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Abstract

This paper describes Charles University sub-
mission to the Simultaneous Speech Transla-
tion Task of the IWSLT 2025. We cover all
four language pairs with a direct or cascade ap-
proach. The backbone of our systems is the of-
fline Whisper speech model, which we use for
both translation and transcription in simultane-
ous mode with the state-of-the-art simultaneous
policy AlignAtt. We further improve the per-
formance by prompting to inject in-domain ter-
minology, and we accommodate context. Our
cascaded systems further use EuroLLM for un-
bounded simultaneous translation. Compared
to the Organizers’ baseline, our systems im-
prove by 2 BLEU points on Czech to English
and 13-22 BLEU points on English to German,
Chinese and Japanese on the development sets.
Additionally, we also propose a new enhanced
measure of speech recognition latency.

1 Introduction

In this paper, we describe the submission of the
Charles University (CUNI) system to IWSLT 2025
Simultaneous Speech Translation Task (Abdulmu-
min et al., 2025). Our system is built on top
of Whisper (Radford et al., 2022) with AlignAtt
(Papi et al., 2023) simultaneous policy. To achieve
higher translation quality, we apply beam search
and prompting for in-domain terminology. In our
end-to-end system for the Czech-to-English trans-
lation, we also exploit previous translations as a
context. For the translation into German, Chinese,
and Japanese, we adopted a cascaded approach con-
sisting of Whisper for English ASR and EuroLLM
(Martins et al., 2025) for translation. We validate
our systems’ latency in computationally unaware
simulation. Our Czech-to-English systems work
both in 2-second and 4-second latency regimes re-
quired by IWSLT 2025 (“low” and “high”). The
English-to-German, Chinese and Japanese systems
are available only in the high-latency regime of

4-5 seconds. For an overview of our systems, see
Table 1.

Our main goal in this submission is to cre-
ate a robust and straightforward implementation
that can be used in further research as well as
in many realistic use cases. We name the im-
plementation SimulStreaming and publish it at
https://github.com/ufal/SimulStreaming.

Among the strengths of our submitted sys-
tem is very high quality, because of using high-
performing foundation models, and very high mul-
tilinguality. Whisper allows direct translation from
99 speech source languages to English, and Eu-
roLLM allows English translation into 35 lan-
guages. Our systems are also adaptable; the
prompts and in-context learning allow injecting
specific in-domain terminology.

Moreover, although we primarily focus on com-
putationally unaware latency, our system is prac-
tically usable in real time only with feasible hard-
ware resources. It requires hosting Whisper large
1.6B parameters model and and the EuroLLM 9B
parameters model.

Our second goal is to evaluate the state-of-the-art
methods in combination. Our results show improve-
ments by 2 BLEU points on Czech to English over
the organizers baseline, and 13-22 BLEU points on
English to German, Chinese, and Japanese, which
highlights the effectiveness of our systems.

We conclude we have reached both goals. The
original contributions of this work is the Simul-
Streaming implementation and evaluation, and also
a new enhanced method for measuring ASR latency
using Continuous Levenshtein Alignment (see Sec-
tion 5.1).

2 Background

Whisper is among the top-performing ASR and
speech translation models for 99 languages. It
has the ability to use initial and context prompts,
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Cs-En En-{De,Zh,Ja}

Speech-to-text

model Whisper large-v3 Whisper large-v3
task translate to En transcribe En
beam yes no
prompt yes no
context yes no
simult. policy AlignAtt AlignAtt

+ Text-to-text

model - EuroLLM-9B-Instruct
prompt - yes
context - yes
simult. policy - LocalAgreement

Latency regime 2 seconds (“low”) yes no
4-5 seconds (“high”) yes yes

Table 1: Overview of CUNI systems submissions to IWSLT 2025 Simultaneous Speech Translation Task.

which makes it adaptable for in-domain terminol-
ogy. Works such as Macháček et al. (2023b) and
Wang et al. (2024) show that Whisper is adaptable
to simultaneous mode, although it is primarily de-
signed for offline mode. Whisper is available in
multiple model versions that differ in size and qual-
ity. We use the large-v3 model, which achieves the
highest quality.

