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Abstract

Fusing speech into a pre-trained language
model (SpeechLM) usually suffers from the
inefficient encoding of long-form speech and
catastrophic forgetting of pre-trained text
modality. We propose SSR-CONNECTOR (Seg-
mented Speech Representation Connector) for
better modality fusion. Leveraging speech-text
alignments, our approach segments and com-
presses speech features to match the granularity
of text embeddings. Additionally, we introduce
a two-stage training pipeline that includes the
distillation and fine-tuning phases to mitigate
catastrophic forgetting. SSR-CONNECTOR
outperforms existing mechanism for speech-
text modality fusion, consistently achieving bet-
ter speech understanding (e.g., +10 accuracy
on StoryCloze and +20 on Speech-MMLU)
while preserving pre-trained text ability.

1 Introduction

Large language models (Brown et al., 2020;
Chowdhery et al., 2022; Chiang et al., 2023; Anil
et al., 2023; Touvron et al., 2023; OpenAI et al.,
2024; Grattafiori et al., 2024; DeepSeek-AI et al.,
2025, LLMs) have demonstrated remarkable per-
formance across various tasks and extending pre-
trained abilities from LLMs to other modalities
has sparked interest in multimodal LLMs (Alayrac
et al., 2022; Liu et al., 2023b; OpenAI et al., 2024;
Tang et al., 2024; Défossez et al., 2024). In this
work, we focus on integrating speech into pre-
trained language models (SpeechLMs). A straight-
forward approach is to transcribe speech into text
and use these transcriptions as prompts for large
language models (Huang et al., 2023); however,
such cascaded systems suffer from error propa-
gation, higher latency, and cannot leverage raw
speech information like emotion, speaker identity,
and other paralinguistic cues (Faruqui and Hakkani-
Tür, 2021; Lin et al., 2022; Kim et al., 2024). Con-
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Figure 1: Comparison of different approaches for
speech-text modality fusion. (a): compressor-based
connector. (b): direct fusion with speech units. (c): our
alignment-aware connector.

sequently, developing end-to-end SpeechLMs that
directly fuse speech or audio input has gained pop-
ularity, where various approaches have been ex-
plored to encode speech and align its representa-
tion with pre-trained language models (Zhang et al.,
2023; Rubenstein et al., 2023; Yu et al., 2023; Maiti
et al., 2024; Hassid et al., 2024; Tang et al., 2024;
Nguyen et al., 2024).

Speech representations can be integrated into
pre-trained language models mainly through two
approaches. The first method involves using con-
nector modules that align speech representations
with the language model’s input space without
modifying the model’s existing vocabulary. These
connector-based techniques typically incorporate a
compression module to shorten the speech features,
enhancing efficiency. However, connectors are gen-
erally first trained for the speech recognition task
(with concatenated speech-to-text data) and lack
the ability to support text or speech generation
unless further instruction-finetuned.

The second approach, unit-based fusion, directly
incorporates discrete speech units—normally de-
rived from self-supervised models like HuBERT
(Hsu et al., 2021), XLS-R (Babu et al., 2021), or
DinoSR (Liu et al., 2023a)—into the language
model’s vocabulary. This allows the language
model to be fine-tuned with a combination of
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speech and text tokens, enabling it to handle dual-
modal inputs and outputs. Despite its versatility,
unit-based fusion can lead to longer and less
efficient training contexts due to the sparser na-
ture of speech information. Regardless of the fu-
sion approach, SpeechLMs often face the challenge
of catastrophic forgetting, where the model loses
its pre-trained text capabilities (Tang et al., 2024;
Nguyen et al., 2024; Défossez et al., 2024).

To tackle these challenges, we propose SSR-
CONNECTOR (Segmented Speech Representation
Connector), which grounds speech representations
in the same semantic space as transcription token
embeddings. Different from prior work that con-
catenates speech with text (Fig. 1 (a,b)) for modal-
ity fusion, we leverage speech-text alignments to
segment and compress speech features (Fig. 1 (c)).

To mitigate catastrophic forgetting when intro-
ducing the speech modality, we propose a two-
stage training pipeline. In Stage 1, we freeze the
LLM and pre-train the connector using speech-text
distillation, adapting speech inputs into compressed
representations semantically aligned with text em-
beddings. In Stage 2, we unfreeze the LLM and
fine-tune it using next-token prediction, with the
adapted representation as input and the correspond-
ing transcription tokens as targets.

SSR-CONNECTOR outperforms prior
SpeechLMs, including SPIRITLM, VOXTLM,
TWIST, and AUDIOLM (Nguyen et al., 2024;
Maiti et al., 2024; Hassid et al., 2024; Borsos
et al., 2023), across multiple tasks. These include
Prompt-based Automatic Speech Recognition
(ASR) and Spoken Language Understanding with
sWUGGY, sBLIMP, and StoryCloze (Nguyen
et al., 2020; Mostafazadeh et al., 2017). Our
approach also improves performance on Massive
Multitask Language Understanding (MMLU)
(Hendrycks et al., 2021) and its speech-based coun-
terpart, Speech-MMLU, which we introduce to
assess cross-modal reasoning. Finally, we analyze
different training strategies (§5) and speech-text
aligners (Appendix A) for SSR-CONNECTOR.

2 Related Work

Modality Fusion for Speech Language Models
SpeechLM typically encodes audio waveforms into
high-dimensional features using pre-trained en-
coders and integrate these representations to pre-
trained LLMs via a connection (adapter) module
(Wu et al., 2023; Yu et al., 2023; Zhang et al., 2023;

Tang et al., 2024). To compress speech representa-
tions, Fathullah et al. (2023) apply stacking-based
fixed-rate compression on speech features extracted
from the Conformer model (Gulati et al., 2020).
Inspired by the Q-former architecture (Li et al.,
2023a), Yu et al. (2023) compress speech features
using a fixed number of query tokens, while Tang
et al. (2024) extend this approach to a window-level
Q-former to support variable frame-rate reduction.
Alternatively, Wu et al. (2023) utilize Connection-
ist Temporal Classification (CTC) (Graves et al.,
2006) to compress representations.

