectionSolution) T B D How does that sort of sound as an approach? Does this dea sort of make sense, tying the
‘company mission to the product goal? Yeah, | thin}
Meetalk generates the sl (label1:Chapterlntroduction,Sectioninterviewque Parti P —
lsbel2 CraptriniroducionSecionparticpant articipant edits the
1 chapter allocation with some o P

 <garcing constaints. Do we Perfect So, as a next step, one other qt

com. Sa gven hats e company mision n my mind,our produc misson statement
should be building a the needs of kids. for them to

red * No(Sure S:gn Amszon, | don' think e will have oy <o Smain, 1 ez conseais? “Not Sure” labels

Introduction Sectioninterviewauestion) ettty iob

Chapter allocation m [Ty T P—

Upload Modification Continue Add New Writing

Click “Upload Writing
Modification”

Hi Aish, how are you? I'm deing good. How are you? Doing well thank you.
(label1:Chapterintroduction,SectionParticipant)
Doing el thark you.'m excted  get  produc senseiteview question todayand
xcitetobe ding this mock with you Sur, sounds good. You can ssume ve

and you are a PM at Amazon, and your task is to basically design a smart pradu:l
hat s Al for ki abel1 Chapteriroduction ectionparticipant)
Youcan assume we are Amszon and you re  PH at Amazon,and your ta s o basically
designa Alfor kids. So, as in he mission of
e S e e e e S A e e

lclus::;:\f:s 10 buy everything on amazon. com. ) The modified lables have
o, given that's the company mission, in my mind, our product mission statement 5 been added to the chapter

i o b ing a product that caters to the needs of kids and makes it easy for them to.
access and buy what they need. t could be a hardware-based product, software, or it could i
even be a physical product. How does that sort of sound as an approach?. allocation database
(label1:ChapterConclusion,SectionSolution)

? Does this idea sort of make sense, tying the
h, | think it sounds good. Perfect.

The red labels e
turn to black in my mind is regarding constraints. Do we

fints? Considering Amazon, | don't think we will

have some cost constraints, right?

Figure 8: Chapter allocation modification procedure. Participants are notified with the unauthentic labels by a red
"[Not Sure]" sign. By modifying these unauthenntic labels and clicking the "Upload Writing Modification" button,
the modified labels turn black and been added to the chapter allocation database.

4 N N
Map to the
corresponding
writing style

Current Section  ~------ |

FE Mapping|| | Thefirstekworas = &) LLM
of the whole
transcripts

“Summarize the contents
of this meeting in one
sentence”

\_ .

One-sentence summary

Select the specific
writing style

the passage {One-
sentence summary}
using the following

Current Section Selected writing style writing style: ...."

| “Write this section of @ LLM

“The questions of the
interview were...”

Writings of different sections
Figure 9: Chapter-wise Writing Procedure. Step A: Map the writing style with current section. Step B. Summarize

the first 8k words (compatibility of the LLMs) of the whole transcripts with one sentence. Step C. Prompt current
section and the writing style to an LLM for writing this section.
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Meeting Minutes .* Meeting Minutes .

Upload Writing Mod Upload Writing Modification

*+Introductionss
*Participants **Introductions*
interviever: Evelyn, interviewee: Rachel *Participant®

interviewer: Evelyn, her job is... interviewee: Rachel, her _Tb is...
**Introduction®*

dewques: td *xIntroduction*®x
In a product sense intervies, tvo colleagues, Evelyn and Rachel, engage *[pserviexquestions

in a discussion where Rachel, acting as a product manager at a startup, In a product sense int Participant edits the context

_ aimed at encouraging people to read e el by adding “her job is..”
Meetalk generates [oau of reading, particularly iR

chapter-wise writing || Writing Style Manager

Meeting

Upload W*ng Modification

. - A difference will be summarized:”In the first
Click U':{If)ad .Wrmng 4 version, the jobs are not indicated, while in the later
Modification” version there is...”

Figure 10: Chapter-wise writing revision procedure

A Meetalk-Your Personal Meeting Helper

EEEE=3ED Chapter allocation = P——

modify the labels Modify outputs

modified
entries

CHAPTER-wise writing visualization formats:
CHAPTER ALLOCATION visualization formats: mm Section xxx
-« Spk x: contents... (Chapter xx, Section xx)
chapter ﬂx comem; (Chaptsrxx, Section xx)

allocation el

Chapter xxx, Section xxx
Contents ....

Update Writing Styles

Chapter Allocation Manager c Ade Save Data
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content label a label b Delete

Columns: Content, Label_a, Label_b

Writing Style Manager Get Writing Style Data Add Rows Save Data
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tag input participant writing_goal writing format your role analytical thinking ~ clout authentic language  difference

tone
Columns: tag, input, participant, writing goal, writing format, your_role, analytical thinking, clout,
authenticity, emotional tone, language, difference

Figure 11: Meetalk, an adaptively personalized meeting minutes generation system. As illustrated in the Meetalk
User Interface, after uploading meeting audio and a sample meeting file, Meetalk suggests a table of contents,
chapter allocation data, and writing style data based on the sample file to personalize the meeting minutes. After
that, Meetalk starts chapter allocation to label each segment according to the table of contents. Finally, meetalk write
for each section to form a final meeting minutes. For both the chapter allocation and chapter-wise writing procedure,
users could modify the outputs and Meetalk will learn the modifications to better adapt to user preferences.

106



Table 2: demographics, meeting frequency, and LLM usage of study participants

Scenario ID Age Gender Degree Occupation Meeting Freq. LLM Usage
P1 18-24 M Bachelor  Lawyer trainee Daily Daily
Legal consultations P2 18-24 F Undergrad. Law student Weekly Daily
P3  25-34 M Bachelor  Junior lawyer Daily Daily
P4 25-34 F Bachelor  Consultant Weekly Weekly
PS5 25-34 F Master Teacher Weekly Weekly
Study abroad counseling P6  25-34 F Bachelor  Teacher Weekly Weekly
P7 25-34 M Postgrad.  Senior postgraduate Weekly Daily
P8  18-24 F Postgrad.  Senior postgraduate Monthly Weekly
Academic discussions P9  18-24 M Undergrad. Music major Monthly Daily
P10 35-44 M Ph.D. Lecture tutor Weekly Daily
P11 25-34 M Bachelor  HR intern Weekly Daily
Mock Interviews P12 25-34 M Bachelor  HR intern Weekly Daily
P13 25-34 F Undergrad. HR intern Weekly Daily
P14 35-44 M Master Sales manager Weekly Daily
P15 24-34 M Bachelor  Sales agent Daily Daily
Company pitches P16 35-44 F Bachelor  Sales agent Daily Daily
P17 35-44 F Master Venture Capital Daily Daily
P18 35-44 M Master Venture Capital Daily Daily

Introduction

Participant career

Interview qu career

Analysis

Structures a career

Pain points career

Figure 12: Meetalk’s Databases UI: This comprehensive view showcases Meetalk’s suggestions following
document parsing in the databases’ UI. The left panel displays a suggested Table of Contents, while the right
side presents a Chapter Allocation Database (top) and Writing Style Database (bottom). These Al-generated
recommendations offer a strategic starting point, with full user customization available to tailor the content structure
and style to specific needs.
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tag input participant wrifing goal writing format your role analytical thinking  dout authentic T~ language  differsnce

Columns: tag, input, participant, writing goal, writing format, your_role, analytical
thinking, clout, authenticity, emotional tone, language, difference

Figure 13: Meetalk’s Full Ul illustration: S1-2, upload meeting audios or transcripts to proceed, and upload sampe
meeting minutes file to be referred by the system. After clicking on the suggest button in S3, Meetalk analyzes
the uploaded files to suggest Table of Contents, chapter allocation data, and writing style data, as shown in S4. In
S5, three buttons in each database are provided to reveiw and revise the suggested data if needed. In S6, while
submitting the data to start chapter allocation, and could pause to modify the labels and store the modifications
in the chapter allocation database. In S8, users could add writing styles if they are not specified in the table of
contents. In S9, click write to start chapter-wise writing, and again in S10, if users are not satisfied with the outputs,
modification is allowed and will be summarized in high level to store in the writing style database.
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Richard Wagner's Early Life Comparison

Meetalk Version

Baseline Version

Birth and Upbringing: Richard Wagner was bom on May 22, 1813, in Leipzig,
Germany. He grew up in a family with a rich artistic atmosphere. His father, Carl
Friedrich Wagner, was a police clerk with a strong interest in theater, but passed away
just six months after Wagner's birth. His mother, Johanna, later married actor Ludwig
Geyer, creating a home environment filled with drama and music for young Wagner.
Wagner's early musical education began in Leipzig, where he studied at the St. Thomas
School, an institution where Bach had once served as organist. In 1831, at the age of
18, Wagner briefly attended Leipzig University, majoring in music. His first formal music
teacher was Christian Gotllieb Mller.

Artistic Awakening: Wagner's early works were deeply influenced by Romanticism,
especially through literary and dramatic works. He began composing in his teenage
years, demonstrating a natural talent and passion for music. In 1832, he composed his
first symphony, reflecting a profound understanding and love for Beethoven's music. In
1833, Wagner started writing his first opera, "Die Feen" (The Fairies), which he
completed in 1834. Although this work was not performed at the time, it marked the
official beginning of Wagner's operatic career. During this period, Wagner also read
extensively from German Romantic literature, which greatly influenced his later artistic
concepts. He began to form the artistic ideal of integrating music, drama, and literature,
laying the foundation for his revolutionary music drama concept that would emerge in
later years.

Early Years (1813-1842)
Birth and Upbringing: Wagner was bom in 1813 in Leipzig, Germany, and grew up in
a family with a rich artistic atmosphere. His early musical education began in Leipzig,
and he started composing musical works in his teenage years.

Artistic Awakening: His early years were deeply influenced by Romanticism,
especially through literary and dramatic works. His first opera, "Die Feen® (The Fairies),
was completed in 1834 but was never performed

Figure 14: High Readability Example: Audio Musician3

C ison of Article C

Meetalk's output section

Example of audio Mock 1, Chapter Conclusion, Section Solution

Baseline's output section

In the solution part of the mock case, the interviewee, Evelyn, suggested
several ideas to tackle motivation and boost emotional connection using the
existing Meta portfolio

The first idea centered around implementing [féminders). With numerous
notifications flowing through our daily lives, a front-and-center popup at
specific workout times could encourage habit formation and motivate users to
engage in fitness activities. This method leverages timely prompts to nudge

individuals towards their fitness goals.

The second solution involved forming [SGGial Workout  groups| based on
shared interests and demographics. By identifying users in the same area
with similar fitness aspirations, Meta could facilitate group exercises,
enhancing the social and emotional connections among participants. This
collective approach to fitness can significantly amplify group motivation,
making the workout experience less solitary and more communal.

Lastly, Evelyn explored the potential of leveraging [ARIVR technologies! to
create personalized workout experiences. By integrating Meta's investment in
ARIVR with user data (ke brain waves or heart rate), the system could
suggest tailored workouts. Additionally, the headset could detect when friends
or peers are also online, promoting virtual group exercises even under
adverse conditions like inclement weather. This set of solutions effectively
addresses motivation, personalization, and community-building within the
Meta ecosystem

Evelyn proposes:

1. [Reminders| for workout habits
2. [Social Workout Groups| leveraging Meta's social graph
3. Personalized [ARIVR Experiences for tailored workouts

Figure 15: Comparison of Article Completeness: Example of audio Mock 1,
Chapter Conclusion, Section Solution

Comparison of Article Context Relevance: Example of audio Musician3, Chapter Music, Section Style

Meetalk's output section

Baseline's output section

Bach's musical style was deeply influenced by the Baroque period. He was
an undisputed master of [EBURBIBOI. which refers to the interweaving of
multple independent musical lines to form complex and atiractive musical
textures. Bach explored almost all major styles, forms, and musical genres of
his time, except for opera.

Notepad

Camot fin

Bach's musical style was heavily influenced by the Baroque period
and (GBURBHBOIY. His works
are structurally rigorous and harmonicaly fich, striking a balance between

characterized by extensive use of

emotional expression and rational consruction. Bach excelled at combining
diflerent musical forms and techniques to create complex and expressive

Figure 16: The image above is the Comparison of Con-
text Relevance for Example of audio Mock 3, Chapter
Music, Section Style. The screenshot below shows no
results for ’polyphony’ in the audio Mock 3 tran-

script, confirming its absence in the original text.
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Comparison of Article Context Relevance: Example of audio Sales1, Chapter Solution, Section Future Work

Meetalk's output section

Baseline's output section

The next steps include [EBAEABEIVERY/BAAIGHGOINGISERIEE). In the content
delivery phase, students need to study relevant courses. With Xiachetong's
support, they can import videos, audio, and e-books nto the Al agents
Knowledge base with one click, reducing the work of document organization.
This approach makes Al applications more atiractive. Ongoing service
requires stabilzing the agents functionalfy and ensuring service
sustainabilty.

User Comments

We will continue to work closely with merchants to continuously optimize our
Al technology, enhancing the interacivity and personalization features of our
inteligent systems. (i the future, we! plan {0 expand more. functional
{BAUIES) to improve the overall performance of our solutions, helping
merchants achieve sustained business growth

| remember that the final to-do lst from this meting emphasized content delivery and ongoing service, as this company already have customers, and the product
has just been developed and s st in the testing phase, they did not mention the plans for further expansion. Therefore, the baseline mentions something not
relevant, whil the Meetalk resuitis more precise.”

Figure 17: The image above is the Comparison of
Context Relevance for Example audio Sales 1, Chapter
Solution, Section Future work. The screenshot below
shows user comments, proving the baseline results
contain irrelevant information.



Chapter Lawy

Meetalk's output section Baseline's output section

C i of Article Example of audio

Meetalk's output section Baseline's output section

o fuding: - The lawyer pointed out that Ms u |has complete control of the nitiative:
There are mainy two paths for divorce: mutual agreement and juscial  whether [ fle for divorce o choose not t divorce, SIBNISIESBBNIEH

Pusband and a i party. which s very siiong for proving the afai:

Providng detaed evidence
Wil help the courts decision. Including conablaton wih the i pary.
frequency of sexual encounters, efc. whch wil afect the amount of
compensaton. -

The awyer aiso advised on oher detais, such
s i cusiody. which should be carelully planned and legal acton aken f
ecessary. - The lwyer emphasized tha f e husband s honest about e
detals, t can faciliate subsequent egal proceedings.

User Comments

n s In ealty. Ms. Hu sl
1o e a lawsu. Thera is no sense of deftely

wtring: The more informative answer aso promotes accuracy

Figure 18: The image above is the Compar-
ison of Accuracy for Example audio Law 2,
Chapter Suggestion, Section Divorce sugges-
tion. The screenshot below shows user com-
ments, proving results of Meetalk are more
accurate.

Wagner actively participated in the revolutionary activities in Late Years (1870-1883) - **Late Works™: (I his later years, Wagner created
Dresden, supporting republican constitutionalism and social reform. Although his masterpiece "Der Ring des Nibelungen" (The Ring of the Nibelung).

the revolution ulimately failed and Wagner was forced into exile, this

experience profoundly influenced his thinking and creative work. During his

exile, Wagner moved to Zurich, Switzerland, where his musical compositions

gradually turned towards more profound and complex content. During this

period, he completed "Tristan und Isolde," and

The image above is the Comparison of Accuracy for Example of audio Musician3. Meetalk's output provides a clearer explanation of Wagner's process of creating
“The Ring of the Nibelung" (starting from 1848 and completed in 1872). However, the baseline output only mentions "The Ring of the Nibelung” once, stating it was.
“created" during the period of 1870-1883. This results in an inaccurate representation, potentially misleading readers to believe that this work was composed entirely in
Wagner's later years.

Figure 19: The image above is the Comparison of Accuracy for
Example of audio Musician3.

Comparison of Alignment & Consistency

Meetalk Version

Baseline Version

Hello, | chose the Social Sciences program at XX University because | am very interested in You chose the Social Sciences program at XX University because you are very interested in
understanding social structures and human behavior. XX University has a high reputation in the understanding social structures and human behavior. XX University has a high reputation in this
field of social sciences, and | believe the learning environment and resources there will provide me field, and you believe that the learing environment and resources there can provide you with

with opportunities for in-depth research.

opportunities for in-depth research.

Figure 20: Alignment and consistency comparison, with Meetalk got the correct narrative perspective but the

baseline method does not.

The authentic rate of Meetalk with & without modification for P11, Mock Interviews

100
920
80
70
60
50

40 31.75% 31.75%

Authentic Rate (%)

Audio 1

78.94%

57.38%

37.24%
28.14%

Audio 2 Audio 3
Audios

Il With Modification [l No Modification

Figure 21: The authentic rate of Meetalk with & without modification for P11’s mock interview audio tasks.
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Abstract

Large language models (LLMs) have shown
strong performance across natural language
reasoning tasks, yet their reasoning processes
remain brittle and difficult to interpret. Prompt-
ing techniques like Chain-of-Thought (CoT)
enhance reliability by eliciting intermediate
reasoning steps or aggregating multiple
outputs. However, they lack mechanisms
for enforcing logical structure and assessing
internal coherence. We introduce Theorem-
of-Thought (ToTh), a novel framework that
models reasoning as collaboration among three
parallel agents, each simulating a distinct
mode of inference: abductive, deductive, and
inductive. Each agent produces a reasoning
trace, which is structured into a formal
reasoning graph. To evaluate consistency, we
apply Bayesian belief propagation guided by
natural language inference (NLI), assigning
confidence scores to each step. The most
coherent graph is selected to derive the final an-
swer. Experiments on symbolic (WEBOFLIES)
and numerical (MULTIARITH) reasoning
benchmarks show that ToTh consistently
outperforms CoT, Self-Consistency, and
CoT-Decoding across multiple LLMs, while
producing interpretable and logically grounded
reasoning chains. Our findings suggest a
promising direction for building more robust
and cognitively inspired LLM reasoning.
The implementation is available at https:
//github.com/KurbanIntelligencelLab/
theorem-of-thought.

