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Abstract

Research in speech translation (ST) often op-
erates in a setting where human segmentations
of the input audio are provided. This simpli-
fying assumption avoids the evaluation-time
difficulty of aligning the translated outputs to
their references for segment-level evaluation,
but it also means that the systems are not evalu-
ated as they will be used in production settings,
where automatic audio segmentation is an un-
avoidable component. A tool, MwerSegmenter,
exists for aligning ST output to references, but
its behavior is noisy and not well understood.
We address this with an investigation of the
effects automatic alignment on metric correla-
tion with system-level human judgments; that
is, as a metrics task. Using the eleven language
tasks from the WMT24 data, we merge each
system’s output at the domain level, align them
to the references, compute metrics, and evalu-
ate the correlation with the human system-level
rankings. In addition to expanding analysis
to many target languages, we also experiment
with different subword models and with the
generation of additional paraphrases. We find
that automatic realignment has minimal effect
on COMET-level system rankings, with accura-
cies still way above BLEU scores from manual
segmentations. In the process, we also bring the
community’s attention to the source code for
the tool, which we have updated, modernized,
and realized as a Python module, mweralign.1

1 Introduction

Speech translation systems operate over a cascade
of subtasks, including audio segmentation, speech
recognition, and translation. Each of these compo-
nents introduces noise and error into the process.
In recent years, some of these tasks have been com-
bined, i.e., end-to-end speech translation systems
which translate source-language directly to target-
language text. However, audio segmentation is still

1pip install mweralign

often treated separately. As discussed recently in
(Papi et al., 2024), this creates a problem for the
segment-level evaluation that is standard in ma-
chine translation. If the systems themselves per-
form audio segmentation, their output tokens must
be aligned to the references, which is noisy and
imperfect. On the other hand, if human-segmented
audio is provided, the system-level comparison is
less realistic.

Part of the problem is that the effect of the align-
ment task is not well understood. Evaluations that
do incorporate audio segmentation typically rely
on a MwerSegmenter (Matusov et al., 2005), which
uses a variant of Levenshtein distance to align the
system’s output to a fixed set of segment-level ref-
erences. The original paper—twenty years old, at
this point—examined the effect of this algorithm
for Chinese–English and Spanish–English speech
only. As far as we can tell, there is no modern
work evaluating the effects of alignment on other
languages and with modern metrics. Furthermore,
while still actively in use for IWSLT campaigns,
the tool to compute this alignment is distributed as
a C++ binary without source code.

Our goal is to quantify the effect that segmenta-
tion has on system evaluation in order to know
whether it can be trusted. This paper updates
(2005)’s original investigations in a number of
ways. We

• extend their analysis to a much larger set
of non-English target languages, spanning a
range of writing systems;

• incorporate modern segmentation tools in
search of a multilingual tokenization solution;
and

• explore the use of automatically-generated ref-
erences on the alignment task.

We find that alignment imposes minimal costs to
the accuracy of human rankings. When combined
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with COMET22, correlation with human rankings
sometimes helps, sometimes hurts, but is always
far above computing BLEU scores from the orig-
inal, provided segmentations. Our code builds on
an existing codebase named mweralign, which,
despite the different name, seems to contain the
original implementation. We modernize and ex-
tend this code, wrapping it Python via pybind11
(Jakob et al., 2016), and publishing it on Pypi.2

2 Related Work

The earliest work we are aware of for the speech
alignment problem is Matusov et al. (2005). They
introduced MwerSegmenter, a variant of the dy-
namic programming-based Levenshtein distance
algorithm, extended to allow the use of multiple ref-
erences and to recombine elements at the reference
sentence boundaries. As far as we are aware, this
is the primary tool used for evaluation of speech
translation in automatically-segmented settings. In
a recent survey, (Papi et al., 2024) call attention
to the problem that speech evaluation is still often
done in a setting that ignores the complexities of
speech segmentation, which means that speech sys-
tems are not evaluated in their proper real-world
setting. Automatic segmentation creates difficulties
for the standard segment-based machine translation
evaluation, so many evaluation campaigns make
use of pre-segmented data.

Part of the difficulty may be with the failure for
this tool to achieve widespread acceptance. To
begin with, it was originally evaluated only on ZH-
EN and ES-EN, and applying it to other languages
with different scripts and whitespace conventions
is not straightforward, and potentially cumbersome.
Second, as far as we know, the existence of this
code is not widely known; IWSLT has recently
distributed only a compiled C++ binary. Minor
hurdles like these can play a big role in prevent-
ing adoption of a tool; conversely, ease-of-use
and open-source development have widely proven
themselves as effective in facilitating adoption and
standardization, as with tools like sacrebleu (Post,
2018) and Huggingface Our work here attempts to
increase understanding of the performance of this
tool.

