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Abstract

This paper describes the NAIST submission
to the English-to-{German, Japanese, Chinese}
Simultaneous Speech-to-Text track at IWSLT
2025. Last year, our system was based on
an end-to-end speech-to-text translation model
that combined HuBERT and mBART. This
year, the system consists of a Whisper encoder,
the DeCo compressive projector, and the Qwen
large language model. The simultaneous trans-
lation (SimulST) system is implemented by ap-
plying a local agreement policy to an offline-
trained translation model. For the streaming
translation (StreamST) system, we integrate an
online version of the SHAS segmenter into our
SimulST architecture. Our results demonstrate
that adopting LLMs as the backbone architec-
ture for speech translation tasks yields strong
translation performance. Additionally, leverag-
ing robust segmentation capability of SHAS for
StreamST achieves good quality-latency trade-
off when processing unbounded audio streams.

1 Introduction

Simultaneous speech-to-text translation (SimulST)
aims to mimic human interpreters by providing
real-time translation with low latency while main-
taining high translation quality. In SimulST, the
system generates translation before receiving the
full source utterance. A decision policy is required
to determine whether to generate partial output or
wait for additional source context to improve relia-
bility.

Some prior studies train dedicated models for
SimulST using specialized training strategies and
architecture designs to learn a data-driven decision
policy (Ma et al., 2020b; Ren et al., 2020; Zeng
et al., 2021; Liu et al., 2021; Zhang et al., 2024).
However, their performance heavily depends on the
design of training strategies, which is a complex
and challenging task. Furthermore, achieving dif-
ferent latency regimes typically requires training

multiple separate models, substantially increasing
computational requirements and complicating prac-
tical deployment.

Due to the aforementioned reasons, approaches
using a single model for different simultaneous sce-
narios have become popular (Papi et al., 2022a).
These methods train the speech translation (ST)
model using offline translation data and then ap-
ply a manually designed decision policy to this
offline ST model for SimulST inference. In this
way, a single ST model can adapt to different la-
tency requirements in practical use. Designing an
optimal decision policy is significant to their per-
formance. Among several existing decision poli-
cies (Ma et al., 2019; Liu et al., 2020; Nguyen
et al., 2021), Local Agreement (LA) (Liu et al.,
2020; Polák et al., 2022) is one of the most popular
method and won the SimulST track of IWSLT 2022
(Polák et al., 2022). It makes decisions by establish-
ing an agreement between two consecutive chunks
and only emitting their longest common prefixes.
Additionally, the attention-based decision policies,
EDAtt (Papi et al., 2023a) and AlignAtt (Papi et al.,
2023b), have been proposed for encoder-decoder
ST models. They leverage the cross-attention mech-
anism to make decisions based on the idea that if
the model attends to the tail end of the incomplete
input speech, the generated hypothesis is unreliable
and more context is needed. These attention-based
decision policies have shown good performance
and have been widely adopted for SimulST tasks
(Ko et al., 2024; Tan and Sakti, 2024).

Most recently, several studies have explored the
use of pre-trained large language models (LLMs)
for SimulST, capitalizing on their powerful gener-
ative and zero-shot transfer capabilities. Koshkin
et al. (2024) proposes a cascaded architecture com-
bining an ASR model with a decoder-only LLM
to perform SimulST. However, this cascaded ap-
proach is hindered by error propagation and addi-
tional latency. A few works have instead focused
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Figure 1: Architecture of our LLM-based StreamST system. The model integrates a Whisper encoder with the
LLM via the projector module. The decision policy enables simultaneous translation capabilities, while an online
segmenter processes unbounded audio streams for real-time streaming translation.

on end-to-end LLM-based SimulST systems. Xu
et al. (2024) trains an offline LLM-based ST model
and extends it to SimulST using the Hold-n (Liu
et al., 2020) decision policy. Fu et al. (2025) devel-
ops a fully end-to-end system through a specialized
multi-step training strategy. Another line of work
by Ouyang et al. (2025) reformulates SimulST as
a multi-turn dialogue task, enabling the LLM to
make translation decisions by predicting an end-of-
turn token.

