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Abstract

Multi-hop question answering (MHQA) re-
quires a model to retrieve and integrate informa-
tion from multiple passages to answer a com-
plex question. Recent systems leverage the
power of large language models and integrate
evidence retrieval with reasoning prompts (e.g.,
chain-of-thought reasoning) for the MHQA
task. However, the complexities in the ques-
tion types (bridge v.s. comparison questions)
and the reasoning types (sequential v.s. par-
allel reasonings) require more novel and fine-
grained prompting methods to enhance the per-
formance of MHQA under the zero-shot set-
ting. In this paper, we propose STOC-TOT, a
stochastic tree-of-thought reasoning prompting
method with constrained decoding for MHQA
and conduct a detailed comparison with other
reasoning prompts on different question types
and reasoning types. Specifically, we construct
a tree-like reasoning structure by prompting the
model to break down the original question into
smaller sub-questions to form different reason-
ing paths. In addition, we prompt the model to
provide a probability estimation for each rea-
soning path at each reasoning step. At answer
time, we conduct constrained decoding on the
model to generate more grounded answers and
reduce hallucination. Experiments comparing
STOC-TOT with on two MHQA datasets and
five large language models showed that STOC-
TOT outperforms other reasoning prompts by
a significant margin.

1 Introduction

Question answering (QA) is a fundamental task in
natural language processing (NLP) that involves
designing systems capable of understanding human
language questions and providing accurate and rel-
evant answers. With the recent advancement of
large language models (LLMs) that demonstrated
superior reasoning ability (Brown et al., 2020), re-
searchers have been focusing more on complex
QA tasks, such as multi-hop question answering

The actor who received 
the 2016 Academy 
Honorary Award co-
starred which movie 
with Chris Tucker?

2016 Academy 
Honorary Award

Evidence: the 2016 
Academy Honorary Award 
goes to Jackie Chan for 
his contribution in...
Answer: Jackie Chan

Chris Tucker...
Movie...
Jackie Chan...

Evidence: Rush Hour is a 
1998 American comedy 
film... Co-starred by Jackie 
Chan and Chris Tucker.
Answer: Rush Hour

Rush Hour
Answer

Figure 1: An example of the MHQA question. This
question has two hops that require the model to reason
about before answering the final question.

(MHQA). MHQA is more challenging as it requires
models to understand complicated questions, per-
form multiple reasoning steps, and gather evidence
across documents. Figure 1 shows an example of a
two-hop MHQA question. To answer that question
in Figure 1, the QA model needs to first figure out
who is the actor that received the 2016 Academy
Honorary Award. Then based on the answer to the
previous question, the QA model needs to further
answer a second question about which movie the
actor co-starred with Chris Tucker.

State-of-the-art methods for MHQA are fully-
supervised methods that often follow a retrieve-
and-read framework, including a passage retrieving
module that gathers relative evidence from docu-
ments and a reading comprehension module to rea-
son about the evidence (Zhu et al., 2021; Li et al.,
2022). Other methods include beam-search (Zhang
et al., 2023) and label-smoothing (Yin et al., 2023).
However, these methods often require extensive
pre-training or fine-tuning and do not generalize
well to other datasets.
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Large language models (LLMs), on the other
hand, show remarkable reasoning ability and rich
knowledge of general-domain questions. Many
LLMs can answer simple and straightforward ques-
tions that do not require complex reasoning without
any supervision involved but often fail to deal with
complex questions requiring multiple reasoning
steps. To tackle the problem, researchers have de-
veloped many prompting techniques to improve
LLM’s reasoning ability, such as chain-of-thought
(CoT) (Wei et al., 2022), self-consistency CoT (Sc-
CoT) (Wang et al., 2023), and tree-of-thought (ToT)
prompting (Yao et al., 2023a).