1 Introduction

Large language models (LLMs) have achieved
impressive performance across a wide range of
natural language understanding and generation
tasks (Wang et al., 2024), enabled by advances
in in-context learning (Sia et al., 2024), instruction
tuning (Zhang et al., 2024), and chain-of-thought

*Corresponding author: hkurban@hbku.edu.qa

(CoT) prompting (Wei et al., 2022). These methods
have extended LLMs’ capabilities to handle com-
plex forms of reasoning, including mathematical,
logical, and commonsense inference.

Despite these advances, LLM reasoning remains
shallow and unreliable. Existing approaches of-
ten rely on single-shot or sampling-based decod-
ing along linear reasoning paths, making them sus-
ceptible to hallucinations (Abdaljalil et al., 2025),
logical inconsistencies (Uceda Sosa et al., 2024),
and weak generalization (Liu et al., 2025). Meth-
ods such as CoT and Self-Consistency (Wei et al.,
2022; Wang et al., 2023) encourage intermediate
steps and majority voting across sampled outputs,
but lack mechanisms to verify internal coherence
and model the logical structure of reasoning. As
a result, outputs may appear fluent and plausible
while remaining logically unsound.

This brittleness contrasts sharply with human
reasoning, which is inherently multifaceted. Draw-
ing on insights from cognitive science (Okoli,
2022), we observe that human inference typically
blends three complementary modes—abduction,
deduction, and induction—that support explana-
tion, derivation, and generalization. However,
LLM:s typically conflate these distinct processes
into a single, undifferentiated flow, limiting both
interpretability and reliability.

To address this gap, we propose Theorem-of-
Thought (ToTh), a framework that models di-
verse reasoning strategies through structured, veri-
fiable interactions. ToTh employs three specialized
agents, each emulating a distinct cognitive mode:

* Abduction: inferring plausible explanations
for observed facts;

* Deduction: deriving valid conclusions from
given premises;

* Induction: generalizing from patterns or ex-
amples.
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Each agent independently generates a reasoning
trace, which is transformed into a Formal Reason-
ing Graph (FRG)—a directed graph where nodes
represent intermediate conclusions and edges cap-
ture logical dependencies. We evaluate the inter-
nal consistency of each FRG using Bayesian be-
lief propagation, with edge confidence scores cal-
ibrated via a Natural Language Inference (NLI)
model. A composite score balancing average belief
and logical entropy is used to select the most coher-
ent graph, from which the final answer is extracted.

Contributions. The key results of this work are:

* We introduce ToTh, a structured reasoning
framework that integrates abductive, deduc-
tive, and inductive inference into a modular
LLM-based pipeline.

* We develop a belief propagation mechanism
over reasoning graphs, leveraging NLI to
assess and score logical coherence through
Bayesian updates.

* We demonstrate that ToTh consistently out-
performs state-of-the-art reasoning methods
(e.g., CoT, Self-Consistency, CoT-Decoding)
across multiple LLMs.

* Our evaluation on symbolic (WEBOFLIES)
and numerical (MULTIARITH) benchmarks
highlights ToTh’s robustness on tasks requir-
ing multi-step inference—settings where di-
rect prompting often fails (Allen-Zhu and Li,
2025).

The remainder of the paper is organized as fol-
lows: Section 2 reviews related work. Section 3
presents the ToTh framework. Section 4 describes
the experimental setup, and Section 5 analyzes the
results obtained. Section 6 concludes with implica-
tions for structured reasoning in LLMs and future
research directions.

2 Related Work

Prompt-based Reasoning in LLMs. A growing
body of work explores prompting strategies to en-
hance the reasoning capabilities of LLMs. CoT
prompting (Wei et al., 2022) encourages models
to decompose problems into intermediate steps,
guiding reasoning along a linear path. Building
on this, Auto-CoT (Zhang et al., 2023) automates
prompt generation by sampling diverse questions

and producing corresponding reasoning traces, re-
ducing manual effort. Beyond prompt generation,
several works focus on optimizing prompt selec-
tion strategies. ActivePrompt (Diao et al., 2024)
identifies high-uncertainty instances for annotation,
improving data efficiency and reasoning robustness
through active learning. More recent approaches
introduce explicit structure into the reasoning pro-
cess. Tree-of-Thought (ToT) (Yao et al., 2023)
enables multi-path exploration with internal evalua-
tion, while Graph-of-Thought (GoT) (Yao et al.,
2024) structures reasoning as a graph to better
model dependencies between steps.

Instruction Tuning for Reasoning. Instruction
tuning and knowledge distillation offer alterna-
tive approaches to eliciting reasoning in LLMs
without relying on explicit prompts (Lobo et al.,
2025; Ranaldi and Freitas, 2024; Lai and Nissim,
2024). While effective, these methods typically
require computationally intensive fine-tuning on
large-scale datasets annotated with reasoning traces
and CoT examples, which are often costly and
domain-specific. Recent work has explored more
indirect supervision strategies. For instance, Liu
et al. (2024) introduce proxy tuning, which lever-
ages auxiliary models to contrast a base LLM with
its adapted variant. Although this approach reduces
the need for direct supervision, it still assumes ac-
cess to CoT-like outputs and pre-aligned reasoning
benchmarks.

3 Methodology

ToTh is a graph-based reasoning framework de-
signed to enhance the accuracy, interpretability, and
generalization capabilities of LLMs on complex
tasks. It decomposes reasoning into three modu-
lar agents, each simulating a classical inference
paradigm—abduction, deduction, and induction.
Each agent produces a structured reasoning trace,
which is composed into a FRG. Final answers are
derived via NLI-calibrated Bayesian belief propaga-
tion and composite graph scoring. The full pipeline
is depicted in Fig. 1.

ToTh differs from prior reasoning paradigms
along three axes: architecture, supervision, and
verification. Prompt-based methods (e.g., CoT,
ToT, GoT) elicit reasoning via linear or loosely
structured traces, yet lack mechanisms for enforc-
ing logical consistency. Instruction-tuned models
embed reasoning behavior through fine-tuning on
annotated traces, often requiring large datasets and
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Type 1

Use the abductive
reasoning style to
answer the following

question.
{P1,Py,....,P} FC.
Type 2 \4 e —— -
’ \
| |
Use the deductive | {P1, Py, ..., P} | p
reasoning style to | | ;
answer the following é | l I q I
question. : :
\
N~ — 4
{z1,22,...,2,} = R
Type 3 v __ -
I/ Y
T, T 2 H |
Use the inductive :M|
reasoning style to é | é I
answer the following : l |
question. | @ :
N__— _/
Reasoning Agents Reasoning Graph
Types Graphs Scoring

Figure 1: Overview of the Theorem-of-Thought (ToTh) reasoning pipeline. A question is independently processed
by three agents, each using a distinct reasoning style: abductive (Type 1), deductive (Type 2), and inductive
(Type 3). Each agent produces a structured reasoning graph, which is scored via Bayesian confidence propagation.
Abduction infers the best hypothesis H given observations O and knowledge K (i.e., argmaxy P(H | O, K));

deduction derives a conclusion C' from premises { P, ..
.,Zn} toarule R (i.e., {z;} = R). The highest-scoring graph contributes its final node as the

examples {x1, ..

., P,} (e, {P} F C); induction generalizes from

answer. v and X indicate whether a given agent’s output was selected.

remaining opaque at inference time. While both
families reflect growing interest in structured multi-
step reasoning, they typically operate within mono-
lithic or implicit architectures and do not support
formal consistency checking. In contrast, ToTh in-
stantiates distinct cognitive agents, integrates their
outputs into an interpretable graph, and explicitly
verifies reasoning coherence through NLI-guided
Bayesian inference—enabling modular, transpar-
ent, and verifiable reasoning beyond the scope of
existing methods.

Multi-Paradigm Reasoning Agents. Given a
natural language question ¢, ToTh deploys three
independent solver agents, each aligned with a dis-

tinct classical mode of inference: abductive, deduc-
tive, and inductive reasoning. These paradigms are
formally defined as follows.

The abductive reasoning agent a; infers the most
plausible hypothesis H given a set of observations
O and background knowledge K, formalized as:

ap:  argmax P(H | O,K).

The deductive reasoning agent ay derives a conclu-
sion C' that logically follows from a set of premises

{P1, Py, ..., P,}, represented as:
a : {Pl,PQ,...,Pn}I—C.

The inductive reasoning agent a3 generalizes a rule
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R from observed examples {z1,zo,...,x,}, ex-
pressed as:
ag: A{x1,x9,...,20} = R.

Each agent a; € {ai,as,as} independently pro-
duces a reasoning trace

r(0) — Tgi) MO NO)

727"'791 9

where r](-i) denotes the j-th step in the agent’s rea-
soning process.

Formal Reasoning Graph Construction. Each
reasoning trace r(? is transformed into a directed
graph GO = (VO E®) where V¥ denotes
the set of nodes representing individual reasoning
steps, and E() represents directed edges encod-
ing inferential relationships between those steps.
Edges (v, — vy) € E( are inferred using a pre-
trained NLI model, which assesses the semantic
relationship between reasoning steps. Each edge is
annotated with a trust score 6, € [0, 1] based on
the predicted label:

0.95 if entailment
Ouv = < 0.60 if neutral
0.10 if contradiction

These scores quantify the strength of logical en-
tailment between intermediate steps, providing a
calibrated basis for probabilistic reasoning in the
subsequent belief propagation stage.

Bayesian Confidence Propagation. To model
belief flow across the graph, belief values are prop-
agated using a Bayesian update rule, adapted from
classical formulations of belief propagation in prob-
abilistic graphical models (Pearl, 1988).

Each node v € V is initialized with a prior con-
fidence P(v) = 0.5, reflecting maximum uncer-
tainty. For a node v, with a single parent v, and
associated trust score 6y, the updated belief is com-
puted using a Bayesian update rule:

P(vp) - Ope
P(vp) - Opc + (1 = P(vp)) - (1 — Ope)
In the case of multiple parents {v,,,...,vp,.},

the belief for v, is computed as the average of
individual updates from each parent:

P(v) =

P(v.) = %Z f(P(Upj)vepjc)

Jj=1

p-t
M= ra—a—o
This recursive formulation propagates confi-
dence through the graph, amplifying agreement
across consistent reasoning paths while attenuating
belief when upstream uncertainty or contradiction
is detected.

Graph Scoring. Each reasoning graph G is
evaluated based on a trade-off between average
node confidence and logical uncertainty. We pri-
oritize graphs that are both confident (high belief)
and low in uncertainty (low entropy). The mean
confidence is computed as

veV @)

and the normalized binary entropy is given by

(i) _
H® = |V(l Zh
veV (@

h(p) = plogp + (1 —p)log(l —p) .

The final score combines both terms:
Score(G™) = ) — HO),

The reasoning graph with the highest score is se-
lected as the final candidate:

G* = argmax Score(G®).

Answer Extraction. The final answer is ex-
tracted from the terminal node of the selected graph
G*, corresponding to the last step in the associated
reasoning trace.

Theoretical Complexity. Let £ = 3 denote the
number of reasoning agents, and s the number of
reasoning steps generated per agent. The ToTh
framework involves three main stages of computa-
tion: trust estimation, belief propagation, and graph
scoring. During trust estimation, each agent pro-
duces a sequence of reasoning steps, and an NLI
model is applied to each adjacent pair to evaluate
the strength of logical connection. Since each trace
contains at most s — 1 such pairs, the total number
of NLI evaluations across all agents is O(k - s). In
the belief propagation stage, each node in the con-
structed reasoning graphs is visited exactly once
in topological order, and its posterior confidence
is updated based on incoming trust scores using
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a Bayesian update rule, resulting in O(k - s) total
updates. Finally, graph scoring involves computing
the average confidence and entropy over all nodes
in each graph, which also requires O(k - s) time.
Therefore, the end-to-end complexity of the ToTh
pipeline is O(k - s), linear in both the number of
agents and the number of reasoning steps per agent.

This makes ToTh substantially more effi-
cient than sampling-based methods such as Self-
Consistency or CoT-Decoding, which require O(n)
decoding passes, where n is the number of sam-
pled reasoning chains. In contrast, ToTh executes
a single, structured reasoning pass per agent, fol-
lowed by lightweight verification and scoring, of-
fering a more scalable and interpretable alternative
to stochastic decoding.

4 Experiments

Data. ToTh was evaluated on two representative
reasoning benchmarks. MULTIARITH (Roy et al.,
2015) targets compositional numerical inference
through multi-step arithmetic word problems. WE-
BOFLIES (Suzgun et al., 2023), part of the BIG-
BENCH-HARD suite, involves determining truth
values among logically entangled symbolic state-
ments. These datasets are known to challenge
LLMs under direct prompting (Allen-Zhu and Li,
2025), making them suitable for testing structured
reasoning capabilities.

Models. Three publicly available LLMs were
selected to provide diversity in scale, alignment,
and architecture: (1) MISTRAL-7B (Jiang et al.,
2023)!, a general-purpose decoder model with ef-
ficient scaling; (2) DEEPSEEK-7B (DeepSeek-Al
etal., 2025)2, an instruction-tuned model optimized
for multi-turn reasoning and alignment; and (3)
PHI-3.5 MINI (Abdin et al., 2024)3, a lightweight
model designed for educational, low-cost reason-
ing tasks. This selection spans compact inference-
efficient models to instruction-aligned reasoning-
focused systems.

Baselines. ToTh was compared with three
strong baselines: CoT (Wei et al., 2022), Self-
Consistency (Wang et al., 2023), and CoT-
Decoding (Wang and Zhou, 2024). CoT prompts

"https://huggingface.co/mistralai/
Mistral-7B-Instruct-v@.3

2https://huggingface.co/deepseek-ai/
deepseek-11m-7b-chat

3https://huggingface.co/microsoft/Phi—S.
5-mini-instruct

the model to generate intermediate reasoning steps
before answering. Self-Consistency improves ro-
bustness by sampling n 20 completions and
selecting the most frequent answer. CoT-Decoding
eliminates explicit prompting by using diverse de-
coding paths to stimulate latent reasoning behav-
iors.

Experimental Setup. All models were evaluated
in their released form without fine-tuning. De-
coding was performed with temperature 0.7 and a
maximum output length of 526 tokens. RoOBERTa-
MNLI* was used for scoring reasoning coherence,
consistent with prior work on NLI-based output
validation (Farquhar et al., 2024). Inputs were uni-
formly formatted as “Q: [question] \n A:” across
all methods for consistency with baselines (Wang
and Zhou, 2024).

To direct reasoning behavior, the following in-
struction was prepended to each input, with the
appropriate {style} keyword for each agent:

Use the {style} reasoning style
to answer the following question.

Follow these instructions
carefully:

* Break the problem into clear,
numbered reasoning steps
using {style}.

* Reference any known
principles, patterns, or
assumptions involved.

* Arrive at a final answer
that directly responds to the
question.

All experiments used a single decoding pass per
input. Random seeds were fixed, and decoding
settings were held constant for reproducibility.

5 Results
5.1

Results are reported as answer accuracy (%) and
summarized in Figure 2.

Main Experimental Results

Performance Across Models. ToTh consis-
tently outperforms all baseline methods on both
tasks when evaluated with MISTRAL-7B and
DEEPSEEK-7B, demonstrating clear gains in rea-
soning accuracy. On PHI-3.5 MINTI, although CoT-

Decoding marginally surpasses ToTh on certain

115

4https://huggingface.co/FacebookAI/
roberta-large-mnli


https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli

m CoT-Greedy m Self Consistency

1
100

Mistral-7B-v0.3

75

39

T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
|
1
I
1
|
1
1
1
1
1
1
1
1
]
1

Web of Lies MultiArith Web of Lies

DeepSeek-7b

CoT-Decoding ®m Theorem Of Thought

Phi-3.5-mini

99 98

52

45

1
T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1
I
|
]
I
|
]
I
1
]

MultiArith Web of Lies MultiArith

Figure 2: Accuracy (%) comparison across reasoning pipelines on two benchmark tasks (WEBOFLIES and
MULTIARITH) using three open-source language models: MISTRAL-7B-Vv0.3, DEEPSEEK-7B, and Phi-3.5-mini.
Each group of bars corresponds to a different reasoning method: CoT-Greedy (blue), Self-Consistency (red),
CoT-Decoding (yellow), and our proposed Theorem-of-Thought (green).

instances, ToTh maintains consistently strong per-
formance across both symbolic and numerical tasks.
For example, on the WEBOFLIES dataset, ToTh
improves over CoT-Greedy by 29% and 14% on
MISTRAL-7B and DEEPSEEK-7B, respectively,
and remains within 3% of the top-performing
method on PHI-3.5 MINI. These results highlight
ToTh’s robustness and generalization across mod-
els of varying scale and alignment.