Besides connector-based modality fusion, pre-
processing other modalities—such as speech, vi-
sion, and videos—into tokens (Lyu et al., 2023; Li
et al., 2023b; Team, 2024; Kondratyuk et al., 2024)
has attracted attention for its scalability. Speech
units are typically extracted from self-supervised
representations. For instance, AudioLM (Bor-
sos et al., 2023) integrates semantic tokens from
w2v-BERT (Chung et al., 2021) and acoustic to-
kens from SoundStream (Zeghidour et al., 2021)
for autoregressive audio generation. Rubenstein
et al. (2023) fine-tune the pre-trained LLM PaLM-
2 (Anil et al., 2023) with audio tokens processed
by AudioLM, enabling both text and speech as in-
put and output. Similarly, VoxtLM (Maiti et al.,
2024) performs multi-task training with speech
units and text tokens, achieving high-quality speech
recognition and synthesis. To mitigate catastrophic
forgetting, Nguyen et al. (2024) propose an inter-
leaved training mechanism to fuse speech tokens
into LLAMA2 model (Touvron et al., 2023).
Speech-text Alignment Extraction Various
aligner tools are available for extracting speech-
text alignments. For example, the Montreal Forced
Aligner (McAuliffe et al., 2017, MFA) is an easy-
to-use tool based on the Kaldi toolkit (Povey
et al., 2011). Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006) is also widely used
for speech-text alignment (Sainath et al., 2020;
Huang et al., 2024); since it is a by-product of
speech recognition, it supports alignment without
explicit text labels. More recently, the UnitY2
aligner (Communication et al., 2023) and the ZMM-
TTS aligner (Gong et al., 2024) have shown excel-
lent alignment performance across multiple lan-
guages. These aligners rely on speech units ex-
tracted from pre-trained encoders (Baevski et al.,
2020; Hsu et al., 2021; Babu et al., 2021) and use
variants of RAD-TTS (Shih et al., 2021) as their
alignment backbone.
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Figure 2: SSR-CONNECTOR compresses speech features using speech-text alignments. Features are transformed
by a Decoder-only model and selected at boundary index of each segment.

3 Methodology

We develop an alignment-aware speech represen-
tation connector to foster modality fusion between
speech and pre-trained language model. We intro-
duce our connector design in §3.1 and present our
two-stage training pipeline in §3.2.

3.1 Alignment-Aware Speech Representation
Connector

Though previous connectors (Fathullah et al., 2023;
Yu et al., 2023; Wu et al., 2023; Tang et al., 2024)
vary in their compressor designs, they do not ex-
plicitly leverage speech-text alignment information.
SSR-CONNECTOR, in contrast, uses speech-text
alignments to segment and compress speech fea-
tures into the same granularity as text tokens. As
illustrated in Fig. 2, our connector consists of two
components: (1) a speech-text aligner and (2) a
feature compressor.

Given speech features x = (x1, · · · , xn) ∈
Rn×D extracted by pre-trained speech encoders
(e.g., WAV2VEC2.0, HUBERT, WHISPER, etc.),
the aligner produces a monotonic mapping (align-
ment path) between the speech features and their
transcriptions y = (y1, · · · , ym) ∈ Rm×1. This
mapping can be computed based on both speech
features (or their units) and transcriptions (Commu-
nication et al., 2023; Gong et al., 2024), or solely
based on speech input (Sainath et al., 2020; Dong
and Xu, 2020; Huang et al., 2024). We abstract
away the aligner’s implementation here but pro-
vide detailed description and comparison of various
aligners in Appendix A.

Using the alignment mapping, we segment the
input into m chunks of speech features, where each
chunk semantically corresponds to a transcription
token. For example, in Fig. 2, speech features
are segmented at indices (2, 5, 7) according to the
alignment path. We refer to these indices as bound-
ary indices. Once the boundary indices are identi-

fied, we first apply a linear layer to transform the
speech features to match the embedding dimension
H(H > D) of the pre-trained LLM, since LLMs
typically have a larger feature dimension than pre-
trained speech encoders. We then use the boundary
indices to aggregate and compress the speech rep-
resentations in each chunk through a Transformer
Decoder model (Vaswani et al., 2017).

Specifically, we apply a causal decoder-only
model to transform speech features into high-
dimensional representations g = f(x; θdec) ∈
Rn×H . Since each position incorporates past
context, we adopt a selection-based compression
method (Tan et al., 2024), using boundary-indexed
features from g to form the compressed represen-
tation z ∈ Rm×H . While our initial design used
a block-wise attention mask to limit cross-chunk
information flow (as shown in Fig. 2), we found
that removing these masks simplifies training and
inference with minimal performance loss (§4.3).

3.2 Training Method

Previous approaches to integrate speech into LLMs
typically use speech-text data concatenated in ASR
format (i.e., speech representation followed by its
transcription text embedding), to pre-train the con-
nector (Yu et al., 2023; Wu et al., 2023; Tang
et al., 2024). However, after such pre-training, the
model is limited to speech recognition task and
necessitates another instruction-tuning stage to per-
form generative tasks with pre-trained connectors
(Zhang et al., 2023; Tang et al., 2024). Moreover,
once the LLM is unfrozen and fine-tuned (whether
based on a pre-trained connector or direct fusion
with speech units), it suffers from catastrophic
forgetting, leading to degraded text capabilities
(Nguyen et al., 2024; Tang et al., 2024).

With SSR-CONNECTOR, we convert speech into
representations with the same granularity as their
transcription tokens. This allows us to fine-tune
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Figure 3: Two-stage training pipeline for SpeechLM
with our alignment-aware modality connector.

the SpeechLM directly using the next-token predic-
tion objective, where the input is the compressed
representation z and the target is the transcription
y. This approach is possible because our feature
z and text token y share the same length m. How-
ever, our preliminary studies showed that di-
rectly fine-tuning with the next-token prediction
objective leads to catastrophic forgetting, under-
mining the pre-trained LLM’s abilities. There-
fore, we propose a two-stage training pipeline con-
sisting of a distillation stage and a fine-tuning stage
(visualized in Fig. 3).