CoT has been shown effective across tasks re-
quiring extensive, step-by-step reasoning, such as
math calculation and reading comprehension. How-
ever, there could be various possible reasoning
paths for many complex multi-hop questions, and
CoT models cannot "turn back" when they have
made a mistake along their reasoning paths. Sc-
CoT further improves on CoT by proposing differ-
ent chains of thought, thus expanding the reasoning
space. However, there is no local reasoning expan-
sion within each chain, and the "majority voting"
strategy often fails in open-domain tasks where the
output space is unlimited. ToT, designed to main-
tain different reasoning paths along its reasoning
process, is more suitable for dealing with complex
question types. However, the intermediate reason-
ing steps in NLP generation tasks are much less
constrained and require more than a simple rule-
based evaluation. The complexities in the question
types (bridge v.s. comparison questions in Table
1), as well as the reasoning types (sequential v.s.
parallel reasonings in Table 2), require more novel
and fine-grained prompting methods to enhance the
reasoning ability of LLMs.

To tackle the challenges and design a more reli-
able reasoning method for open-domain NLP tasks,
we propose STOC-TOT, a stochastic ToT-based
framework that instructs the model to generate dif-
ferent reasoning paths from the same question and
assign probability scores to reasoning paths to ef-
fectively avoid reasoning dead-ends. To the best of
our knowledge, our work is the first to adapt the
tree-of-thought reasoning prompting to natural lan-
guage tasks that require complex reasoning, such
as MHQA. We provide an example overview of
our framework in Figure 2. Specifically, we con-
struct a tree-like reasoning structure by prompting
the model to break down the original question into

smaller sub-questions to form different reasoning
paths. We evaluate the validity of each reason-
ing path on three levels of aspects and arrive at a
model-given probability score. At answer time, we
innovatively propose to use constrained decoding
in the answering process to reduce hallucination by
forcing the model to generate grounded answers
from evidence and letting models give concise and
exact answers. Ultimately, we arrive at the best
answer by choosing the path with the highest ag-
gregated probability score. Experiments on two
benchmarking MHQA datasets demonstrate that
STOC-TOT significantly improves the reasoning
ability of LLMs in complex reasoning scenarios,
especially with GPT-4, improving Exact Match ac-
curacy by 7%, and F1 score by 7.8 points on the
HotpotQA dataset over the original tree-of-thought
prompting. Our contributions are as follows:

2 Related Work

Multi-Hop Question Answering Multi-hop
Question Answering (MHQA) is a challenging
task requiring models to reason over different ev-
idence across documents to answer a complex
multi-hop question. Many high-quality MHQA
datasets have been developed, including HotpotQA
(Yang et al., 2018), WikiHop (Welbl et al., 2018),
MuSiQue (Trivedi et al., 2022), and others. Among
these, HotpotQA is the task’s most representative
and widely used dataset. Previous state-of-the-art
MHQA models often follow a two-stage pipeline: a
retriever that extracts evidence from the documents,
and a reader that reasons about the evidence to ar-
rive at an answer (Zhu et al., 2021; Li et al., 2022).
Other methods include beam-search (Zhang et al.,
2023) and label-smoothing (Yin et al., 2023). Some
LLM-based frameworks (Yao et al., 2023b; Gou
et al., 2024; Cao et al., 2023) were also evaluated
on the task of MHQA, but their performance fell
short compared with supervised methods, and re-
lied on retrievers instead of LLM’s own reasoning
ability to sort out the related evidence.

Reasoning Prompting of LLMs Various prompt
engineering methods have been developed (Wei
et al., 2022; Wang et al., 2023; Yao et al., 2023a;
Besta et al., 2024; Sel et al., 2024; Chen et al.,
2023), aiming to improve large language models’
reasoning ability across various tasks and domains.
Chain-of-thought (CoT) prompting (Wei et al.,
2022) prompts the large language models (LLMs)
to divide their reasoning process into smaller
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Evidence:
1. Ice Cube is an 

American singer and 
actor who...

2. Jackie Chan is an 
actor... who received 
the 2016 Academy 
Honorary Award...

3. ...

Vocabulary Bank

Actor, Academy, 
Honorary, Award,  Ice,  
Cube, Jackie, Chan, ...

Constrained Decoding from 
Vocabulary Bank

Paraphrase 
Detection

Evidence Retrieval 
and Ranking

Prompt: Is the sub-
question asking the 
same thing as the 
original question?

Evidence Selected: 
3, 6 and 17
Answer: Jackie Chan

Original Question: The actor who 
received the 2016 Academy 
Honorary Award co-starred which 
movie with Chris Tucker?

