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Abstract
Large language models (LLMs) often demon-
strate strong performance by leveraging im-
plicit knowledge acquired during pretraining.
Analogical reasoning, which solves new prob-
lems by referencing similar known examples,
offers a structured way to utilize this knowl-
edge, but can also lead to subtle factual er-
rors and hallucinations. In this work, we in-
vestigate whether LLMs can recognize the re-
liability of their own analogical outputs us-
ing black-box uncertainty estimation (UE). We
evaluate six UE metrics across two reasoning-
intensive tasks: mathematical problem solving
and code generation. Our results show that
Kernel Language Entropy (KLE) and Lexical
Similarity (LexSim) are the most robust indica-
tors of correctness. Moreover, while analogical
prompting lowers model uncertainty over direct
prompting, most uncertainty arises during the
analogy transfer step. These findings highlight
the limitations of analogical knowledge transfer
in LLMs and demonstrate the potential of UE
methods for detecting hallucinated reasoning
in black-box settings.

1 Introduction

Recent advances in large language models (LLMs)
have highlighted their surprising ability to uti-
lize internalized knowledge for solving complex
tasks. This ability, often acquired through large-
scale pretraining, enables models to answer fac-
tual questions, reason about concepts, and even
perform domain-specific tasks without explicit re-
trieval (Yang et al., 2024; Zhang et al., 2025). How-
ever, such knowledge utilization remains opaque
and error-prone. In particular, LLMs frequently
produce responses that are fluent and confident but
factually incorrect, which is a phenomenon known
as hallucination (Qin et al., 2025).

To better understand how knowledge is used,
represented, and sometimes misapplied by LLMs,
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we focus on a specific form of structured reasoning:
analogical reasoning. This strategy encourages the
model to solve a target problem by referencing a
related, known problem. Analogical reasoning has
roots in human cognition (Vosniadou and Ortony,
1989) and has been shown to enhance LLM perfor-
mance across domains (Yasunaga et al., 2024; Yang
et al., 2024; Zhang et al., 2025). Conceptually, it
involves two stages: retrieving or constructing an
analogy, and transferring it to the new context (Ra-
machandran, 2012).

Despite its potential, analogical reasoning is also
prone to hallucination-like failure. Models may
select an irrelevant analogy, or fail to adapt it cor-
rectly, leading to incorrect answers that nonetheless
appear coherent and justified. These subtle errors
are particularly dangerous in deployment settings,
as they can undermine user trust in the model’s
reasoning ability. This raises a key research ques-
tion: can LLMs recognize when their analogical
reasoning is unreliable?

We address this question by investigating the
utility of black-box uncertainty estimation (UE)
metrics. These methods aim to quantify model un-
certainty based solely on output patterns, without
requiring access to internal activations or probabili-
ties (Fadeeva et al., 2023). Prior work has applied
UE to tasks such as translation and summariza-
tion (Fomicheva et al., 2020), but its effectiveness
in analogical reasoning, where hallucinations arise
from multi-step failures, remains underexplored.

In this paper, we evaluate six representative UE
metrics in the context of analogical prompting. Our
experiments span two reasoning-intensive bench-
marks: GSM8K for mathematical problem solving,
and Codeforces for code generation. We further
dissect analogical responses into their subcompo-
nents to understand where uncertainty arises: in the
analogy itself or in its transfer. This work makes
three main contributions:
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Figure 1: Overall procedure of our method. The first row illustrates the process for identifying robust uncertainty
estimation metrics. The latter two rows demonstrate the steps of calculating the uncertainty in analogical reasoning.

• We present the first systematic evaluation of
uncertainty estimation metrics for analogical
reasoning in black-box LLMs.

• We identify two metrics, Kernel Language En-
tropy (KLE) and Lexical Similarity (LexSim),
that best predict factual correctness.

• We show that analogical reasoning decreases
model uncertainty, but most uncertainty arises
from the transfer step.

Our findings provide insights into the mech-
anisms and limits of knowledge utilization in
LLMs, and offer a practical pathway toward detect-
ing hallucinated reasoning in analogical contexts.
Our code can be found in https://github.com/
Bellafc/analogyUE/.