Comparison with CoT-Decoding. While CoT-
Decoding performs strongly on Phi-3.5-mini,
achieving near-perfect scores on WEBOFLIES
(99%), ToTh achieves comparable or slightly
lower performance (96%) while maintaining higher
consistency across models. For example, on
the MULTIARITH dataset, ToTh surpasses CoT-
Decoding by 4-5 points on both MISTRAL-7B and
DEEPSEEK-7B, indicating superior generalization
in numerical reasoning.

Self-Consistency Under-performance. Surpris-
ingly, Self-Consistency under-performs across all
settings, particularly on symbolic tasks. For in-
stance, it yields only 14% and 21% on WE-
BOFLIES and MULTIARITH with DEEPSEEK-7B
and MISTRAL-7B, respectively. This suggests
that majority-vote over stochastic generations fails
to capture structured dependencies, especially in
logic-heavy tasks.

Model Sensitivity. As expected, performance
scales with model capability. Phi-3.5-mini achieves
the highest absolute scores across all methods, re-
flecting its stronger alignment and training. How-
ever, ToTh’s margin over baselines remains mean-
ingful even at lower model scales, suggesting that
the architecture contributes to reasoning robustness
beyond just model size. While DEEPSEEK-7B
is trained with reasoning capabilities in mind, its
broader training objectives, including code genera-
tion and open-ended question answering, may dif-
fuse its specialization in structured reasoning tasks.
In contrast, Phi-3.5-mini benefits from a targeted
curriculum focused on educational and step-by-
step problem-solving, which likely accounts for its
superior performance on both symbolic and mathe-
matical benchmarks. Interestingly, MISTRAL-7B
consistently outperforms DEEPSEEK-7B despite
being similar in size. This may be attributed to
Mistral’s cleaner, reasoning-focused pretraining
data and architecture-level optimizations, which
enhance its ability to follow multi-step instructions
and maintain logical coherence across token spans.

5.2 Robustness Under Reasoning Complexity

To evaluate the robustness of ToTh under increas-
ing reasoning complexity, experiments were con-
ducted using the MISTRAL-7B model on both
symbolic and numerical tasks. Table 1 presents
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WEBOFLIES MULTIARITH
3 4 5 do/lg do/l4 d2/13

CoT-G 41 32 19 57 26 14
SelfC 48 47 38 21 6 17
CoT-Dec 54 48 46 55 41 24
ToTh 70 56 43 59 45 21

Table 1: Accuracy (%) of MISTRAL-7B on symbolic
(WEBOFLIES) and mathematical (MULTIARITH) reasoning
tasks across increasing levels of difficulty. Columns 3-5 cor-
respond to symbolic reasoning with 3, 4, and 5 interdepen-
dent statements, respectively. Columns do/ls, do/l4, and
da2 /13 represent arithmetic reasoning problems categorized by
depth and length: d denotes operation depth and [ indicates
sequence length. ToTh achieves the highest accuracy in 5 out
of 6 settings and remains competitive even on the most com-
plex instances, demonstrating consistent performance across
symbolic and numerical domains. Bold: best performance;
Underlined: second-best.

accuracy results stratified by problem difficulty:
the number of interdependent statements (3—5) for
WEBOFLIES, and operation depth/length combina-
tions for MULTIARITH.

ToTh maintains strong performance across all
difficulty levels, outperforming or closely matching
leading baselines. In symbolic reasoning, ToTh
achieves 43% accuracy on the most challenging
setting (5 statements), significantly exceeding CoT-
Greedy (19%) and Self-Consistency (38%), and
closely approaching CoT-Decoding (46%). This
trend persists across simpler instances, where ToTh
attains the highest scores at 3 and 4 statements.

For numerical reasoning, ToTh delivers
the strongest results at lower complexity lev-
els—achieving  state-of-the-art  performance
at do/ls (59%) and dy/ly (45%)—and remains
competitive even at higher complexity (do/l3), with
accuracy comparable to CoT-Decoding (21% vs.
24%). These findings highlight ToTh’s capacity to
generalize across task difficulty and suggest that its
structured, multi-agent reasoning design offers a
scalable advantage under increased inference load.

6 Conclusion and Future Work

This work presents Theorem-of-Thought (ToTh),
a graph-based reasoning framework that inte-
grates abductive, deductive, and inductive infer-
ence through a modular multi-agent design. Each
agent generates structured reasoning traces, which
are composed into formal graphs and verified using
NLI-calibrated Bayesian confidence propagation.
This approach supports both accurate prediction
and interpretable, logically grounded reasoning.

Empirical evaluations on symbolic and numerical
benchmarks demonstrate that ToTh consistently
outperforms strong prompting and decoding base-
lines, particularly in scenarios requiring structured
logical inference.

ToTh introduces a new paradigm in reasoning
with language models by treating inference as a ver-
ifiable, compositional process, rather than a mono-
lithic generation task. Future research will explore
dynamic agent routing based on input characteris-
tics, inter-agent collaboration protocols, and adap-
tive trust estimation via fine-tuned and ensemble-
based NLI models. Extending the framework to
scientific hypothesis validation, law and policy rea-
soning, and multimodal domains such as visual
question answering represents a promising direc-
tion for advancing general-purpose, verifiable rea-
soning in large language models.

Limitations

Fixed Reasoning Types. ToTh presumes a uni-
form decomposition into abductive, deductive, and
inductive reasoning across all inputs. While this
modularity improves interpretability, it imposes a
fixed cognitive scaffold that may not align with
tasks requiring hybrid or atypical inference pat-
terns. For example, creative tasks or ambiguous
prompts may benefit from dynamically blending
reasoning types or emphasizing one over others.
This rigidity can limit ToTh’s adaptability and lead
to suboptimal trace composition in such cases. Fu-
ture work may explore data-driven and context-
sensitive agent routing, allowing the framework
to selectively instantiate and suppress reasoning
paradigms based on input semantics.

Propagation Sensitivity. The Bayesian confi-
dence propagation mechanism is sensitive to noise
in low-confidence nodes, which may attenuate oth-
erwise valid reasoning chains or distort belief es-
timates in deeper regions of the graph. This can
occur in longer traces where errors in early rea-
soning steps propagate disproportionately, reduc-
ing the reliability of final predictions. Moreover,
current propagation is uniform and unregularized,
lacking robustness mechanisms against adversarial
and inconsistent intermediate steps. Incorporat-
ing calibrated uncertainty modeling, edge dropout,
and confidence smoothing—potentially informed
by fine-grained entailment distributions—could en-
hance stability and mitigate the amplification of
localized inconsistencies.

117



References

Samir Abdaljalil, Hasan Kurban, Parichit Sharma,
Erchin Serpedin, and Rachad Atat. 2025. Sindex:
Semantic inconsistency index for hallucination detec-
tion in llms. Preprint, arXiv:2503.05980.

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, and 110
others. 2024. Phi-3 technical report: A highly capa-
ble language model locally on your phone. Preprint,
arXiv:2404.14219.

Zeyuan Allen-Zhu and Yuanzhi Li. 2025. Physics of
language models: Part 3.2, knowledge manipula-
tion. In Proceedings of the International Conference
on Learning Representations (ICLR). ICLR 2025
Poster.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xi-
ang Liu, and Tong Zhang. 2024. Active prompting
with chain-of-thought for large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1330-1350, Bangkok, Thailand.
Association for Computational Linguistics.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and
Yarin Gal. 2024. Detecting hallucinations in large
language models using semantic entropy. Nature,
630(8017):625-630. © 2024. The Author(s).

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Huiyuan Lai and Malvina Nissim. 2024. mCoT: Multi-
lingual instruction tuning for reasoning consistency
in language models. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12012—
12026, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia
Tsvetkov, Yejin Choi, and Noah A. Smith. 2024. Tun-
ing language models by proxy. In Proceedings of the
Conference on Language Modeling (COLM).

Chaoqun Liu, Qin Chao, Wenxuan Zhang, Xiaobao
Wu, Boyang Li, Anh Tuan Luu, and Lidong Bing.
2025. Zero-to-strong generalization: Eliciting strong
capabilities of large language models iteratively with-
out gold labels. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 37163731, Abu Dhabi, UAE. Association for
Computational Linguistics.

Elita Lobo, Chirag Agarwal, and Himabindu Lakkaraju.
2025. On the impact of fine-tuning on chain-of-
thought reasoning. In Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 11679-11698, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Chitu Okoli. 2022. Inductive, abductive and deductive
theorizing. SSRN Electronic Journal, Forthcoming.

Judea Pearl. 1988. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA.

Leonardo Ranaldi and Andre Freitas. 2024. Self-refine
instruction-tuning for aligning reasoning in language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 2325-2347, Miami, Florida, USA. Association
for Computational Linguistics.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-
tions of the Association for Computational Linguis-
tics, 3:1-13.

Suzanna Sia, David Mueller, and Kevin Duh. 2024.
Where does in-context learning happen in large lan-
guage models? In Proceedings of the 2024 Con-
ference on Neural Information Processing Systems

(NeurIPS). NeurIPS 2024 Poster.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003-13051, Toronto,
Canada. Association for Computational Linguistics.

Rosario Uceda Sosa, Karthikeyan Natesan Ramamurthy,
Maria Chang, and Moninder Singh. 2024. Reasoning
about concepts with 1lms: Inconsistencies abound.
Conference on Language Models (COLM). Pub-
lished: 10 Jul 2024, Last Modified: 26 Aug 2024.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong,
and Yangqiu Song. 2024. Rethinking the bounds of
LLM reasoning: Are multi-agent discussions the key?
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 61066131, Bangkok, Thailand.
Association for Computational Linguistics.

118


https://arxiv.org/abs/2503.05980
https://arxiv.org/abs/2503.05980
https://arxiv.org/abs/2503.05980
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://openreview.net/forum?id=oDbiL9CLoS
https://openreview.net/forum?id=oDbiL9CLoS
https://openreview.net/forum?id=oDbiL9CLoS
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.1038/s41586-024-07421-0
https://doi.org/10.1038/s41586-024-07421-0
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2024.acl-long.649
https://doi.org/10.18653/v1/2024.acl-long.649
https://doi.org/10.18653/v1/2024.acl-long.649
https://openreview.net/forum?id=dribhnhm1i
https://openreview.net/forum?id=dribhnhm1i
https://aclanthology.org/2025.coling-main.251/
https://aclanthology.org/2025.coling-main.251/
https://aclanthology.org/2025.coling-main.251/
https://aclanthology.org/2025.naacl-long.584/
https://aclanthology.org/2025.naacl-long.584/
https://doi.org/10.2139/ssrn.3774317
https://doi.org/10.2139/ssrn.3774317
https://doi.org/10.18653/v1/2024.emnlp-main.139
https://doi.org/10.18653/v1/2024.emnlp-main.139
https://doi.org/10.18653/v1/2024.emnlp-main.139
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.1162/tacl_a_00118
https://openreview.net/forum?id=LLuSjg59an
https://openreview.net/forum?id=LLuSjg59an
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://openreview.net/forum?id=oSG6qGkt1
https://openreview.net/forum?id=oSG6qGkt1
https://doi.org/10.18653/v1/2024.acl-long.331
https://doi.org/10.18653/v1/2024.acl-long.331

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Xuezhi Wang and Denny Zhou. 2024. Chain-of-thought
reasoning without prompting. In Proceedings of the
2024 Conference on Neural Information Processing
Systems (NeurIPS). NeurlPS 2024 Poster.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS *22,
Red Hook, NY, USA. Curran Associates Inc.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: deliberate prob-
lem solving with large language models. In Pro-
ceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

Yao Yao, Zuchao Li, and Hai Zhao. 2024. GoT: Effec-
tive graph-of-thought reasoning in language models.
In Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 2901-2921, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2024. In-
struction tuning for large language models: A survey.
Preprint, arXiv:2308.10792.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In Proceedings of Inter-
national Conference on Learning Representations

(ICLR). Poster.

119


https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=4Zt7S0B0Jp
https://openreview.net/forum?id=4Zt7S0B0Jp
https://doi.org/10.18653/v1/2024.findings-naacl.183
https://doi.org/10.18653/v1/2024.findings-naacl.183
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr

Reasoning or Memorization? Investigating LLLMs’ Capability
in Restoring Chinese Internet Homophones

Jianfei Ma* and Zhaoxin Feng* and Emmanuele Chersoni

and Huacheng Song and Zheng Chen
Chinese and Bilingual Studies, The Hong Kong Polytechnic University
Computer Science and Engineering, Hong Kong University of Science and Technology
{jian-fei.ma,zhaoxinbetty.feng,huacheng.song}@connect.polyu.hk,
emmanuele.chersoni@polyu.edu.hk,
zchenin@connect.ust. hk

Abstract

Chinese homophones, prevalent in Internet cul-
ture, introduce rich linguistic twists to challeng-
ing language models. While native speakers
disambiguate them through phonological rea-
soning and contextual understanding, the extent
to which LLMs can effectively handle this task
remains unclear, as does whether they rely on
similar reasoning processes or merely memo-
rize homophone-original word pairs in training.

In this paper, we propose HomoP-CN, the first
Chinese Internet homophones dataset includ-
ing systematic perturbations testing for evaluat-
ing LLMs’ homophone restoration capabilities.
With the benchmark, we investigated the influ-
ence of semantic, phonological, and graphemic
features on LLMS’ restoration accuracy, mea-
sured the memorization reliance levels of each

Chinese internet WL jinol liid 2 ﬂ;_‘)?)
homophone banana-green anxiety
> <
o N
FE A jiaol Lid ‘R
ﬂi‘ E‘; jiaol lii4 non-existed anxiety
anxiety
| jiaol lLid - & X
C@g‘] Internet non-existed non-existed
Y 4F | jiao3 Lid A RE
non-existed anxiety
ELE jiaol Lid
b gren Hitdg jiao3 113 - 3 3
non-existed make-friends

-

Adversarial examples
(non-existed words)

jiao | 1 Li 4

Restore homophones

Syllable Tone
FF . :&’_ ~ Q‘jq{ %A
is represented by N _,«(/ include five
the combination of N panana-green pitches, including
initials and finals light tone (5)

model during restoration through consistency
ratios under controlled perturbations, and as-
sessed the effectiveness of various prompting
strategies, including contextual cues, pinyin
augmentation, few-shot learning, and thought-
chain '.

1 Introduction

Homophonic wordplay in Chinese Internet cul-
ture creatively utilizes phonological similarities
between characters to construct new words and
layered semantic meanings (Zhang et al., 2019).
For example, the homophone “# 4" (jiaol lii4,
“banana-green”) replaces the original word “f&
J&” (jiaol lii4, “anxiety”), reconfiguring a nega-
tive emotion into a playful and lighthearted ex-
pression. Unlike English puns, which rely on in-
tralingual homophony (e.g., “a good pun is its own
reword/reward”) (Xu et al., 2024), Chinese homo-
phonic wordplay creatively substitutes characters
with similar pronunciations within the logographic
writing system.

* represents these authors contributed equally to this work.

'Our code and data are released at: https://github.
com/sdmjf/Chinese_homophone_restoration_LLM.

Chinese pinyin’s structure

Figure 1: The upper figure illustrates an example of
the homophonic word and its different adversarial per-
turbations in HomoP-CN dataset. The bottom figure
demonstrates the structure of Chinese pinyin, which
encompasses a syllable and a tone.

Recent advances in natural language processing
(NLP), particularly through large language models
(LLMs), have demonstrated substantial progress in
disambiguating English homophones (Proietti et al.,
2024; Xu et al., 2024; Mizrahi et al., 2024). How-
ever, due to the high homophone density in Chinese
pinyin(e.g., shi4 mapping to dozens of characters
such as #&/%/7) and tonal complexity (identical
syllables with different tones convey distinct mean-
ings, e.g., mal#/ma2 % /ma3#5/ma4 &), LLMs en-
counter greater challenges in comprehending Chi-
nese homophones than English.

Previous research has explored Chinese homo-
phones in NLP tasks such as spelling correc-
tion (Liu et al., 2025, 2024; Li et al., 2024; Baluja,
2025), offensive language detection (Xiao et al.,
2024), and humor generation (Xu, 2024). Nev-
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ertheless, there is no systematic study on LLMs’
ability to understand and restore Chinese homo-
phones, which is crucial for practical applications
such as improving LLMs’ ability to understand so-
cial media text and identifying offensive content.
For instance, Chinese netizens may replace &
& (too mean)” with the same pronunciation “fk
4% (peptide bond)” to use a non-offensive biolog-
ical term conveying discriminatory and offensive
content (Xiao et al., 2024).

It has been suggested that native Chinese speak-
ers leverage their perceptual systems to retrieve
original words from homophonic variants through
phonological similarity-based reasoning and con-
textual information understanding (Samuel, 1981;
Davis et al., 2005; Banfi and Arcodia, 2013; Mehta
and Luck, 2020). Building upon this human cogni-
tive paradigm, we propose the following research
question: How do LLMs perform in homophone
restoration? Is this capability of LLMs driven
by human-like reasoning through phonological
similarity, or simply stem from memorization of
homophone-original word pairs in pretraining?
Additionally, can strategies like contextual infor-
mation or providing pinyin®* to enrich prompts en-
hance LLM performance in restoration?