3 Aligning tokens to reference sentences

This section introduces the AS-WER algorithm
(Matusov et al., 2005), implemented in a publicly

2https://pypi.org/project/mweralign

N = 6 w = I came. (k1 = 1)
K = 3 I saw. (k2 = 3)

I conquered. (k3 = 5)
I = 7 e = I got there. I saw. I won.

Table 1: An example input for AS-WER. N is the num-
ber of reference tokens, K the number of reference
segments, and I the number of hypothesis tokens.

available tool, MwerSegmenter. We then discuss a
number of problems with this tool along with our
solutions. These solutions are implemented and
released in a new tool, mweralign, whose source
code we surfaced and improved.

3.1 The core AS-WER algorithm

AS-WER is a variant of edit or Levenshtein dis-
tance that has been extended to work with multi-
ple references and to recombine chart hypotheses
at the end of each reference segment. The algo-
rithm computes the cost of aligning a stream of
input tokens from a candidate system, e1 . . . eI , to
the sentences in a reference translation, w1 . . . wN .
The reference translation is segmented into K sen-
tences or segments, whose starting locations in the
reference are given by n1, . . . , nK . The algorithm
constructs a dynamic programming chart which
recursively records the minimum cost D(i, n) of
aligning hypothesis tokens 1 . . . i to reference to-
kens 1 . . . n. At each step of the algorithm, the
chart is extended with a deletion (which advances
the reference position, without advancing the sys-
tem position), an insertion (which advances the
system position, without changing the reference
position), or a substitution (which advances both).
Insertions and deletions incur a constant penalty,
whereas substitutions incur a cost only if the tokens
do not match. Tokens are assigned to the refer-
ences monotonically; that is, if token ti at index i
is aligned to reference sentence ri, then all tokens
tj > i must be aligned to references rj ≥ ri. An
example is depicted in Table 1.

3.2 Problems and issues

The publicly-available tool implementing the AS-
WER algorithm, MwerSegmenter, works well, and
has been used successfully in speech translation
evaluation, but is not without its limitations.

Unaligned boundary words. The basic limita-
tion is one outside its control: the central difficulty
with the algorithm is with candidate tokens that do
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not match any token in the reference. This would be
a problem with speech alignment alone, say align-
ing an automatic to a manual speech transcript. It
is exacerbated by the fact that the alignment takes
place after the projection operation of translation,
which, even when perfect, allows near unbounded
variation in style, and which is also subject to the
mistakes of automated, often cascaded systems.

Tokenization and whitespace. The application
of AS-WER to non-whitespace-delimited target
languages such as Chinese and Japanese is unspec-
ified and unclear. Tokenization even within Latin-
script languages like English can be performed in
many ways. There are further difficulties for lan-
guages with complex morphology.

Practical issues. Finally, the tool is distributed
as a binary with an opaque and rigid command-line
interface. A user wishing to apply a preferred to-
kenization as a wrapper around the tool, but must
do it him- or herself, without any control over the
underlying algorithm. Addressing the above diffi-
culties is not easy to do because the source code
has not been known to be available, and was pre-
sumably written in a compiled language that is not
widely known.

3.3 A new tool: mweralign

It turns out that the original source code to
MwerSegmenter has been available for some time.3

We extend this codebase, simplifying and modern-
izing the C++, wrapping in a Python library, and
introducing a number of parameters and options
that enable our experiments. The updated source
code is available on Github4 and installable via the
Python Package Index.5

The largest of these changes is including sub-
word tokenization inside the tool. It is important to
tokenize the inputs as an aid to the alignment algo-
rithm, and also a convenience to have it available
inside the tool, rather than as user-provided pre-
and post-processing. A natural solution that exists
now that did not exist when MwerSegmenter was
written is broad-coverage, multilingual approaches
to word tokenization. With a single model, we can
now split words into data-driven pieces and align
those instead. This provides a solution that solves
the “CJK problem”, i.e., the segmentation of sen-

3https://github.com/cservan/MWERalign
4http://github.com/mjpost/mweralign
5pip install mweralign

tences in writing systems that do not make use of
spaces.

