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Abstract

This paper describes our system submission to
the International Conference on Spoken Lan-
guage Translation (IWSLT 2025), low-resource
languages track, namely for Bemba-to-English
speech translation. We built cascaded speech
translation systems based on Whisper and
NLLB-200, and employed data augmentation
techniques, such as back-translation. We in-
vestigate the effect of using synthetic data and
discuss our experimental setup.

1 Introduction

Low-resource languages face critical limitations
due to the scarcity and scattered nature of the avail-
able data (Haddow et al., 2022). Speech translation
for low-resource languages involves similar chal-
lenges (Ahmad et al., 2024; Moslem, 2024; Love-
nia et al., 2024; Abdulmumin et al., 2025), Simi-
larly, speech applications for African languages are
very limited due to the lack of linguistic resources.
For example, Bemba is an under-resourced lan-
guage spoken by over 30% of the population
in Zambia (Sikasote and Anastasopoulos, 2022).
Hence, the IWSLT shared task on speech transla-
tion for low-resource languages aims to benchmark
and promote speech translation technology for a di-
verse range of dialects and low-resource languages.

We participated in the Bemba-to-English lan-
guage pair through building cascaded speech trans-
lation systems. In other words, we employed Whis-
per (Radford et al., 2022) for automatic speech
recognition (ASR), and NLLB-200 (Costa-jussa
et al., 2022) for text-to-text machine translation
(MT). For ASR, we fine-tuned Whisper models us-
ing two datasets, BembaSpeech and BIG-C. For
MT, we fine-tuned the NLLB-200 models using
the bilingual segments of the BIG-C dataset, and
the “dev” split of the FLORES-200 dataset. In ad-
dition, we augmented the Bemba-to-English train-
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ing data with back-translation of a portion of the
Tatoeba dataset from English into Bemba. The
back-translated data was filtered based on cross-
entropy scores. As Table 4 shows, the systems we
submitted to the shared tasks are as follows:

* Primary: It uses Whisper-Medium for ASR
and NLLB-200 3.3B for MT.

* Contrastive 1: It uses Whisper-Small for ASR
and NLLB-200 3.3B for MT.

* Contrastive 2: It uses Whisper-Small for ASR
and NLLB-200 600M for MT.

2 Data

The data we used to train our Bemba-to-English
speech translation models can be categorized into:
(1) authentic data, and (2) synthetic data. The fol-
lowing sections provide more details (cf. Table 1).

Dataset Language Train Dev Test Audio
Big-C Bem-Eng 82,371 2,782 2,763 (©
BembaSpeech Bem 12,421 1,700 1,359 @
FLORES-200 Bem-Eng 997 0 1,012 ®

Tatoeba Eng 20,121 0 0 ®

Table 1: Data Statistics: The “Language” column spec-
ifies which languages are originally available in each
dataset. “Train”, “Dev”, and “Test” represent the dataset
sizes. The “Audio” column indicates whether each
dataset includes audio signals.

2.1 Authentic Data

We filtered the authentic data by removing any over-
laps between the training data and test data based
on the text transcript. For building our models, we
used the following data sources.

* Big-C is a parallel corpus of speech and tran-
scriptions of image-grounded dialogues be-
tween Bemba speakers and their correspond-
ing English translations. It contains 92,117
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FLORES-200

BIG-C

Training Dataset(s) BLEU chrF++ COMET BLEU chrF++ COMET
Big-C 18.13  42.11 53.25 27.83 51.08 53.28
Big-C + Tatoeba 21.67 45.25 55.64 27.82 5098 53.39
Big-C + FLORES-200 2521 47.31 5723 2796 51.03 53.29
Big-C + FLORES-200 + Tatoeba 25.70  47.75 58.29 28.60 51.38 53.08

Table 2: MT Evaluation: In general, the models trained with both authentic data (Big-C & FLORES-200) and
back-translated data (Tatoeba) outperform the models trained with the authentic data only. All the models in this

table uses NLLB-200 600M.

spoken utterances of both complete and in-
complete dialogues, amounting to 187 hours
of speech data grounded on 16,229 unique
images. The dataset aims to enable the de-
velopment of speech recognition, speech, and
text translation systems for Bemba, as well as
facilitate research in language grounding and
multimodal model development (Sikasote and
Anastasopoulos, 2022).! Since this dataset
includes audio and transcription in Bemba as
well as translation into English, we could use
it to build both modules of our cascaded sys-
tems, i.e. ASR and MT. Table 7 shows exam-
ples of sentence pairs from the Big-C datasets.