Question Breakdown 
and Generation

Thought: I could first...,  or...
Sub-question 1: Which 
actor received the 2016 
Academy Honorary Award?
Sub-question 2: Which star 
co-starred a movie with 
Chris Tucker?

Validity Evaluation 
(Stochastic Tree-Building)

Evidence Retrieval 
and Ranking

Evidence Selected: 
1, 3 and 5
Answer: Ice Cube, 
Charlie Sheen, 
Jackie Chan

Paraphrase 
Detection

Prompt: Is the sub-
question asking the 
same thing as the 
original question?

Prompt: What is your 
evaluation on the reasoning 
paths? Your answer should 
be based on three metrics: 
question-level, reasoning-
level, and answer-level.
Answer: 
Left Probability: 70%
Right Probability: 30%

Evidence ListVocabulary Bank

Constrained Decoding from 
Vocabulary Bank

Original 
Question

Answer: 
Jackie Chan

Prob: 70%

3 Answers
Prob: 30%

Answer: 
Rush Hour
Prob: 100%

Agg. Prob: 70%

Answer: Friday
Prob: 30%

Agg. Prob: 9%

Answer: 
Money Talks

Prob: 30%
Agg. Prob: 12%

Answer: 
Rush Hour
Prob: 40%

Agg. Prob: 12%

1

2 3

4 5 6 7

Figure 2: Overview of our framework, with the example in Figure 1. The top-right Corner shows the overall
structure of the constructed tree, with each node’s label on the left. Darker green in the nodes means a higher
evaluated probability of the reasoning path. The original Question is colored in blue. We chose the first round of
our tree-building process as an example in the purple block.

steps when solving a question, forming a chain
of thoughts. Chain-of-thought self-consistency
prompting (Wang et al., 2023) improves on the CoT
method by proposing different reasoning chains
and ensembles on the final result. Tree-of-thought
(ToT) prompting method (Yao et al., 2023a) ac-
tively maintains a tree of thoughts, where each
thought is a coherent language sequence that serves
as an intermediate step toward problem-solving.
Graph-of-thought (Besta et al., 2024) further im-
proves ToT by constructing a Directed Graph in-
stead of a tree. LLMs can loop over a thought to
refine it and aggregate thoughts or chains.

Constrained Decoding Constrained decoding is
the technique that asks the models to generate out-
puts following a given set of rules. The most
common way of conducting constrained generation
uses beam search (Och and Ney, 2004) in decoding
time. Before the LLM era, works on constrained
decoding focused on task-specific sequence-to-
sequence models that span across many fields, such
as machine translation (Hokamp and Liu, 2017;
Post and Vilar, 2018), named entity recognition
(Lester et al., 2020), and dialogue generation (Bal-
akrishnan et al., 2019). Recently, Microsoft intro-
duced Guidance 1, which allows users of various

1https://github.com/guidance-ai/guidance

large language models to control their outputs given
a human-defined vocabulary or rules.

3 Method

3.1 Task Formation

Given a multi-hop question Q and background cor-
pus of evidence P , the goal of our framework is
to output the answer A to question Q, drawing its
reasoning with the support of multiple evidence
passages p1, p2, ... retrieved from corpus P .

3.2 STOC-TOT Framework

For each of the questions Q, multiple reasoning
lines and, thus, multiple ways of breaking down the
question could exist. However, not every reasoning
line would lead us to the right answer, and they
take us to dead ends. To avoid such reasoning
dead-ends, we build a stochastic reasoning tree
to represent the possible reasoning lines and the
probability of each reasoning line taking us to the
right answer. We achieve this by proposing a self-
interactive framework that automatically builds the
reasoning tree given a multi-hop question. Figure
2 shows our framework with an example question.

In our reasoning process, we first prompt the
model to propose different possible sub-questions
to solve at each reasoning step. Each sub-question
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corresponds to one possible reasoning path and is
presented as a node in the tree. We then ask the
model to answer the generated sub-questions. To
prevent hallucination and make the model more fo-
cused on the given question and evidence, we build
a vocabulary bank using words from the evidence
list and the original question and instruct the model
to do constrained decoding from the vocabulary
bank when generating its answers. After answering
every sub-question generated from the same ques-
tion in the previous reasoning level, we prompt
the model to evaluate each reasoning path and es-
timate how likely the reasoning path would lead
us to the right answer. This probability estimation
would be assigned to the corresponding node in the
tree. After the reasoning process finishes, each rea-
soning path would have an aggregated probability
calculated from nodes along the path.