Nevertheless, most of the aforementioned
SimulST systems are designed to work on pre-
segmented speech. Streaming speech-to-text trans-
lation (StreamST), the task of automatically trans-
lating speech while incrementally receiving an au-
dio stream, remains a challenging problem due to
the need for effectively processing the history audio
and text contexts. Papi et al. (2024) introduces the
first StreamST policy to deal with the unbounded
audio stream via audio and textual history selection.
Ouyang et al. (2025) utilizes a LLM cache man-
agement module to handle the unbounded audio
stream during inference.

This paper describes the NAIST submission for
the English-to-{German, Japanese, Chinese} Si-
multaneous Speech-to-Text Track at IWSLT 2025.
In our last year’s system (Ko et al., 2024), we ap-
plied the LA policy to an encoder-decoder model
to do SimulST. For the IWSLT 2025 Evaluation

Campaign, we explore employing LLM in our sys-
tem to conduct translation in real time. We con-
struct an end-to-end LLM-based ST model, trained
on offline data, and—similar to our previous sys-
tem—enable it to perform simultaneous translation
using the LA policy. To handle the unbounded
audio stream in real-world settings, we adopt an
online version of the SHAS segmentation method
(Tsiamas et al., 2022) to identify the speech seg-
ments in the audio stream and present the SHAS-
based StreamST.

2 System Description

In this section, we first describe the model archi-
tecture of our system and its training methodology.
Then we present the detailed implementation of our
simultaneous speech-to-text translation and stream-
ing speech-to-text translation approaches.

2.1 Model Architecture

As illustrated in Figure 1, the translation model of
our system comprises three principal components:
a Whisper encoder, a projector, and a large lan-
guage model. The Whisper output features of the
input speech are transformed into acoustic embed-
dings, which are subsequently integrated with the
prompt textual embeddings and fed into the LLM
to generate the target translation.
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Whisper Encoder: The Whisper model (Rad-
ford et al., 2023) is an open-source speech model
trained on a large amount of speech recognition
and translation data. The output features of the
Whisper encoder have demonstrated superior per-
formance in modeling speech information and have
been widely adopted for downstream speech pro-
cessing tasks. In our submission system, we utilize
the Whisper-large-v31 architecture to extract high-
fidelity acoustic features from the source speech
signal.

Projector: The projector serves as a critical
bridging mechanism to address the speech-text
modality gap between the source speech and the
text-driven LLM by mapping the acoustic features
into the LLM embedding space. In our system, we
implement DeCo (Yao et al., 2024) as the projector
between the Whisper encoder and the LLM. DeCo
is a compressive projector originally proposed for
visual-language models that exhibits a remarkably
efficient structure: a 2D adaptive averaging pooling
(AdaptiveAvgPool) layer functioning as a down-
sampler, followed by two linear projection layers.
These linear projection layers constitute the only
trainable parameters in this module, making it com-
putationally efficient while effectively aligning the
speech representations with the LLM embedding
space.

Large Language Model: The Qwen-2.5-7B
LLM2 (Yang et al., 2024) is employed in our sys-
tem to function as an expert translator. The model
processes the acoustic embeddings alongside tex-
tual prompts to generate high-quality translations
based on the prompt instruction. The generative ca-
pabilities of the LLM enable flexible adaptation to
various translation scenarios while maintaining se-
mantic accuracy and linguistic fluency in the target
language.

2.2 Model Training

2.2.1 Training Objective
We train our system in an offline manner us-
ing supervised learning with parallel speech-text
data. Specifically, given the training dataset D =
{(S,Ysrc,Ytgt)}, the Whisper encoder Fe(·) con-
sumes the complete source speech signal S =
{s1, s2, ..., sT } to extract acoustic features:

Xs = Fe(S) = {x1, x2, ...xL}. (1)

1https://huggingface.co/openai/whisper-large-v3
2https://github.com/QwenLM/Qwen2.5

The projectorFp(·) subsequently maps these acous-
tic features into the LLM embedding space with
length compression to generate the acoustic embed-
ding of the source speech:

E(Xs) = Fp(Xs) = {e1, e2, ..., eM},M < L.
(2)

We integrate the acoustic embedding E(Xs) with
the textual embedding of the LLM prompt and the
prefix tokens to form the composite input for the
LLM:

Illm = {E(Xs),E(Prompt),E(Prefix)}. (3)