AlignAtt (Papi et al., 2023) is a simultaneous
policy. Given an offline translation model, partial
source and previous target, it detects where to stop
generating the partial target, which is when the
most attended source frame by the decoder is be-
hind a threshold. Papi et al. (2023) shows that this
policy outperforms all previously proposed poli-
cies. Wang et al. (2024) later showed that AlignAtt
also works with Whisper.

LocalAgreement (Polák et al., 2022, 2023) is a
simultaneous policy that considers the target pre-
fixes of two subsequent updates, each processing
a newly incoming source chunk. It emits their
longest common prefix as confirmed and uses it in
forced decoding of the latter chunks.

Simul-Whisper (Wang et al., 2024) is an imple-
mentation of the simultaneous mode with Whisper
using AlignAtt. It is an extension of the original
OpenAI Whisper inference using the Torch deep
learning framework. Simul-Whisper supports only
ASR of speech that is segmented into individual
sentences, and computationally unaware simula-
tion, while the IWSLT 2025 Simultaneous Task
focuses on a more realistic case of unbounded
speech (Papi et al., 2025) without any explicit sen-
tence boundaries. On the other hand, Whisper-
Streaming (Macháček et al., 2023b) is our imple-

mentation of Whisper with the LocalAgreement
simultaneous policy and reprocessing the audio
buffer from the beginning with every incoming
source chunk, which is less computationally effec-
tive than AlignAtt. On the other hand, Whisper-
Streaming supports both computationally aware
and unaware simulations, as well as unbounded
speech. It integrates Silero VAD (Team, 2024) that
incrementally detects silence and non-voice sounds
vs. voice.

EuroLLM (Martins et al., 2025) is a recent large
language model for text-to-text translation between
35 EU and non-EU languages, including English,
German, Japanese, and Chinese. It is a decoder-
only model of the LLaMA family. We use its 9B pa-
rameter version with instruction tuning. It supports
a system prompt, which can be used to suggest the
domain, and a maximum context of 4096 tokens,
which spans over 10 minutes of English source and
German target of ACL 6060 (Salesky et al., 2023)
dev set reference (see estimation in Appendix A).
We use EuroLLM with the fast inference frame-
work CTranslate2. It enables fast computation and
efficient memory usage; however, it currently does
not provide access to attention weights. Therefore,
we can not apply the AlignAtt policy to EuroLLM,
so we use it with the LocalAgreement simultane-
ous policy, which is the best-performing policy that
does not require attention weights.

3 Direct Simultaneous Speech-to-Text
with Whisper and AlignAtt

Let us describe the process of simultaneous speech-
to-text processing, which we apply to direct Czech-
to-English translation and to English ASR in the
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cascaded system for English to German, Chinese,
and Japanese.

Our system uses our implementation called
SimulStreaming which merges the Simul-Whisper
AlignAtt policy with the Whisper-Streaming in-
terface to support unbounded speech processing.
Moreover, we extend the original Simul-Whisper
with the following enhancements. First, we added
support for the Whisper large-v3 model. Second,
in addition to transcription, we enabled transla-
tion. Then, to improve quality, we implement beam
search decoding. Finally, we incorporate support
for initial prompts and contextual information from
the preceding audio buffers.

Our simultaneous speech-to-text pipeline con-
sists of the prototypical processing steps that are
described in Papi et al. (2025), Section 3.1.

1. Audio acquisition.

2. Audio segmentation. Silero Voice Activity
Detection (VAD) iterator with the same de-
fault parameters as in Whisper-Streaming is
applied (minimum chunk size 0.04 seconds,
minimum non-voice duration 500 ms, voice is
padded with 100 ms). When VAD detects non-
voice in the 0.04-second chunk, the chunk is
discarded. When VAD detects voice, it holds
it until MinChunkSize1 seconds of voiced au-
dio accumulate, or until the end of voice is
detected. The accumulated voiced audio is
passed to the next step.

3. Speech buffer update. The incoming chunk,
which has MinChunkSize seconds if the end
of voice is not detected, or less otherwise, is
concatenated with the speech buffer.