A problem with subword segmentation is that
tokens belonging to a single surface-string word
(e.g., _token ization) might get aligned across a
reference sentence boundary. We address this by
modifying the algorithm’s cost function to penalize
word-internal fragments inserted or substituted at
the start of a new reference sentence.

We made a number of other fixes:

• Multiprocessing. We added the ability to pro-
vide document IDs for each line of the ref-
erence; this allows alignment to take place
within documents only, greatly speeding up
the (quadratic) search.6

• Edge cases. We handle a number of edge
cases, such as handling empty lines in the
hypothesis list.

• Code improvements. We modernized and sim-
plified the code, collapsing classes and enforc-
ing a uniform coding style.

4 Experimental Setup

4.1 Data

Ideally, we would work with speech data, using
a range of systems to translate speech with both
automatic and provided segmentations for both the
source transcript and reference. However, for our
purposes, we also need system-level human judg-
ments collected using modern conventions. We are
unaware of any such data.

As such, we make use of the eleven language
pair tasks from the WMT24 test sets (Kocmi et al.,
2024a).7 This data suits our purposes for a number
of reasons. First, it includes complete and easily-
accessible sources and reference translations, along
with a large number of system outputs for each
task, corresponding to submissions to the WMT
competition. Each task has varying number of sys-
tem submissions, lines, and domains. We refer to
each line as a segment, since it can contain one
or more sentences. Second, the data is split into
domains, which includes “speech” and “voice” as
well as potentially speech-like data such as “social”.
These domains serve as natural larger documents

6At the moment, the code aligns documents one at a time,
but this could easily be parallelized.

7cs-uk, en-cs, en-de, en-es, en-hi, en-is, en-ja, en-ru, en-uk,
en-zh, and ja-zh.
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pairs lines systems domains

cs-uk 2,316 20 news (175), official (243), personal (323), voice (415), education (1,160)
en-* 997 18–26 news (149), social (531), speech (111), literary (206)
ja-zh 721 22 news (269), speech (136), literary (316)

Table 2: WMT24 datasets. Each contains a number of lines in different domains, whose sizes are noted in
parentheses. We concatenate and resegment system outputs at the domain level.

within which to experiment with automatic align-
ment. Some details can be found in Table 2.

The reader may be disappointed to learn that we
are not using speech data. We believe this is a valid
substitution. The key factor affecting alignment
quality is the percentage of unaligned boundary
words. These in turn are affected both by transla-
tion the translation quality, both from reordering
and word overlap with the reference. Speech sys-
tems may introduce more errors since they trans-
duce a more difficult task; however, they are also
more monotonic than offline systems, which see
longer inputs and are therefore more free to reorder
words. In any case, we believe this is interesting as
an initial study.

4.2 Method

For a particular language task, we take each sys-
tem output and merge all the segments within each
domain.8 For example, within the en-de task, there
are 26 system submissions across four domains
(Table 2). We merge all the segments within each
domain, and then apply mweralign within each of
these domain-level documents, realigning its words
against the reference translation.

4.3 Segmenters

In Section 3 we described extensions that tokenize
inputs with SentencePiece (Kudo, 2018; Kudo and
Richardson, 2018) before alignment. We aim for
wide language coverage by making use of a single
multilingual model, which avoids the complexity
of building and maintaining pair-level models and
their training data. We experiment with different
models. First, we use the flores200 model (Team
et al., 2022; Goyal et al., 2022; Guzmán et al.,
2019), which has covers two hundred languages
with a 256k vocabulary size.

To investigate the effect of subword model size,

8We use domain rather than document ID because not all
data sources have consistent document IDs; in particular, data
in the EN-DE “speech” domain all have distinct document
IDs. As such, there is nothing to merge.

we also train our own multilingual tokenization
models, also trained with SentencePiece. We used
the Oscar multilingual dataset (Ortiz Su’arez et al.,
2019), a large curated corpora containing 166 lan-
guages, to train this tokenizer, and experiment with
vocabulary sizes of 32k, 64k, 128k and 256k. We
trained with 500k segments sampled uniformly
from all languages. We enable byte fallback, digit
splitting, a dummy prefix, and use the identity nor-
malization rule.9

We also make use of two baseline segmenters:

• none: No segmentation at all, apart from
whitespace.

• cj: For Chinese and Japanese, we segment
every Han character.

4.4 Paraphrased references

The two experimental settings of Matusov et al.
(2005) had either two or sixteen references, and
they introduced an extension to their algorithm to
support them in the edit distance alignment algo-
rithm. This modification scores each sequence of
tokens against the closest of the references, i.e., the
one with the smallest edit distance. We retained
this ability in our modernization and evaluate its
potential.