In Stage 1, we pre-train SSR-CONNECTOR by
distilling the LLM’s text embeddings to align the
connector’s representations with the LLM’s em-
bedding space. Formally, given aligned speech-
text data, we can compute the text embeddings
h = f(y; θemb), where y is the transcription to-
ken sequence, θemb is the embedding table, and f
maps tokens y to their embeddings. Following our
connector design in §3.1, we then obtain the com-
pressed speech representations z. For distillation,
we use a combination of cosine similarity loss Lcos
and mean squared error (MSE) loss LMSE

L = λLcos + LMSE

=
1

m

m∑

i=1

[
λ

(
1− z⊤i hi

|zi| · |hi|

)
+ |zi − hi|2

]

(1)
where λ is a hyperparameter to balance the losses1.
In Stage 2, we fine-tune the LLM with the pre-
trained speech connector using the next-token pre-
diction objective. We freeze the speech connector
and update only the LLM’s parameters using the
negative log-likelihood (NLL) loss:

LNLL = −
m∑

t=1

log p(yt | z<t; θLLM) (2)

1In practice, we set λ = 5 to balance the scales of the
cosine similarity and MSE losses

where yt is the tth token in the transcription se-
quence y, z<t denotes all preceding speech repre-
sentations, and θLLM represents the LLM’s param-
eters. Note that our NLL loss is computed using
only the preceding speech representations z<t (see
Fig. 3), whereas previous methods (Wu et al., 2023;
Tang et al., 2024) condition on both speech infor-
mation and preceding text tokens y<t.

In §4, We demonstrate the performance of
SpeechLM after distillation training. In §5, we
present results after fine-tuning SpeechLM and
compare various fine-tuning strategies to identify
the method that minimizes catastrophic forgetting.

4 Stage 1: Alignment-Aware Connector
Distillation

4.1 Datasets

For distillation training, we use the aligned speech-
to-text dataset MLS (Pratap et al., 2020), specif-
ically the English portion, which consists of
about 50,000 hours of speech. To evaluate
our SpeechLMs, we employ different benchmark
datasets (see Table 1). To assess the model’s spo-
ken language understanding (SLU) capabilities, we
follow Nguyen et al. (2024) and use sWUGGY,
sBLIMP, and the StoryCloze dataset. sWUGGY
evaluates whether a model can discriminate be-
tween real spoken words and non-words (e.g.,
“brick" vs. “blick"), while sBLIMP assesses if the
model can distinguish between a grammatically cor-
rect spoken sentence and its ungrammatical variant.
We evaluate our SpeechLMs on both text (T ) and
speech (S) versions of sWUGGY and sBLIMP.

The StoryCloze dataset measures whether the
model can identify the plausible ending between
two sentences given the beginning of a short story,
which typically requires high-level semantic under-
standing and common sense (Mostafazadeh et al.,
2017). Besides spoken and text versions of Sto-
ryCloze, following Nguyen et al. (2024), we use
a speech-text version (S → T ), where the begin-
ning of the story is synthesized into speech and the
two ending sentences are kept in text format. This
version requires the model to have cross-modal
understanding to infer the sensible story ending.

MMLU (Hendrycks et al., 2021) is widely used
to assess LLMs’ knowledge comprehension, under-
standing, and reasoning abilities, and we use it to
measure the extent of forgetting during cross-modal
fine-tuning. Since MMLU is a diverse and high-
quality evaluation dataset for LLMs, we craft a
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Eval Dataset Type Eval Metric Eval Modality

sWUGGY (Nguyen et al., 2020) Choice Task Accuracy S, T
sBLIMP (Nguyen et al., 2020) Choice Task Accuracy S, T
StoryCloze (Mostafazadeh et al., 2017) Choice Task Accuracy S, T , S → T
MMLU (Hendrycks et al., 2021) Choice Task Accuracy T
Speech-MMLU (Ours) Choice Task Accuracy S → T
LibriSpeech (Panayotov et al., 2015) Generation Task Word Error Rate S → T

Table 1: Evaluation Datasets and their types. For the evaluation format, S is speech-only, T is text-only, and S → T
means the evaluation prompt consists of speech prefix and text continuation.

variant, Speech-MMLU, to assess our SpeechLM’s
cross-modal understanding. Specifically, we uti-
lized AUDIOBOX (Vyas et al., 2023), a high-quality
text-to-speech synthesizer, to convert the question
portion of each choice task into speech while keep-
ing the multiple-choice answers in text format.
We selected a subset of MMLU to construct our
Speech-MMLU dataset, as some domains’ ques-
tions are not suitable for synthesis (e.g., the algebra
subset contains many mathematical notations that
are not synthesized properly).

sWUGGY, sBLIMP, StoryCloze, and Speech-
MMLU are all categorized as "Choice Task",
meaning several choices are presented to the
SpeechLM (Speech-MMLU has four choices while
the other task has only two choices). For each
task, we compute accuracy using groundtruth
choice and the highest likelihood choice predicted
by the SpeechLM. Lastly, we also evaluate our
SpeechLM’s ASR performance using the Lib-
rispeech clean/other datasets. We evaluate ASR in a
prompt-based fashion with zero-shot and five-shot
setting. Comprehensive details about our datasets
and evaluation can be found in Appendix C.

4.2 Model Setup
We instantiate our LLM using the pre-trained
LLAMA3 model (Grattafiori et al., 2024) and em-
ploy DinoSR (Liu et al., 2023a) as our pre-trained
speech feature extractor. Our speech connector in-
cludes a linear layer that maps DinoSR’s extracted
representations (D = 768) to the LLM’s embed-
ding space dimension (H = 4096). We then uti-
lize a 4-layer Transformer Decoder to transform
and compress the speech representations based on
alignments, as described in §3.1. The compressed
representations z and the embeddings of text to-
kens h are used to compute the distillation loss for
updating the connector’s parameters. We train our
connector for 400,000 steps with a learning rate of
1×10−5, using dynamic batching with a maximum
of 4,096 tokens per device. We employ distributed
data parallelism (DDP) with 32 A100 GPUs.

To extract alignments, we experimented with
various approaches, including the UNITY2 aligner,
CTC-based aligners (Graves et al., 2006), and Con-
tinuous Integrate-and-Fire (Dong and Xu, 2020,
CIF). Due to space constraints, we provide com-
prehensive descriptions and comparisons of these
methods in Appendix A, where we evaluate both
the alignment quality and the Word Boundary Er-
ror of the segmentations. After assessing their per-
formance, we selected UNITY2 (Barrault et al.,
2023) and character-level CTC (CHAR-CTC) as
our connector backbone to report experimental re-
sults. Overall, UNITY2 offers superior alignment
quality because it utilizes both speech and text as
input. In contrast, CTC only requires speech input
to compute segmentation for our connector.