4. Hypothesis generation. Whisper large-v3
model encodes the speech buffer and popu-
lates the decoder’s Key-Value cache with the
representation of the optional initial prompt,
previous context, and forced-decoded target
prefix. Then the model decodes the target as
long as the AlignAtt policy allows. If the cur-
rent chunk is not final, the decoding continues
until the most attended source frame is close
to the end of the audio, which is indicated
by the Frames parameter. In our proposed
beam search implementation, we decode until
the top beam hypothesis is attended behind
the threshold. In case the current chunk is

1We mark the system parameters that we tune with italics.

final, we decode until the last 4 frames, as the
Simul-Whisper authors propose.

5. Buffers selection. There are the following
four buffers in our implementation: (1) source
audio buffer, (2) forced decoding target buffer
that contains the stable part of the hypothesis
that was decoded from current audio buffer,
(3) context buffer, which is the transcript or
translation from the audio segments that were
pushed away from the audio buffer, and (4) ini-
tial prompt, for example a text that can contain
terminology or initiate the style of decoding.

If the audio buffer has the length of Buffer-
Length seconds or more, we remove the first
speech chunk from the source audio buffer.
At the same time, we move the text that was
decoded with the first chunk from the forced
decoding to the context buffer. If the initial
prompt and context are longer than MaxCon-
textLength, we trim the complete words from
the beginning. A parameter StaticPrompt
specifies whether the initial prompt is pushed
away with the context or not.

If finalization is triggered, that is, when the
source recording is finished, or when the end
of voice was detected, the buffers are cleared.

4 Simultaneous Translation with
EuroLLM

We implement EuroLLM simultaneous translation
using a chat template. We design a system prompt
asking the model to perform simultaneous inter-
preting at a conference and specifying the transla-
tion direction. The chat is followed by the user’s
message containing the source prefix, and by the
assistant’s reply that contains the previous target
prefix to continue. The chat is initiated with one
sentence pair as an in-context example because we
observed that without that, the model tends to pro-
duce text that is not a translation, especially for a
short source.

Our simultaneous translation consists of steps
that are analogous to the prototypical ones in Papi
et al. (2025):

1. Source acquisition: The punctuated text pro-
duced by the simultaneous Whisper English
ASR.

2. Segmentation: Because we assume compu-
tational unaware mode and English as the
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source language, we segment the source into
individual words by spaces. A parameter
MinChunkSize specifies the number of new
words in each update.

3. Buffer update: The newly incoming source
words are appended to the previous source.

4. Buffer trimming: In our initial experiments,
we observed that the model tends to halluci-
nate with larger context. Therefore, we trim
the source-target buffer if it has more tokens
than MaxContextLength. We apply one of the
two buffer trimming strategies:

(a) Sentences: Detect sentences by punc-
tuation in the source and target, trim
the first sentence in the source and tar-
get, while the context length is too large
and there is at least one sentence left in
each buffer. This strategy assumes that
there is a one-to-one correspondence be-
tween the source and target sentences.
This strategy seems to be sufficient for
English-to-German translation, but not
for English to Chinese and Japanese.

(b) Segments: The source-target buffer con-
tains the source-target pairs as they were
received and generated, including empty
targets. If the buffer is too long, one pair
is trimmed. Although the buffer is not
completely parallel and the source is typi-
cally more ahead, this strategy appears to
be more optimal for English-to-Chinese
and Japanese translations than Sentences.
Additionally, this strategy does not re-
quire processing a slow parallel word-
alignment model.

5. Hypothesis generation: The source and target
buffers are transformed into the chat tokens
as described above. EuroLLM’s reply is gen-
erated. The new target prefix is compared to
the one from the previous update, and their
longest common prefix (LocalAgreement pol-
icy) is considered as a newly confirmed hy-
pothesis. The unconfirmed hypothesis suffix
is held for confirmation with the following
update.