* BembaSpeech is an ASR corpus for the Be-
mba language of Zambia. It contains read
speech from diverse publicly available Bemba
sources; literature books, radio/TV shows
transcripts, YouTube video transcripts as well
as various open online sources. Its purpose
is to enable the training and testing of auto-
matic speech recognition (ASR) systems in
Bemba language. The corpus has 14,438 utter-
ances, culminating into 24.5 hours of speech
data (Sikasote et al., 2023).2 We used the Be-
mbaSpeech dataset in addition to the Big-C
dataset to build our ASR models.

* FLORES-200 (Goyal et al., 2022) is a bilin-
gual text-only dataset for machine translation.
We used the Bemba-to-English “dev” split for
training, and the “devtest” split for testing.

* Tatoeba (Tiedemann, 2020) is a monolingual
dataset in English. We used a portion of it for
back-translation (cf. Section 2.2).

"https://github.com/csikasote/bigc
2https://github.com/csikasote/BembaSpeech

2.2 Synthetic Data

We augmented our authentic data (cf. Section 2.1)
with synthetic data created with back-translation.
To this end, we fine-tuned the NLLB-200 600M
model in the other direction, i.e. for the English-
to-Bemba language pair. Thereafter, we trans-
lated the English sentences from Tatoeba into Be-
mba using the fine-tuned English-to-Bemba NLLB-
200 model. For translation, we used CTranslate2
(Klein et al., 2020), generating the prediction cross-
entropy scores for each sentence, and calculating
the exponential of the scores for better readability.
We filtered data based on the cross-entropy scores,
removing low-quality segments. We removed seg-
ments with scores less than 0.77 based on man-
ual exploration of samples of the generated back-
translations. While the unfiltered back-translated
data consists of 85,000 segments, the filtered back-
translated data consists of 20,000 segments. Fi-
nally, we prepended the source side (Bemba) with
the <br> tag to indicate that the data is synthetic.
Moreover, we experimented with removing the
<bt> tag and found that this achieves slightly bet-
ter results when testing with the FLORES-200’s
“devtest” split, as the data was already filtered (cf.
Table 3).

3 Experiments and Results

As illustrated by Figure 1, our cascaded systems
involve two components, an ASR model based
on Whisper to generate transcriptions and an MT
model based on NLLB-200 to generate text transla-
tion. We experimented with different versions of
these models, namely Whisper Small and Medium,
and NLLB-200 with 600M and 3.3B parameters.
Our code for data preparation, training, and evalua-
tion is publicly available.

3https://github. com/cobrayyxx/Bemba-IWSLT2025
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FLORES-200 BIG-C

Datasets BT Size Filtered <bt>tag BLEU chrF++ COMET BLEU chrF++ COMET
85,155 ® @) 2096  45.06 5592 28.17 51.26 53.45

BIG-C + Tatoeba 20,121 ® © 19.82  44.09 5479 28.04 51.20 53.51
20,121 ®) ® 21.67 45.25 55.64 27.82  50.98 53.39

Table 3: Performance of MT models that are based on NLLB-200 600M and trained using both authentic data and
augmented back-translated data. There are two pre-processing aspects applied to the augmented data, filtering the
data based on cross-entropy scores, and prepending the source sentence with the <br> tag. Evaluating the models
with the devtest split of the FLORES-200 dataset, the highest evaluation scores, in terms BLEU and chrF++, are
achieved when the back-translated data is filtered and the <b> tag is removed. Meanwhile, the AfriCOMET score
(COMET) of this model is comparable to the model where the back-translated data is not filtered and the source
is prepended with the <br> tag. Evaluating the models with the hold-out test split of Big-C reveals a different
outcome where using the <bt> tag results in relatively higher scores, although the scores of the three experiments
are relatively comparable. It is worth noting that the filtered back-translated data consists of only 20k segments,

while the unfiltered back-translated data consists of 85k segments.