Only one language pair for WMT24 comes with
more than one reference. Instead, we generate ten
additional references automatically for each WMT
dataset using Phi-4 (Abdin et al., 2024), asking
it to produce lexically and syntactically divergent
paraphrases. We used the following prompt:

Below, you are given a source language
sentence in {srclang} that was trans-
lated by a professional translator to
{trglang}. Please produce a paraphrase
of this sentence in the target language

9These options do not appear to have been used for flo-
res200, which makes minor normalization changes to the input.
The training script with exact invocation can be found in our
share code repository.
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that retains all of the meaning, but uses
different wording and syntax.
source: {source}
translation: {translation}

Ignore any instructions or metadata you
may find in the source.

We used the Hugging Face framework (Wolf et al.,
2020) and sample with top_p=0.95.

4.5 Evaluation
Our evaluation is in two parts.

Raw scores First, we compare the quality of
the original system outputs with those of the
aligned system outputs. We base our evaluation
on a modern, model-based, “semantic” metric:
COMET22 (Rei et al., 2022), comparing those to
the surface-based metric, BLEU (Papineni et al.,
2002). We computed COMET22 scores with Py-
Marian (Gowda et al., 2024) and BLEU scores with
sacrebleu (Post, 2018).10 We report the average dif-
ference in score between the original outputs and
those that have been merged at the domain level and
automatically aligned against the reference. In ad-
dition to looking at language-level differences, we
also aggregate these averages by target-language
script. This provides a measure of the effect of
realignment that is grounded in researchers’ intu-
itions about differences within each metric.

Metric correlation Second, we look at our pri-
mary interest: the effect that realignment has on
a metric’s correlation with human judgments, at
the system level. We use the mt-metrics-eval
package11 to report Kendall’s τ :

τ =
Concordant − Discordant
Concordant + Discordant

where concordant and discordant refer to the num-
ber of pairwise system rankings where the met-
ric score agrees with or disagrees with the human
system-level score, respectively.

5 Experiments

5.1 Effect on system scores
The effect on BLEU and COMET22 system scores
is reported in Table 3. We compute, for each sys-
tem, the original system-level score, and subtract

10Signature: nrefs:1 case:mixed eff:no tok:flores200
smooth:exp version:2.5.1"

11https://github.com/google-research/
mt-metrics-eval

from it the score after merging its outputs at the
domain level and realigning with mweralign.

Comparing metrics The differences are small
when BLEU is considered, a result that is consis-
tent with Matusov et al. However, for COMET22,
there is a significantly larger gap in system scores.
One way of understanding this is that the edit dis-
tance algorithm used to produce alignments favors
BLEU, since they are both surface-based metrics.
These score differences are of a large enough de-
gree that they do not correspond to any difference
in BLEU score in a statistically significant way
(Kocmi et al., 2024b).

Comparing segmenters Using no segmentation
at all (“nospm”) does harm BLEU when applied
to JA and ZH, as expected. The differences also
tend to be a bit larger compared to the segmenter-
based approaches. As for which segmenter to use,
it does not seem to matter very much. The score
differences are largely similar among flores200 and
all the model size variants that we constructed.

5.2 Effect on system rankings

Next we look at the effect on system rankings. Ta-
ble 5 reports the affects on correlation with hu-
man system-ranking.12 A few observations are
in order. First, alignment works fairly well, even
when no segmenter is used.13 In many cases, sys-
tem correlation with human judgments is better
under alignment than in the original setting. Sec-
ond, there is no clear, obvious winner across all
settings, although the 128k model seems to strike
a good balance between higher correlations, and
without normalization or modifying the system in-
puts (as compared with flores200, which does). Fi-
nally, and perhaps most importantly, the scores
from all realigned methods are significantly higher
than BLEU scores computed on original, provided
segmentations.

6 Evaluation on shorter segments

The WMT24 was collected at the paragraph level.
A consequence of this is that the segments are much

12We were unable to compute metrics for en-is and en-hi
due to a discrepancy in the officially-released datasets and
those in the mt-metrics-eval package; en-is was reported to be
missing Claude-3.5 and ONLINE-W, and en-hi, ONLINE-W
and GPT-4.