5 Development

Dev sets For English-to-German, Chinese, and
Japanese translations, we use the ACL6060 de-

velopment set as provided by the IWSLT organiz-
ers. For Czech-to-English translation, we use the
IWSLT 2025 dev set. However, we found that the
ParCzech subset is segmented in this dev set, while
the 2025 test set will be unsegmented. Therefore,
we merged the subsequent segments from the same
speech. Since there were two very diverse subsets,
ParCzech and Robothon, we selected the final can-
didate based on the average of quality scores on
the merged ParCzech and Robothon. Finally, to
meet the shared task conditions, we filtered out the
candidates that did not meet the latency criteria on
the unsegmented dev set.

MT metric We selected the primary candidates
using ChrF because ChrF tends to be more reliable
than BLEU in simultaneous translation (Macháček
et al., 2023a).

Translation Latency For translation latency, we
use the StreamLAAL metric (SLAAL, Papi et al.,
2024) as proposed by IWSLT organizers. For En-
glish ASR latency, we use the following algorithm.

5.1 ASR Latency with Continuous
Levenshtein Alignment

We propose an improvement of the algorithm for
the average word latency of the ASR. We call it
“ASR Latency with Continuous Levenshtein Align-
ment.” The improvement over existing methods
stems from (1) the more accurate character-level
alignment and (2) minimum edit distance align-
ment that prefers continuous sequences of edit op-
erations to prevent coincident alignment to deleted
or inserted segments that would contribute to unre-
alistic latency. The algorithm is as follows.

Assume a gold transcript with word-level times-
tamps and an ASR transcript where each word is
assigned its emission time.

First, create a dynamic programming matrix for
the Levenshtein minimum edit distance alignment
of the gold and ASR transcript at the character
level. Character-level alignment is more accurate
than word-level because it is more robust to mi-
nor deviations from the gold transcripts, such as
suffixes, when the other part of the word is cor-
rect. The disadvantage is computation and memory
complexity, which is quadratic, and therefore much
higher on characters than on words. However, we
were able to compute roughly 12 minutes of tran-
scripts in a feasible time. Longer transcripts can be
segmented.
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gold t h e t a b l e
interrupted alignment t a b l e
edit operations C D D D D C C C C
continuous alignment t a b l e
edit operations D D D D C C C C C

Figure 1: Illustration of interrupted vs. continuous align-
ment of the ASR candidate “table” to the gold “the
table”. Both alignments have identical edit distance
(4 Deletions, 5 Copies), but the bottom one includes a
longer continuous sequence of Copies. The interrupted
alignment is incorrect.

Second, when generating the minimum distance
alignment, prioritize continuous sequences of Copy
or Substitute operations over interruptions with
Deletes or Inserts. The illustration is in Figure 1.
The reason is to prevent alignment to deleted seg-
ments too far ahead or behind, which would lead
to incorrect latency.

Third, convert aligned characters to the sequence
of aligned words. Fourth, for each word in the
transcript that is aligned to any gold word, estimate
its latency as the word’s emission time minus the
timestamp of its gold-aligned word. Fifth, report
the average word latency.

We publish an implementation of the ASR La-
tency with Continuous Levenshtein Alignment at

https://github.com/ufal/asr_latency.

6 Results

6.1 Czech-to-English Translation

For the Czech-to-English translation, we use the di-
rect speech translation with Whisper and AlignAtt
policy. First, we investigate the impact of Beams
and BufferLength. For that, we use a 30-minute
subset of the merged ParCzech dev set.

Beam search We set the MaxContextLength to
0, BufferLength to 25 seconds, Frames threshold
to 4, and MinChunkSize to 3 seconds. Table 2
contains MT quality scores with different Beams.
We observe a ChrF score improvement by 1.04
with 5 beams compared to 1. With Beams 4 and 8,
we observe analogous gains, with maximum at 5
beams. The latency (SLAAL) decreases negligibly
with higher beams.

Buffer Length Then, we investigated the Buffer-
Length parameter. The setup is the same as with
beam search, except that we set MinChunkSize to
1.75 seconds and Frames to 4. Table 3 shows the

Beams 1 2 6 5
ChrF 48.03 48.77 48.89 49.07
SLAAL 2373 2393 2308 2285

Table 2: Impact of beam search on MT quality (ChrF)
and latency (SLAAL) in milliseconds.