4.3 Experimental Results
In this section, we present the evaluation of SSR-
CONNECTOR based SpeechLM in terms of Spoken
Language Understanding (SLU) and Cross-modal
Understanding (through our use of Storycloze and
Speech MMLU benchmark). We also evaluate our
model with prompting-based speech recognition
and speech style recognition.

We compare against several systems that varies
in training approaches (pre-trained from scratch
or fine-tuned), types of speech units, and the size
of training data. Briefly, GSLM (Lakhotia et al.,
2021) trains on speech units like HuBERT, TWIST
(Hassid et al., 2024) is a textually pretrained speech
model based on Llama-13B (Touvron et al., 2023),
and AudioLM (Borsos et al., 2023) employs a cas-
cade system with a semantic sequence model along-
side coarse- and fine-acoustic models. These mod-
els focus solely on speech without capabilities for
text understanding or generation. More recently,
SPIRITLM (Nguyen et al., 2024) and VoxtLM
(Maiti et al., 2024) have adopted multi-task train-
ing objectives that incorporate text-only, speech-
only, and speech-text token sequences to fuse the
speech modality into pre-trained LLMs effectively.
Since the original SPIRITLM is fine-tuned based on
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Model Type sWUGGY sBLIMP Storycloze MMLU

T S T S T S S→T 5-shot

Previous Work
GSLM♢ (Lakhotia et al., 2021) ∅ 64.8 ∅ 54.2 ∅ 53.3 ∅ ∅
AUDIOLM♢ (Borsos et al., 2023) ∅ 71.5 ∅ 64.7 ∅ ∅ ∅
VOXTLM♢ (Maiti et al., 2024) 80.3 66.1 74.2 57.1
TWIST♢ (Hassid et al., 2024) ∅ 74.5 ∅ 59.2 ∅ 55.4 ∅ ∅
MOSHI♣ (Défossez et al., 2024) ∅ 72.6 ∅ 58.8 ∅ 60.8 49.8
SPIRITLM♢ (Nguyen et al., 2024) 80.3 69 73.3 58.3 79.4 61 64.6 36.9
SPIRITLM (LLAMA3)♠ 77.6 73.5 74.5 56.3 75.1 61.1 61.6 53.5

SSR-CONNECTOR
UNITY2 + Blockwise-mask 81 71.5 74.5 73.1 80.9 71.8 75 65.3
UNITY2 81 71.2 74.5 72.4 80.9 69.3 74.8 65.3
CHAR-CTC 81 56.4 74.5 67.3 80.9 62.2 74.3 65.3
CHAR-CTC (Unit-based) 81 54.1 74.5 61.8 80.9 59.2 72.5 65.3

Cascade System
ASR (WHISPER) + LLAMA2 ♢ 84.1 79.2 72.8 71.6 81.9 75.7 75.7 46.2

Table 2: Model performance (accuracy) on spoken language understanding and MMLU. ♢: Results taken from
Nguyen et al. (2024).♣: Results taken from Défossez et al. (2024). ♠: Our implementation of SPIRITLM based on
LLAMA3 checkpoint. We fill with ∅ the task and modality that are not supported by the reported system, and with

the scores that are not publicly available. We bold the best result and highlight the second-best system with the
blue color box (excluding the cascaded system).

LLAMA2, we follow the same recipe to fine-tune
the LLAMA3-based SPIRITLM ourselves for a fair
comparison on text-relevant metrics like MMLU.

Spoken Language Understanding Performance
As shown in Table 2, our systems outperform
previous models on all tasks except sWUGGY.
The sWUGGY dataset includes incorrectly spoken
words that cause segmentation errors because these
words were not present during aligner training,
leading to our system’s lower performance on this
dataset. However, sWUGGY is the least significant
task since it relies on synthesized incorrect words
and does not require the model’s understanding or
reasoning capabilities. In contrast, both UNITY2
and CHAR-CTC based connector greatly surpass
previous models on other datasets, demonstrating
the effectiveness of SSR-CONNECTOR in enhanc-
ing SLU performance while preserving model’s
text understanding ability.

Beyond UNITY2 and CHAR-CTC, we introduce
two additional systems for ablation. The UNITY2
+ Blockwise-mask system achieves the highest per-
formance by applying a blockwise attention mask
to further constrain the Transformer-Decoder (de-
scribed in §3.1). However, due to its marginal
improvement over UNITY2 and increased com-
putational cost, we decide to simplify the design
and remove the blockwise-attention masks. The
CHAR-CTC (Unit-based) system differs by uti-

lizing discrete speech units instead of raw wave-
form features processed by the DinoSR (Liu et al.,
2023a) encoder. These units are extracted via
K-Means clustering on DinoSR representations,
which leads to some information loss during dis-
cretization and reconstruction, resulting in lower
performance compared to CHAR-CTC. Nonethe-
less, CHAR-CTC (Unit-based) demonstrates that
our alignment-aware connector design is compati-
ble with discrete speech units as well.

Speech-MMLU and Prompt-based ASR Perfor-
mance In addition to SLU tasks, we evaluate
our systems on the Speech-MMLU benchmark,
which assesses cross-modal understanding and is
more challenging than previous SLU tasks. We
also conduct prompt-based ASR evaluations to
assess the quality of the adapted features. As
shown in Table 3, our systems greatly outperform
the previous SpeechLM (SPIRITLM), achieving a
+20 accuracy improvement on the Speech-MMLU
dataset2. These results indicate that SpeechLM
based on SSR-CONNECTOR possesses enhanced
cross-modal abilities that enable it to comprehend
spoken questions and reason through multiple-
choice options to select correct answers. Similarly,
our systems achieve much lower WERs on the Lib-
rispeech clean and other test sets compared to SPIR-

2 We report micro-average across 22 domains and the
detailed breakdown is available in Appendix D.
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Model Type Speech MMLU ↑ ASR Clean Test ↓ ASR Other Test ↓
0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

SPIRITLM (Nguyen et al., 2024) N/A N/A N/A 21.9∗ N/A 29.2∗

SPIRITLM (LLAMA3) 40.5 42.75 N/A 21.0∗ N/A 28.5∗

SSR-CONNECTOR
UNITY2 + Blockwise-mask 65.0 69.5 5.0 2.6 8.1 6.8
UNITY2 64.2 68.6 5.6 4.0 12.1 10.6
CHAR-CTC 61.7 66.5 9.7 6.5 20.2 14.9
CHAR-CTC (Unit-based) 57.4 62.3 12.6 8.8 25.6 18.6

Table 3: Comparison of Speech-MMLU and ASR performance. Speech-MMLU results are micro-averages across
all domains. ∗: For SPIRITLM, We report WER using 10-shot prompting, following Nguyen et al. (2024).