Training: We trained our models for 3 epochs,
saving the best checkpoint based on the chrF++
score during training on the validation dataset. Our
training arguments were chosen based on both man-
ual exploration and automatic hyperparameter opti-
mization using the Optuna framework (Akiba et al.,
2019). The most important arguments are a learn-
ing rate of le-4 and a warm-up ratio of 0.03.

Inference: For inference, we used Faster-
Whisper # with the default VAD> arguments, and 5
for the “beam size”. The model was quantized with
the float16 precision for more efficient inference.

Evaluation: To evaluate our systems, we calcu-
lated BLEU (Papineni et al., 2002), and chrF++
(Popovié, 2017), as implemented in the sacreBLEU
library® (Post, 2018). For semantic evaluation, we
used AfriCOMET (Wang et al., 2024). We con-
ducted ASR evaluation (cf. Table 5) and MT evalu-
ations (cf. Table 2 and Table 3). Finally, we evalu-
ated the whole cascaded systems (cf. Table 4).

3.1 Data Augmentation

As explained in Section 2.2, we created synthetic
data using back-translation to augment our training
data (Sennrich et al., 2016; Edunov et al., 2018;
Poncelas et al., 2019; Haque et al., 2020). Then,
we filtered this back-translated data based on gen-
eration cross-entropy scores. In our experiments,
data augmentation improved the translation quality.

4https ://github.com/SYSTRAN/faster-whisper

>Voice Audio Detection (VAD) removes low-amplitude
samples from an audio signal, which might represent silence
or noise.

®https://github.com/mjpost/sacrebleu

Translate (MT)
(target language)

Transcribe (ASR)

(same language)

Figure 1: Cascaded speech translation systems use two
models, an ASR model to generate audio transcriptions
in the same language, and then an MT model to translate
the generated transcriptions into the target language.

As shown in Table 2, when fine-tuning NLLB-200
600M, the models trained with back-translated data
outperformed the models trained with only the au-
thentic data.

We tried prepending the back-translated source
with the <br> tag, but found removing it achieves
better results (cf. Table 3). This might be because
we filtered the back-translated data, so its quality is
good enough that it does not require distinguishing
from the authentic data with the <br> tag.

3.2 Whisper and NLLB-200 Models

We experimented with both Whisper Small and
Whisper Medium to train ASR models. Similarly,
we experimented with both NLLB-200 600M and
3.3B to train MT models. For our datasets, the
results are comparable (cf. Table 4).

3.3 End-to-End vs. Cascaded System

Unlike a cascaded system, an end-to-end speech
translation system requires only one model to per-
form audio-to-text translation (Agarwal et al., 2023;
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System ASR MT Type BLEU chrF++ COMET
Primary Whisper-Medium NLLB 200 3.3B Efnseillil?lz J 2(7)22 igzi ;iii
Contrastive 1 Whisper-Small ~ NLLB 200 3.3B Ef:;llll‘;z . 22:;; igféé s ;.ldi
Contrastive 2 Whisper-Small ~ NLLB 200 600M Ilifrf:tlli]?lz J 22;1(1) ;3?; ;(l)gi

Table 4: Performance of the baseline and finetuned cascaded systems based on BLEU, chrF++, and AfriCOMET
(COMET) scores. The approaches we followed, including fine-tuning and data augmentation, have considerably
improved the quality of Bemba-to-English speech translation. The models were evaluated using the test split of the

Big-C dataset.

