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Abstract

We present the Johns Hopkins University’s
submission to the 2025 IWSLT Low-Resource
Task. We competed on all 10 language pairs.
Our approach centers around ensembling meth-
ods — specifically Minimum Bayes Risk De-
coding. We find that such ensembling often
improves performance only slightly over the
best performing stand-alone model, and that
in some cases it can even hurt performance
slightly.

1 Introduction and Background

Despite many recent advances in deep learning and
artificial intelligence, challenges in low-resource
and dialectal speech translation still preclude high-
quality automated translation systems for many
language communities. Cross-lingual transfer
and multilingual models have allowed for recent
progress in scarce data settings, but performance
still lags significantly behind that of higher resource
languages (Ziems et al., 2023; Joshi et al., 2024).

Due to a lack of training resources, low-resource
languages systems tend to generate hypotheses
with higher variance than is seen in higher-
resourced conditions. In other words, different
models might generate diverse outputs; hence a
single system might not be optimal in all scenarios.
This motivates attempting to select the best option
from multiple potential systems—i.e., ensembling.

For this year’s IWSLT low-resource speech trans-
lation campaign (Abdulmumin et al., 2025), we, the
Johns Hopkins University (JHU) team decided to
focus on Minimum Bayes Risk Decoding (MBR)
with the interest in exploring in-depth how com-
bining methods across a range of language pairs
can improve performance in a low-resource set-
ting (Bickel and Doksum, 1977; Kumar and Byrne,
2004).

Following our approach from last year (Robin-
son et al., 2024), we submitted systems for all lan-
guage pairs, with a focus on seeing how robust our
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Figure 1: We apply Minimum Bayes Risk (MBR)
ensembling to a variety of systems.
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methods are across a wide range of data settings
and typologically diverse languages. Rather than
focusing on a specific language, our line of inquiry
was geared towards broader exploration, with the
interest of discovering language-agnostic trends in
mind.

Our approach in 2024 focused on fine-tuning pre-
trained models Whisper (Radford et al., 2023a),
NLLB (NLLB Team et al., 2022), and SEAM-
LESSMA4T v2 (Barrault et al., 2023) for both
ASR+MT cascading and end-to-end speech trans-
lation. We also incorporated joint training for lan-
guage pairs with common targets, as well as fine-
tuning with a regularization technique known as
intra-distillation (Xu et al., 2022, 2023; Robinson
et al., 2024). In this year’s submission, we similarly
gather a variety of different systems for each trans-
lation language pair. We use these to obtain a di-
verse set of outputs for the language pairs sampled
from various checkpoints of the different cascaded
and end-to-end fine-tuned systems. To maximize
variety of systems, and following our submission
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from last year, we experimented with combining
fine-tuning data for language pairs with a common
target language, and with use of additional or sup-
plementary training data. Rather than comparing
these diverse systems directly, however, we ensem-
bled them into a single inference method. We used
MBR to select the best performing candidate trans-
lation from the resulting pool for each source audio.

Our decision to attempt an ensemble approach
was inspired by other team submissions from last
year. Our submissions performed best in last
year’s evaluation campaign (Ahmad et al., 2024)
for Irish-to-English (gle-eng), Bemba-to-English
(bem-eng), and Bhojpuri-to-Hindi (bho-hin) trans-
lation.  However the teams that performed
best for Levantine Arabic-to-English (apc-eng),
Maltese-to-English (mlt-eng), and Quechua-to-
Spanish (que-spa) all employed ensemble mod-
els. Ben Kheder et al. (2024) ensembled 26 model
checkpoints for their apc-eng system, and E. Or-
tega et al. (2024) ensembled 10 checkpoints for
their que-spa system. For their mlt-eng system,
Li et al. (2024) ensembled cascade systems with
end-to-end models (just as we attempt to do in this
work).

2 Methodology and Experiments

Our methodology is illustrated in Figure 1. Given
any language pair, we have a number of cascade
and end-to-end systems (three in the figure). These
systems employ either Whisper ST, Whisper ASR
with NLLB MT, or SEAMLESSMA4T v2 ST, and
may have other more minor variations differentiat-
ing them. The number of systems varies between
one and four, depending on the language pair. The
systems we use for each language pair are listed in
Table 2.