The LLM then processes this multimodal input to
autoregressively get the model output:

P (Y|Illm) = Fllm(Illm), (4)

where Y = {y1, y2, ..., yN} denotes the target tex-
tual sequence during training. Given the composite
LLM input Illm, we optimize the system by mini-
mizing the token-level negative log-likelihood loss
over the target output sequence:

L = − 1

|Y|

|Y|∑

i=1

logP (yi|Illm, y<i). (5)

2.2.2 ASR Joint Training
To enhance the performance of the translation sys-
tem and facilitate training, we implement a multi-
task learning approach utilizing automatic speech
recognition (ASR) as an auxiliary task. Unlike ap-
proaches proposed by Chen et al. (2024) and Huang
et al. (2024), which employ a dedicated prompt for
the transcription task to augment the training data,
we utilizes a single unified prompt that instructs the
LLM to generate the transcription immediately fol-
lowing its translation output. The target sequence
for training is specifically formatted as:

Y = Translation:Ytgt <end> Transcription:Ysrc,

where the <end> token denotes the end of the trans-
lation, which is a signal to terminate the decoding
process during inference when only the translation
component is required for deployment scenarios.

2.2.3 Fine-tuning
During the training phase, the pretrained weights
of both the whisper encoder and the core LLM
architecture are frozen to maintain their represen-
tational capabilities. We fine-tune the LLM using
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
and optimize the complete parameter set of the
projector module.
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2.3 Simultaneous Speech-to-text Translation

We enable our offline-trained ST system to do si-
multaneous speech-to-text translation via Local
Agreement (LA) (Liu et al., 2020; Polák et al.,
2022), which is one of the most commonly used
decision policy in recent years. It compares the
generated hypotheses of two consecutive chunks
and only emit their longest common prefixes (i.e.,
agreement). A fixed length chunk size (speech seg-
ment size) is tuned to control the quality-latency
trade-off for SimulST.

2.4 Streaming Speech-to-text Translation

The SimulST system is assumed to work on pre-
segmented speech and it is not practical to directly
process a long audio stream in real-world scenarios
due to latency and computational resources. We de-
velop the StreamST system by integrating an auto-
matic segmenter module into our SimulST system
to detect the speech segments S = {s1, s2, ...sN}
in real-time. As illustrated in Figure 1, once the seg-
menter module detect the start point si1 of a speech
segment si, the subsequent modules process the
speech chunk-by-chunk in a SimulST manner to
emit translations. When the speech segment end-
point is detected, both of the speech and text history
buffers are reset, and the translation stops until the
start point of the next speech segment is detected.

We use Supervised Hybrid Audio Segmentation
(SHAS) (Tsiamas et al., 2022) as the segmenta-
tion method for our StreamST system. SHAS is a
neural-based method that can effectively learn the
optimal segmentation from manually segmented
speech corpus to achieve the state-of-the-art seg-
mentation performance. It uses a pre-trained
wav2vec 2.0 (Baevski et al., 2020) to extract acous-
tic features and a SHAS classifier to obtain the
probabilities for each audio frame. SHAS deter-
mines the speech offset τ and duration ∆t of an in-
put audio with a probability threshold θ. However,
the SHAS is designed to segment a long audio into
multiple speech segments that are shorter than a
predefined maximum length Lmax using the prob-
abilistic Divide-and-Conquer (pDAC) algorithm,
while in StreamST, the length of the audio stream
increases incrementally.

We enable the SHAS to perform real-time
segmentation for StreamST. Specifically, we ap-
ply SHAS on the incrementally increasing audio
stream until it detects a speech segment offset. The
first detected offset is treated as the segment start

Algorithm 1 SHAS-based StreamST
Require: Audio stream X, pause length Lpause,

minimum segment length Lmin, maximum seg-
ment length Lmax, chunk size C

Ensure: Translation output Y
1: while processing audio stream do
2: τ,∆t← SHAS(X) ▷ Get offset and

duration
3: if no speech detected then
4: Continue reading stream
5: continue
6: end if
7: Segstart ← τ
8: Segend ← τ +∆t
9: Lstream ← length(X)

10: segmentComplete← False
11: if Segend − Segstart ≥ Lmax then
12: segmentComplete← True ▷