Task Model 0-shot 5-shot 10-shot

Whisper vs. Laugh Cascaded 51.6 52.2 54.7
Ours 49.6 64.0 75.9

Happy vs. Sad Cascaded 50.0 51.8 51.0
Ours 51.6 52.2 54.7

Table 4: Accuracy of Speech Style Recognition with
In-context Learning

ITLM. Notably, neither SPIRITLM nor our system
was trained on ASR tasks, so the model relies solely
on in-context learning to generate transcriptions.

We also compared our system against another
connector-based system, SALMONN (Tang et al.,
2024), over Storycloze and Speech MMLU (both
in S → T format) and we find that SALMONN

achieved an accuracy of 63.3% on Storycloze and
25.3% on Speech-MMLU, while our system has
over 74% accuracy on Storycloze and over 60%
accuracy on Speech-MMLU. The result indicates
that catastrophic forgetting remains a severe issue
for previous connector-based methods as well.

Beyond Semantics In Table 4, we also show
that the connector retains paralinguistic informa-
tion. We evaluate this using the Expresso benhmark
(Nguyen et al., 2023) by prompting our model to
predict speech styles. Our SpeechLM can dis-
tinguish expressions through in-context learning
without being fine-tuned for emotion recognition
(we also provide the cascaded baseline (Whisper +
LLAMA3) as a baseline where style can only be
inferred from transcriptions). More experimental
details are provided in Appendix B. This analy-
sis demonstrates that our connector preserves non-
semantic information even though we focus on
aligning semantics and reducing catastrophic for-
getting. Our connector design also complements
existing methods for emotion recognition, such as
using expressive tokens in SpiritLM (Nguyen et al.,
2024) and emotion-relevant instruction tuning in
SALMONN (Tang et al., 2024).

5 Stage 2: Speech Language Model
Fine-tuning

In Stage 1 (§4), we freeze the pre-trained LLM and
distill its text embeddings into our alignment-aware
connector. In this section, we fine-tune SpeechLM
by freezing the connector and updating the LLM.
This process enhances the model’s spoken lan-
guage understanding (SLU) performance by fitting
SpeechLM on the aligned speech-text data, albeit
at the expense of degrading its pre-trained text ca-
pabilities. In the following sections, we compare
various methods to mitigate catastrophic forgetting
and demonstrate their trade-offs between speech
and text understanding.

5.1 Mitigate Catastrophic Forgetting

Model and Dataset Setup We fine-tune
SpeechLM using the next-token prediction
objective described in §3.2. In this stage, we freeze
the connector distilled in Stage 1 and unfreeze
the LLM (LLAMA3) parameters. Following
Stage 1 (§4), we use the MLS dataset for training
and evaluate the model on the same speech
and text understanding tasks. Beyond vanilla
fine-tuning, we also explore Low-rank Adaptation
(Hu et al., 2021, LoRA) and multitask fine-tuning
as they have been shown effective for mitigating
catastrophic forgetting in other tasks (Xue et al.,
2021; Vu et al., 2022). Details of our fine-tuning
setup are shown below:
• Vanilla Fine-tuning: We perform full fine-

tuning on the aligned speech-text data with a
learning rate of 1 × 10−6 and a maximum to-
ken size of 4096. Training is model-parallelized
across 32 A100 GPUs using Fully Sharded Data
Parallel (Zhao et al., 2023, FSDP).

• LoRA Fine-tuning: We leverage the low-rank
constraints from as regularization to prevent
model overfitting in MLS dataset. We config-
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Figure 4: Comparison of different fine-tuning methods on StoryCloze (S) and MMLU benchmark.

Model Type sWUGGY sBLIMP Storycloze MMLU Speech MMLU ASR (5-shot) ↓
T S T S T S S→T 5-shot 0-shot 5-shot Clean Other

SPIRITLM (LLAMA3) 77.6 73.5 74.5 56.3 75.1 61.1 61.6 53.5 40.5 42.8 21.0∗ 28.5∗

CHAR-CTC 81.0 56.4 74.5 67.3 80.9 62.2 74.3 65.3 61.7 66.5 6.5 14.9
+ Multitask Finetuning 82.9 56.7 75.9 68.9 81.0 63.4 73.1 63.1 48.1 56.3 5.7 13.1

Table 5: Performance comparison when the model is fine-tuned. ∗: For SPIRITLM, WER is reported using 10-shot
prompting for ASR, following Nguyen et al. (2024). We observe that stage 2 fine-tuning enhances the model’s
performance on speech-only tasks but compromises its cross-modal capabilities.

ure LoRA layers with α = 512, r = 256, and a
dropout probability of 0.1.

• Multitask Fine-tuning: To preserve the LLM’s
pre-trained text capabilities, we also fine-tune
SpeechLM on text-only data using Negative Log-
Likelihood (NLL) loss. The dataloader is config-
ured to sample from both speech-text and text-
only datasets with equal probability. We use the
MLS dataset for speech-text training and employ
a subset of the LLAMA2 training datasets (Tou-
vron et al., 2023) for text-only training.

5.2 Comparison of Fine-tuning Methods

In Fig. 4, we compare different fine-tuning meth-
ods on StoryCloze (S) and MMLU. StoryCloze
performance is indicative of how well model is fit-
ted to the speech modality and MMLU measures
the degree of catastrophic forgetting in pre-trained
text abilities. We observe that Vanilla Fine-tuning
quickly overfits to the speech domain, achieving im-
proved performance on StoryCloze but drastically
decreasing MMLU accuracy. In contrast, LoRA
Fine-tuning introduces strong regularization, result-
ing in limited improvements in speech understand-
ing. Although LoRA mitigates catastrophic forget-
ting to some extent compared to vanilla fine-tuning,
performance still steadily declines. Multitask fine-
tuning emerges as the most promising approach,
enhancing speech understanding while largely mit-
igating catastrophic forgetting, evidenced by the
modest 2-point drop in MMLU.