We keep three fine-tuning checkpoints from the
final model of each of the systems (NLLB in the
case of the bi-model cascade) and for each input
audio, we sample five hypothesis translations from
each system checkpoint, resulting in a total of 15
hypotheses per system for each input. In the case
of language pairs like apc-eng, for which we en-
sembled four different systems, this amounted to
15 %4 = 60 hypotheses for each input audio, which
are reduced to a single hypothesis via the MBR
process.

2.1 Task description and data

This year’s task focuses on speech translation for
ten language pairs: Levantine Arabic to English
(apc-eng), Tunisian Arabic to English (aeb-eng),
Bemba to English (bem-eng), Fongbe to French
(fon-fra), Irish to English (gle-eng), Bhojpuri to
Hindi (bho-hin), Estonian to English (est-eng),
Maltese to English (mlt-eng), Marathi to Hindi
(mar-eng), and Quechua to Spanish (que-spa).
Fongbe and Estonian are new as source languages
in this year’s task. Fongbe is a Gbe language of
the Niger-Congo family spoken in Benin; while
Estonian is a Uralic language spoken in Estonia.

In developing our systems, we utilize a combi-
nation of organizer-provided data as well as some
external data. We summarize our data sources in
Table 1.

Lang. Type Amount Sources
apc—en ASR  28h Makhoul et al. (2005)
PCTENE  MT 120k lines Sellat et al. (2023)
aeb-en E2E  167h Anastasopoulos et al. (2022)
€ ASR 324h Anastasopoulos et al. (2022)
bem-en ST 180h Sikasote et al. (2023)
g ASR  24h Sikasote and Anastasopoulos (2022)

fon-fra E2E 57h Kponou et al. (2024)

gle-eng E2E 11h Agarwal et al. (2023)

bho-hin E2E  25h Agarwal et al. (2023)

est-eng E2E  1262h Sildam et al. (2024)

ST 14h
MT  2.1M lines

CV; Hernandez Mena et al. (2020)

mlt-eng Baiion et al. (2023, 2020)

E2E  30h Agarwal et al. (2023)

mar-hin

ASR  1300h CV; He et al. (2020); Bhogale et al. (2022)
ST 1.7h Ortega et al. (2020)
que-spa ASR 48h Cardenas et al. (2018)
MT 26Kk lines Tiedemann (2012); Ortega et al. (2020)

Table 1: Data information for each language pair. "CV"
refers to Common Voice (https://commonvoice.
mozilla.org/).

2.2 Seamless E2E systems

We detail the different systems listed in Table 2.
The SEAMLESSMA4T v2 model (Barrault et al.,
2023) is a state-of-the-art multilingual model de-
veloped specifically for speech translation (ST). It
supports both speech-to-text and speech-to-speech
translation, enabling direct translation of spoken
language in 143 languages. The model is trained on
a large and diverse corpus that combines supervised
and semi-supervised data, allowing it to perform
well even on low-resource language pairs. Its ar-
chitecture is optimized for end-to-end processing
of speech inputs, without relying on intermediate
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Lang. Systems Lang. Systems
aeb-en Seamless le-en Seamless
g Whisper+NLLB (2023) g g Seamless comb.
Seamless Seamless
anc-en Seamless comb. mar-hin Seamless comb.
PCTENE  Whisper+NLLB Seamless Shrutilipi
Whisper+NLLB+ID Whisper MTL
Seamless Seamless
bem-en Whisper+NLLB mlt-eng  Seamless comb.
g Whisper+NLLB+ID Whisper MTL
Whisper MTL
Seamless Seamless
bho-hin Seamless comb. que-spa Whisper+NLLB
Whisper E2E Whisper+NLLB+ID
est-eng Seamless fon-fra Seamless

Table 2: Systems used for ensembling. For each system
we sample five outputs from three model checkpoints
and perform MBR on the total sets of sampled outputs
(which vary in number from 15 to 60, since the number
of systems varies from one to four).

text transcriptions. This design makes it suitable
for real-time applications and improves translation
accuracy by minimizing error propagation across
stages (Barrault et al., 2023).