Formally, given a question Q, we instruct the
model to generate sub-questions q1, q2, ..., qn, and
build a tree structure with the original question Q
as the root node and each question qi as subsequent
nodes. The tree would expand as each sub-question
qi has its sub-question qj , and the reasoning paths
are thus represented as branches in the tree struc-
ture. From the original question Q and the evi-
dence list E = e1, e2, ..., en, we build a vocabulary
bank V = [w1, w2, ..., wn], wi ∈ Q,wj ∈ E. We
then prompt the model to generate their answer
a1, a2, ..., an using only wi ∈ V . We describe the
details of our framework below.

Example-Based Sub-Question Generation Our
framework starts with the sub-question gener-
ation module, which generates sub-questions
q1, q2, ..., qn using the question Qg from the pre-
vious reasoning level. The sub-questions are gen-
erated based on both the model’s reasoning abil-
ity and the model’s semantic understanding of the
question Qg. An example is given in Figure 2,
where the sub-questions from nodes 2 and 3 were
generated using the question from node 1. How-
ever, we cannot guarantee that each sub-question
asked is a good sub-question, and sometimes, the
generated sub-question merely repeats the previous
question. We introduce the paraphrase detection
module and pass on the generated sub-questions to
reduce redundancy and improve question quality.

Paraphrase Detection Answering repetitive
questions often leads to low-quality answers and
time-consuming steps. Following the sub-question

generation module, we introduce the paraphrase de-
tection module to reduce redundancy and improve
question quality. In this module, we prompt the
model and ask it to distinguish informative ques-
tions from questions that merely repeat what is
already stated at the previous reasoning level. If a
sub-question is a paraphrase, we instruct the model
to stop generating sub-questions from the current
question. In other words, we prune the low-quality
sub-branch of the tree that could otherwise be gen-
erated. By pruning these branches, we effectively
improve the efficiency of our framework.

Evidence Retrieval and Answering We then
move on to answering the question after our para-
phrase detection module. Our evidence retrieval
and answering module focuses on retrieving ev-
idence and generating answers to the given sub-
question. We also pass in the full evidence list pro-
vided and prompt the model to give out an answer
to the given sub-question. The evidence retrieval
and answering module selects relative evidence
from an evidence pool for each sub-question and
uses words only from the vocabulary bank to gen-
erate its final answer. We will discuss details of
constrained decoding in Section 3.3. The generated
sub-answer and the answered sub-question are then
passed on to the sub-question generation module
at the next level to continue the reasoning process.

Validity Estimation Not each sub-question
asked is a good sub-question, and not each rea-
soning path is reasonable. After every sub-question
qi generated from the same question Qg has been
answered, we prompt the model to provide a proba-
bility estimation pi for each (qi, ai) pair. This prob-
ability is the model’s evaluation of going down the
correct reasoning path. Specifically, this probabil-
ity is obtained by prompting the model to consider
the following three aspects:

• Question Level: Is the question semantically
clear and answerable?

• Reasoning Level: Is the reasoning line coherent
when considering previous levels?

• Answer Level: Does the evidence fully support
the answer to the question?

As shown in Figure 2, we conduct validity estima-
tion for sub-questions and sub-answers in nodes 2
and 3 since the sub-questions were generated from
the same question in node 1.
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At the leaf node of our tree, we would have a
final question qf . along with a final answer A to
the original question Q, and also an aggregated
probability pfinal =

∏
i pi, with each pi being the

probability of the nodes along the reasoning path.
We assign pfinal to the leaf node, representing the
aggregated probability of answer A being the cor-
rect answer to Q.