In this work, we comprehensively explored
LLMs’ effectiveness and enhancement in Chi-
nese Internet homophone restoration by utilizing
our HomoP-CN dataset. First, we analyzed the
restoration capacity of LLMs by considering the
differences between the original words and the
homophones from semantic, phonological, and
graphemic perspectives. Second, drawing inspi-
ration from Xie et al. (2024), we designed a set
of adversarial variations as perturbations to quan-
tify the extent of memorization, as shown in Fig-
ure 1. Finally, we delved into the role of differ-
ent prompting strategies, including context cues,
pinyin-augmentation, few-shot, Chain-of-Thought
(CoT) (Kojima et al., 2022), Memory-of-Thought
(MoT) (Li and Qiu, 2023) in this task.

Our results demonstrate that LLMs exhibit sub-
stantial variation in restoring Chinese Internet ho-
mophones, with model scale emerging as a criti-
cal factor: larger models achieve reasoning-based
restoration while smaller ones depend predomi-
nantly on memorization. This performance gap
is further modulated by semantic, phonological,

2Pinyin, a Latin-based phonetic notation system for Chi-

nese, represents character pronunciation through syllables and
tones shown in Figure 1.
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and graphemic disparities between original words
and their homophone counterparts, which sys-
tematically affect both restoration accuracy and
memorization dependence. While contextual cues,
few-shot learning, and thought-chain strategies
(CoT/MoT) prove effective for performance en-
hancement, pinyin augmentation shows limited util-
ity. These findings provide valuable insights into
LLMs’ robustness in handling intralingual and user-
generated content in Internet contexts.

2 Related work
2.1 Chinese Homophones

English homophones are words with distinct mean-
ings that share the same pronunciation but differ in
spelling. (HarperCollins, 2023). Similarly, in Chi-
nese, homophones refer to a linguistic phenomenon
where different words or phrases have similar or
identical pronunciations (i.e., sharing the same or
similar pinyin) but are represented by different Chi-
nese characters’. On the Internet, homophones
are frequently employed to substitute for or allude
to the meanings of certain original words, often
serving humorous or euphemistic purposes in com-
munication (Xiao et al., 2024; Xu, 2024).

Current research on the ability of LLMs to com-
prehend Chinese homophones remains limited and
is scattered across various NLP tasks. In spelling
correction, LLMs face bottlenecks in coordinating
phonological, graphemic, and semantic features
when distinguishing between homophones (Liu
et al., 2025, 2024; Li et al., 2024). For offensive
language detection, LLMs demonstrate reduced
effectiveness in identifying homophone-disguised
toxic content, revealing vulnerabilities in under-
standing when confronted with phonological inter-
ference (Xiao et al., 2024). Additionally, LLMs
exhibit challenges in semantic reasoning for humor
generation involving homophones (Xu, 2024).

2.2 Language Perturbation

Researchers have proposed a wide range of pertur-
bation techniques to explore the vulnerabilities of
NLP models in adversarial scenarios, particularly

3Chinese internet homophones include both perfect ho-
mophones and near-homophones (paronyms). Many of these
words do not actually exist in standard Chinese, like “# 4&”
(“banana-green”). This encompasses: 1) Characters with iden-
tical pronunciation (same syllable + tone); 2) Characters with
the same syllable but different tones; 3) Similar-sounding sylla-
bles where some phonetic feature differs (e.g., z/zh distinction
between apical anterior and posterior consonants, ignoring
tone differences).



through replacements or insertions at the character,
word, and sentence levels (Alzantot et al., 2018;
Jin et al., 2020; Ribeiro et al., 2020; Zhang et al.,
2020; Garg and Ramakrishnan, 2020).

Recent studies have explored Chinese adver-
sarial attacks through various language-specific
perturbations, such as synonym substitution (Su
et al., 2022), phonological and glyph swaps (Liu
et al., 2023; Wang et al., 2024), and emoji replace-
ment (Xiao et al., 2024). However, no studies have
yet focused on the lexical perturbations for the Chi-
nese homophone restoration task. Our work ad-
dresses this gap by introducing the HomoP-CN
dataset, which provides different adversarial exam-
ples tailored to the unique characteristics of Chi-
nese homophones.

2.3 Memorization in LLMs

The memorization capabilities of LLMs have been
extensively studied across multiple domains, in-
cluding copyright (Karamolegkou et al., 2023;
Wei et al., 2024), logical reasoning (Xie et al.,
2024), and performance on knowledge-intensive
tasks (Hartmann et al., 2023). Previous studies
have demonstrated that LLMs are capable of mem-
orizing portions of their training data (Tirumala
et al., 2022; Carlini et al., 2022).

In this paper, we focus on quantifying the extent
of memorization in LLMs when performing the
homophone restoration task. Inspired by Xie et al.
(2024), we designed a set of adversarial variations
to quantify the extent of memorization within a con-
trolled setting: significantly worse performance on
variants versus original homophones and suggests
greater reliance on memorization®.

3 Methodology

3.1 Problem Definition

Let D = {(X,Y)} denote a dataset where each
consists of a homophone X and the corresponding
original word Y. The task of LLM is to analyze
X and select a word Y which is most likely to be
the original word Y. Formally, the output can be
represented as:

Y ~ (X)), (1)

“Borrowing intuition from human behavior: Students
preparing for exams might not fully grasp underlying prin-
ciples due to constraints. Yet, they can answer memorized
exact questions correctly. A key trait of such memorization is
high accuracy on identical questions but poor performance on
slightly modified, similarly difficult ones.

The goal of LLMs is to ensure Y=Y, meaning
that the LLMs correctly restore the target word. In
this study, we use accuracy to represent the model’s
performance in the task of restoring homophones.

3.2 Dataset Construction

The HomoP-CN dataset involves extracting ho-
mophonic words from mainstream Chinese social
media platforms as the control set, followed by a
multi-faceted process of categorization and conver-
sion. This enables a systematic comparison of the
performance of LLMs across various dimensions
and factors. Further details are outlined below.

3.2.1 Data Collection and Categorization

Given the prevalence of homophones particularly
in creative and flexible online contexts, this study
sourced target homophones from two mainstream
Chinese social media platforms, namely, Weibo
and Tieba’. After reviewing a random collection
of user-generated posts and comments from these
platforms first, spanning the period from 2010 to
2025 (before the data cutoff in March), a total of
365 highly frequent and representative homophonic
words were filtered out by three native Chinese
speakers with consensus, who also provided the
original word and pinyin for each homophone. Be-
sides, to explore the potential impacts of contexts,
we augmented the homophones into sentences with
sufficient contextual information by which humans
can accurately infer their original words. All con-
text sentences were generated by the DeepSeek-
V3 model (DeepSeek-Al, 2024) with the prompts
shown in Appendix A.4 and then validated by three
native speakers (Appendix A.2).

Upon this preliminary dataset, we further
grouped all homophones in line with three dis-
tinct taxonomies for fine-grained evaluation of
LLMs’ performance concerning their different se-
mantic, phonological, and graphemic properties.
The semantic categorizations were completed by
three native speakers based on instruction guid-
ance (Appendix A.2), and those at phonological
and graphemic aspects were sorted through auto-
mated annotated methods by comparing the dis-
tinction in the form of the pinyin and characters
in homophones and their origins (Appendix A.3).
Examples are displayed in Figure 2.

SWeibo, managed by Sina company, is a popular Chinese
microblogging platform similar to Twitter and Tieba, hosted
by Baidu, is a large online community forum where users can
engage in topic-based discussions, akin to Reddit.
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Original Original word Homophone <

Homophone - Lo ics Ph y Graph Variant 1 Variant 2 Variant 3 Variant 4
word pinyin pinyin
Y i I ‘ i 2 ol &
7+ A_ il shen2 me5 shen2 ma3 1 4 3 ide] 35 i) LS
Everything God-horse shen2ma3 shen2ma3  shen2mal  shen3mal
Context sentence: #% B #} & % % . (Everything's just a puff piece.)

& LEL m .
&R A beit jud beil jud 5 1 3 AR A3 nE e
Tragedies Cup beilju4 beilju4 beidju4 beidju2

Context sentence: # £ ¥ &L AL E. (Tragedies always make people feel heavy-hearted. )
3 FRE . b 4 . N
JE ) RS yai li4 yai i2 5 5 3 Lk £ 73] A
Pressure Ya pear yalli2 yalli2 yalli4 ya4li4

Context sentence: T & 97 K, KA EHF#Ar—TF. (I'm under so much pressure, and I want to go for a walk to relax.)

Figure 2: Data examples from our dataset. The numbers in the Semantics, Phonology, and Graphemics columns
indicate the categories of homophones based on their differences from the original words in these three aspects,
while Variants are adversarial perturbations. For detailed descriptions, refer to Section 3.2.

* Semantic taxonomy The first taxonomy la-
beled target homophones into two groups
based on their semantic features on word level:
1) those are existing words and have meaning
on their own and 2) those are pseudo words
that are inherently meaningless.

* Phonological taxonomy Based on the
phonological features of homophones, they
were further grouped into: 1) homophones
sharing matching syllables; 2) those with
matching syllables but differing tones; 3)
those with matching tones but differing sylla-
bles; and 4) those with differing syllables and
tones, when compared to their corresponding
original words.

* Graphemic taxonomy Refer to the differ-
ence in typing form and length of characters,
all homophones were categorized into three
groups, covering: 1) homophones with fewer
characters (partially same or completely differ-
ent) than their corresponding original words;
2) homophones sharing the same length and
partially same characters with their origins;
and 3) homophones with the same length but
completely different characters compared to
corresponding original words®.

3.3 Task Formulation

This section delineates the design of progressive
tasks aimed at evaluating the capabilities of LLMs
in homophone restoration and uncovering the un-
derlying patterns governing their performance.
Considering the results from the ablation study in
Appendix B.1, we selected Chinese as the language

®Since each Chinese character covers a single syllable, the

difference in character numbers between a homophone and its
origin reflects elision or assimilation in their pronunciation.

of prompts, whose detailed examples are presented
in Appendix B.2.

Restoring Capability Under Zero-shot

To investigate whether popular LLMs can iden-
tify the profound relationships between pronunci-
ations and meanings for Chinese characters in ho-
mophones, and the extent to which they can do so,
we provided basic zero-shot prompts to each LLM,
instructing them to restore the original forms from
specific homophones. This task was conducted
under three setups introduced in Section 3.2.1 to
examine whether the semantic, phonological, and
graphemic properties of homophones pose differ-
ent challenges to LLMs and whether LLMs exhibit
varying sensitivity to these properties. The metric
of accuracy was employed to quantify performance
by calculating the percentage of correct answers.

Patterns Behind Homophone Restoration

What follows the assessment of global restoration
performance among LLMs is whether their capabil-
ities are predominantly grounded on memorization
of training data or reasoning derived from phono-
logical similarity. To pursue this, we employed four
adversarial variants as described in Section 3.4 with
basic zero-shot prompts for perturbation. Besides,
we define the Consistency Ratio (CR) to measure
how robustly a model restores homophone vari-
ants. For each correctly restored case from basic
homophones, we count how many of its four vari-
ants are also correctly returned to the original form,
then average this count across the number of all re-
stored cases from basic homophones. The final CR
score (between O and 1) is obtained by normalizing
this average against the maximum possible correct
variants per homophone. Higher CR indicates less
reliance on memorization and more on reasoning.
Formally, CR can be represented as:
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Model Homophone Variantl Variant2 Variant3 Variant4 Variants Avg
Llama3.1-8B 0.052 0.025 0.030 0.022 0.011 0.022
Qwen2.5-7B 0.216 0.099 0.060 0.082 0.019 0.065
OpenAl 03-mini 0.622 0.422 0.337 0.386 0.345 0.373
Deepseek-R1 0.833 0.636 0.515 0.537 0.370 0.514

Table 1: Results of the basic prompt experiments, including the accuracy of homophones, that of four types of
adversarial variants, and the average value of variants. The best results among the variants are bolded, and the

second-best results are underlined.

CR

1
|DC‘ X;)c
Where Dc = X € D | f(X) =Y (set of suc-
cessfully restored homophones), X/ denotes the
i-th variant of homophone X, Y/ is the correct
orginal word for variant X/, and I[] is the indicator
function.

4
(i > Tf(X) = Y/]) )

1=

Impacts of Context Cues and Other Strategies

In our final exploration, we investigate the impacts
of several related knowledge and prompt strategies
on LLMs’ performance in homophone restoration.
It is widely acknowledged that humans typically
infer the meanings of homophones based on con-
textual cues at first glance (Xu et al., 2024). Hence,
we first examine the effects of contextual informa-
tion. The context sentences created in Section 3.2.1
were integrated into the basic zero-shot prompts,
and the results were compared with those from the
basic prompt. Improved performance indicates that
contextual information positively contributes to ho-
mophone restoration, while degraded performance
suggests the opposite.

Building on this exploration, we further investi-
gate the impact of additional strategies, including:
1) Few-shot prompts: Provide examples to guide
the model; 2) Pinyin annotations: Supply pinyin
for sentences and homophones; 3) CoT: Encour-
age step-by-step reasoning; and 4) MoT: Leverage
memory-enhanced reasoning, to provide compre-
hensive insights to this task.

3.4 Data Perturbation

To examine the underlying patterns of LLMs in
restoring homophones, we created adversarial sce-
narios against the control homophones by introduc-
ing semantic, phonological, and graphemic pertur-
bations through character modifications, as illus-
trated in Figure 1 and Figure 2.

We utilized a well-compiled dictionary’ includ-
ing 2,715 common Chinese characters with pinyin
spellings, to enable automatic character retrieval
and replacements. Using this dictionary, we in-
troduced four types of adversarial variants with
incremental distances away from the control ho-
mophones by replacing one character (or all char-
acters) of the control homophone with a different
character (or some different characters) sharing the
same pinyin or the same syllables but differing in
tones (Appendix A.5).

3.5 Model Selection

Models applied in current study include Qwen 2.5-
7B (Qwen et al., 2025), Llama 3.1-8B (Grattafiori
et al., 2024), OpenAl 03-mini® and Deepseek-
R1 (DeepSeek-Al et al., 2025). Among these,
the former two are open-sourced, while the lat-
ter two are not. These models rank at the top of
current leaderboards and demonstrate remarkable
performance across a diverse set of tasks, includ-
ing reasoning, by leveraging extensive memoriza-
tion capabilities developed during the pre-training
phase (Zhang et al., 2024; Prabhakar et al., 2024).
For all models, the temperature is set to 0, and other
configurations are applied as default.

4 Results and Analyses

4.1 Can LLMs Restore Chinese Internet
Homophones to Original Words?

As shown in Table 1, LLMs show significantly dis-
tinct performance in restoring homophones. Llama
3.1 and Qwen 2.5 show an overall weak perfor-
mance. OpenAl o3-mini demonstrates superior-
ity by outperforming the first two models, and
Deepseek-R1 achieves the best performance with
outstanding accuracy, showcasing its robustness
correspondingly. The performance differences may

"https://github.com/Shwb/sort-hanzi-in-pinyin-order/
8https://openai.com/index/openai-o3-mini/
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Figure 3: The impact of semantic, phonological, and graphemic disparities between homophones and their original

words on LLMs’ homophone restoration performance.
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Figure 4: The influence of semantic, phonological, and graphemic differences between homophones and original
words on the level of memorization dependence during homophone restoration. A higher (1-CR) value on the y-axis

indicates greater reliance on memorization by LLMs.

stem from variations in training data and model
size: Deepseek-R1 used more extensive Chinese
corpora in training, outperforming the other mod-
els with the same scale. OpenAl 03-mini and
Deepseek-R1, with larger parameter sizes and
stronger inference capabilities, excel in this com-
plex linguistic task than smaller models.

Also, we systematically categorized homo-
phones based on differences between homophones
and original words in terms of semantics, phonol-
ogy, and graphemics to explore how these charac-
teristics influence LLMs’ ability to restore homo-
phones. The results are shown in Figure 3.

For the semantic dimension, homophones were
divided into two categories: those whose original
word-level meanings exist and those that do not ex-
ist. The results in Figure 3 (a) reveal that all LLMs
exhibit stronger restoration capabilities for homo-
phones without existing meanings, suggesting that
the inherent semantics in homophones may inter-
fere with restoration, especially for small models.

For phonological differences, Figure 3 (b) shows

significant accuracy differences in LLMs’ homo-
phone restoration across four types. Type 1 (con-
sistent syllables+tones) outperformed others, ex-
cept in large-parameter LLMs. Type 3 (same
tone+different syllables) worked well in small
models. Both types highlight the essentials of
pinyin syllables and tones in homophone restora-
tion. However, when comparing the performance
of Type 2 and Type 3 to Type 1, it is emphasized
that the same tone can benefit more than syllables
in large models. Small models are highly depen-
dent on the same tone, and syllables even negatively
affect the accurate prediction of original words.

For the graphemics dimension, Figure 3(c)
shows that Llama 3.1 and Qwen 2.5 completely fail
to restore Type 1 homophones (shorter characters
replacing original words, e.g., “ % ¥~ replaces

“iX A ¥ , meaning “like this” ). Even large
models perform worst on Type 1 homophones, indi-
cating that LLMs struggle most with pronunciation
elision. In contrast, LLMs excel at Type 2 and
3 homophones, which have the same length with
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partial or total character substitutions, highlighting
their sensitivity to word length and subtle surface
graphemic changes.