Similar to Robinson et al. (2024), we employ
SEAMLESSMAT v2 for our multilingual translation
experiments. We re-fine-tuned SEAMLESSMA4T v2
models, training most language pairs for 10 epochs
(contrasting the 4 epochs of Robinson et al. (2024)).
We found that dev BLEU scores continued to in-
crease with longer train times and hence selected
10 epochs instead of 4. We generally used the same
learning rates detailed by Robinson et al. (2024):
1 x 1075 for almost all language pairs.The follow-
ing language pairs used the standard learning rate
and number of epochs: gle-eng, mlt-eng, bho-hin,
mar-hin, apc-eng, fon-fra, and aeb-eng.

As Robinson et al. (2024), for the bem-eng pair,
we used a reduced learning rate of 1 x 10~7 while
keeping the number of epochs fixed at 10. We also
trained the (que-spa) system for 100 epochs due
to the small dataset size. Our Estonian ASR system
was trained for only 0.5 epochs with a learning rate
of 1 x 1076, due to the massive dataset size and
computational constraints.

A more comprehensive list of all hyperparame-
ters used for these experiments is provided in Ap-
pendix A.

Mixed data Training We also experimented
with combining data for different language pairs
for mixed data training. In this configuration, we
explored the effect of combining similar languages
for joint training. Specifically, we trained the fol-

lowing groups together:
* bem, mlt, gle, est, aeb, apc — eng
e bho, mar — hin

The rationale behind this setup is that grouping
related languages can lead to more robust repre-
sentations, particularly in low-resource settings, by
effectively increasing the size of the training data
and enhancing cross-lingual generalization.

For the into-Hindi combined system, we fine-
tuned SEAMLESSMA4T v2 for 10 epochs in the stan-
dard way. For the into-English combined system,
trained on a mixture of data that included the full
standard fine-tuning sets for mlt-eng, gle-eng,
and apc-eng; and we added 5.2% of the Estonian
ASR files!, 36.1% of the bem-eng files, and 38.8%
of the Tunisian Arabic-to-English (aeb-eng) files.
This was done for the language pairs with the
largest datasets to prevent data imbalance, and the
percentages were selected to keep the dataset size
withing roughly 250 hours total (about 25 times the
size of the gle-eng dataset). We fine-tuned SEAM-
LESSMA4T v2 for ~ 1.3 epochs on this combined
dataset. Both of these combined-data systems are
denoted "Seamless comb." in Table 2.

We also experimented with fine-tuning SEAM-
LESSMA4T v2 on additional data. We attempted to
augment the gle-eng dataset (11 hours of audio,
as in the 2024 shared task (Ahmad et al., 2024))
with the synthetic data provided by the task orga-
nizers for 2025. However, we met this attempt
with little success. After more than a full epoch
of training, the dev BLEU score had not increased
above 1.0 BLEU, so we decided to terminate fine-
tuning to preserve our computational resources
for other experiments. We did, however, include
among our Marathi-to-Hindi (mar-hin) systems a
SEAMLESSMA4T v2 model that was fine-tuned us-
ing the massive Shrutilipi dataset (Bhogale et al.,
2022), which contains 1280 hours of Marathi ASR
data. In this approach we were inspired by ?, who
employed this dataset among others to develop a
successful mod-hin submission in 2023. We used
NLLB (NLLB Team et al., 2022) off-the-shelf for
Marathi-to-Hindi translation to translate the tran-
scription labels of the dataset to Hindi, and then
we employed it as ST data for SEAMLESSMA4T v2
fine-tuning (combined with the original mar-hin

'This was a mistake, as we mistakenly thought the Es-

tonian ASR data was Estonian-to-English ST data, due to a
miscommunication in our team.
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data). We trained this model for approximately 2
epochs, and we denote it "Seamless Shrutilipi".

Our apc-eng SEAMLESSMA4T v2 model was
also trained on synthetic labels. Robinson et al.
(2024) did not fine-tune a SEAMLESSMA4T v2
model for apc-eng because of the nature of the
apc-eng data (only ASR and MT datasets sepa-
rately, with no ST labels). This year we bypassed
this challenge by using Robinson et al.’s (2024)
NLLB model fine-tuned for apc-eng MT to trans-
late all the transcriptions in the provided apc ASR
dataset into English. Then we fine-tuned SEAM-
LESSMA4T v2 on the resulting dataset.