3.3 Constrained Decoding

One challenge for generative LLMs in the task of
question answering is hallucination. LLMs often
fail to pay attention to the golden evidence and
hallucinate their own reference even when large
amounts of evidence exist. To alleviate the problem
of LLM halluscination during evidence selection
and answer generation, we innovatively propose to
use constrained decoding in the answering process
to reduce hallucination by forcing the model to
generate grounded answers from evidence and let
models give concise and exact answers. As shown
in Figure 2, we conduct constrained decoding by
asking the model to generate words from the vo-
cabulary bank, consisting of words taken only from
the original question and the evidence list provided.
More formally, we construct a vocabulary bank
V = w1, w2, ..., wi from all words in the provided
evidence sentences. We conduct a simple filtering
by removing common English stop words. We then
instruct the model’s evidence retrieval and answer-
ing module to construct its answers using words
only from the given vocabulary V .

Code-based Constrained Decoding For open-
source LLMs (e.g., Llama), we build our logit pro-
cessor at the decoding time. Specifically, for every
word wj /∈ V , we manually set the score to nega-
tive infinity to prevent the model from generating
them. Thus, every answer generated will only use
words from the evidence list.

Prompt-based Constrained Decoding For
closed-source LLMs (e.g., GPT models), since we
do not have access to their decoding function, we
had to instruct the GPT models using prompts to
do constrained decoding. We provide our prompt
template used in Appendix A.

4 Experimental Setup

Dataset We compare STOC-TOT with baseline
methods on the HotpotQA dataset (Yang et al.,
2018) and the MuSiQue dataset (Trivedi et al.,

2022), both of which are widely used MHQA
datasets across state-of-the-art MHQA baselines.
The experiments are conducted under the distrac-
tor setting, where we provide the model with an
evidence pool containing both golden and irrele-
vant evidence. The model needs to find the golden
evidence to answer the question correctly. We ran-
domly selected 200 examples from each dataset as
our evaluation set.

Baselines We included three baselines:

• Vanilla Prompting with no examples provided.
We only provide the model with questions and
evidence and instruct it to output the answer.

• Chain-of-Thought (CoT) prompting (Wei et al.,
2022) with a standard input-output (IO) prompt.
We design the prompt with one in-context exam-
ple, which presents the whole reasoning chain,
including all intermediate steps.

• Tree-of-Thought prompting (Yao et al., 2023a)
with slight modifications to adapt to the MHQA
task. None of their current decision strategies
fit into the MHQA scope, where model needs to
make decisions based on self-confidence, instead
of pre-defined rules and metrics. Thus, we re-
vised their decision strategy and used majority
voting on the reasoning lines to decide the final
answer.

We recognize that there are LLM-based retrieval
augmented generation frameworks (Yao et al.,
2023b; Gou et al., 2024; Cao et al., 2023) that
were also evaluated on HotpotQA. However, we
excluded them from our baselines as they used out-
side knowledge bases, which are under a different
testing scenario.

4.1 Implementation
We experiment with the baselines and our model
utilizing five LLMs: GPT-3.5-turbo (Brown et al.,
2020) and GPT-4(OpenAI, 2023) from OpenAI,
LLaMa 2-13B (Touvron et al., 2023), LLaMa 2-
70B, and LLaMa 3-8B from MetaAI. Due to the
lengthy running time, LLaMa 2-70B was not tested
on the MusiQue dataset. For all models, We set
the temperature to 0.5, topk to 1.0, and maximum
number of iterations to 5.

4.2 Evaluation Metric
Following the metrics in (Yang et al., 2018), we use
Exact Match and F1 score as two evaluation metric.
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Table 1: Performance comparison of STOC-TOT and baseline methods on the HotpotQA dataset.

Prompting Method
GPT3.5 GPT4 LLaMa2(13B) LLaMa2(70B) LLaMa3(8B)

EM F1 EM F1 EM F1 EM F1 EM F1
Zero-Shot Vanilla 34.0 45.0 51.0 65.0 25.5 36.5 30.5 41.0 27.5 40.7
Chain-of-Thought 35.5 47.3 52.0 66.8 30.5 42.5 33.5 45.0 32.5 44.6
Tree-of-Thought 36.5 49.5 55.0 68.5 29.5 41.3 35.5 47.3 30.5 37.5

STOC-TOT 45.5 56.2 62.0 76.3 31.0 43.0 43.0 56.3 33.0 44.5
w/o constrained decoding 40.5 53.5 59.5 73.0 31.0 43.0 40.5 53.5 32.0 44.3

Table 2: Performance comparison of STOC-TOT and baseline methods on the MusiQue dataset.