4.2 Reasoning or Memorization?

To determine whether LL.Ms restore Chinese homo-
phones primarily through memory or reasoning, we
conducted experiments using four types of adver-
sarial variants. Results are presented in Figure 4:

Deepseek-R1 and OpenAl 03-mini exhibit sig-
nificantly less reliance on memorization compared
to the other two models, likely attributable to their
much larger scale and enhanced reasoning capabil-
ities. Notably, Llama 3.1 demonstrates near-total
reliance on memorization when the homophone
carries their inherent semantic meanings.

Figures 4 (a) and (b) demonstrate that LLMs
exhibit increased reliance on memorization under
two conditions: 1) when homophones retain orig-
inal semantic meanings, or 2) when phonological
divergence between homophones and target words
grows larger. Graphically, Figure 4 (c) reveals sig-
nificantly stronger memorization dependence when
homophones contain fewer characters than their
corresponding original words.

@ 0% variants were correctly restored
O 100% variants were correctly restored

O others

Deepseek-R1 | |

O3-mini | |

Qwen2.5 |

Llama3.1 |

0% 20% 40% 60% 80% 100%

Figure 5: Percentage of different CR value homophones
in the four LLMs.

We computed the CR for each successfully re-
stored homophone, where CR = 1 indicates perfect
variants restoration (100% accuracy) and CR =0
denotes complete failure, as shown in Figure 5. Our
results align with the pattern in Figure 4: smaller
models demonstrate notably poorer performance
on perturbation data compared to larger models.

Furthermore, based on the experimental re-
sults from Deepseek-R1 and OpenAl 03-mini,
we selected homophones with different CR value,
comparing their distributions across: 1) original
word frequency’ and 2) homophone-original word

°Calculated by Python library wordfreq, available at link.

(a) Deepseck Word Frequency (b) Deepseck IPA Distance

Proportion
o
b
Proportion
o
b

» N & o
Log Frequency Log Distance

(¢) 03-mini Word Frequency (d) o3-mini IPA Distance

N

25 y
m CR ‘;“‘ \ CR

Proportion
Proportion

Log Frequency Log Distance

Figure 6: Comparison of homophone properties across
CR values in Deepseek-R1 and OpenAl 03-mini. Ana-
lyzed distributions include: 1) original word frequency
(log-scaled), and 2) IPA-based phonological distance
between homophones and original words. Higher CR
indicates less reliance on memorization.

phonological distance based on the International
Phonetic Alphabet (see Appendix B.3). Intuitively,
we hypothesize that LLMs rely more heavily on
memorization when processing: 1) those derived
from high-frequency original words (leveraging
their prevalence in training data), and 2) those ex-
hibiting substantial phonological divergence from
their original words.

Results are shown in Figure 6. Contrary to our
hypothesis, the original word frequency showed
little correlation with memorization dependence
during homophone restoration. Instead, phonologi-
cal divergence between homophones and original
words emerged as a more dominant factor (consis-
tent with what we observed in Figure 4), particu-
larly in OpenAl 03-mini.

4.3 Can Contextual Cues Enhance
Homophone Restoration in LLMs?

The basic assumption for examining the effect of
contextual information in homophone restoration
18 that, as for humans, contextual information can
restrict and redirect potential choices in a more nar-
row range, facilitating accurate predictions. Thus,
context-enhanced prompts (Appendix B.2) were
employed to assess the role of context in improv-
ing LLMs’ restoration performance.

As shown in Table 2 and Figure 7, the context-
enhanced prompt can improve LLMs’ restoration
ability on Chinese homophones. Context imposes
constraints, guiding LLMs to generate restored
words relevant to the given semantic and pragmatic
environment. As presented in Table 2, for all four
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Model Homophone Context +Fewshot +Pinyin +CoT +MoT
Llama3.1-8B 0.052 0.058 0.156 0.036  0.099 0.164
Qwen2.5-7B 0.216 0.293 0.356 0.269  0.277 0.400
OpenAl 03-mini 0.622 0.723 0.732 0.723  0.718 0.762
Deepseek-R1 0.833 0.896 0.910 0.896 0.871 0.910

Table 2: Results of the context-enhanced prompt experiments. The best results among the Fewshot, Pinyin, CoT,
and MoT are bolded, and the second-best results are underlined.

Context-enhanced Context-enhanced

True False True False

61 18

(b) Qwen2.5-7B

9 10

(a) Llama3.1-8B

True
True

Basic Prompt
Basic Prompt

False
False

Context-enhanced Context-enhanced

True False True

62 76

False

40 21

True
True

Basic Prompt

Basic Prompt

False
False

(c) OpenAI o3-mini (d) Deepseek-R1

Figure 7: Comparison of the basic prompt and context-
enhanced prompt experiments’ results.

LLMs, contextual information can evidently im-
prove their performance of restoring homophones
into their original words (see the increased ac-
curacy from Homophone column to Context col-
umn). However, in-depth results in Figure 7 un-
cover that this improvement is not universal. In
other words, some cases correctly restored in the
basic prompt experiment would be incorrectly han-
dled after adding context. Specifically, for example,
in Llama 3.1, 10 such cases can be observed (see
upper right block), a phenomenon also seen in other
models. This suggests that contextual information
does not consistently impose a positive effect on
each Chinese homophone for restoration and can
sometimes disrupt comprehension or impair mem-
orization in LLMs.

4.4 Can Other Strategies Impact Homophone
Restoration in LLMs?

This study further examines if other strategies can
enhance restoration ability. Table 2 summarizes the
contributions of the different strategies.

Few-shot learning and MoT prompts can sig-
nificantly enhance the restoration performance by

presenting human-annotated examples to LLMs.
Examples from few-shot learning can reveal lin-
guistic patterns of homophones to LLMs, while
MoT prompts explicitly provide human reasoning
logic and pinyin-based knowledge. This enables
LLMs to adopt these reasoning strategies, further
improving their restoration capabilities.

Pinyin augmented prompts result shows that
LLMs have difficulty in explicitly adapting this
knowledge alone to assist homophone restoration.
This suggests that their orthography training may
limit their effective leverage of pinyin.

CoT prompts realized various performance fluc-
tuations among models. Specifically, Llama 3.1 im-
proves with CoT, while Qwen2.5, OpenAl 03-mini,
and Deepseek-R1 show declines. This discrepancy
may arise from their default reasoning strategies.
This task requires simultaneous pinyin and con-
textual information rationale. Without effective
guidance for basic CoT prompts, Qwen2.5, Ope-
nAl 03-mini, and Deepseek-R1 are prone to follow
the default think flow, leading to errors in reasoning.
In contrast, Llama 3.1 benefits from CoT as it com-
pensates for its default lack of reasoning emphasis,
improving restoration accuracy.

5 Conclusion

In this study, we present the first Chinese Inter-
net homophones dataset with language perturba-
tions to evaluate LLLMs’ restoration capabilities
and their reliance on memorization. Our results
show that LLMs exhibit significant differences in
restoring homophones: larger models rely more on
reasoning, while smaller ones depend on memoriza-
tion. Performance variations are further influenced
by semantic, phonological, and graphemic differ-
ences between original words and homophones,
systematically affecting accuracy and memoriza-
tion dependence. Although strategies like contex-
tual cues, few-shot learning, and MoT improve
performance, pinyin-based augmentation unexpect-
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edly failed to enhance restoration. These findings
shed light on LLMs’ robustness with intralingual
and user-generated online content.

Ethics Statement

We do not foresee any ethical risks related to our
research.

Limitations

This study quantifies the extent of memorization in
LLMs’ restoration of Chinese homophones, though
the underlying mechanisms of restoration remain
unclear. A limitation is the use of DeepSeek-Chat
to generate context sentences, which, despite hu-
man proofreading and optimization, may still im-
pact experiments involving contextual prompts'”.

Additionally, our study is confined to four mod-
els (Llama3.1-8B, Qwen2.5-7B, OpenAl 03-mini,
and Deepseek-R1), and results may vary with other
models. Future work should expand to diverse
languages and models to validate and refine these
findings.

Moreover, character co-occurrence and charac-
ter frequency are likely to influence the memo-
rization and reasoning processes of LLMs during
homophone restoration. Currently, there are no
up-to-date datasets that incorporate Chinese In-
ternet homophones along with data on character
co-occurrence and character frequency. Future re-
search efforts are expected to concentrate on col-
lecting such data, with the aim of further exploring
the impact of character co-occurrence and character
frequency on homophone restoration.
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A About Dataset

A.1 Human Annotation

In our paper, two aspects require annotation:
whether homophones have their meanings as ex-
isting words in Chinese and whether the sentence
carriers generated by Deepseek-V3 are appropriate
for the target homophone.

Regarding the first task, the Chinese homo-
phones in the dataset are assigned to three native
Chinese researchers in linguistics for annotation.
When their opinions are not in agreement, we adopt
the annotation results of the majority. For the latter
task, we invited the same annotators to make them
to determine the suitability of the homophone for
the given sentence. Subsequently, sentences with
different opinions will be further revised until a full
agreement is reached for further implementation.

A.2 Instruction for Annotators

Judgment of Homophone Inherent Meaning

* Please check each of the homophones below
and determine whether they have an inher-
ent meaning in Chinese as an existing word.
For example, “/£ 71 (pressure)” and its homo-
phone “® % (Chinese white pear)”, where
“#% %L has its original meaning as a fruit, and
this kind of homophone should be marked as
“1”. Another example “#& /& (anxiety)” and its
homophone “# %k (banana-green, which has
no independent semantic meaning in standard
language)”, which should be marked as “0”.

In general, if the homophone is a word with
a clear semantic meaning in regular language
use, mark it as “1”. If the homophone is just
created as a homophone and has no actual
semantic meaning, mark it as “0”.

The Inter-Annotator-Agreement (IAA) reaches
92.88% (Fleiss’ Kappa = 0.7215). Interannotators’
inconsistent cases will finalize the label by the ma-
jority choice.

Judgment of Carrier Sentences Suitability

* Please review these given sentences that carry
homophones. Your task is to determine
whether each sentence conforms to the func-
tions of Chinese homophones. If the sentence
is appropriate, mark it as “1”. If not (such as
incorrect grammar or inappropriate context),
mark it as “0”.

A.3 Pseudo-code for Categorization

The pseudo-code of grouping words based on
phonological and graphemic features is shown in
Table 3. Pinyin can be accessible by involving the
pypinyin package directly to transfer the charac-
ter into Chinese pinyin. The pseudo-code demon-
strates the logic of transferring words into Chinese
pinyin and conducting the phonological taxonomy
based on pinyin syllable and tone distinction. The
package can transfer the neutral tone into label “5”.

Pseudo-code for Categorization

Original Word ow
Input: and

Homophone h
Output: Result r
Procedure:

DPYoT = f chaIZpinyin(Ow)
PYno = fchaerinyin(h)
(s1,t1) = pyor
(s2,t2) = pyno

0, ifs;i =sgandt) =ty
1, ifsy =5 and t1 # to
"= 2, ifs; #soandt] =ty
3, if S1 75 S92 and tl 75 tg
return r

Table 3: This table demonstrates the logic of phonologi-
cal taxonomy based on pinyin syllables and tone.

A.4 Prompt for Carrier Sentence Generation

The carrier sentences are generated from the
Deepseek-V3 based on the prompt shown in Ta-
ble 4. Since Deepseek-V3 may not be able to
understand the meanings of certain homophonies,
we first input the original words into Deepseek-
V3. This step allows Deepseek-V3 to generate
carrier sentences based on the original words. Sub-
sequently, we replace the original words with their
corresponding homophones. Finally, we present
these sentences with replaced homophonic words
to annotators for verification and modification.

A.5 Pseudo-code for Adversarial Variants
Generation

The pseudo-code of homophone variants genera-
tion is shown in Table 5.
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Chinese original version

I% 384 %]

fRE— 2 ¥ LiEZTHF X, BROIMERE
8 6) F o HARARIE I NP 69 RIAF AT S
ZHT, RREMEE, EAHF
BF

[k =K/

EAT->&E2T7° BERTEFRG?

X PN

English translated version

/* Instructions * /

You are a Chinese language expert and you
are good at writing simple sentences. Please
create logical sentences based on the words
in the input. The structure should be simple
and the use situation should be daily.

/% Example %/

What’s wrong — > What’s wrong?

Don’t you feel well?

/% Input*/

Table 4: This table demonstrates the prompt design of
Context Sentence Generation task. The input language
is Chinese.

B About Experiments
B.1 Ablation Study

In order to explore performance fluctuations with
prompts in Chinese or English, we conducted an ab-
lation study before the formal experiment. We ap-
plied two open-source language models: Qwen2.5-
7B and Llama3.1-8B. The result is shown in Fig-
ure 8. The results indicate that Qwen2.5-7B can
achieve optimal performance with English prompts
in limited strategy, while Chinese prompts yield
better average performance. In contrast, Llama3.1-
8B obtains more optimized performance when us-
ing Chinese as the prompt language. Considering
the better performance of Chinese and the nature of
Chinese linguistic exploration, in our main experi-
ment, we used Chinese as the prompt language.

In details, we explored the output of Llama and
its rationale when using English prompts. This ap-
proach tends to generate coding-type words, such
as “‘u5c0e\u9ed1\u62a8”. Consequently, the per-
formance in most tasks reaches 0 accuracy. Addi-
tionally, when using English prompts for the CoT
task, Llama3.1-8B generates rationale similar to
Python programming language. This information
is provided to guide you in using Python code to
achieve restoration. In that case, Llama also ex-

Pseudo-code for Varient Generation

{Common Chinese Characters C'
Input:

Custom Homophones H

Output: Result Variants V'
Procedure:
D=C\H
(Sla tl) = fcharlpinyin(c)
(527 t2) = fchaerinyin(H)

o S1, ifsy =so Aty #to
" S27

if s =89 At1 =tg
Variants:

Vi ={v|pv) =p(c) AN0.5c # 0.5v}

Vo ={v|p(v) =p(c) Ae# v}

Vs = {v | 0.5p(v) = 0.5p(c) A 0.5¢ #
0.5v}

Vi=A{v|p(v) # plc) Ne# v}

return Variants V'

Table 5: This table demonstrates the logic of catego-
rization based on pinyin syllables, tone, and variant
generation.

hibits extremely weak performance.

B.2 Details of Prompts

The step-by-step investigation on LLMSs’ restora-
tion of Chinese homophones requires highly struc-
tured prompts to make LL.Ms understand their tasks
as well as avoid the performance influence by the
different context information.

Basic Prompt Design

In the basic prompt, we do not give any related
information but the homophone itself to instruct
LLMs for restoring based on the given homophone
alone. Prompts are shown in Table 6.

Context-enhanced Prompt with Pinyin and
Few-shot learning Design

Due to context can assist in constructing mean-
ing via the specific contextual cue offering, our
study designs the context-enhanced prompt to ex-
plore its function in restoration. Additionally, the
few-shot enhanced and pinyin are used to further
examine their influence on restoration as the homo-
phone source-target pattern and Chinese phonolog-
ical spelling role are vital for this restoration task.
The prompt is shown in Table 7.

CoT and MoT prompts Design

CoT and MoT can explicitly activate the rationale
of LLMs by directly showing examples in prompts.
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Qwen_EN Llama_EN Qwen_CN Llama_CN

Basic Prompt  0.000 0.000 0.000 0.000
Context

Enhanced 0.059 0.000 0.098 0.000
Pinyin 0.059 0.000 0.039 0.020
Few-shot 0.176 0.020 0.200 0.078
Learning

CoT 0.137 0.000 0.176 0.059
MoT 0.216 0.020 0.176 0.157
AVG 0.108 0.008 0.114 0.052

Figure 8: This table demonstrates the performance of
different models using different languages in given tasks.
Qwen_EN, Llama_EN, Qwen_CN and Llama_CN de-
note Qwen2.5-7B and Llama3.1-8B using English and
Chinese Prompts. AVG refers to the average accuracy
of specific model with one language.

Chinese original version

IEX T

RAE—ILE LG FLEBZTHNER . REHEILE

—AF LB FEEARAAE, FHERELTER

ARAE VL, KRB A B —MFEe < RE .
“XXX> X&) JSON #u#E, XEH “XXX”

B A AR BT 4 N 693 F 18 BT x4z 69 R AL

Rk PN

LA

English translated version

/** Instructions */

You are a professional Chinese language analysis ex-

pert. When receiving a Chinese homophone word or

phrase as input, accurately revert it to its original word

or phrase, then only output a JSON object conforming

to the format “originalWord”: “XXX”, where “XXX”

represents the original word or phrase corresponding

to the input homophone term.

/% Input*/

Current input is:

Table 6: This table demonstrates the basic prompt de-
sign of restoration task. The input language is Chinese.

The CoT can allow models to reason with the de-
fault chain, while the MoT can offer the human
thinking chain to let models fit to restrict the chain
more task-specific and similar to humans. The
prompt design is demonstrated in Table 8.

B.3 Phonological Similarity Algorithm

We applied Panphon to calculate the phonological
similarity between the homophone and its corre-
sponding original word. The detailed procedure is
demonstrated in Table 10. This method converts
pinyin to IPA using the Dragonmapper package,
then computes multiple distance metrics. Since dif-
ferent articulatory features contribute unevenly to
phonetic perception, we adopt the weighted feature
edit distance to account for these variations.