2.3 Whisper and NLLB

Whisper (Radford et al., 2023b) is a speech recog-
nition model created by OpenAl. It is trained on
a large amount of audio data—around 680,000
hours—from the internet. This includes many
languages and different types of speech, such as
conversations, lectures, and translations. Whisper
works well in many languages without needing ex-
tra training for each new language. In our work,
we use Whisper for both ASR and ST. Whisper’s
strength is its robustness—it can understand dif-
ferent accents, background noise, and even low-
quality recordings. During pretraining, the model
was already trained on data from over 90 languages
such as English, Marathi, Hindi, Maltese, and Mod-
ern Standard Arabic. However, it lacks exposure to
several low-resource languages like Bemba, Bho-
jpuri, and Quechua.

In this work we employed the same Whisper
models used by Robinson et al. (2024). Whis-
per used in tandem with NLLB is used only as an
ASR module to convert from the speech domain for
text translation. "Whisper E2E" in Table 2 refers
to using Whisper as an end-to-end translator via
"psuedo-translation” (Robinson et al., 2024). This
is the practice of fine-tuning Whisper on bho-hin
data with a Hindi ASR objective. "Whisper MTL"
also refers to using Whisper as an end-to-end ST
system but with a mixed ASR and ST fine-tuning
objective. This approach is typically most suitable
for into-English ST, since English is the only ST
target language officially supported by Whisper.

We also employ NLLB (NLLB Team et al.,
2022), an extensive multilingual machine transla-
tion system, just as Robinson et al. (2024). NLLB
covers more than 200 languages, including Ara-
bic, Quechua, and Bemba. (We use the 600M-
parameter release of the model, fine-tuned by

Robinson et al. (2024).)

While "NLLB" refers to use of these fine-tuned
NLLB model checkpoints in Table 2, "NLLB+ID"
refers to the use of NLLB fine-tuned on the same
data, but with intra-distillation (Xu et al., 2022; ?),
a regularlization technique designed to ensure that
all network parameters contribute equally to suc-
cessful inference. Intra-distillation was effective
in enhancing MT performance in the 2024 shared
task campaign.

2.4 System ensembling via MBR

Minimum Bayes Risk Decoding (MBR) (Bickel
and Doksum, 1977) is a method of ensembling that
aims to choose candidates that have the lowest risk
—1i.e., high probability but also consistent with other
candidates. In other words, if multiple candidates
are similar, they are more likely to be correct and it
is not too risky to select one of them (Bertsch et al.,
2023). It was originally used in machine transla-
tion in the early days of phrase-based, statistical
methods (Kumar and Byrne, 2004), but has been
shown to be very robust to common errors in neu-
ral methods (Miiller and Sennrich, 2021), explored
in-depth theoretically (Ohashi et al., 2024), as well
as correlated well with human judgments (Freitag
et al., 2022).

See a depiction of traditional MBR in Algo-
rithm 1. p(¢;) is usually set as the posterior proba-
bility of the translation candidate when ensembling
candidates from a single system; in our case, since
we are ensembling different systems, we simply
set p(¢;) = 1; i.e. we apply a uniform weighting
scheme to our candidates. We experiment with us-
ing both BLEU (Papineni et al., 2002) and chrF
(Popovié, 2015) as our similarity metric.

Algorithm 1 Minimum Bayes Risk (MBR) Decod-
ing for Ensembling

Require: Candidate translations C =
{Cl, Co, ... ,Cn}

Require: A similarity metric sim(-,-) (e.g.,
BLEU, chrF)

Ensure: MBR-selected translation c*

1: forallc; € C do

2 Compute risk for c;:

3 R(e) = Y, 0 (1 sim(ci,e;) - p(c))

4: end for

5: ¢* < argmingec R(¢;)

6: return c*
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3 Results and Conclusions

The results of our different language systems are in
Table 3. We used MBR ensembling with a BLEU
objective as our primary system for each language
pair, and MBR with chrF as our "contrastive 1"
submission. In cases where the best performing
of the newly fine-tuned SEAMLESSMA4T v2 mod-
els outperformed all of the systems using Whisper
and NLLB from Robinson et al. (2024) (using dev
BLEU of the final checkpoint to compare), we se-
lected that system’s final checkpoint as our "con-
trastive 2" submission.

In Table 3, "Test 1" denotes our internal test
set, while "Eval" denotes the official evaluation set
for the shared task, given by Abdulmumin et al.
(2025). We had no internal test set for apc-eng
since our only ST data for this language pair was
synthetically labeled. We also exclude the standard
SEAMLESSMA4T v2 system for mar-hin from our
internal test set evaluation since this model was
trained on the internal test set.