Prompting Method
GPT3.5 GPT4 LLaMa2(13B) LLaMa3(8B)

EM F1 EM F1 EM F1 EM F1
Zero-Shot Vanilla 17.0 28.8 31.5 41.2 9.5 16.0 12.0 19.2
Chain-of-Thought 18.0 29.7 32.5 44.2 11.0 17.5 12.5 21.6
Tree-of-Thought 20.5 32.0 35.0 47.3 11.0 17.2 12.0 20.6

STOC-TOT 26.5 38.0 42.0 55.3 11.5 18.0 14.5 22.0
w/o constrained decoding 24.0 35.5 38.5 51.0 11.5 18.0 14.0 22.0

For an answer a given by our framework, the Exact
Match score equals 1 if the answer span matches
the golden answer exactly and 0 otherwise. The F1
metric measures the average overlap between the
prediction and ground truth answers.

5 Results

5.1 Overall Results

We compare STOC-TOT with LLM baselines on
the HotpotQA dataset and the MusiQue dataset and
present our results in Tables 1 and 2. The backbone
LLMs in our experiments include GPT3.5, GPT4,
Llama2-13B, Llama2-70B, and Llama3-8B. Due
to time constraints, we only tested with Llama2-
70B on the HotpotQA dataset. On the HotpotQA
dataset, STOC-TOT attains an on-average increase
in performance of over 6 % compared with vanilla
prompting on GPT models, and the improvement
goes up to 11% when we further implement STOC-
TOT with constrained decoding. On the more chal-
lenging MusiQue dataset, we still see an increase
in performance of STOC-TOT compared with the
other baselines, most notably on GPT4, where we
observe an 11.5% EM improvement (from 31.50 to
42.0).

Comparison with Tree-of-Thought STOC-TOT
surpasses the original Tree-of-Thought prompting
by 7% with the GPT4 model on both tested datasets.
For LLMs with inferior reasoning ability, such as
LLaMa2-8B, we still observe a performance im-
provement, even on the harder MusiQue dataset.

These results suggest that STOC-TOT is more ef-
fective at forming and selecting reliable reasoning
paths under complex reasoning scenarios.

Constrained Decoding Even though the LLM’s
reasoning ability can be improved by reasoning
prompting, such techniques have little help in pre-
venting hallucination. However, STOC-TOT im-
plements constrained decoding, which makes the
model much more grounded to evidence when an-
swering the question, effectively addressing hallu-
cination issues and improving the overall perfor-
mance of our framework.

5.2 Ablation Study
Sensitivity to Demonstration Question Type
We study the effect on STOC-TOT performance
when different types of demonstration questions
are provided in the prompt template. The Hot-
PotQA dataset specified two types of questions.
The "Bridge" question contains a "bridge entity”
that connects the question and the final answer. In
contrast, the "Comparison" question requires the
model to compare two entities of the same type. Of
the 200 questions in our evaluation set, 34 are com-
parison questions, and 166 are bridge questions.
Examples of bridge and comparison questions are
in Table 4.

We examined STOC-TOT performance under
the two different question types, each with a differ-
ent prompt template: one containing only a com-
parison question as an example and the other con-
taining only a bridge question as an example. We
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Table 3: Performance of STOC-TOT with different prompt types on the HotpotQA dataset in terms of EM score.
“Com" represents comparison questions, and “Bri" represents bridge questions.

Model Variant GPT3.5 GPT4 LLaMa2(13B) LLaMa2(70B) LLaMa3(8B)
Prompt/Question Type Com Bri Com Bri Com Bri Com Bri Com Bri

Prompt: Comparison 58.8 41.0 76.5 57.2 38.2 31.9 58.8 41.0 44.1 33.7
Prompt: Bridge 55.9 43.4 73.5 59.0 35.3 32.5 55.9 42.2 41.2 34.9

Table 4: Question Type Examples. On the left side,
the bridging entity is highlighted in red, and the final
question is highlighted in orange. On the right side,
entities that are being compared are highlighted in blue.