Chinese original version

IEEEE T

AL H LGP LBTHNER . REKE2A
—NEFEE T L TGO T T T, RS
TP 8 P S F R e F R B E A A AN B
ARG P E AT R A RARGINIC, Ak
HEAME—MFES R . XXX” X
JSON # ¥, X E &) “XXX” kA& Ak &35
x5 6 R P IR o S P RS A HjsonFt
#, MARESEEMERESL.

1% A ]

() aFmn: FREARASNSG, FMNELE
HRERLET .
WE] . ABa
WA <R
examples)
VN
o TFH
TN HE
W F A
W F G HF
English translated version
/* Instructions * /

You are a professional Chinese language analysis expert.
When receiving Chinese sentence containing a homo-
phone and the pinyin of the sentence, as well as the
homophone in the sentence and the magenta of the ho-
mophone as the input, accurately revert the homophone
part to the original word or phrase, then only output a
JSON object conforming to the format “original word”:
“XXX”, where “XXX” represents the original word or
phrase corresponding to the input homophone term.

/* Examples */

(1) Input sentence is: Don’t ginseng male chicken to me,
or I'll have the warden come and deal with it.
Homophone is: ginseng male chicken

Output is: “original word”: “personal abuse”(... with
two more examples)

/* Input/

Input sentence is:

Pinyin of input sentence is:

Homophone is:

Pinyin of homophone is:

“A% H&E” (... with two more

Table 7: This table demonstrates the context-enhanced
prompt design for restoration with two additional im-
provement strategies. The text with this text color de-
note the core addition of context-enhanced prompt. The
text represents pinyin enhanced prompt. The text refers
to few-shot learning enhanced prompt examples. The in-
put language is Chinese while English translated version
is a literal translation for understanding.
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Chinese original version Model Real Acc  Synthetic Acc

IR %] Llama3.1-8B 0.12 0.30

hA—fEE LT LETINER. REREH S ’ ' '

A=A F G F S TR T b e e Qwen2.5-7B 0.64 0.80

%% 5@ );r ”;]7 % 1:'5‘ LR g ‘ijf ?ﬁf f,’;? €Az, g )f:f 3 OpenAl 03-mini 0.93 0.90

AL 4 T E R R A RAG L, RER

SEERA CHBEART . XXX, RE Deepseek-R1 099 1.00
“XXX” % JSON #& 4B, &L L)% — 4 “XXX”

AR AL, B oA XXX AR
gk F P AT R R AP . MR REEA
Zjsontt X 09 3B, TR AE 6L A L ALAEAT 5 43
&

[E A )

GgFmn: REMEASNSE, GNEIEEERZ
RAFET .

WEF . ASNG

W IR . ASNG HHF
& [[ren2],[shenl],[gongl],[jil]]: AL ZEA < AK
&k, HF A& [[ren2],[shenl],[gongl],[jil]] . & &
BTREGRAFFERYRGEFTPEALE, 5
W5 (REFLE) ARFHEAREEMTEAN.
BAEEFAFY K, o B FRT
BEBRGF . NN ERE B BBA 5,
FsompAyrn, B &k F#HRA L o &—
RERKRETRFE*, RERFT-BHRTHF
AR R “ A& ZE& 7 ..(with two more
examples)

/% SN ]

TN

i F

English translated version

/* Instructions % /

You are a professional Chinese language analysis expert.
When receiving a Chinese sentence with a homophone
words/phrase as input: please first give the rationale,
then accurately revert the word or phrase in the sentence
back to original form with only output a JSON object
conforming to the format “reasoning process”: “XXX”,
“original word”: “XXX”, where the first “XXX" is the
reasoning process you carried out, and the second “XXX”
represents the original word or phrase corresponding to
the input homophone term.

/* Examples */

Input sentence is: Don’t ginseng male chicken to me, or
I’ll have the warden come and deal with it.
Homophone: ginseng male chicken

Output: “reasoning process’™ “Pinyin of ‘ginseng
male chicken’ is [[ren2],[shenl],[gong]],[jil]]. Orig-
inal means ‘personal abuse’. This is a homophonic phe-
nomenon formed by complete homophone replacement,
but no change in spelling or tone.‘Seng’, ‘male’, and
‘chicken’ in homophone belong to replaced words. They
experienced replacing ‘body’ with ‘seng’, ‘attack’ with
‘male’, and ‘strike’ with ‘chicken’ respectively. This
phenomenon only changed Chinese characters, keep-
ing the pronunciation consistent to form homophonic
effects.”, “original word”: “personal abuse”...(with two
more examples)

/* Input*/

Input sentence is:

Homophone is:

Table 8: This table demonstrates the CoT and MoT
prompt. The text is explict activation of LLMs’ rela-
tionale. The content represents MoT with human ratio-
nale and true case. The input language is Chinese, while
English translated version is given for understanding.

Table 9: This table compares LLM performance using
the MoT prompt on synthetic vs. real-world sentences.
Real Acc represents the restoration accuracy for au-
thentic homophone-included sentences, while Synthetic
Acc denotes the accuracy for synthetic sentences with
corresponding homophones.

Pseudo-code for Panphon-based Phonetic Distance

p_t
Pinyin, p_to
Output: Normalized Similarity S € [0, 1]
Procedure:
1. Phoneme Alignment:

Align p_t, and p_t2 using IPA segmentation
2. Panphon Distance:

Input: Pinyin,

D < panphon.distance(p_t1,p_t2) (Weighted fea-
ture edit distance)
3. Similarity Conversion:

S 1 — —D-minD) (Normalized to [0,1])

max(D)—min(D)

Table 10: Phonetic similarity computation using Pan-
phon’s distance method. Pinyin was directly input with
the spelling like 0 and transferred into IPA to capture
the articulation of sounds.

C Additional Results Analyses

C.1 Comparison between Sentences in
Real-case and Synthetic Data

This study is constrained by its reliance on syn-
thetic data generated by LLMs, leaving real-world
cases untested. Owing to the scarcity of struc-
tured data on Chinese internet homophones, we
randomly selected ten homophones and sourced
corresponding sentences via an online Weibo cor-
pus with a corpus retrieval function at link, estab-
lishing a 1:10 homophone-to-sentence mapping.
These real-world sentences were then applied us-
ing the MoT strategy to validate its efficacy on
synthetic datasets. The results and key distinctions
are summarized in Table 9.

Although we did not test all homophone cases
to calculate overall accuracy, the trends observed
in real-world and synthetic sentences are consis-
tent. This suggests that synthetic data can mirror
outcomes similar to real-world data and validates
the feasibility of using synthetic data in the main
experiment. However, the significant discrepancy
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between the two also highlights that synthetic data
may not fully capture the complexity of real-world
scenarios, especially affecting the small models’
performance a lot.

C.2 Confusion Matrices

This section reveals all confusion matrix of com-
parison between context-enhanced prompts with
context and few-shot learning-enhanced, context
and pinyin syllable-enhanced, context and CoT ac-
tivating, and context and MoT activating prompts.
Figure 9 shows the various strategies of prompts’
effects on the case level. The confusion matrix
highlights that the strategies of different prompts
cannot consistently enhance or decline in each case.
(A case can be correctly restored in one strategy,
but it may be correctly or wrongly restored in sub-
sequent strategies.)

C.3 Rationale in Error Cases Study

This session lists the original rationale in Chinese
in Table 11 and Table 12.

D Experiment Details

During the experiments, we utilize one A100 GPU
with 40GB of memory. Each experiment is config-
ured to not exceed three hours in duration.

For the reasoning tasks of Deepseek-R1 and Ope-
nAl 03-mini, we obtain access through the official
API channels provided by the respective companies.
As for Qwen2.5-7B and Llama3.1-8B, we down-
load them from the official Hugging Face website
and make use of the transformer package available
there to integrate them into our experimental setup.

E Error Cases Study

Results from basic prompts and enhanced strate-
gies reveal that LLMs can only restore a subset
of Chinese homophones in our dataset, underscor-
ing the challenges they face in restoration tasks.
This section empirically investigates reasons be-
hind their limitation by analyzing the rationale con-
tents and restored words via CoT and MoT experi-
ments. Through additional discussion of erroneous
cases, we gain deeper insights into the underly-
ing causes of these challenges. Detailed rationales
for the examples are provided in Table 12 in Ap-
pendix C.3.

We manually reviewed homophones incorrectly
restored by LL.Ms and categorized the errors into
three types: 1) Same Meaning Restoration: The

restored homophone has the same basic meaning
as the original but is incomplete; 2) Similar Mean-
ing with Lost Elements: The restored homophone
conveys a similar meaning but loses some semantic
elements of the original; 3) Completely Wrong
Restoration: The restored word is entirely incor-
rect, bearing no meaningful relation to the original.

The Type 1 example, “& K & (shi2 le5 zhid,
literally “stone-happy-ambition™), was correctly
restored as “%k T & (shi2 le5 zhi4, “lost one’s
mind”) in the basic prompt experiment, relying on
memorization. However, with CoT involvement, it
was incorrectly restored as “ %k % (shil zhi4, “lose
mind”), omitting the past tense marker “ 7 . This
misalignment during reasoning highlights a limita-
tion of CoT, where LLMs overthink meanings and
neglect functional elements like tense markers. In
contrast, the MoT prompt, which activates memo-
rization and emphasizes proper alignment, ensures
correct restoration. This suggests that LLMs’ de-
fault CoT reasoning struggles to balance content
words and functional elements, sometimes priori-
tizing meaning over structural accuracy.

The example of “% & % %" (wué hua4 nii3
xing4, “atomization-women”) in Type 2, is a par-
tial homophone substitution and memory-relying
restored homophoneme in the basic prompt experi-
ment. However, CoT prompts incorrectly restores
itas “# 1L (wud huad, “objectify”), neglecting the
component of “woman”, while MoT prompts can
still capture all components correctly. This proves
LLMs might lose their attention by CoT in dealing
with multi-word tasks and tend to put the dominant
focus on some key parts during restoration.

Type 3 is illustrated by the example of “3F 2k 4
(feil zhul niu2, “Non-jewelry cow”), which could
be restored into “3F £ R (feil zhu3 liu2, “non-
mainstream”) by using either memory or reasoning,
as demonstrated in the basic prompt experiment.
However, when guided by CoT prompts, it is in-
correctly restored as “JF M 3 (feil zhoul gu3,
“African drum”). The CoT rationale encounters two
issues: incorrectly dividing the multiword term into
two parts, “3F 2k and “4” instead of the correct
pattern “JF” and “# 4, and excessively restoring
the character “4-". In contrast, MoT prompts stress
the entire word, facilitating correct restoration.

136



Context with few-shot Context with few-shot Context with pinyin Context with pinyin
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Figure 9: Comparison context-enhanced prompt between context enhanced with few-shot learning prompt, context
enhanced with pinyin syllable prompt, context enhanced prompt with COT strategy, and context enhanced prompt
with MOT experiments’ results, in the form of confusion matrices.
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Type

Homophone

CoT Rationale

Same semantic
meaning restored word

Similar meaning with
elements lost restored
word

Complete wrong

% % (shi2 le4 zhi4)
(stone happy ambition)

A4 (wud huad
nii3 xing4) (atomization
female)

AEZk % (feil zhu3 niu2)

(“HEIE> . “HFTH  BERE AEEH%

% (Shithi4) M, kT F %%ﬁ%ﬁﬁx‘*,,yum’

BEBX  RAEE LB . AGAETER 5
=+

RE BERKRZIFRE. 7, “RE” . k%> }
(Hpmitizr . EOPH R 5 i &i
Fl, < BHARAYS, AT IF LA B AAT

A, HEaFRFAFUHTHGREFN . A T 8
FEEXFH AR, HRABAEFHR. », R
L “#@’f&” }

{ “dp@igAg~ “ipFE  dEzR A0 89 R F Afeil zhul

restoration (Non jewelry cow) niul. FFREIRFAABLLFESERGF AR .
k% 5 M REF#HYE (zhul Hzhoul & £ &5
ThAM) , F THRE S WRERFTITA
F(qu3bnin2 T A ERBIER FRA). 6 FHH
FHROAEFBATRATOAMALE, FIBTRF LA < 4k
3o, R <dEME )

Type Word MoT Rationale

Same semantic % A& (shi2led zhid)  { “HERAZ” . < B R E 95 F Zshi2 led zhids

meaning restored word

Similar meaning with
elements lost restored
word

Complete wrong
restoration

(stone happy ambition)

F A4 (wud huad
nii3 xing4) (atomization
female)

FE R4 (feil zhu3 niu2)
(Non jewelry cow)

BB %A < RT%H > . % ZshilleS zhid. T2 & T
FNRETFERMARGBEFTFANEL, £F 5 5 < %
CEAEFRER (BMEEMT) . KR L5 T BT
B+%8# (RXTREB*) . ‘& 5 % kT
FERFFESR . BHFEFTALAIRAEIN > FHFRE
(shi2—shil) # B & F & F## (le—le. zhi—zhi) %k
T F R, AR EIRE F I R Y % W %R
BEOHEBREAREFTR. L, CRF . KkTE )

{ i~ “ cFAC 895 Fwud huads R L%
A e HEAwudhuad . TRBTRAVERFTFE
B RGETARLE, HEHBEAFLEVARTHLA
BAAET T . BABEFEFE  F BETEINERY
F.o¥ Y BEkAF BERAETTRFESE
*, REFRAF-BHRTHEFTAR”, “R#” . “Hhit
(“dEmIAR” . < Ak F 9B F &feil zhul niu2,
BV ZA “dEER” . BFZfeil zhu3 niv2- T2 BT
RERBRMELSFRATGBEFAREL. LF % F
KR R h)ERNEZFRAG—F, 4>
FRF AR (u2)® FE B E AN, EXRS>FERA
Ao % . R—FFHALEHESFX F42E 005
VR EEFREZFEE—F), ERFERET T AUE
QR B R T R R AR, RE . <dEER” )

Table 11: This table shows the three types of words and examples, which represent three kinds of restoration error.
The Chinese original CoT and MoT prompts are listed in the right part of the table with the rationale procedure and
restored words.
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Type

Homophone

CoT Rationale

Same semantic
meaning restored
word

Similar meaning
with elements lost
restored word

Complete wrong
restoration

% R & (shi2 led
zhi4) (stone happy
ambition)

F AL (wud
hua4 nii3 xing4)
(atomization
female)

FE 2R (feil zhu3
niu2) (Non jewelry
Ccow)

Reasoning process: The term “%& 5k & in the sentence has a similar pro-

nunciation to “% %, shil zhi4. “% % means losing one’s rationality
or being in a trance, which is consistent with the context of forgetful-
ness described as “forgetting things here and there” later. In Internet
lang, “% % & is often used as a homophonic way to express this state.
Original term: “% % > (loss of wisdom) (shil zhi4)

Reasoning process: In the original sentence, the pronunciation of “%
f” (atomization) is the same as that of “#74L”, wu4 hua4. It aligns
with the negative evaluation of men’s behavior in the meaning of the
sentence. However, the literal meaning of “%- ft.” does not fit the context.
Therefore, it is determined that it is a homophonic substitution. Restored
word: “45 17 (objectify) (wu4 hua4)

Reasoning process: The homophonic word “3F %k 4 is pronounced
as feil zhul niu2. We need to find a musical genre with a similar
pronunciation that fits the context. “3F 2k has a pronunciation close to
feil zhul (the pronunciation of zhul and zhoul can be similar in some
dialects), and niu2 might be a miswriting of or a dialectal pronunciation
of “3” (there could be a confusion in regional pronunciations between
gu3 and niu2). Considering the cultural phenomenon that African drum
music is popular among young people, it is judged that the original word
should be “JF # 3% (African drum), feil zhoul gu3. Restored word:
“3F M 0 (African drum) (feil zhoul gu3)

Type

Word

MoT Rationale

Same semantic
meaning restored
word

Similar meaning
with elements lost
restored word

Complete wrong
restoration

% & (shi2 led
zhi4) (stone happy
ambition)

FALE (wud
hua4 nii3 xing4)
(atomization
female)

Ak 2k 4 (feil zhu3
niu2) (Non jewelry
Ccow)

Reasoning process: The pinyin of “%& & & is shi2 le4 zhi4, and the

original phrase should be “% T % with the pinyin shil le5 zhi4. This
is a phenomenon of homophonic words formed by replacing some
homophonic characters. Among them, there is a difference in tone
between “%& ” (shi2) and “%k” (shil); “ < and “ 7T are homophonic
character replacements(only the written Chinese characters are changed);
“&” and “% " are completely homophonic character replacements. This
kind of homophonic phenomenon is achieved by adjusting the tones of
some characters (shi2—shil) and matching with homophonic character
replacements (le—le, zhi—zhi). While maintaining the approximate
similarity of the overall pronunciation, it forms a special expression
in Internet slang. Restored word: “% T % (loss of wisdom)(shil le5
zhi4)

Reasoning process: The pinyin of “% 44> (atomization) is wu4 huad,
and the original word should be “4 4" (objectify), with the pinyin also
being wu4 hua4. This is a phenomenon of homophonic words formed
by a complete replacement of homophonic characters, where neither the
pinyin syllables spelling (place of articulation) nor the tone has changed
at all. In this homophonic word, the character “%” (wu4) is the one
that has been replaced. The character “4%” (wu4) has been substituted
with “Z” (wu4). This phenomenon only changes the written form of
the Chinese character while keeping the pronunciation consistent, thus
creating a homophonic effect. Original word: “474L> (objectify) (wu4
huad)

Reasoning process: The pinyin of “3F#k 4> is feil zhul niu2, and the
original word should be “3F £ &> with the pinyin feil zhu3 liu2. This
is a phenomenon of homophonic words that combines changes in the
place of pronunciation and tone changes. Among them, for the character
“3k” (zhul), the tone of the original character “%” (zhu3) has been
changed from the third tone to the first tone. As for the character “4”
(niu2), the initial consonant of “i#” (liu2) has been changed from [1] to
[n]. There is a phenomenon of confusion between “n” and “1” in some
dialect areas. This homophonic word forms a humorous expression
effect while maintaining the overall similarity of syllables by adjusting
the pronunciation position of the initial consonant (replacement of “n”
and “I”’) and changing the tone (changing from the third tone to the first
tone). Original word: “3F £/ (non-mainstream)(feil zhu3 liu2)

Table 12: This table shows the three types of words, which represent three kinds of restoration error. The English-
translated CoT and MoT prompts are listed in the right part of the table with the rationale procedure and restored

words.
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Abstract

Large language models (LLMs) achieve high
performance through instruction-tuning, which
involves learning various tasks using instruc-
tion templates. However, these templates of-
ten contain fask-specific expressions, which are
words that frequently appear in certain contexts
but do not always convey the actual meaning of
that context, even if they seem closely related to
the target task. Biases inherent in such instruc-
tion templates may be learned by LLMs dur-
ing training, potentially degrading performance
when the models encounter superficial expres-
sions. In this study, we propose a method that
incorporates additional instructions to FLAN
templates, without altering the base instruction
to produce ‘“‘superfluous instructions”. This
allows us to investigate the vulnerabilities of
LLMs caused by overfitting to task-specific ex-
pressions embedded in instruction templates.
The experimental results revealed that the in-
clusion of superficial words strongly related to
each task in the instruction text can alter the
output, regardless of the intended meaning.