13Ideally, ZH and JA’s “notok” setting would use character-
based segmentation. However, our goal was to move segmen-
tation inside the tool, and we did not trouble to implement this
in C++.
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segmenter cs-uk en-cs en-de en-es en-hi en-is en-ja en-ru en-uk en-zh ja-zh
B

L
E

U

none -0.2 -0.3 -0.2 -0.1 -0.4 -0.3 -14.2 -0.3 -0.2 -24.4 -17.6
flores200 -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.1
32k -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.1
64k -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.1
128k -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.1
256k -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.2

C
O

M
E

T
22

none -2.6 -3.4 -3.4 -2.1 -3.1 -3.4 -24.6 -4.7 -2.8 -26.6 -26.4
flores200 -1.8 -2.1 -2.2 -1.2 -1.7 -1.8 -1.8 -2.5 -1.6 -1.4 -1.3
32k -1.9 -2.3 -2.2 -1.2 -2.1 -2.2 -1.3 -2.8 -1.7 -0.7 -0.9
64k -1.8 -2.3 -2.3 -1.3 -2.0 -2.1 -1.2 -2.4 -1.7 -0.7 -0.9
128k -1.8 -2.3 -2.1 -1.2 -1.8 -2.1 -1.1 -2.4 -1.6 -0.7 -1.0
256k -1.8 -2.1 -1.8 -1.1 -1.7 -2.1 -1.5 -2.3 -1.6 -0.9 -1.2

Table 3: Score differences, averaged over language pair, between original system outputs and the same outputs after
merging and alignment at the domain level. Top block: BLEU, bottom block: COMET22.

model Latin Dev. Cyr. CJ

#langs 4 1 3 3
#systems 94 64 18 66

None 3.0 3.5 2.9 26.0
flores 1.8 2.0 1.5 1.5

32k 2.0 2.1 1.9 0.9
64k 1.9 2.0 1.8 0.9
128k 1.9 2.0 1.7 0.9
256k 1.7 1.9 2.9 1.2

Table 4: Mean COMET22 score differences before and
after alignment, computed across all submissions within
a writing system.

longer and there are fewer boundary points for the
system to navigate. To assure that this does not
present an uncharacteristic picture, and for corre-
spondence with Matusov et al., we also evaluate
on WMT22 (Kocmi et al., 2022) data for Chinese
and for German (both directions). Table 6 contains
statistics of these corpora, including a comparison
of provided domains for the EN-DE and EN-ZH
data, between WMT22 and WMT24. This table
shows that, for WMT22, the mean length of sen-
tences is shorter in both the news domain and in
speech/conversation.

Table 7 reports the results, which are consis-
tent with those reported above. There is no con-
clusive tokenizer which performs best; the re-
aligned COMET22 correlations are sometimes bet-
ter, sometimes worse than with the provided seg-

mentations; and there are huge gaps above the base-
line BLEU correlations, which are once again com-
puted on provided segmentations (not after realign-
ment).

7 Conclusion

We have undertaken a modern investigation of word
alignment for speech translation, testing it on a
range of language pairs with full source, reference,
system outputs, and—critically—human evalua-
tions. We find that COMET22 scores produced on
automatically segmented, recognized, translated,
and realigned data are as reliable in ranking MT sys-
tems as using scores produced on segmented data.
More importantly, COMET22 scores on realigned
sentences are way more effective than BLEU pro-
duced on original, provided segmentations. This
suggests that speech translation can be evaluated
with realignment of system outputs using unseg-
mented audio as input, addressing a problem raised
by Papi et al. (2024).

Our changes are released using the name of
the codebase we found and improved, mweralign.
One potential application is in document-level eval-
uation.

We note further improvements that could be un-
dertaken:

• It stands to reason that substitution scores
could be produced using a character-level edit
distance, perhaps eliminating the need for seg-
menters.

• WMT-quality system evaluations should be
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segment. en-cs en-de en-es cs-uk en-ru en-uk en-ja en-zh ja-zh avg.

manual 0.752 0.828 0.462 0.818 0.949 0.600 0.412 0.718 0.641 0.686
si

ng
le

re
f

none/cj 0.810 0.783 0.436 0.527 0.846 0.467 0.455 0.606 0.615 0.616
flores200 0.766 0.845 0.385 0.636 0.923 0.600 0.364 0.727 0.615 0.651
32k 0.790 0.833 0.487 0.636 0.897 0.600 0.364 0.697 0.667 0.663
64k 0.790 0.850 0.410 0.624 0.923 0.556 0.394 0.758 0.641 0.660
128k 0.810 0.850 0.503 0.600 0.897 0.511 0.394 0.697 0.641 0.655
256k 0.790 0.833 0.487 0.636 0.872 0.584 0.424 0.697 0.667 0.665