Maximum length reached
13: else if Segend + Lpause < Lstream and

Segend − Segstart > Lmin then
14: segmentComplete← True ▷ Valid

pause detected
15: end if
16: Segment← X[Segstart : Lstream]
17: if length(Segment) ≥ PrevLength+C then
18: Process segment chunk-by-chunk
19: Y ← SimulST(Segment)
20: PrevLength← length(Segment)
21: end if
22: if segmentComplete then
23: Reset buffers and prepare for next seg-

ment
24: end if
25: end while

point, Segstart. Then the subsequent modules of
the StreamST system process the speech chunk-by-
chunk to generate translations until the segment
endpoint Segend = (τ + ∆t) is detected. How-
ever, we observed that SHAS consistently returns
an offset-duration pair even when processing in-
complete audio streams where speech has not yet
finished. In these cases, the SHAS-detected speech
segments become too short, negatively impacting
the overall performance of the StreamST system.
To address this issue, we leverage our empirical ob-
servation that when speech is ongoing, the SHAS-
detected segment endpoint Segend typically falls
very close to the length of the currently available
audio stream Lstream. We therefore introduce a
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Figure 2: An English-Chinese translation example
demonstrating our StreamST system workflow. Upon
detecting the speech start point Segstart, the SHAS seg-
menter triggers the translation system to process incom-
ing speech incrementally, chunk-by-chunk, generating
translations continuously until a valid endpoint Segend

is detected.

pause length parameter Lpause and consider a de-
tected segment endpoint Segend to be valid only
when:

Segend + Lpause < Lstream. (6)

We demonstrate the significance of the parameter
Lpause in Section 4.3.3. For practical implemen-
tation, we set maximum and minimum segment
length constraints to prevent excessively long or
short segmentation. Algorithm 1 provides the com-
plete inference procedure for our StreamST system,
while Figure 2 illustrates a representative English-
Chinese translation example.

3 Experiments Setup

3.1 Data
We used CoVoST-2 (Wang et al., 2020) for all
language pairs: English-to-German (En→De),
English-to-Japanese (En→Ja), and English-to-
Chinese (En→Zh) and also included Europarl-ST
(Iranzo-Sánchez et al., 2020) for En→De. We fol-
lowed our previous submission (Ko et al., 2024)
to conduct data filtering based on Bilingual Prefix
Alignment (Kano et al., 2022). We used ACL 60/60
(Salesky et al., 2023) data for both validation and
evaluation. All of the text data was tokenized using
LLM’s default tokenizer.

3.2 Evaluation Setup
We assessed the system performance using met-
rics for both translation quality and latency. For
translation quality, we employed BLEU (↑) calcu-
lated with SacreBLEU (Post, 2018). For latency

Figure 3: LLM prompt used for both training and evalu-
ation.

evaluation, we used the Length Adaptive Average
Lagging (LAAL) (↓) (Papi et al., 2022b) for the
SimulST and StreamLAAL (↓) (Papi et al., 2024)
for our StreamST system. Additionally, we report
the computation-aware versions of both LAAL and
StreamLAAL to account for processing overhead.
All experiments were conducted using the SimulE-
val (Ma et al., 2020a) toolkit, providing a standard-
ized evaluation framework.

3.3 Offline Model

We trained the model of our system in an offline
manner. The speech input was provided as wave-
forms with 16kHz sampling rate. The Whisper
encoder processed this input using a causal atten-
tion mask to prevent the model from utilizing future
information. The LLM then processed the acoustic
embeddings produced by the DeCo projector to
generate translations based on a prompt instruction
as shown in Figure 3. During training, we used the
Adam optimizer with β1 = 0.9, β2 = 0.98. The
learning rate was controlled by a cosine scheduler
with a base learning rate of 2.0× 10−4 and 3,000
warming-up steps within the total 100,000 updates.
Validation was performed every 1,500 updates, and
model checkpoints were saved based on the best
BLEU scores. We averaged the parameters of the
ten best-performing checkpoints to create the best
model.

3.4 Simultaneous Speech-to-Text Translation

We adapted our offline-trained model for SimulST
by applying the local agreement policy to the LLM-
based translation system. To control the quality-
latency trade-off, we used variable chunk sizes of
{0.5s, 0.75s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s}. During
inference, we employed beam search with a beam
size of 4 to generate translation hypotheses for each
input chunk.