1 Introduction

Large language models (LLMs) adopt a training
method called instruction-tuning (Wei et al., 2022a;
Longpre et al., 2023), which enables them to re-
spond appropriately to a wide range of user queries
based on given instructions. To perform instruction-
tuning, it is necessary to construct datasets consist-
ing of instruction-output pairs. Instruction tem-
plates are typically designed to structure existing
natural language processing tasks so that generative
LLMSs can produce relevant outputs. Furthermore,
diverse templates for each task are crucial to avoid
overfitting to any single template. Providing multi-
ple templates during instruction-tuning is important
for improving the model’s generalization (Sakai
et al., 2024). However, templates designed for spe-
cific tasks often contain task-specific words, which
may introduce biases related to those tasks. Table 1

trivia wmt16 multi math true
qa translate news dataset case
1 answer translate article problem capitalize
2 question to summary  math case
3 the language this solution proper
4  trivia in true solve correctly
5 be not context the low

Table 1: The five most words with high TF-IDF scores in
instruction templates for each task in the FLAN dataset.

presents the five most significant words, based on
TF-IDF (Ramos, 2003), for each task in the instruc-
tion template dataset FLAN (Wei et al., 2022a),
showing a strong connection between the words
used in the templates and their associated tasks.

In this study, we focus on surface-level biases
arising from the presence of task-specific words
in instruction templates. By leveraging FLAN, a
widely adopted instruction template dataset that al-
lows for precise control over word occurrences, we
can rigorously evaluate the influence of such task-
specific words. Furthermore, we propose “super-
fluous instructions” which incorporate unrelated
text into FLAN templates, while preserving the
original task-solving intent of the instructions. For
example, we add expressions such as “Answer the
following question without generating unrelated
text”. These expressions are carefully designed not
to interfere with the original intent. Therefore, we
expect that they will not affect the model’s output
from a task-solving perspective.

We evaluated three models tuned by FLAN in-
structions using 80 superfluous instructions tailored
to each task. The results show that adding super-
fluous instructions, particularly those containing
task-specific superficial expressions, negatively im-
pacted performance. This suggests that instruction-
tuned LLMs are vulnerable to superficial cues in
the instructions, which degrade performance even
when the instruction’s meaning remains unchanged.
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These findings provide important insights for de-
veloping more robust instruction-tuning methods.

2 Background and Related Work

Instruction-Tuning Datasets. FLAN (Wei et al.,
2022a; Longpre et al., 2023) is a widely used En-
glish resource for instruction-tuning, designed to
cover a broad range of natural language process-
ing tasks. By adapting these templates to each
task, diverse data can be generated for instruc-
tion tuning. In addition to FLAN, other datasets
have been proposed that use different templates
for instruction-tuning (Wang et al., 2022; Zhang
et al., 2023; Chen et al., 2024). However, there
are concerns that datasets created using templates
might merely lead models to memorize the super-
ficial patterns of the templates (Kung and Peng,
2023). As a result, LLMs may struggle to follow
instructions that deviate from the patterns found
in their training data, failing to produce the ex-
pected output. Alternatives to template-based ap-
proaches include generating instruction-tuning data
from LLM outputs (Xu et al., 2024, 2023; Peng
et al., 2023), or efficiently producing large datasets
through methods like crowdsourcing (Wang et al.,
2022; Mishra et al., 2022; Kopf et al., 2023). How-
ever, such data can inherit generation biases from
the LLMs used (Kavumba et al., 2022; Zellers et al.,
2019; Tamborrino et al., 2020; Omura et al., 2020)
or include low-quality artifacts from crowdsourc-
ing, known as Annotation Artifacts (Gururangan
et al., 2020; Poliak et al., 2018; Tsuchiya, 2018).
Training models with such data may cause them
to develop strong biased responses toward certain
characteristic words.

Vulnerabilities to Specific Instructions. LLMs
can achieve enhanced performance through prompt
engineering (Wei et al., 2022b; Kojima et al., 2022;
Zhong et al., 2023; Yang et al., 2024; Zhou et al.,
2023; Yao et al., 2023; Chen et al., 2025), or
via prompt tuning (Lester et al., 2021; Liu et al.,
2024; Li and Liang, 2021). While well-designed
prompts can maximize their potential, there is also
a concern that language models might not under-
stand the meaning of the text but rather rely on
characteristic tokens in the input, guiding their
outputs solely based on the superficial expres-
sions of prompts (Du et al., 2023; Kavumba et al.,
2022; Zellers et al., 2019; Tamborrino et al., 2020;
Omura et al., 2020; Zheng et al., 2025). This is-
sue has also drawn attention from the perspective

of instruction-following (Moon et al., 2025; Sakai
et al., 2025; Qin et al., 2024; Zeng et al., 2024),
consistency (Sakai et al., 2024; Lee et al., 2025;
Raj et al., 2025), and safety (Dong et al., 2024; Li
et al., 2024). Thus, while specific tokens can en-
hance a model’s performance, they may also cause
the model to behave differently than usual when
encountering certain tokens. For instance, popu-
lar instruction-tuning datasets like FLAN include
only positive instructions in their templates. As
a result, it has been questioned whether language
models can properly handle instructions involving
negation, such as “does not contain the keyword”
or “does not imply the meaning” (Kassner and
Schiitze, 2020; Jang et al., 2023; Hosseini et al.,
2021; Hossain et al., 2020; Ye et al., 2023). These
studies evaluated models’ ability to reverse answers
in tasks like NLI (Williams et al., 2018) by mak-
ing minor changes to evaluation templates, e.g.,
replacing “plausible” with “implausible” or ““cor-
rect” with “incorrect.” Their findings suggest that
language models struggle with handling negation.
However, these analyses focus on introducing nega-
tion by simply replacing words in templates, which
leaves it unclear whether LLMs are inherently vul-
nerable to semantic negation, or merely biased due
to the disproportionate presence of positive over
negative instructions in training templates.

3 Superfluous Instructions

We introduce “superfluous instructions” that con-
tain target words for analysis but provide no new
semantic information. By adding superficial ex-
pressions without semantic changes, we investigate
how superficial expressions, such as task-specific
words, affect model output. We use FLAN (Wei
et al., 2022a)! as seed instruction templates.

3.1 Design of Base Superfluous Instructions

Superfluous instructions are phrases added to in-
structions in a way that does not change their mean-
ing. For instance, the phrase “without generating
unrelated text” is a superfluous instruction in Fig-
ure 1. Such phrases are natural yet do not alter
the purpose of the tasks due to the presence of
a double negative. To generalize this structure,
we create variations such as “without generating
{unrelated} {text})”’, where {unrelated} is replaced
with synonyms and {fext} with task-specific words.

1https: //github.com/google-research/FLAN/blob/
main/flan/templates.py
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Answer the following question without generating text

-
Unrelated
synonyms

— ————— — R
extraneous inapplicable

Important
=
inappropriate unassociated

text words hypotheses articles
unconnected non-germane

answers summaries
incompatible unallied irrelevant

[FH7 Cambridge
% Dictionary

sentences contexts questions

Figure 1: Base template of the superfluous instruction.
The superfluous phrase “without generating {unre-
lated} {text}” includes placeholders, where {unrelated}
is replaced with adjectives and {text} with nouns, using
all possible combinations from the respective candidate
sets. This allows us to add superficial expressions with-
out introducing any semantic changes.

This approach allows us to generate multiple su-
perfluous instructions per task. Since the core task
instruction remains unchanged, the model’s out-
put should, in theory, also remain the same. If
the output changes, it suggests that the superflu-
ous instruction is influencing the model’s behavior.
For simplicity, “superfluous instructions” refers to
the entire instructions containing the superfluous
phrase: “without generating {unrelated} {text}”

3.2 Word Selection for {Unrelated} Part

We fill the {unrelated} placeholder in the base su-
perfluous instruction with synonyms of the word
“unrelated” to evaluate the model’s ability to gen-
eralize. By comparing the results across multiple
instructions, we assess how the model responds to
variations in the instruction. To identify appropri-
ate synonyms, we consulted the Cambridge Dictio-
naries Online” and found 11 synonyms for “unre-
lated”. We used 10 synonyms>: “unrelated,” “extra-
neous,” “inapplicable,” “irrelevant,” “unassociated,”
“incompatible,” “unconnected,” “unallied,” “non-
germane,” and “inappropriate.” We confirmed with
native English speakers that all 10 variations are
grammatically correct and preserve the original in-
struction’s meaning. We then generated multiple in-
structions by replacing the {unrelated} placeholder
in the phrase “without generating {unrelated} text”
with each of these synonyms.

99 ¢¢

3.3 Important Word Selection from
Instruction Templates

We replaced the {text} placeholder in the superflu-
ous instruction with task-specific important words

2https://dictionary. cambridge.org/
3We exclude “foreign” because it did not strongly align
with the meaning of “unrelated.”

from each instruction to evaluate their effect on
model performance. To identify these important
words, we used TF-IDF (Ramos, 2003). For each
task, we treated the set of templates associated
with that task as a single document and computed
TF-IDF scores. Since instruction tuning aims to im-
prove model performance across multiple tasks, it
is important to consider word importance not only
within individual tasks but also across all templates.
The TF-IDF calculation of our study is as follows:

. Ntd
tf(t,d) = 7zs€dns7d,where de D(1)
df(t,D) = |{de D :ted}|, )
D
idf(t,D) = log df|(tD) +1, 3)
)

tfidf (t,d, D

tf(tv d) ’ de(t7 D) (4)

Here, D denotes the collection of documents, d
is a single document, ¢ is the target word, and n
is the raw count of the word ¢ in d. For our TF-
IDF calculation, we treat the entire collection of
templates as D, where each task d; is considered a
document consisting of multiple templates. Each
individual template within a task is denoted as d;;.
Next, the TF-IDF scores for each word ¢ were
summed across the dataset D. To reduce bias from
differences in word usage across tasks, we nor-
malized these scores by dividing the sum by the
number of tasks in which the word appears:

SN tfidf (t, dij, D)
df(t, D)

Importance(t,d;, D) =
)

This approach balances word importance across
the dataset while mitigating bias from infrequent
words. We calculated TF-IDF scores after lem-
matizing* the words in each template. The impor-
tance of each word, based on its TF-IDF score, is
normalized by its occurrence count, as shown in
Equation 5. However, words that appear very in-
frequently may yield artificially high importance
scores. To address this, we consider only words
with above-average occurrence counts. We define
such frequently occurring words across the FLAN
templates as high-importance words (henceforth,

“important words”).

Table 2 shows the top 15 important words. As
indicated in Table 2, some of these words belong
to parts of speech other than nouns. Therefore, to

“For lemmatization, we used the “en_core_web_sm”
model from the spaCy library: https://spacy.io/.
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Rank  Word TF-IDF  Importance
1 same 2.877 0.4795
2 question 7.601 0.4751
3 hypothesis 2.245 0.4491
4  article 5.226 0.4355
5 answer 6.246 0.3123
6 summary 2.426 0.2696
7  true 2.032 0.2540
8 we 1.800 0.2250
9 if 2.185 0.2185

10 two 1.706 0.2133
11 word 1.268 0.2114
12 next 2.240 0.2037
13 sentence 7.615 0.1953
14 context 1.533 0.1917
15  paragraph 1.519 0.1898

Table 2: Top 15 words that appear more frequently
than average and have high importance scores. Words
highlighted in bold were used in this study. Note that
words with high TF-IDF scores do not always have high
importance scores, e.g., “sentence”.

maintain the correct structure of the superfluous
instruction, we selected only nouns with an impor-
tance score of 0.19 or higher. The final eight words
used in our experiments are highlighted in bold in
Table 2. For consistency, countable nouns were
used in their plural forms.

4 Experimental Setup

LLMs. We used three instruction-tuned LLMs
based on FLAN templates, with different parameter
sizes: FLAN-T5 XL (3B) based on T5-XL (Raffel
et al., 2020); FLAN-T5 XXL (11B) based on T5-
XXL (Raffel et al., 2020); FLAN-UL2 (20B) (Tay
et al., 2023) based on UL2 (Chung et al., 2024).

Datasets. We selected MMLU (Hendrycks et al.,
2021) and BBH (Suzgun et al., 2023). MMLU
covers 57 subjects with varying difficulty, includ-
ing STEM, law, medicine, and ethics. BBH fo-
cuses on 23 particularly challenging tasks for lan-
guage models, derived from the broader BIG-
Bench dataset (Srivastava et al., 2023), which spans
204 categories, including linguistics and software
knowledge. These datasets are reserved for evalua-
tion and not trained for each model.

Evaluations. We used 8-bit quantized infer-
ences (Dettmers et al., 2022) with greedy decoding
in a zero-shot setting®. We evaluated the models
using accuracy as the evaluation metric. We apply
simple post-processing to remove whitespace and

This was implemented using HuggingFace Transform-
ers (Wolf et al., 2020) and used a single A6000 GPU.

newline characters, convert the text to lowercase,
and then evaluate using exact match accuracy.

5 Experimental Results

Table 3 shows the evaluation scores for each model
and task with superfluous instruction.

5.1 Effect of Adding Superfluous Instructions

In Table 3, where the {unrelated} part of the in-
structions was replaced with synonyms, all mod-
els exhibited a performance drop compared to the
standard instructions, indicating that superfluous
instructions negatively impact performance. BBH
showed a larger score decrease than MMLU, which
can be attributed to BBH’s more varied answer for-
mats. This suggests that the models are highly
fitted to the concise style of FLAN instructions
and struggle to handle the redundancy introduced
by the added phrases. Furthermore, contrary to
expectations based on scaling laws, the standard
deviation increased with larger model sizes. This
suggests that improving generalization requires not
only scaling up model size, but also careful selec-
tion of instruction templates.

5.2 Impact of Superfluous Instructions with
Important Words

In Table 3, when the {text} part was replaced with
important words, the scores dropped even further.
This suggests that the presence of important words
in FLAN templates can introduce vulnerabilities,
affecting model behavior regardless of context. As
in Section 5.1, the score drop was larger for BBH
than for MMLU and became more pronounced
with increasing model size. These results further
support the hypothesis of overfitting to instruction
templates, as discussed in Section 5.1.

5.3 Impact of Combining Superfluous
Instructions and Important Words

When both {unrelated} and {text} were replaced,
the score drops, with FLAN-TS XXL and FLAN-
UL2 being as high as when only the {text} part
was replaced. This suggests that replacing impor-
tant words {text} consistently led to substantial
performance degradation, regardless of the accom-
panying {unrelated} term. Additionally, although
BBH features tasks with diverse answer formats,
while MMLU consists solely of multiple-choice
questions, MMLU exhibited higher standard de-
viations. This indicates that replacing important
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Replacement Score FLAN-T5 XL FLAN-T5 XXL FLAN-UL2
{unrelated}  {text} MMLU BBH MMLU BBH MMLU BBH
Standard Instruction acc. 47.1 33.7 52.5 41.0 53.1 34.5

v acc. 46.8+0.3 30.3+£3.0 49.1£2.4 33.1£3.6 48.8+5.1 20.9+5.6
v A 1030.7%) 13.4(10.1%) |3.4(6.5%) 1 8.0 (19.4%) 1 4.4 (8.2%) 113.5 (39.3%)
v acc. 45.8+1.5 26.3+4.3 45.849.1 31.245.0 33.3x14.3 14.7+8.9
v A 11.3QR2.7%) [ 174221%) |6.7(12.8%) = 199 (24.1%) BRCENETEL) NIRRCNAGIIY))
v v acc. 46.3%£1.5 27.3+4.8 46.9+6.3 30.74£5.7 37.1£13.8 16.7+8.8
v v A $0.8(1.7%) | 164 (19.0%) |5.6(10.7%) [ 110.4(253%) " ERNEZ VAN

Table 3: Average scores per model and instruction type across tasks. Checkmarks indicate which part of the
instruction “Answer the following question without generating {unrelated} {text}).” was replaced. When present, a
checkmark means {unrelated} was replaced with synonyms and {text} with important words. The + symbol denotes
the standard deviation, and A indicates the change in score relative to the version with no replacements.