Bridge Question Comparison Question
What distinction is held
by the former NBA player
who was a member of
the Charlotte Hornets dur-
ing their 1992-93 season
and was head coach for
the WNBA team Charlotte
Sting?

Were Scott Derrickson
and Ed Wood of the same
nationality?

Table 5: Reasoning Type Examples. On the left side,
the entity in red needs to be found before solving the
question in orange. On the right side, questions with
parallel reasoning contain parts (highlighted in blue)
that can be solved in arbitrary order.

Sequential Reasoning Parallel Reasoning

The football manager who
recruited David Beckham
managed Manchester
United during what time-
frame?

What distinction is held
by the former NBA player
who was a member of
the Charlotte Hornets dur-
ing their 1992-93 season
and was head coach for
the WNBA team Charlotte
Sting?

provide the content of our templates in Appendix A.
Results are shown in Table 3. We observe that the
difference in prompt templates influences the per-
formance of our framework under different ques-
tion types by a small margin. The comparison ques-
tions are generally easier to solve, and STOC-TOT
performs better on comparison questions than on
bridge questions. STOC-TOT will handle compari-
son questions better if the prompt template contains
comparison questions and vice versa.

Question and Reasoning Types We examine
STOC-TOT, Tree-of-Thought prompting, and
Chain-of-Thought prompting by comparing their
performance under different question-type settings.
Detailed results are shown in Figure 3(a). STOC-

TOT performs better at both Bridge Questions and
Sequential Questions, suggesting that STOC-TOT
can avoid reasoning dead-ends and is better at form-
ing intermediate reasoning lines.

We also conduct an in-depth analysis of the rea-
soning types in the existing MHQA datasets by
randomly selecting 100 questions from our testing
set. The questions are roughly divided into two cat-
egories: 1) tree-like parallel reasoning and 2) chain-
like sequential reasoning. Questions with parallel
reasoning contain two or more reasoning paths that
can be solved arbitrarily. Questions with sequential
reasoning follow a strict reasoning chain, and all
the sub-questions must be solved to form the cor-
rect reasoning process. All comparison questions
are parallel reasoning, but some bridge questions
contain parallel reasoning. Examples of sequential
and parallel reasoning questions are in Table 5. Out
of the selected 100 questions, 59 questions were
Sequential and 41 questions were Parallel. Results
are shown in Figure 3(b). STOC-TOT performs bet-
ter on both reasoning types, especially on questions
containing parallel reasoning. This suggests that
STOC-TOT’s stochastic way of forming the tree is
very effective when solving questions containing
multiple reasoning paths.

Performance and Hops As the number of hops
increases in a question, the reasoning line gets
more complex and varied. Figure 4 shows the
performances of different prompting techniques
on questions in the MusiQue dataset with differ-
ent numbers of hops. STOC-TOT performs best
in all categories, demonstrating our framework’s
superior ability to deal with complex reasoning sce-
narios. This ablation study was conducted only on
GPT4, as other models performed poorly on 3-hop
and 4-hop scenarios, regardless of the reasoning
prompting technique used.

Error Analysis We conduct a detailed analysis
of the errors made by our framework on GPT3 and
GPT4, and present our results in Figure 5. We cate-
gorize the errors into four types: (1) No Answer:
our framework did not come up with an answer
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Figure 5: Ratio of different categories in error cases, on
the HotpotQA dataset.

for the question due to not finishing the reasoning
process; (2) Intermediate Answer: our framework
came up with an answer for one of the intermediate
hops instead of for the final question; (3) Wrong
Answer: our framework came up with an answer
that is neither the final answer nor one of the inter-
mediate answers; (4) Semantically Correct: our
framework came up with the right answer, but did
not have an exact match with the final answer. Ap-
pendix B shows examples of each error category.
Large amounts of error cases were correct answers
with extra wording or hallucination errors, signal-

ing potential improvements over our constrained
decoding scheme. Reasoning process errors, in-
cluding no answer and intermediate answer, make
up only 25% of the total error cases. This result
shows that our framework is capable of building a
robust reasoning process for complex questions.