2 Related Work

2.1 Analogical Reasoning

Analogical reasoning is a procedure of: 1) retriev-
ing knowledge for obtaining similarities among
questions, and 2) transferring the knowledge from
the known source to the unknown target (Ra-
machandran, 2012). Analogical reasoning first
identifies deep relational similarities (e.g., batteries
and reservoirs both store and release energy, be-
yond surface differences). It then transfers these
higher-order structures to the unknown problems
(e.g., the “central force-orbital motion” in solar
system-atom analogies) while ignoring superficial
features (Gentner, 1983).

Recent studies have applied analogical reason-
ing to mathematical problem-solving and code gen-
eration by prompting LLMs to generate relevant
exemplars or knowledge, thereby enhancing reason-
ing performance (Yasunaga et al., 2024). However,

while analogical reasoning effectively leverages im-
plicit pretrained knowledge, it may introduce fac-
tual errors or hallucinations (Qin et al., 2025). This
paper aims to investigate the reliability of LLMs
in analogical reasoning, uncovering the sources of
uncertainty.

2.2 Uncertainty Estimation

With the widespread adoption of LLMs, their gen-
erated outputs are prone to hallucination (Xiao and
Wang, 2021; Dziri et al., 2022). Uncertainty es-
timation methods address this issue by quantify-
ing the confidence of model predictions, enabling
users to identify unreliable outputs and thereby
enhancing the safety and reliability of LLM de-
ployments (Fadeeva et al., 2023).

Uncertainty estimation mainly includes two
methods: white-box and black-box. White-
box methods, requiring access to internal model
states, include information-theoretic approaches
like maximum sequence probability and seman-
tic entropy (Kuhn et al., 2023), ensemble-based
techniques (Malinin and Gales, 2021) using cross-
model prediction variances, and density estimation
methods such as Mahalanobis distance (Lee et al.,
2018) for out-of-distribution detection. Black-
box methods, which operate solely on gener-
ated text outputs, encompassing semantic diver-
sity analysis (Lin et al., 2024) that evaluates un-
certainty by computing similarity matrices across
multiple responses, as well as graph-theoretic ap-
proaches (Fadeeva et al., 2023). In contrast to
white-box approaches, this paper focuses specif-
ically on black-box uncertainty estimation for ana-
logical reasoning, enabling reliable hallucination
detection without access to internal model states.

85

https://github.com/Bellafc/analogyUE/
https://github.com/Bellafc/analogyUE/


Figure 2: Analogical Reasoning Prompts for GSM8K and Codeforces.

3 Method

The overall experimental pipeline is illustrated in
Figure 1. As part of this procedure, we apply
analogical prompting to two reasoning-intensive
datasets: GSM8K for mathematical problem solv-
ing and Codeforces for code generation. The spe-
cific analogical prompts used for these two datasets
are provided in Figure 2.

3.1 Common UE metrics for black-box LLMs
To evaluate the uncertainty of model-generated re-
sponses in a black-box setting, we adopt six repre-
sentative UE metrics, implemented via the library
introduced in (Fadeeva et al., 2023). These metrics
capture diverse statistical and structural properties
of language model outputs. A brief overview is
provided below.

• Sum of Eigenvalues of the Graph Lapla-
cian (EigV) (Lin et al., 2024): This metric
computes the sum of eigenvalues of the Lapla-
cian matrix L constructed from a token-level
similarity graph of the generated text. Intu-
itively, higher spectral mass reflects lower un-
certainty.

EigV(x) =
n∑

i=1

λi where Lx = λx (1)

• Degree Matrix (Deg) (Lin et al., 2024): De-
fined as the sum of degrees in the token simi-
larity graph, this metric serves as a proxy for

local cohesion in the response.

Deg(x) =
∑

i

deg(vi) (2)

• Eccentricity (Ecc) (Lin et al., 2024): This
metric computes the maximum shortest-path
distance from any node to all other nodes in
the graph. Lower eccentricity indicates more
centralized (and potentially more confident)
responses.

Ecc(x) = max
v∈V

min
u∈V

d(v, u) (3)

• Lexical Similarity (LexSim) (Fomicheva
et al., 2020): Based on pairwise cosine sim-
ilarity among token embeddings, this metric
reflects lexical cohesion in the output.

LexSim(x) =
2

n(n− 1)

∑

i<j

cos(e⃗i, e⃗j) (4)

• Kernel Language Entropy (KLE) (Nikitin
et al., 2024): This metric estimates the entropy
of the response using a kernel-based density
estimation over token embeddings. Lower
entropy typically indicates lower uncertainty.