Replacement: {text} MMLU BBH

Standard Instruction 53.1 34.5
words 122.0(41.4%) | 14.7 (42.6%)
hypotheses 122.3 (41.9%) ARER(EIECE)
articles 116.3 (30.6%) | ALl (@1E47)
answers 1 12(022%) 1 0.6( 1.8%)

summaries 1 3.7( 7.0%)

sentences 1 21.5 (40.4%) AR HGRISIZ)
contexts 1 18.2 (34.2%) BUEENG:HEZ))
questions 1 35.1(66.1%) | 26.6 (77.1%)

Table 4: FLAN-UL?2’s average scores for each replaced
important word across all {unrelated} replacements.

words disrupted the model’s ability to select cor-
rect answers, even in the constrained format of
multiple-choice tasks. These findings suggest po-
tential overfitting to the instruction templates used
during tuning. Moreover, contrary to expectations
from scaling laws, FLAN-TS5 XL showed smaller
variations in score and standard deviation com-
pared to FLAN-T5 XXL and FLAN-UL?2, reinforc-
ing the idea that improving generalization depends
not only on model size, but also on factors such as
the instruction templates used during tuning.

5.4 Analysis of the Relationship Between
Important Words and Scores

To identify which important words had the greatest
impact on performance, Table 4 presents FLAN-
UL2’s average scores for each replaced important
word, averaged over all {unrelated} replacements.
The word “answers” caused the smallest change
in scores, suggesting minimal influence on model
behavior. In contrast, “questions” led to the largest
score drop in both BBH and MMLU. Additionally,
while “summaries” had little effect on MMLU, it
caused a noticeable drop in BBH, similar to the
behavior observed when using “text” in the base

instruction. In summary, compared to both the stan-
dard instruction and the basic “text” prompt, the
use of important words resulted in larger score de-
creases, confirming that these words have a strong
influence on model behavior.

6 Discussion

6.1 Analysis of Score Decrease by Each Task

To understand how each important word affects
model behavior, we analyzed task-level score
changes in MMLU and BBH. Figures 2 and 3 show
the scores without the superfluous instruction (w/o),
and with replacements to {unrelated} (U), {text}
(T), or both (U/T). Tasks are ordered by the stan-
dard deviation of scores across these conditions,
from highest (top left) to lowest (bottom right).

MMLU. Inmost MMLU tasks shown in Figure 2,
the scores for all three models are quite similar
when standard instructions (column w/o) are used.
However, superfluous instructions lead to notice-
able variations in scores across tasks. For tasks
with high standard deviation (top left), FLAN-UL2
(green line) shows a significant score drop when the
prompt is altered. Similarly, FLAN-TS XXL also
shows a decline, especially in tasks with greater
score variability, while FLAN-T5 XL exhibits mini-
mal score changes. We also examined the impact of
replacing {unrelated} and {text}. For FLAN-UL2,
scores declined when {unrelated} was replaced,
but an even larger drop occurred when {text} was
substituted. This suggests that, for certain tasks, re-
placing {text} has a greater impact on performance
than replacing {unrelated}.

BBH. In BBH tasks shown in Figure 3, even with
standard instructions (column w/0), score trends
varied across models, in contrast to the MMLU
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Figure 2: Accuracy for each task in MMLU. “w/0” indicates values without superfluous instructions, “U” indicates
values with changes to {unrelated}, “T” indicates changes to {text}, and “U/T” indicates changes to both. Results
are arranged from top left to bottom right in order of decreasing standard deviation for each task.
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Figure 3: Accuracy for each task in BBH. “w/0” indicates values without superfluous instructions, “U” indicates
values with changes to {unrelated}, “T” indicates changes to {text}, and “U/T” indicates changes to both. Results
are arranged from top left to bottom right in order of decreasing standard deviation for each task.

case. Additionally, the score variations introduced
by superfluous instructions were quite diverse. For
FLAN-UL2, replacing {text} led to substantial
score drops in many tasks. However, in tasks
such as snarks and movie recommendation, the
drop from {unrelated} replacements was relatively
small compared to {text}, indicating that {text}
played a stronger role in influencing model behav-
ior in these tasks. For FLAN-T5 XXL, tasks such
as snarks, disambiguation_qa, and sports under-
standing showed higher scores when {text} was
replaced than when {unrelated} was, suggesting
that important words had a positive effect on per-

formance in these cases. FLAN-T5 XL, similar
to its performance on MMLU, showed relatively
little change in scores. The four tasks with the
lowest standard deviations, except for causal judge-
ment, consistently showed low accuracy across all
prompts, indicating their difficulty for the models.
BBH appears to contain many tasks that are highly
sensitive to prompt variations. While MMLU con-
sists entirely of multiple-choice questions (A to
D), BBH includes tasks with various answer for-
mats, such as valid-invalid, true-false, sorting, and
symbol-based answers, leading to substantial varia-
tion in response quality depending on the prompt.
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Case Analysis 1: To clarify how the replaced
important words specifically impacted model be-
havior, we conducted a detailed analysis of sev-
eral tasks from MMLU and BBH where the score
decreased more significantly when {text} was re-
placed than when {unrelated} was replaced. We
also examined BBH tasks that exhibited notable
changes. For example, in the movie recommen-
dation task, FLAN-UL2’s score decreased further
when important words were replaced after adding
superfluous instructions. The frequent occurrence
of the word “movie” in this task, which also ap-
pears in some FLAN template tasks, may suggest
overfitting. While the movie recommendation task
involves label selection, some FLAN template tasks
require summary or sentence generation, often us-
ing words like “summarize” or “sentence”. This
overlap in terminology likely contributed to overfit-
ting, resulting in a substantial drop in performance.

Case Analysis 2: Another noteworthy example
is the sports understanding task. FLAN-T5 XL
achieved around 60% accuracy, but the larger mod-
els, FLAN-T5 XXL and FLAN-UL?2, showed lower
performance even with standard instructions. In-
terestingly, FLAN-TS XXL’s score improved to
40% when superfluous instructions were added. In
this task, the word “plausible” appears frequently,
and the correct responses are “yes” or “no”. The
FLAN template task Copa also uses “plausible”,
but it involves multiple-choice answers. With stan-
dard instructions, FLAN-T5 XXL often responded
in choice format, e.g., “(Il)”", but with superfluous
instructions, correct yes-no responses increased.
This suggests that FLAN-TS XXL was overfitting
to the word “plausible” in the prompt, and that the
insertion of superfluous expression helped reduce
this overfitting. These observations further support
the hypothesis of word-level overfitting within the
FLAN templates. This overfitting appears to in-
fluence both score performance degradation and
improvement, depending on the specific task and
prompt structure.

6.2 Impact of Low-Importance Words

Motivation and Settings. We examine whether
the performance decrease attributed to high-
importance words in Section 3.3 can also be ob-
served with “low-importance words”. We define
low-importance words as those ranked among the
lowest in importance scores. Table 5 lists the words
with low importance. The final seven noun words

TF-  Impo- TF-  Impo-
Word IDF  rtance Word IDF  rtance
1 your 0.043 0.043 19 give 0.523 0.065
2 means 0.043 0.043 20 one 0.917 0.065
3 out 0.043 0.043 21 otherwise 0.131 0.066
4 resemble 0.043 0.043 22 tell 0.536 0.067
5 closely 0.043 0.043 23 o) 0.068 0.068
6 try 0.050 0.050 24 second 0.277 0.069
7 else 0.050 0.050 25 first 0.277 0.069
8 impossible 0.050 0.050 26  return  0.209 0.070
9 messages 0.053 0.053 27 type 0.070 0.070
10 potentials 0.053 0.053 28 at 0.142 0.071
11 propose 0.053 0.053 29 embody 0.071 0.071
12 term 0.225 0.056 30 example 0.356 0.071
13 generate 1.186 0.059 31 perceive 0.072 0.072
14 follow 2.255 0.063 32 opinion 0.072 0.072
15 here 1.157 0.064 33 whether 0.146 0.073
16 another 0.065 0.065 34  above 1.404 0.074
17 definition 0.065 0.065 35 think  0.151 0.075
18 both 0.065 0.065 36 contents 0.303 0.076

Table 5: List of 36 low-importance words, ranked by
importance score from lowest to highest. The seven
bolded nouns were used in our experiments.

used in our experiments are highlighted in bold.
For consistency, countable nouns were replaced
with their plural forms. To test this, we created
similar instructions using low-importance words
and calculated task scores for each model and in-
struction type. From the bottom 36 words in impor-
tance listed in Table 5, the nouns that appear in the
FLAN templates include: “messages,” “potentials,”
“terms,” “definitions,” “examples,” “opinions,” and
“contents”. These words were substituted into the
{text} part of the instructions, while the {unrelated}
part was also replaced with its synonyms, resulting
in a total of 70 generated superfluous instructions.

LR INT3

LR T3

Relationship Between Low-Importance Words
and Scores. Table 6 presents the task scores for
each model and instruction type. When using in-
structions with low-importance words, particularly
in BBH, the rate of score decline tended to increase
with larger model sizes. However, this decline was
smaller for FLAN-UL2 compared to the case with
high-importance words. Similar trends were ob-
served in the other models, though the changes
were generally smaller. Furthermore, Table 7
shows the average scores for each low-importance
word. Except for “terms” and “definitions”, most
words caused only minimal score changes across
all models, indicating limited impact on perfor-
mance. However, “terms” and “definitions” led to
substantial drops in FLAN-T5 XXL and FLAN-
UL2, despite being classified as low-importance.
This may be due to “definitions” appearing only
once in the original FLAN templates used for
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Replacement Score FLAN-T5 XL FLAN-T5 XXL FLAN-UL2
{unrelated}  {text} MMLU BBH MMLU BBH MMLU BBH
Standard Instruction acc. 47.1 33.7 52.5 41.0 53.1 34.5

v acc. 46.8+0.2 27.6£3.3 46.3£7.0 33.1+6.7 48.3+7.5 24.247.1
v A 10.20.5%) @ 16.1(182%) 162(11.9%) |8.0(194%) |4.8(09.1%) [FI110:3(29:9%)
v acc. 46.9+0.4 28.6£3.4 47.7£7.0 34.1+£6.6 48.8+6.9 25.0£7.0

v v A 1020.5%)  1520153%) 149092%) 169(16.9%) |4.4(82%) F194(274%)

Table 6: Average scores per model and instruction type across tasks using lower importance words. Checkmarks
indicate which part of the instruction “Answer the following question without generating {unrelated} {text}).” was
replaced. When present, a checkmark means {unrelated} was replaced with synonyms and {text} with important
words. The + symbol denotes the standard deviation, and A indicates the change in score relative to the version

with no replacements.

Replacement: {text} MMLU BBH
Standard Instruction 53.1 34.5
messages 1 0.6( 1.2%) | 5.8(16.8%)
potentials 1 0.5 1.0%) | 2.3( 6.7%)
terms 1 14.8127.9%) | 15.0(43.5%)
definitions 1 9.3(17.5%)
examples 1 2.6(49%) | 8.524.6%)
opinions 1 0.8( 1.5%) | 5.5(16.0%)
contents 1 1.8( 34%) | 9.7(28.0%)

Table 7: FLAN-UL2’s average scores for each replaced
low important word across all {unrelated } replacements.

TF-IDF computation, but being used frequently
in the natinst_v2 task included in the updated
FLAN-v2 templates®. At the task level, FLAN-
UL2 again showed greater score variability, consis-
tent with observations for high-importance words.
In MMLU, scores remained stable across differ-
ent low-importance words, whereas BBH showed
slightly more variation, though still less than when
high-importance words were used. These results
support the use of our importance score as an indi-
cator of words that may cause overfitting.

6.3 Low-Importance Words by Tasks

Figures 4 and 5 show task-level results using low-
importance words. Since the word “text” is not
among the selected low-importance words, the “U”
column contains no values. Tasks are ordered by
standard deviation from top left to bottom right,
following the same order as in Figures 2 and 3.

MMLU. In Figure 4, MMLU shows minimal
score variation when low-importance words are
used. When {text} is replaced (T), tasks that pre-
viously showed large drops with high-importance
words now exhibit only slight decreases. When

6https ://github.com/google-research/FLAN/blob/
main/flan/v2/templates.py

both {unrelated} and {text} are replaced (U/T),
scores remain nearly the same as when only {text}
is replaced, suggesting that {unrelated} has a lim-
ited impact. This trend aligns with the earlier re-
sults using high-importance words.

BBH. In Figure 5, similar patterns are observed.
For most tasks, excluding “sports understanding”,
FLAN-TS XL and FLAN-TS XXL show little to
no score change, in contrast to the greater varia-
tions seen with high-importance words in Figure 3.
FLAN-UL2 displays some variability, but again,
to a lesser extent. These results support the claim
that high-importance words more strongly affect
model behavior and task performance. Interest-
ingly, in the “sports understanding” task, replac-
ing {text} led to a score increase to about 30%
for FLAN-T5 XXL, while FLAN-UL2 remained
mostly unchanged. This contrasts with the high-
importance condition in Figure 3, where FLAN-T5
XXL improved by about 40% and FLAN-UL2 by
10%. These findings highlight the importance of
task-specific prompt design.

6.4 What Does Importance Score Capture?

We analyze why certain words that strongly influ-
ence model behavior tend to have high importance
scores. First, we calculated TF-IDF scores within
FLAN templates to assess how distinctive a word
is in contexts requiring specific answer formats (Ta-
ble 1). Next, we identified task-specific important
words using the importance score and confirmed
which words were generally characteristic across
tasks (Figure 1). Finally, we filtered out words
with high scores that appeared only a few times, as
described in Section 3.3.

This process allowed us to efficiently identify
words that are both strongly tied to output formats
and frequently encountered during training. These
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results suggest that such words are more likely to
cause overfitting and that heuristic methods like
TF-IDF-based importance scores may be useful for
identifying vulnerabilities in deep learning models.

7 Conclusion

In this study, we proposed a novel method for de-
signing instruction templates to analyze the impact
of task-specific superficial expressions found in
instruction-tuning templates on the performance

of large language models. Using this method, we
generated instructions based on the FLAN tem-
plates and conducted evaluations on both MMLU
and BBH tasks. The results revealed that the per-
formance of LLMs is affected by task-specific su-
perficial expressions included in the instructions.
This insight is essential for developing more robust
instruction-tuning methods. In future work, we
plan to explore solutions such as replacing these
superficial expressions during instruction-tuning to
address the issues identified in this study.
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8 Limitations

Language Models. Our study validated the find-
ings using a limited set of open models instruction-
tuned on the FLAN dataset. Due to resource con-
straints, we could not train models on the full
FLAN datasets and instead relied on widely used
instruction-tuned models. This choice allowed us
to isolate the impact of word biases in the FLAN
templates. However, our conclusions may not gen-
eralize to all large language models. Future work
could involve comparisons among models with sim-
ilar architectures to further examine these effects.

Generality of Dataset. In this study, we used
only two datasets, MMLU and BBH, which were
explicitly labeled as held-out tasks in the origi-
nal paper (Longpre et al., 2023). This choice was
made to create an ideal environment for isolating
the influence of words in the FLAN templates by
mitigating other variables. Whether the results ob-
served with these two tasks can be replicated in
other datasets remains an open question for future
research. However, the in-depth analysis at the task
level within BBH could help clarify the potential
impact of similar effects in other datasets. In the
future, we could also explore broader impacts in
datasets like MMMLU?, which includes multilin-
gual tasks and might provide insights similar to
those seen in our held-out tasks.

Datasets for Instruction-Tuning. Although we
investigated the influence of word bias in templates,
other methods have been developed to reduce word-
related biases, such as allowing language models to
generate diverse prompts (Wang et al., 2023; Taori
etal., 2023; Kojima et al., 2021; Nayak et al., 2024).
This approach may increase the variety of tasks and
phrases used. However, as previous research has
repeatedly shown, biases in the words and ideas
produced by language models remain a concern.
Techniques like TF-IDF, which count word fre-
quency, continue to be effective in detecting such
biases early on. Additionally, there are restrictions
on how data generated by models like Llama2 (Tou-
vron et al., 2023) can be used, such as limitations
on usage outside of Llama 2 or derivative works®.
Considering these constraints, instruction-tuning
with templates remains valuable, and efforts to mit-
igate bias in this context are still essential.

7https ://huggingface.co/datasets/openai/MMMLU
8https ://github.com/metallama/llama/blob/main/
LICENSE

9 [Ethical Considerations

Dataset. We used public datasets and modified
them. These datasets are allowed to be used and
modified under their respective licenses. Therefore,
our dataset does not raise ethical considerations.

Use of AI Assistants. In this study, we have used
GitHub Copilot and ChatGPT as an Al assistant for
coding and writing support.
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