5.3 Time Analysis
We provide a brief analysis of running time for
all methods reported in Table 1. The experiment
was done on LLaMa2-13B model for 50 datapoints.
For ToT and STOC-TOT, the running time signifi-
cantly increases compared with simple prompting
methods, increasing by 4.4 times and 5.2 times,
respectively.

6 Conclusion

This paper proposes STOC-TOT, a stochastic
tree-of-thought reasoning framework with con-
strained generation for multi-hop question answer-
ing. STOC-TOT is specialized in dealing with
complex reasoning scenarios in natural language
tasks. Experiments on two benchmark datasets
show that our framework outperforms previous rea-
soning prompting techniques with multiple Large
Language Models. Detailed analysis shows that our
framework is capable of building a robust reasoning
process given different types of questions. Further
research can aim to enhance the reliability of our
framework by proposing better validity evaluation
schemes and more effective methods for improving
groundedness and preventing hallucination.
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Limitations

Our framework relies on initiating multiple model
instances and requires multiple prompts per round.
The repetitive callings impose heavy time costs for
our framework, even after implementing our para-
phrase module. Another limitation comes from
how we generated sub-questions. Currently, we di-
rectly prompt the model to generate sub-questions.
A more complex standard can be used to increase
the quality of the sub-questions generated. Also,
more extensive experiments should be provided,
including experimenting on other different datasets
and case studies.

Ethics Statement

This research adhered to the ethical standards and
best practices outlined in the ACL Code of Ethics.
Language Models can sometimes produce illogi-
cal or inaccurate reasoning paths, so their outputs
should be cautiously used. The outputs are only
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A Prompt Templates

We provide the prompts used in the experiments
below.

Sub Question Generation Template
Break a question into high -quality sub -

questions that are easier to answer.
Here are two examples as guidelines

:
"Question: Are Tokyo and Busan in the

same country? Thought 1: I could
either find which country Tokyo is
located in, or which country Busan
is located in. Sub Question 1-1:
Which country is Tokyo located in?
Sub Question 1-2: Which country is
Busan located in?"

"Question: Tokyo is located in the
country that has what colors present
on its national flag? Thought 1: I

need to first find out which country
Tokyo is located in. Sub Question

1-1: Which country is Tokyo located
in?"

Only give out your thought process and
current -level sub -questions. Do not
give out answers to your questions.
Question: {Given Question }.

Thought 1:

Prompt-based Constrained Generation Tem-
plate
Given a question and a list of evidence

that may of help , give your answer
directly , using words only from the
vocabulary bank , without any
explanations.

Question: {Given Question }. Evidence as
reference: {Given Evidence }.
Vocabulary Bank: {Given Vocabulary }.
Answer:

B Examples of the Error Cases

We present examples of the different types of er-
rors that our framework made. Detailed analysis is
provided in the Section 5: Results.
Type-2: Intermediate Answer
{Question }:
Where does the hotel and casino located

in which Bill Cosby 's third album
was recorded?

{Answer given by STOC -TOT on GPT4}:
Las Vegas.
{Golden Answer }:
Las Vegas Strip in Paradise.

Type-3: Wrong Answer
{Question }:
Aside from the Apple Remote , what other

device can control the program Apple
Remote was originally designed to

interact with?

Table 6: Performance comparison of STOC-TOT and
baseline methods on the HotpotQA dataset.

Prompting Method Time(mins)
Zero-Shot Vanilla 10
Chain-of-Thought 14
Tree-of-Thought 62

STOC-TOT 75

{Answer given by STOC -TOT on GPT4}:
siri remote and devices with netsupport

manager software
{Golden Answer }:
keyboard function keys

Type-4: Semantically Correct
{Question }:
Roger O. Egeberg was Assistant Secretary

for Health and Scientific Affairs
during the administration of a
president that served during what
years?

{Answer given by STOC -TOT on GPT4}:
1969 to 1974
{Golden Answer }:\
1969 until 1974

C Time Analysis

We provide a brief time analysis on LLaMa2-13B
model on 50 samples and present the results in Ta-
ble 6. We see that using ToT and STOC-TOT will
lead to a much higher cost in terms of time effi-
ciency compared with Zero-Shot and CoT prompt-
ing. STOC-TOT increases time complexity by a
around 20 percent compared with ToT.
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