KLE(x) = −
∑

i

log


∑

j

K(xi, xj)




(5)
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• LUQ (Local Uncertainty Quantifica-
tion) (Zhang et al., 2024): A recent metric
that quantifies uncertainty by measuring
the variance in local regions of the output
embedding space.

LUQ(x) =
1

n

∑

i

Var(Nk(xi)) (6)

where Nk(xi) denotes the k-nearest neighbors
of token xi.

3.2 Identify Robust UE Metrics

We begin by evaluating the reliability of six UE
metrics in assessing the correctness of analogi-
cal reasoning outputs. Our study is conducted on
two reasoning-intensive benchmarks introduced
in (Yasunaga et al., 2024): GSM8K for mathe-
matical problem solving (Cobbe et al., 2021), and
Codeforces for code generation (Majd et al., 2019).
From each dataset, we randomly sample 200 exam-
ples and apply the analogical reasoning prompting
strategy proposed in prior work.

For each generated response, we compute six
UE scores using the following black-box estima-
tors: sum of graph Laplacian eigenvalues (EigV),
degree matrix (Deg), eccentricity (Ecc), lexical sim-
ilarity (LexSim), kernel language entropy (KLE),
and LUQ (Lin et al., 2024; Fomicheva et al., 2020;
Nikitin et al., 2024; Zhang et al., 2024). In parallel,
we conduct human evaluation on all 400 analog-
ical reasoning responses, where each response is
assigned a score from 0 to 100 based on its fac-
tual correctness and reasoning quality. One of the
author and a student research assistant jointly an-
notated the responses. These human scores serve
as the ground-truth accuracy proxy.

To assess how well each UE metric correlates
with human judgment, we compute the Predictive
Rate Ratio (PRR) for each metric:

PRR =
AUCPRunc

AUCPRoracle
(7)

This ratio measures the area under the precision-
recall curve (AUCPR) when ranking predictions
by their uncertainty values, normalized by the ora-
cle AUCPR (i.e., ideal ranking using ground-truth
labels). A higher PRR indicates a stronger abil-
ity to distinguish between correct and incorrect
responses based on uncertainty alone. We select
the top-2 metrics with the highest PRR scores for
use in subsequent stages.

3.3 Uncertainty Loss in Analogies

Building on the previous step, we further examine
the interaction between analogical prompting and
uncertainty estimation. Specifically, we aim to
evaluate whether analogical reasoning lowers the
uncertainty in LLM outputs and to what extent
uncertainty varies across prompting strategies.

For each of the same 200 samples per dataset,
we perform three types of evaluation:

Analogical Prompting (ar): Full analogical rea-
soning prompt used to generate response rar.

Direct Prompting (dp): A baseline prompt
without analogical structure, producing rdp.

Analogy-Only (an): The analogy section (e.g.,
retrieved or constructed examples) extracted from
rar, yielding ran.

For each of these three prompting modes, we
compute the UE scores using only the top-2 metrics
identified in the previous step. Human evaluators
also score rdp and ran to provide corresponding
correctness labels (adp and aan).

This setup allows us to compute three sets of
PRR scores:

arPRR: PRR from analogical reasoning outputs.
dpPRR: PRR from direct prompting outputs.
anPRR: PRR from analogy-only segments.
By comparing these three PRR scores, we can

isolate the contribution of analogical structure to
model uncertainty and quantify its influence on UE
metric behavior.

3.4 Overall Procedure

Algorithm 1 outlines the complete evaluation
pipeline. For each sample, we first generate a re-
sponse using analogical prompting. We then eval-
uate this response using all six UE metrics, result-
ing in six corresponding uncertainty scores umar .
Human annotators assess the correctness of each
analogical response to yield the score aar. Using
these uncertainty-accuracy pairs, we compute the
analogical reasoning PRR scores arPRRm for all
metrics and identify the top two performing metrics.
Subsequently, we evaluate the same sample with
direct prompting and analogy-section-only extrac-
tion. For each of the direct prompting results and
the analogy-section only extraction, we apply only
the top-2 UE metrics selected based on arPRR. The
resulting responses are scored for correctness (adp
and aan), and corresponding uncertainty estimates
(umdp and uman) are computed for each selected metric
m. Finally, we compute the corresponding PRRs
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Algorithm 1 Evaluation Pipeline for Analogical
Reasoning uncertainty Analysis