) nafwala na amakalashi ku menso
Model Type WER Ed  he is wearing glasses as well
Baseline 1575 OB He is wearing glasses.
Whisper—Small . ) %) Imbwa iyafonka pamoona, ilebutuka palunkoto lwamucibansa
Flnetuned 3564 €9 A dog with a wide nose is running on the lawns of the football
ground
Baseline 150.92 OB A dog with a pointed nose is running on the lawn

Whisper-Medium Finetuned 36.19

Table 5: ASR Evaluation: The models were trained
with Big-C and BembaSpeech. The performance of
the finetuned models outperform the baseline models,
indicated by the lower Word Error Rate (WER) scores of
the finetuned models compared to the baseline models.
The models were evaluated using the test split of the
Big-C dataset.

Ahmad et al., 2024; Moslem et al., 2025). We fine-
tuned Whisper directly on the Bemba-to-English
Big-C dataset. Table 6 compares the results of the
two systems. Where there is a slight increase in
the scores of BLEU And chrF++ of the end-to-end
model, the cascaded system outperforms the end-
to-end system in terms of the COMET score, while
the BLEU score of the end-to-end model is slightly
higher.

*)

A=)

Akamwanakashi nakemya ukuulu mumuulu ukulwisha ukutoba aka
lipulanga.

She has her leg in the air attempting to break a board.

A child has lifted one leg in an attempt to hit a wood.

o

A1+]

Kunuma yabo kuli notu ma motoka tulya ba bonfya mu ncende iya
talala nge iyi baliko.

There are also small vehicles that they use in cold places behind
them.

Behind them are vehicles that they use in cold places like this one.

“)

A 1+]

abaume Bali pa mutenge yanganda umo afwele ishati lya mitomito
ilyamaboko ayatali elyo me tolishi lya makumbimakumbi

Of the men on the roof of the house, ine is wearing a long sleeved
grey shirt and a blue trousers.

Men are on the roof of the house, one is wearing a grey long sleeved
shirt and a blue trousers.

)

A1+]

Ifi bafwele kunsapato fyakutelelela nga baya mukwangala umu
mwine muli ice.

These on their shoes are for sliding when the to play on the ice.
These shoes they are wearing are for sliding when they are going to
play in ice.

)

A1+]

Namayo ale enda mumusebo nabika nomwana pamabeya.
A woman is walking in the road with a child on her showders.
A woman is walking in the road with a child on her shoulder.

*)

A=)

Namayo naikata ifyakulya pa mbale mukati ke tuuka.
A woman is holding food on a plate inside a shop.
A woman is holding food on a plate inside a shop.

P

A13]

Nangu limbi kuli bamo abamufulwishe.
Or maybe someone has made him upset.
Or maybe someone has upset her.

)

Abantu bane bali umuli ifimabwe ifikulu nga nshi kabili nafwala ne
fimpopo ku mitwe yabo

Model Type BLEU chrF++ COMET g }f10111r people are inside an area with large rocks and they are wearing
elmets
Baseline 0.09 11.85 6.9 OB  Four people are in a place full of rocks and they are wearing helmets.
End-to-End Finetuned 28.08 49.68 48.36 %) Akamwana kambi balekafuula amasapato kuli kafundisha wakako.
€9 Another child’s shoes being taken off by the instructor.
Baseline 051 13.41 11.9 OB  One of the pupils is being removed the shoes by the teacher.
Cascaded Finetuned 27.39 49.65 52.01 ®) Afwile alefwaya afike pampela ya lumpili. Pantu icishimbi

Table 6: Comparison of the end-to-end speech transla-
tion using Whisper-Small, and the cascaded system that
uses Whisper-Small for transcription and then NLLB-

A1+]

ekete.Eco babomfya abatemwa ukuniine mpili

Maybe he wants to reach the top of the mountain. The rode metal he
is carrying, it is mostly used when one is climbing the mountains.
Obviously he wants to reach the top of the mountain because this
metal he is holding is used by mountain climbers.

Table 7: Examples of sentences in Bemba, their English
translations from the Big-C dataset, and generated trans-
lations using Whisper-Medium and NLLB-200 3.3B.
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200 3.3B for translation. The evaluation uses the test
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