We compare our SimulST system with our sub-
mission from the previous year. The primary dis-
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Figure 4: Quality-latency trade-off of our SimulST system compared to our last year’s system on ACL 60/60 dev
set.

tinction between the two systems lies in the adop-
tion of an LLM-based model architecture.

3.5 Streaming Speech-to-Text System

We developed our submitted StreamST system by
integrating an online version SHAS segmenter with
our SimulST model. The pause length Lpause

and the segmentation threshold θ parameters of
SHAS were set differently for each language pair:
{0.025s, 0.2} for En→De and {0.025s, 0.4} for
both En→Zh and En→Ja. The impact of these hy-
perparameters (Lpause and θ) is analyzed in Section
4.3.3.

We compare our submitted system with the
IWSLT 2025 baseline systems3. The baselines im-
plement StreamST using either a naive fixed-length
segmenter or a Voice Activity Detection (VAD) seg-
menter applied to the SeamlessM4T model (Bar-
rault et al., 2023) for all language pairs. An addi-
tional cascaded model, which comprises a Whisper
ASR model and a M2M100 (Fan et al., 2021) ma-
chine translation model, is included for the En→De
language pair.

4 Experimental Results

4.1 Offline Results of Topline

The offline performance of our model establishes
an upper bound for both the SimulST and StreamST
systems by utilizing manual segmentation and pro-
cessing the complete context to generate transla-

3https://github.com/pe-trik/iwslt25-baselines

tions. Table 1 presents the results of the offline
model on the ACL 60/60 dataset.

Table 1: Offline results of our model in the submitted
system on ACL 60/60 dev set.

Language Pair BLEU Score

En–De 28.2
En–Zh 43.9
En–Ja 30.3

4.2 Simultaneous Speech-to-text Translation
4.2.1 NAIST 2024 Model vs. 2025 Model
Non-computation-aware latency: We managed
to improve our system compared to our system of
last year on non-computation-aware latency set-
ting. As can be seen in Figure 4a through Figure
4c, our system outperforms our previous year sys-
tem by a margin of 6.4 BLEU score on En-De
language pair, 12.3 BLEU score on En-Zh lan-
guage pair, and 5.2 BLEU score on En-Ja language
pair when compared at equivalent latency levels.
Computation-aware latency: We managed to im-
prove our system compared to our system of last
year on computation-aware latency setting. As can
be seen in Figure 4d through Figure 4f, our cur-
rent year system managed to improve the overall
BLEU score in all pairs of languages with a greater
difference in En-Zh translation, as shown by 4e.
In computationa-aware setting, our system man-
aged to improve the 6.6 BLEU score on latency
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Figure 5: Quality-latency trade-off of our submitted streaming speech-to-text translation (StreamST) system
compared to IWSLT2025 baseline systems on ACL 60/60 dev set.

Table 2: Results of the submitted streaming speech-to-text translation (StreamST) system on ACL 60/60 dev set.

Language Pair Latency Regime Chunk Size (s) BLEU StreamLAAL (ms)

En–De
Low (0–2s) 0.62 23.92 1921
High (2–4s) 2.0 27.74 3988

En–Zh
Low (0–2.5s) 0.85 39.17 2455
High (2.5–4s) 2.0 41.80 3699

En–Ja
Low (0–3.5s) 1.5 29.78 3348
High (3.5–4s) 2.5 29.81 3982

around 4.35 s and the 12.3 BLEU score on latency
around 5.3 s on that particular language pair. De-
spite not showing as much of a difference, on En-
De and En-Ja language pair similar pattern could
be observed where our current year system gives
better BLEU score overall on similar latency. How-
ever, our LLM-based model architecture is more
computationally expensive than last year’s encoder-
decoder model, resulting in higher latency under
computation-aware evaluation conditions.

4.3 Submitted StreamST System

In this section, we report the results of our submit-
ted system for IWSLT 2025 simultaneous track.
We followed the data condition for both train-
ing and evaluation as well as the allowed pre-
trained models and therefore our submission is
constrained.