Since model performance does not further im-
prove with additional training steps (as shown
in Fig. 4), we utilize the checkpoint trained for

5,000 updates to compare with baseline models.
The results are presented in Table 5. Note that
even with only 5,000 updates, the model has ob-
served all speech-text data due to our large effec-
tive batch size. As observed from the results, fine-
tuned SpeechLM outperforms baseline methods on
tasks primarily relying on speech-only information
(sWUGGY, sBLIMP, ASR). However, we also ob-
serve a decline in performance on S → T tasks
such as Speech-MMLU and StoryCloze, indicating
that there is still unavoidable degradation of text
capabilities which adversely affects SpeechLM’s
cross-modal performance.

Overall, Stage 2 fine-tuning experiments high-
light a trade-off between enhanced speech under-
standing and degraded text abilities when unfreez-
ing pre-trained LLM weights. Though such for-
getting phenomenon is unavoidable, our two-stage
training pipeline has largely preserved SpeechLM’s
text ability and our experimental results underscore
the importance of incorporating high-quality text
data during cross-modal fine-tuning to balance per-
formance across both modalities.

6 Conclusion

We propose SSR-CONNECTOR to inject speech
representation into pre-trained LLMs. Through
explicitly leveraging speech-text alignment, our
connector compresses long and sparse speech infor-
mation to the same granularity as text tokens. With
our proposed two-stage training pipeline for modal-
ity fusion, SSR-CONNECTOR-based SpeechLM
achieves better speech understanding while retain-
ing its pre-trained text ability.
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Limitations

While our proposed SSR-CONNECTOR signifi-
cantly enhances speech-text modality fusion and
mitigates catastrophic forgetting, there remain sev-
eral limitations that warrant further exploration.

First, our work focuses on aligning speech se-
mantics with text in large language models (LLMs).
While our experiments show that paralinguistic in-
formation, such as speech styles, can be preserved
and leveraged through in-context learning, we do
not explicitly model these aspects. Future work
could better encode prosody, speaker identity, and
emotional cues to enhance expressive speech gen-
eration and nuanced speech understanding.

Second, our experiments on mitigating catas-
trophic forgetting are conducted primarily on a sin-
gle language family, using LLAMA3 (Grattafiori
et al., 2024) as the base LLM and DINOSR (Liu
et al., 2023a) as the speech encoder. The extent of
our method’s effectiveness across different archi-
tectures and speech encoders remains unverified.

Finally, while our evaluation covers a range of
speech and multimodal benchmarks, additional
real-world settings, such as conversational speech,
noisy environments, and multilingual scenarios, re-
main unexplored. Extending our methodology to
such conditions will be essential for deploying ro-
bust, generalizable SpeechLMs.
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Appendix C Dataset Details

Appendix D Evaluation Details

A Speech-text Aligners

In this section, we provide more details for the aligners that we experimented with to compute segmentation
for SSR-CONNECTOR. To summarize, we tried UnitY2 aligner (Barrault et al., 2023), CTC-based
(Graves et al., 2006) aligner (both character-level and subword-level), and CIF-based (Dong and Xu, 2020)
segmentation. We also compare their performance in this section and show that UNITY2 and CHAR-CTC
aligner work the best; therefore we adopted them in all our experiments presented in the main paper.

A.1 Aligner Description
UnitY2 Aligner The UnitY2 aligner (Barrault et al., 2023) is a forced aligner that computes speech-text
alignment using discrete speech units and character-level text tokens. The speech units are derived by
applying K-Means clustering to the XLS-R model (Babu et al., 2021). The aligner is trained jointly with
a non-autoregressive text-to-unit (T2U) model, adopting the architecture of the RAD-TTS model (Shih
et al., 2021) but replacing the target mel-spectrogram with speech units. It first computes a soft-alignment
Asoft ∈ RV×U between the characters and units:

Di,j = ||schar
i − sunit

j ||2, (3)

Asoft
i,j =

e−Di,j

∑
k e

−Dk,j
+ Pprior(i|j), (4)

where schar and sunit are the outputs of the character and unit encoders, respectively (both encoders consist
of an embedding layer and a 1D convolution layer). D ∈ RV×U is a distance matrix with V and U
representing the vocabulary sizes of characters and speech units. Pprior ∈ RV×U is the Beta-binomial
alignment prior matrix to encourage near-diagonal paths (Shih et al., 2021). After soft-alignment is
computed, the monotonic alignment search (MAS) algorithm (Kim et al., 2020) is applied to extract the
most probable monotonic alignment path.

CTC-based Aligner Since the UnitY2 aligner requires both speech and transcription, it does not support
streamable alignment extraction. To enable textless alignment computation, we explored two CTC-based
(Graves et al., 2006) aligners. Given the speech features x and text sequences y, CTC computes P (y|x)
by summing over all valid alignment paths:

P (y|x) =
∑

π∈B−1(y)

P (π|x) (5)

Here, π denotes a possible alignment path that maps to the target sequence y, and B−1(y) represents the
set of all valid paths that collapse to y after removing blanks and repeated labels. We investigated two
CTC variants: one using character-level text sequences (CHAR-CTC) and another using subword token
sequences (SUB-CTC), which shares the same vocabulary as the LLM model.

CIF-based Speech Connector For both CTC and UnitY2 aligners, we extract segmentations from
the alignments and then apply selection-based compression (Tan et al., 2024). We also experimented
with Continuous Integrate-and-Fire (Dong and Xu, 2020, CIF) as the connector, which is designed to
learn segmentation and perform compression simultaneously. Instead of relying on a fixed, pre-computed
segmentation, CIF dynamically segments and aggregates speech features by scoring each feature and
computing a weighted average. For more details, we refer readers to the paper (Dong and Xu, 2020).
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Figure 5: t-SNE plots of text and speech representations after distillation.

A.2 Aligner Performance Comparison

To compare the quality of different aligners, we trained several SSR-CONNECTOR based on different
aligners via distillation. We evaluated the aligners using the Librispeech clean test set by computing the
Cosine Similarity (Cos(%)) and Mean Squared Error (MSE) between the compressed representations and
text embeddings. Additionally, we performed zero-shot and five-shot ASR with the learned connector.
Note that we never explicitly trained the model for ASR tasks, and the base LLM remained frozen during
Stage 1 training. Therefore, the model achieves low word error rates (WER) only when the distilled speech
representations closely resemble the text embeddings. As shown in Table 6, the UNITY2 aligner brings
the speech representations close to their corresponding text embeddings, achieving very low WER in both
zero-shot and five-shot ASR settings. Among textless aligners, we found that CHAR-CTC performs the
best, likely because it has a much smaller vocabulary compared to SUB-CTC, making it easier to learn.
Lastly, CIF resulted in suboptimal performance, due to its less accurate alignment, as its segmentation is
predicted by accumulating scores without exploiting the monotonicity between speech and text.