BufferLength 15 20 25 28 30
ChrF 47.65 48.09 48.24 48.67 48.78
SLAAL 2698 2627 2830 2920 2928

Table 3: Impact of BufferLength on MT quality (ChrF)
and latency (SLAAL) in milliseconds.

results. Maximum quality is with BufferLength
30 seconds. We observe analogous results with
Frames set to 80.

Therefore, we further set BufferLength to 30 sec-
onds.

Grid search Then, we perform grid search to find
the optimal MinChunkSize, Frames, and Beams pa-
rameters to meet the low-latency threshold of the
IWSLT 2025 Simultaneous task, which is below
SLAAL 2000ms, and the high-latency threshold be-
low 4000ms SLAAL. For that, we used the merged
ParCzech and Robothon portions of the dev set,
and we averaged their ChrF score. We found 4 can-
didates for the low-latency regime that were near
2000 SLAAL. Their scores are in Table 4. For high
latency, we selected one candidate.

Prompt and Context We experimented with
MaxContextLength, which can be between 0 and
255 tokens, as Whisper’s documentation suggests,
and Prompt, which can be any text that initiates de-
coding. Moreover, the prompt can be StaticPrompt,
which stays at the beginning of decoding for all
buffers, or NonStaticPrompt, which means it is
pushed away by context that reaches maximum

MinChunkSize Frames ChrF SLAAL
1.2 25 49.72 1715
1.4 35 49.75 2091
1.6 25 49.83 2166
1.4 30 49.83 2067
1.8 25 49.93 2636

Table 4: Pre-selected top candidates for low latency
(upper part of table, with SLAAL near 2000) and high
latency (lower part) by average ChrF on the merged
ParCzech and Robothon portions of the dev set. All of
them are with 2 Beams.

393

https://github.com/ufal/asr_latency


length.
We optimize for two subsets of the Czech-to-

English test set in IWSLT 2025: the native Par-
Czech subset, and the non-native subset for which
we have no other information. We assume that
the ParCzech are speeches from the plenary ses-
sions of the Chamber of Deputies, Parliament of
the Czech Republic, similarly to the dev set. We
noticed a specific terminology that the Whisper
model is not aware of. For example, the terms
“Chamber of Deputies,” “deputy,” and “chairman”
are often missing. They are alternated with terms
such as “Senate”, “MP”, “Ambassador”, and “Pres-
ident”, which are wrong in the ParCzech domain.
Therefore, we attempted to inject these terms via
prompting.

We proposed 13 prompts, 9 of which were spe-
cific to the ParCzech, and 4 of them were gen-
eral, applicable to any domain. We evaluated these
prompts on the ParCzech portion of the dev set with
all static or non-static prompts and varying context
lengths. We discovered that half of the prompts
increased the performance over the baseline, while
the other half decreased it.

In the end, the prompt “This is Chamber of
Deputies.” reached the highest quality score. We
use this as the static prompt for the ParCzech do-
main with MaxContextLength 20 for high latency,
where it increased ChrF by 0.45, and with MaxCon-
textLength 250 for low latency, where it increased
ChrF by 0.61. For the general domain, we use no
context and no prompt for the high latency, and
the non-static prompt “He starts.” with MaxCon-
textLength 250 for the low latency, as it gained
0.24 ChrF improvement. Table 5 summarizes our
observations.

Comparison to the IWSLT 2025 Baseline Al-
though we do not consider validation on the seg-
mented dev set as the most relevant for evaluation
on unbounded speech, which is the primary ob-
jective in the IWSLT 2025 Simultaneous task, we
validate our primary candidate on the segmented
dev set and compare it to the IWSLT 2025 organiz-
ers’ baseline. Their system that reached the highest
BLEU score while having SLAAL below 4000
(high latency) was a cascade system with Whisper
ASR and M2M100 MT (Fan et al., 2021). Similarly,
their top-scoring system for the low-latency regime
was the SeamlessM4T (Seamless Communication
et al., 2023) direct speech translation model with
VAD Segmenter. The scores are compared in Ta-

low high
baseline ChrF 49.67 49.78
context 0 0
prompt - -
ChrF 50.28 50.23
context 250 20
prompt ParCzech, static ParCzech, st.
ChrF 49.91 49.78
context 250 0
prompt general, non-st. -

Table 5: ChrF on the merged ParCzech portion of the
dev set with the top performing prompt and context
setup with the prompt adapted to the ParCzech domain
(middle section of the table), or a general prompt (lower
section).