4.3.1 Main Results

Figure 5a through Figure 5c illustrate the non-
computation-aware quality-latency tradeoff be-

tween our StreamST system and the baselines. For
the En→De language pair, our system outperforms
all three baseline systems in both translation qual-
ity and latency metrics, while achieving slightly
better peak translation quality compared to the cas-
caded baseline model. For the En→Zh and En→Ja
language pairs, our system also demonstrates sub-
stantially superior performance compared to both
of the baseline systems.

For each language pair, we select two submission
with configurations satisfying the low latency and
high latency regimes. Table 2 presents the scores
of our submitted StreamST system.

4.3.2 Computation-aware Latency
We also evaluate the computation-aware4 quality-
latency trade-off of our StreamST system, as il-
lustrated in Figures 5d through 5f. While our sys-
tem demonstrates strong performance under non-
computation-aware conditions, it exhibits higher

4The computation-aware evaluation was conducted using
an NVIDIA RTX A5000 GPU.
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latency across all three language pairs when real
computation time is considered. This increased la-
tency stems from the LA policy’s substantial com-
putational requirements in practical applications.
Unfortunately, cross-attention-based decision poli-
cies (EDAtt, AlignAtt), which typically perform
better under computation-aware conditions, cannot
be directly integrated into our LLM-based end-to-
end system. This limitation highlights the need to
develop more efficient decision policies specifically
designed for LLM-based systems in future work.

4.3.3 Ablation Study for SHAS
As mentioned in Section 2.4, we implemented a
short pause length to prevent premature segment
termination in our SHAS-based StreamST system.
To understand the influence of the critical SHAS pa-
rameters, we conducted a comprehensive ablation
study examining both pause length (Lpause) and
SHAS threshold (θ). We evaluated offline trans-
lation quality across various segmentation config-
urations with different (Lpause, θ) combinations.
As shown in Table 3 through Table 5, we iden-
tified optimal configurations for each language
pairs, {0.025s, 0.2} for En→De and {0.025s, 0.4}
for both En→Zh and En→Ja. Notably, when
the pause length parameter Lpause was disabled
(Lpause = 0.0s), translation quality decreased sig-
nificantly across all three language pairs due to
premature segment termination. This finding un-
derscores the importance of properly configuring
the pause length parameter in SHAS-based segmen-
tation for StreamST systems.

Table 3: Impact of SHAS hyperparameters on En→De.

Lpause
Threshold (θ)

0.6 0.5 0.4 0.3 0.2 0.1

0.0s 14.58 14.85 15.06 15.09 14.53 14.48
0.025s 27.14 28.40 29.82 30.04 30.85 30.16
0.05s 27.74 28.80 30.03 30.07 30.78 30.55
0.1s 28.41 28.96 29.06 30.20 30.39 29.38

Table 4: Impact of SHAS hyperParameters on En→Zh.

Lpause
Threshold (θ)

0.6 0.5 0.4 0.3 0.2 0.1

0.0s 33.20 33.85 33.65 33.73 32.84 32.67
0.025s 41.84 42.43 43.60 42.03 37.18 34.45
0.05s 41.32 43.09 42.71 41.38 37.40 33.94
0.1s 41.73 42.04 41.40 41.02 36.42 28.98

Table 5: Impact of SHAS hyperParameters on En→Ja.

Lpause
Threshold (θ)

0.6 0.5 0.4 0.3 0.2 0.1

0.0s 25.62 25.74 25.83 25.39 25.27 24.78
0.025s 37.09 37.57 38.61 38.27 37.02 36.25
0.05s 37.25 37.45 38.17 38.31 36.74 35.97
0.1s 37.15 37.77 38.19 38.44 36.24 34.95

5 Conclusion

This paper presents our StreamST system devel-
oped for the IWSLT 2025 Simultaneous Speech
Translation Track. Experimental results demon-
strated the effectiveness of employing an large
language model (LLM) as the backbone for the
speech translation tasks. Our system also showed
the effectiveness of applying SHAS segmentation
method in real time to handle unbounded audio
stream during streaming speech translation. This
time, we used the Local Agreement (LA) for our
LLM-based system, which results in a higher com-
putational latency in real condition. In the future,
we will investigate better decision policy methods
for the LLM-based StreamST system.
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