Model Type Cos(%)↑ MSE↓ WER (%) ↓
UNITY2 96.8 0.018 5.6 / 4.0
CHAR-CTC 95.1 0.023 9.7 / 6.5
SUB-CTC 92.2 0.037 16.7 / 14.0
CIF 77.5 0.096 27.6 / 23.7

Table 6: Performance comparison (with Cosine Similarity,
MSE, and 0/5-shot ASR WER) between different aligners
used for Stage 1 training, evaluated on Librispeech.

To visualize the effect of distillation, we
present t-SNE plots of the adapted speech repre-
sentations and text embeddings in Fig. 5, catego-
rizing them into high and low similarity groups
based on the cosine similarity between CHAR-
CTC representations and text embeddings. We
observe that longer subwords tend to exhibit
higher similarity, likely because their long seg-
ments make it easier for the connector to convert
speech representations into corresponding text embeddings. Furthermore, longer subwords possess more
coherent semantics compared to shorter tokens. like ‘wy’ or ‘ia’.

Aligner WBE↓ WDUR

Groundtruth 0 305
UNITY2 33 279
CHAR-CTC 42 230

Other Aligners
CTC+Label Prior 29 288
MMS 37 242
MFA 23 314

Table 7: Alignment quality comparison.

Given that UNITY2 and CHAR-CTC performs the best,
we also follow Huang et al. (2024) to measure their word
boundary error (WBE) and word average duration (WDUR)
using the TIMIT (Garofolo et al., 1993) data. Though the
aligner quality can be further improved with other methods
such as CTC + Label Prior (Huang et al., 2024), MMS
(Pratap et al., 2023), or MFA (McAuliffe et al., 2017),
CHAR-CTC and UNITY2 still achieve good quality and
we choose them out of simplicity and general availability
(unlike "CTC+Label Prior", for example, which requires
customization with library like k23).

3https://github.com/k2-fsa/k2
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B Beyond Semantics: Speech Style Recognition with In-context Learning

To explore the non-semantic capabilities of our SpeechLM, particularly its ability to retain and utilize par-
alinguistic information, we conducted additional experiments focusing on speech style recognition through
in-context learning. Specifically, we investigated whether the SSR-CONNECTOR-based SpeechLM (based
on the UnitY2 aligner), can differentiate between various speech styles without explicit training on
paralinguistic cues.

We utilized the Expresso dataset (Nguyen et al., 2023), which comprises speeches delivered in distinct
styles such as happy, sad, whispering, and laughing. Two primary tasks were designed to assess the
model’s performance:

1. Whisper vs. Laugh: The model was tasked with identifying whether a given speech was whispered
or laughed. The prompt provided to the model was:

"You are given speeches from two styles. Your task is to judge if the speech is a whisper or
laugh. Here are some example speeches: [Speech]: {speech} [Style]: {whisper/laugh}..."

2. Happy vs. Sad: The model was asked to determine if the speech was delivered happily or sadly.
The prompt used was:

"Listen to the following speech and judge if the speaker is happy or sad. Here are some
examples: [Speech]: {speech} [Emotion]: {happy/sad}..."

For each task, we evaluated the model’s performance using varying numbers of in-context examples:
0-shot, 1-shot, 5-shot, and 10-shot. The results, averaged over 10 runs, are presented in Table 8. Ad-
ditionally, we benchmarked a cascaded system comprising Whisper and Llama3 for comparison (this
cascaded baseline does no preserve non-semantic information and can only infer the speech style through
transcripted content).

Task Model 0-shot 1-shot 5-shot 10-shot

Whisper vs. Laugh Cascaded System 51.6 52.1 52.2 54.7
Ours 49.6 62.4 64.0 75.9

Happy vs. Sad Cascaded System 50.0 51.4 51.8 51.0
Ours 51.6 52.1 52.2 54.7

Table 8: Accuracy of Speech Style Recognition Tasks with In-context Learning

The results indicate that with zero-shot prompting, our model generates predictions close to random
chance, as it has not been trained to utilize paralinguistic information. However, with the introduction of a
few-shot learning approach, the model significantly improves its ability to distinguish between whispering
and laughing speech, achieving up to 75.9% accuracy with 10-shot examples. This suggests that the
model’s representations inherently contain paralinguistic information that can be harnessed through in-
context learning. For the Happy vs. Sad task, the improvement is modest, peaking at 54.7% accuracy with
10-shot examples. This lesser performance compared to the Whisper vs. Laugh task may be attributed
to the subtler differences in emotional expression compared to the more pronounced style differences
between whispering and laughing.

Overall, these findings demonstrate that our SpeechLM can effectively leverage in-context learning
to recognize different speech styles, thereby highlighting the presence of paralinguistic information
within the model’s representations. This capability complements existing methods that incorporate
paralinguistic information, such as the use of expressive tokens in SpiritLM (Nguyen et al., 2024) or
emotion-relevant instruction tuning in SALMONN (Tang et al., 2024).
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C Datasets

Eval Dataset Type Eval Metric Eval Modality

sWUGGY (Nguyen et al., 2020) Choice Task Accuracy S, T
sBLIMP (Nguyen et al., 2020) Choice Task Accuracy S, T
StoryCloze (Mostafazadeh et al., 2017) Choice Task Accuracy S, T , S → T
MMLU (Hendrycks et al., 2021) Choice Task Accuracy T
Speech-MMLU (Ours) Choice Task Accuracy S → T
LibriSpeech (Panayotov et al., 2015) Generation Task Word Error Rate S → T

Table 9: Evaluation Datasets and their types. For the evaluation format, S is speech-only, T is text-only, and S → T
means the evaluation prompt consists of speech prefix and text continuation.

As described in §4.1, we employ sWUGGY, sBLIMP, StoryCloze, MMLU, Speech-MMLU and
Librispeech datasets to assess model performance. In this section, we provide more examples for each
evaluation set. sWUGGY and sBLIMP are simple tasks where two choices can be directly compared.
As shown in Table 10, sWUGGY provides two choices that require models to discriminate real words
from non-words. sBLIMP assesses whether the model can distinguish between a grammatically correct
sentence and its ungrammatical variant.