We see that MBR generally improves perfor-
mance by a small amount over the best stand-alone
system (as can be seen for bem-eng, bho-hin,
fon-fra, and mar-hin). However, we also see that
MBR can also hurt performance (usually slightly),
as seen in the remaining language pairs. Disap-
pointingly, we do not see any dramatically higher
results on our internal test sets due to MBR, indicat-
ing that its benefit in these settings may be smaller
than we had originally hypothesized. We point out
that ensembling still provides a clear advantage
to practitioners, in that they do not need to know
which individual system performs best, and can
still reach performance on par with whichever the
best-performing model is, via this method. How-
ever, it does not itself appear to increase scores
dramatically.

We also note that while there are significant
score differences between different systems (such
as SEAMLESSMA4T v2 vs. Whisper or cascaded vs.
end-to-end), training with combined language data
or supplementary data (i.e. Shrutilipi) also did not
cause any drastic score increases. Given the scant-
ness of these results, we conclude that methods
such as ensembling and multilingual training either
have limited use in some low-resource speech trans-
lation settings, or that they require more creative
and effective applications than those we explored

’This was another mistake due to a file path misunderstand-
ing.

here in order to be optimally useful. We encourage
researchers to explore such creative applications
of these techniques, as well as other techniques to
improve low-resource systems, in the future.
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Language Pair System Submission Testl BLEU Eval BLEU
JHU-cascade-2023 - -
Seamless contr. 2 11.47 6.70

acb-eng MBR-BLEU primary 10.73 8.20
MBR-CHRF contr. 1 10.76 8.90

Seamless - -

Seamless comb. - -

ADc-en Whisper ASR + NLLB - -
pe-enig Whisper ASR + NLLB + ID - -
MBR-BLEU primary - 14.64

MBR-CHRF contr. 1 - 15.39

Seamless 14.67 -

Whisper MTL 17.76 -

bem-eng Whisper ASR + NLLB 27.58 -
Whisper ASR + NLLB + ID 29.39 -

MBR-BLEU primary 28.80 26.8

MBR-CHRF contr. 1 27.84 28.1

Seamless contr. 2 37.39 7.8

Seamless comb. 39.08 -

bho-hin Whisper MTL 24.19 -
MBR-BLEU primary 39.38 10.5

MBR-CHRF contr. 1 39.39 10.7

Seamless contr. 2 5.34 5.60

fon-fra MBR-BLEU primary 4.76 5.96
MBR-CHRF contr. 1 5.57 6.26

Seamless contr. 2 51.80 12.3

gle-eng Seamless comb. 47.65 -
MBR-BLEU primary 50.37 11.6

MBR-CHRF contr. 1 51.13 12.0

Seamless - -

Seamless comb. 44 .98 -

mar-hin Seamless Shrutilipi contr. 2 43.17 40.0
Whisper MTL 28.06 -

MBR-BLEU primary 45.64 414

MBR-CHRF contr. 1 45.27 40.7

Seamless contr. 2 40.62 56.10

Seamless comb. 38.57 -

mlt-eng Whisper MTL 21.37 -
MBR-BLEU primary 40.02 56.80

MBR-CHRF contr. 1 38.98 55.98

Seamless 1.05 -

Whisper ASR + NLLB 6.08 -

que-spa Whisper ASR + NLLB + ID 10.69 -
MBR-BLEU primary 7.87 9.0

MBR-CHRF contr. 1 10.29 11.0

Table 3: BLEU score results. "Test BLEU" refers to our internal tests, while "Eval BLEU" refers to the evaluation
run by Abdulmumin et al. (2025)
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A  SEAMLESSMA4T v2 hyperparameters

In our experiments, we use the SEAMLESSM4T
v2 model. To keep things consistent, we cut off
audio that is longer than 30 seconds. We also use a
fixed random seed of 42 so that the results can be
repeated.

We try different learning rates from the set
{107%,1077} to see which works best. For most
language pairs, we fine-tune the SEAMLESSMAT
v2-large model for 10 epochs using a learning
rate of 1 x 1079 and a batch size of 32.

During training, we use a constant learning rate
schedule and set 50 warm-up steps. When generat-
ing translations, we use greedy decoding and limit
the output to 256 tokens.
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