1: for each sample in dataset do
2: // Analogical Reasoning Prompt
3: rar ← LLM(AnalogicalPrompt(sample))
4: for each UE metric m in {EigV, Deg, Ecc,

LexSim, KLE, LUQ} do
5: umar ← UEm(rar)
6: aar ← HumanScore(rar)
7: end for
8: end for
9: // Compute arPRR for all metrics

10: for each metric m do
11: arPRRm ← ComputePRR(umar , aar)
12: end for
13: // Select top-2 metrics based on arPRR
14: Top2Metrics ← SelectTopK({arPRRm}, k =

2)
15: for each sample in dataset do
16: // Direct Prompting
17: rdp ← LLM(DirectPrompt(sample))
18: // Extracted Analogy Section
19: ran ← ExtractAnalogySection(rar)
20: for each metric m in Top2Metrics do
21: umdp ← UEm(rdp)
22: uman ← UEm(ran)
23: adp ← HumanScore(rdp)
24: aan ← HumanScore(ran)
25: end for
26: end for
27: // Compute PRRs for top-2 metrics
28: for each metric m in Top2Metrics do
29: dpPRRm ← ComputePRR(umdp, adp)
30: anPRRm ← ComputePRR(uman, aan)
31: end for

for both direct prompting (dpPRR) and analogy-
section-only (anPRR), allowing us to compare the
predictive utility of uncertainty estimates across
prompting strategies.

4 Results

4.1 KLE and LexSim are Robust UE metrics
Table 1 reveals that KLE and LexSim outperform
other UE metrics across benchmarks. This diver-
gence stems from the distinct demands of analogi-
cal reasoning:

1. KLE’s Robustness to Semantic Diversity
Analogical reasoning often involves structurally
valid but lexically diverse solutions (e.g., different

algorithmic implementations for the same program-
ming problem). KLE’s semantic kernel captures
this structural coherence by encoding logical rela-
tionships beyond surface features. For instance, in
Codeforces, valid code analogies may share no lex-
ical overlap (e.g., recursive vs. iterative solutions)
but exhibit high semantic similarity in control flow
or data structures. KLE’s entropy quantifies this
implicit consistency, making it task-agnostic.

2. LexSim’s Domain-Specific Utility LexSim
excels in mathematical reasoning (GSM8K), where
answers often follow rigid templates (e.g., arith-
metic expressions like 3x+ 5 = 20). Here, correct
analogies inherently share high lexical overlap (e.g.,
repeated operators or variables), aligning LexSim
with human judgment. However, its reliance on
surface patterns fails in tasks requiring flexible
logical expression, leading to poor performance
(PRR=0.092).

3. Failure of Graph-Based and NLI Metrics

• EigV/Deg/Ecc: These graph-based metrics as-
sume that semantic similarity correlates with
logical validity. However, analogical reason-
ing allows structurally distinct but logically
equivalent answers (e.g., different proof paths
in math), violating this assumption.

• LUQ: NLI models struggle to assess bidirec-
tional entailment in complex analogies (e.g.,
code logic), often misclassifying valid varia-
tions as contradictions.

4.2 Analogical Reasoning Lowers the
Uncertainty, but Transfer Reduces It

The results presented in Table 2 show the relation-
ship of anPRR, arPRR, and dpPRR, with the
measurement of the selected two UE metrics. As
mentioned in Section 3, anPRR measures the
uncertainty of the whole uncertainty reasoning pro-
cess, while anPRR focuses on the uncertainty of
the analogous questions and answers. dpPRR
evaluates the uncertainty estimate for responses
generated through direct prompting, without any
analogical reasoning component.

The results show that the anPRR values are con-
sistently higher than the arPRR values across all
datasets. This suggests that the LLM is more confi-
dent in the analogous questions and answers. The
model is likely confident in identifying relevant
analogies and applying them to the problem at hand.
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GPT-3.5-Turbo GPT-4
UE Method GSM8K Codeforces Avg GSM8K Codeforces Avg
KLE 0.187±0.013 0.200±0.015 0.194 0.201±0.008 0.215±0.019 0.208
LexSim 0.285±0.014 0.101±0.013 0.193 0.296±0.021 0.113±0.018 0.205
EigV 0.032±0.015 0.023±0.013 0.028 0.039±0.011 0.027±0.019 0.033
Ecc -0.014±0.013 0.014±0.013 0.000 -0.005±0.012 0.021±0.012 0.008
Deg -0.135±0.010 -0.018±0.012 -0.077 -0.127±0.008 -0.012±0.014 -0.070
LUQ -0.106±0.012 -0.136±0.010 -0.121 -0.101±0.021 -0.130±0.019 -0.116

Table 1: Performance of UE methods on two datasets (arPRR and its variance), comparing gpt-3.5-turbo and
gpt-4. Values are color-coded from light blue (lowest) to dark blue (highest) within each column group.