BLEU ChrF SLAAL
baseline low 15.16 - 1777
our low 18.49 48.51 1763
baseline high 16.63 - 3996
our high 18.83 48.86 2630

Table 6: Comparison of IWLST 2025 organizers’ base-
line on the segmented Czech-to-English dev set.

ble 6.
We conclude that in the Czech-to-English simul-

taneous translation, we outperformed the organiz-
ers’ baseline by 3.3 BLEU in the low latency and
by 2.2 BLEU in the high latency regime.

6.2 English ASR

We use Whisper with AlignAtt for simultaneous
English ASR. We set BufferLength to 30 sec-
onds (maximum). Since Whisper with AlignAtt
reached very high quality on the English ASR of
the ACL6060 domain with no prompt and no con-
text, we did not attempt to improve it with prompt
or context. We perform a grid search for the param-
eters MinChunkSize, Frames, and Beams. Unlike
for Czech to English, Beams set to 1 performed
the best in this case of English ASR. We validate
with ACL6060 English dev set in computational un-
aware mode, measuring latency with the algorithm
in Section 5.1.

Meanwhile, we validated the simultaneous trans-
lation of English to German with the gold tran-
scripts. Given the minimum translation latency, we
determined the span of latency for ASR in the cas-
cade to fit the high latency regime of IWSLT 2025
Simultaneous task. We selected the top-performing
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ref. Chunk Frame WER CER latency
#00 0.05 4 14.22 5.10 494
#10 0.15 4 13.33 4.75 596
#11 0.25 15 13.10 4.66 754
#12 0.25 20 13.09 4.63 845
#20 0.5 10 13.40 4.81 1037
#21 0.5 15 13.35 4.71 1149
#22 0.5 20 13.06 4.64 1262
#23 1.4 15 12.98 4.76 1389
#24 1.5 10 12.92 4.85 1461
#25 1.4 25 12.77 4.76 1522
#30 2.0 20 12.69 4.77 2143

Table 7: Selected top performing English ASR candi-
dates with various latency levels. We report % WER
(range 0%-100%, the lower, the better), % CER, and
latency in milliseconds on ACL6060 English dev set.
The first column “ref.” is a reference under which we
will refer this ASR candidate.

ASR systems from the grid search with various la-
tency levels, each roughly 100 milliseconds from
the others. The scores are in Table 7. We observe
very high ASR quality, around 5% CER (character
error rate.

When we looked at the differences in the ASR
and gold transcripts, we noticed that the differences
are often not errors but a consequence of unspeci-
fied orthographical conventions, for example, swap-
ping numerals and digits, capitalization of titles,
use of quotation marks, etc. We also noticed that
named entities and acronyms tend to be more often
incorrect with small MinChunkSize than with large.
This is an expected consequence of shorter context.

6.3 English to German, Chinese, and
Japanese

The text-to-text simultaneous translation compo-
nent of our cascade has the parameters MinChunk-
Size, MaxContextLength, and BufferTrimmingStrat-
egy. We do not tune the system prompt nor the
in-context example because we do not presume to
have any further background information about the
content to be translated.

Latency regime First, we processed English-to-
German translation with gold ASR. We realized
that the lowest possible latency, with MinChunk-
Size 1 and MaxContextLength 300, is 2471 SLAAL,
which means that we can not fit under the low-
latency threshold of 2000 SLAAL. We can target
only the high-latency regime that requires SLAAL
under 4000. Furthermore, we observed a lower

context BLEU ChrF SLAAL
300 39.84 67.88 2472
500 39.71 67.44 2461
700 16.24 48.54 < 0

1000 34.51 61.35 < 0

Table 8: English to German scores with gold ASR in-
put, MinChunkSize 1, and various MaxContextLength.
The scores are on ACL6060 dev set with 5 documents.
SLAAL scores less than zero (< 0) indicate hallucina-
tions in at least one document.

quality score with MaxContextLength 500 than
with 300, and even lower performance with longer
context due to hallucinations, mostly repetitions
of long sentences. The results are summarized in
Table 8.