MMLU and StoryCloze, on the other hand, have a prefix and choices. The StoryCloze dataset measures
whether the model can identify the logical ending between two sentences given at the beginning of a short
story. Since StoryCloze has a shared prefix, we can synthesize only the prefix part into speech and keep
choices in text format, resulting in our S → T format evaluation that assess the model’s cross-modal
understanding. Similarly, for MMLU, we also synthesize its prefix (the question portion) into speech and
keep the choices in text format, resulting in our Speech-MMLU dataset. Since some topics have bad audio
synthesis quality (e.g., the algebra subset contains many mathematical notations), we only keep 22 topics
in our test suite (as shown in the “Topic” column of Table 11).

Name Prefix Choices

sWUGGY N/A {Good=obsolete, Bad=odsolete}

sBLIMP N/A {Good=Walter was harming himself,
Bad=Walter was harming itself}

StoryCloze I had been giving this homeless man
change every day. He was on the same
corner near my house. One day, as I was
driving through my neighborhood I saw
a new car. Soon enough, I saw the same
homeless man emerge from it!

{Good=I never gave the man money
again. Bad=The next day I gave the man
twenty dollars.}

MMLU During the period when life is believed
to have begun, the atmosphere on primi-
tive Earth contained abundant amounts
of all the following gases except

{"A": "oxygen", "B": "hydrogen", "C":
"ammonia", "D": "methane"}

Table 10: Examples of different evaluation datasets.
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D Evaluation Metric and Prompt

Choice tasks (sWUGGY, sBLIMP, StoryCloze, MMLU, Speech-MMLU) are evaluated by comparing
perplexity of different choices. The choice with smallest perplexity is selected as the prediction and we
measure accuracy across different benchmarks.

For generation task (prompt-based ASR), we use the prompt below, with pairs of speech and transcrip-
tion is provided to the SpeechLM. For 0-shot evaluation, we do not include any examplers.

Prompt

Given the speech, provide its transcription.
[speech]: {demo speech}
[text]: {demo transcription}
...
[speech]: {speech to transcribe}
[text]:

Speech MMLU Evaluation We craft speech MMLU by synthesizing the questions of MMLU into
audio through AUDIOBOX. Since some domains have bad synthesis quality (such as algebra, which
includes many math notations), we filtered those domains out from our evaluation.

We present the detailed comparison results in Table 11 for a better comparison of model performance
across different domains/topics. We see that the trend for different domains is mostly consistent, with our
alignment-aware connector based on UNITY2 achieving the best performance, followed by CHAR-CTC
based connector. Similar as our main findings, the unit-based system has worse performance due to
information loss from discretization and the fine-tuned model suffers from catastrophic forgetting (albeit
mitigated through our multitask fine-tuning approach). Nevertheless, all these SSR-CONNECTOR based
system obtains better performance compared to SPIRITLM (LLAMA3), confirming the effectiveness of
our modality-fusion strategy.

Topic SPIRITLM UNITY2 + Mask UNITY2 CHAR-CTC Unit-based Fine-tuned

0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

Astronomy 45.6 40.8 60.0 66.0 60.7 65.3 57.0 60.4 49.7 61.1 50.7 52.0
Business Ethics 37.1 40.2 52.0 60.0 53.0 62.0 56.0 59.0 52.0 55.0 37.0 51.0
Clinical Knowledge 36.0 39.8 60.6 63.3 61.0 62.9 61.2 62.7 57.8 57.4 47.3 53.8
College Biology 36.4 33.6 65.0 69.9 62.9 68.5 57.7 59.9 54.2 57.7 40.6 44.1
Electrical Engineering 37.7 44.2 52.5 57.4 52.5 53.9 48.2 58.9 44.7 48.2 53.2 54.6
High School Biology 40.8 41.2 66.0 72.2 67.6 72.2 63.3 68.2 57.1 65.6 50.5 62.5
High School Gov. Pol. 44.4 43.4 79.2 84.9 78.1 83.3 76.6 81.8 71.4 73.4 54.7 64.1
International Law 55.9 58.5 71.1 81.0 71.1 81.0 71.1 80.2 71.1 75.2 66.1 71.1
Jurisprudence 37.1 36.2 60.2 68.5 62.0 70.4 57.4 63.9 54.6 60.2 51.9 57.4
Machine Learning 39.3 32.1 45.8 59.3 50.8 59.3 45.8 61.0 44.1 57.6 39.0 55.9
Management 43.0 42.0 79.6 84.5 77.7 75.7 73.8 74.8 68.0 70.9 45.6 65.0
Marketing 39.8 49.8 77.8 85.0 76.1 81.6 76.9 81.6 74.4 76.9 51.3 67.1
Miscellaneous 38.5 36.4 69.2 71.5 66.6 70.1 60.3 64.6 52.3 57.5 42.7 50.3
Moral Disputes 39.1 42.3 59.5 66.5 59.5 67.3 56.4 62.7 52.9 62.1 43.6 52.9
Nutrition 45.0 47.3 68.4 69.1 66.1 66.8 65.5 62.8 64.5 59.8 52.8 58.5
Philosophy 37.5 37.2 58.3 64.5 59.0 62.5 55.9 64.1 54.6 59.5 44.0 53.1
Prehistory 38.9 43.3 62.0 66.4 61.1 64.5 61.2 64.3 55.0 57.5 49.1 55.2
Security Studies 43.8 54.8 63.8 67.8 61.7 67.8 68.1 76.9 59.3 69.2 51.0 59.7
Sociology 37.4 45.5 71.6 74.6 68.7 74.6 69.7 73.6 68.2 72.1 57.7 66.2
US Foreign Policy 56.7 60.8 80.0 80.0 78.0 85.0 75.8 81.8 75.8 83.8 61.0 76.0
Virology 40.1 46.3 47.9 49.1 49.1 53.9 47.9 49.7 46.1 51.5 46.7 44.8
World Religions 39.3 46.4 66.1 67.8 63.2 63.7 52.0 59.1 51.5 60.8 40.9 50.3
Micro Average 40.5 42.7 65.0 69.5 64.2 68.6 61.7 66.5 58.1 63.3 49.0 57.5

Table 11: Detailed Speech-MMLU evaluation results on different domains.
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