Model Dataset Metric KLE LexSim
GPT-3.5-Turbo GSM8K arPRR 0.187 0.285

anPRR 0.354 0.372
dpPRR 0.103 -0.002

GPT-3.5-Turbo Codeforces arPRR 0.200 0.028
anPRR 0.289 0.163
dpPRR 0.098 0.009

GPT-4 GSM8K arPRR 0.201 0.310
anPRR 0.389 0.402
dpPRR 0.115 0.011

GPT-4 Codeforces arPRR 0.215 0.075
anPRR 0.317 0.190
dpPRR 0.121 0.023

Table 2: UE metric values (arPRR, anPRR, dpPRR) across datasets and models for KLE and LexSim.

However, the lower arPRR values indicate that
the model’s uncertainty increases when it comes
to transferring the solution from the analogy to
the original problem. This could be because the
process of adapting and applying the analogy to
the new context introduces additional uncertainty.
The higher anPRR values suggest that analogical
reasoning is an effective strategy for lowering the
uncertainty, whereas the low dpPRR values em-
phasize the limitations of direct prompting without
such reasoning.

5 Discussion

Our findings highlight two key insights into UE
in analogical reasoning tasks. First, KLE (Nikitin
et al., 2024) and LexSim (Fomicheva et al., 2020)
emerge as robust and complementary UE metrics,
each excelling in different domains due to their
underlying assumptions about semantic and lexi-
cal similarity. Second, analogical reasoning lowers
model uncertainty, but this uncertainty increases
during the transfer phase, underscoring a critical
bottleneck in applying analogies to novel problems.
Graph-based metrics (e.g., EigV, Deg, Ecc) and

NLI-based LUQ underperform, suggesting a mis-
alignment with the nature of analogical reasoning.
These methods assume that surface-level similar-
ity or binary entailment captures uncertainty ef-
fectively. However, analogical tasks often require
recognizing logically valid yet structurally diverse
answers. Their poor average scores and high vari-
ances confirm their inadequacy in capturing nu-
anced analogical consistency.

The second set of results reveals that analogi-
cal reasoning lowers the model’s self-assessed un-
certainty (as reflected by higher anPRR), yet this
uncertainty loss does not fully translate into suc-
cessful application (lower arPRR). This divergence
points to a key challenge: while models can iden-
tify useful analogies, the process of adapting them
to new contexts introduces epistemic uncertainty.
The lowest scores observed in the dpPRR condi-
tion further reinforce the value of analogy-based
prompting over direct prompting. However, the
drop from anPRR to arPRR indicates that the anal-
ogy transfer step is a critical weakness in current
LLM capabilities.

These findings suggest that future uncertainty
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metrics should better account for the two-step na-
ture of analogical reasoning: analogy retrieval and
transfer. While KLE and LexSim provide partial
solutions, hybrid models or adaptive metrics that
dynamically weigh lexical and semantic coherence
may further improve reliability.

Limitations

While our study presents a systematic evaluation
of black-box uncertainty estimation in analogical
reasoning, several limitations remain.

First, our analysis is restricted to two datasets,
which, although representative of mathematical and
algorithmic reasoning, may not fully capture the
diversity of analogical tasks across domains such
as law, science, or creative writing. Extending
our evaluation to other datasets like BigBench or
domain-specific benchmarks would strengthen the
generalizability of our findings.

Second, our evaluation focuses exclusively on
black-box LLMs, namely GPT-3.5-Turbo and GPT-
4, due to API access and usage constraints. While
this reflects realistic deployment conditions, it ex-
cludes signals from white-box techniques such
as self-consistency voting or intermediate acti-
vation inspection. Hybrid approaches that com-
bine surface-level uncertainty metrics with internal
model signals may further improve performance,
especially during the analogy-transfer stage where
uncertainty loss is limited.