Buffer Trimming Strategy We observed
many hallucinations with English-to-Chinese
and Japanese with the buffer trimming strategy
Sentences, because the assumption of matching
number of source and target sentences was wrong.
The buffer often contained only one source
sentence and many short sentences in Chinese or
Japanese. However, there were no hallucinations
when we applied the Segments strategy instead.

Primary Candidates Finally, we performed
a grid search with MinChunkSize, MaxCon-
textLength, and the ASR candidates, and found
the best ChrF scoring setup on the dev set that met
the high-latency criterion. See results in Table 9,
where we also compare to contrastive systems and
the organizers’ baseline.

We observe high improvement on each language
pair, nearly 13 BLEU points on English to Ger-
man, 22 BLEU on Chinese, and 18 BLEU point
on Japanese. We presume that the baseline was
not very strong, likely due to hallucinations of the
SeamlessM4T model.

7 Conclusion

In this paper, we presented our submission to the Si-
multaneous Speech Translation Task of the IWSLT
2025. Using the combination of the direct ap-
proach for Czech-to-English translation and the
cascaded approach for English to German, Chinese,
and Japanese, we cover all language pairs of the
task. To leverage the strong offline Whisper speech
model and the large language model EuroLLM, we
applied state-of-the-art onlinization techniques and
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BLEU ChrF SLAAL ASR latency

EnDe
baseline 25.64 - 3464 -
ASR #25, chunk 1, context 300 38.46 66.59 3934 1522
ASR gold, chunk 1, context 300 39.84 67.88 2472 0

EnZh
baseline 23.96 - 3275 -
ASR #22, chunk 1, context 100 46.44 40.05 3698 1262
ASR #11, chunk 3, context 100 49.91 43.08 5449 754

EnJa baseline 16.19 - 3662 -
ASR #22, chunk 2, context 200 34.69 42.89 4654 1262

Table 9: High-latency simultaneous translation results for English to German, Chinese, and Japanese on ACL6060
dev set compared to the IWSLT 2025 organizer’s baseline and the contrastive systems (grey background). The
English-to-German contrastive system uses gold ASR. The English-to-Chinese one does not meet the SLAAL high
latency limit of 4000 ms.

further advancements such as prompting for con-
text and domain adaptation. Our systems achieve a
substantial improvement of 2 to 22 BLEU points
over the IWSLT Organizers’ baseline. Moreover,
we propose a new robust approach to measure
speech recognition latency.
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A Maximum Context Duration of
EuroLLM

How long is the maximum context of EuroLLM
in simultaneous mode, expressed in duration of
long-form speech?

Consider the ACL6060 dev set reference in En-
glish, German, Japanese, and Chinese. It consists
of five recordings with an average duration of 11.5
minutes. The average number of tokens per record-
ing with the EuroLLM tokenizer for English, Ger-
man, Japanese, and Chinese is in Table 10.

EuroLLM has a maximum context length of
4096 tokens. If the context contains parallel text in
the source and target language, which is x-times
English tokens plus x-times target tokens, and they
sum up to 4096, x is the maximum proportion of
recording that fits into the context. Considering av-
erage recording, EuroLLM is able to fit a maximum

of 10.5 minutes of English to German translation,
10.7 minutes of English to Chinese, or 10.0 minutes
of English to Japanese.
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language En De Zh Ja
tokens per avg. recording (11.5 minutes) 1 963 2 550 2 423 2 637
proportion of avg. recording in context 1.04 0.91 0.93 0.87
max duration in context [minutes] 11.96 10.5 10.7 10.0

Table 10: Estimation of maximum context duration of EuroLLM translation from English to German (De), Chinese
(Zh), and Japanese (Ja), considering 11.5 minutes of average ACL6060 recording, and 4096 maximum context
tokens containing the same content of the source and target.
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