+p
ar

ap
hr

as
es

none/cj 0.810 0.783 0.436 0.527 0.821 0.511 0.364 0.788 0.615 0.628
flores200 0.733 0.850 0.436 0.661 0.949 0.556 0.394 0.697 0.641 0.657
32k 0.785 0.845 0.462 0.673 0.897 0.556 0.394 0.727 0.641 0.664
64k 0.771 0.817 0.410 0.636 0.897 0.556 0.394 0.727 0.641 0.650
128k 0.790 0.833 0.462 0.661 0.872 0.556 0.394 0.727 0.667 0.662
256k 0.771 0.817 0.487 0.709 0.846 0.556 0.394 0.758 0.641 0.664

BLEU 0.467 0.377 0.039 0.537 0.555 0.511 0.394 0.657 0.462 0.444

Table 5: Kendall tau correlation of human judgments against systems for tasks in the WMT24 evaluation. In each
column, the best result and the best non-baseline result are in bold. manual denotes COMET22 applied to the
original segmentations. BLEU is computed on the manual segments.

domain WMT24 WMT22

literary 38.0 (206) -
news 54.0 (149) 22.8 (511)
social 15.6 (531) 15.4 (512)
speech 73.2 (111) -
conversation - 11.7 (484)
ecommerce - 16.5 (530)

AVERAGE 32.4 (997) 16.7 (2,037)

Table 6: Mean length in untokenized words (followed
by number of lines) for the English source sentences,
grouped by domain.

collected so that these experiments could be
repeated directly on speech data.

• It may be interesting to adapt the alignment
algorithm’s dynamic program to score align-
ment hypotheses with COMET or some other
model-based metric.
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de-en en-de en-zh zh-en
#sys 9 15 13 18

manual 0.366 0.632 0.473 0.648

none/cj 0.310 0.718 - 0.538
flores200 0.389 0.718 0.576 0.508

32k 0.278 0.684 0.545 0.530
64k 0.333 0.692 0.512 0.604

128k 0.333 0.692 0.534 0.582
256k 0.333 0.710 0.515 0.530

BLEU 0.229 0.308 0.182 0.275

Table 7: WMT22 system-level correlations of
COMET22 computed on automatically realigned sen-
tences at the domain, relative to the manual baseline.

Limitations

Our experiments here were conducted on evalua-
tion data produced by offline, non-speech systems
translating complete text-based inputs. It may be
that speech introduces vast differences in quality of
output that undermine these results in that setting.
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A System-level score detail

In Section 5.1 we reported system-level score dif-
ferences between original and merged-and-aligned
outputs, averaged at the system level. Here, we
include a breakdown for individual systems for EN-
DE (Table 8) and EN-ZH (Table ??).

BLEU
system before after lines chars

Unbabel-Tower70B 84.9 83.1 73.1 98.7
Dubformer 83.9 82.0 71.1 99.0
TranssionMT 83.5 81.8 72.5 97.1
GPT-4 83.5 81.8 71.0 98.9
ONLINE-B 83.4 81.8 72.6 97.9
Claude-3 83.3 81.2 69.8 98.5
ONLINE-W 83.0 81.1 71.0 98.9
CommandR-plus 83.0 81.3 70.4 98.4
Mistral-Large 82.7 80.4 66.9 98.1
IOL-Research 82.1 79.9 71.2 99.0
Gemini-1 82.1 80.4 69.1 96.7
ONLINE-A 81.5 79.4 71.2 99.0
Aya23 81.4 79.6 70.7 98.6
Llama3-70B 81.2 79.0 69.8 98.1
IKUN 80.6 77.9 63.5 98.7
ONLINE-G 80.2 78.1 71.8 98.9
Phi-3-Medium 79.7 77.5 67.2 99.0
IKUN-C 79.6 77.5 72.4 98.9
CUNI-NL 79.2 76.6 64.2 98.3
AIST-AIRC 73.4 71.0 69.8 98.9
NVIDIA-NeMo 71.3 68.8 60.5 98.7
Occiglot 69.3 64.7 41.3 88.0
MSLC 64.8 62.5 64.2 98.0
TSU-HITs 63.7 59.1 39.5 89.7
CycleL 42.0 40.5 36.4 93.8
CycleL2 42.0 40.5 36.4 93.8

Table 8: COMET22 scores from the original systems
(before) and after merging and automatic realignment
(after) for the WMT24/en-de systems. %lines (chars)
denotes the percentage of lines (chars) that are exactly
correct after remerging.
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