Third, all human annotations were conducted by
one author, supplemented by DeepSeek-V3-0324
model suggestions. To ensure label reliability, we
verified a randomly sampled subset and observed
high agreement (κ > 0.8). Nonetheless, future
studies could benefit from a full multi-annotator
protocol with inter-annotator agreement reporting.

Lastly, while we adopt the term “uncertainty
loss” to describe reductions in estimated uncer-
tainty, this does not directly equate to calibrated
model confidence. Our measurements are inher-
ently proxy-based and reflect surface-level out-
put coherence rather than epistemic access to the
model’s belief state. Future work may explore adap-
tive uncertainty metrics or calibration techniques
that better align with the two-stage nature of ana-
logical reasoning.
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Dataset GSM8K

Initial Problem Mary does her grocery shopping on Saturday. She does her shopping only at a
specific store where she is allowed a credit of $100, which must be paid in full
before her next shopping trip. That week she spent the full credit limit and paid
$15 of it on Tuesday and $23 of it on Thursday. How much credit will Mary
need to pay before her next shopping trip?

Analogical Rea-
soning Answer
(r_ar)

Analogous Problems: Q1: Sarah has a $200 store credit limit. She spends the
full amount in one trip. She pays back $50 on Monday and $70 on Friday. How
much does she still owe? A1: Sarah starts with $200 of debt. She pays back
$50 + $70 = $120. So, the remaining debt is $200 - $120 = 80 . Solve the
Initial Problem: Q: Initial Problem A: Mary spent the full credit: $100. She
paid back $15 on Tuesday and $23 on Thursday. Total paid: $15 + $23 = $38.
Remaining to pay: $100 - $38 = 62

Direct Prompt An-
swer (r_dp)

Total credit used: $100. Payment on Tuesday: $15. Payment on Thursday: $23.
Total paid so far: $15 + $23 = $38. Remaining credit to be paid: $100 - $38 =
$62. Mary will need to pay $62 before her next shopping trip.

Extracted Analog-
ical Section (r_an)

Q1: Sarah has a $200 store credit limit. She spends the full amount in one trip.
She pays back $50 on Monday and $70 on Friday. How much does she still
owe?A1: Sarah starts with $200 of debt. She pays back $50 + $70 = $120. So,
the remaining debt is $200 - $120 = 80 .

Table 3: Example 1

92



Field codeforces200 Example

Dataset codeforces200

Initial Problem Misha and Vasya participated in a Codeforces contest. Each of them solved one problem,
submitted on first attempt. Misha solved a problem worth $a$ points at $c$ minutes, and
Vasya solved one worth $b$ points at $d$ minutes. The final score is computed as:
score = max(3p/10, p - (p*t)/250)
Determine who scored higher.

Analogical Rea-
soning Answer
(r_ar)

Analogous Problem: Alice solves a 200-pt question in 30min. Bob solves a 150-pt one in
20min.
Alice: max(3*200/10, 200 - 200*30/250) = max(60, 176) = 176
Bob: max(3*150/10, 150 - 150*20/250) = max(45, 138) = 138
Result: Alice wins.
Mapping to Original Problem: This is analogous to comparing scores after time-adjusted
penalties.
Use the same scoring rule:
score = max(3p/10, p - (p*t)/250)
This is analogous to a disjoint set union (DSU) problem. We track original to current
handle via mapping. E.g., given a sequence of changes [("A", "B"), ("B", "C")] we
map original → final.
Python3 Code:
def track_handle_changes(n, changes):
original_to_current = {}
current_to_original = {}
for old, new in changes:
original = current_to_original.get(old, old)
original_to_current[original] = new
current_to_original[new] = original
current_to_original.pop(old, None)
print(len(original_to_current))
for orig, final in original_to_current.items():
print(orig, final)

Direct Prompt An-
swer (r_dp)

To determine who scored more, compute both scores using:
score = max(3p/10, p - (p*t)/250)
for both Misha and Vasya. Compare the two results.

Extracted Analog-
ical Section (r_an)

Analogous Problem: Alice solves a 200-pt question in 30min. Bob solves a 150-pt one
in 20min.
Alice: max(3*200/10, 200 - 200*30/250) = max(60, 176) = 176
Bob: max(3*150/10, 150 - 150*20/250) = max(45, 138) = 138
Result: Alice wins.

Table 4: Transposed example from codeforces200 showing reasoning and analogical mapping.
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