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Abstract

This paper describes the CUNI-NL team’s sub-
mission to the IWSLT 2025 Offline Speech
Translation and Instruction Following tasks, fo-
cusing on transcribing the English audio and
translating the English audio to German text.
Our systems follow the end-to-end approach,
where each system consists of a pretrained,
frozen speech encoder, along with a medium-
sized large language model fine-tuned with
LoRA on three tasks: 1) transcribing the En-
glish audio; 2) directly translating the English
audio to German text; and 3) a combination of
the above two tasks, i.e., simultaneously tran-
scribing the English audio and translating the
English audio to German text.

1 Introduction

End-to-end speech translation (ST) is a growing re-
search direction that aims to ignore the intermediate
speech recognition (ASR) step to directly translate
the audio input into the corresponding text in an-
other language. This approach simplifies the over-
all architecture and has been shown to match the
performance of the cascaded counterpart (Bérard
et al., 2018; Liu et al., 2019; Gaido et al., 2020).

Large language models (LLMs) have demon-
strated their good performance in a large number
of complex natural language tasks, including ma-
chine translation (Minaee et al., 2024; Zhang et al.,
2024; Zhao et al., 2023; Naveed et al., 2024). With
the ever-improving potential of LLMs, researchers
have been trying to integrate different components
used for other modalities, in order to extend their
abilities to go beyond text-only tasks (Li et al.,
2023a; Gao et al., 2023; Liu et al., 2023; Li et al.,
2023c; Zhang et al., 2023).

Motivated by recent contributions in speech rep-
resentation learning and LLMs, to participate in
the IWSLT 2025 Offline Speech Translation and In-
struction Following tasks, we aim to investigate an
end-to-end architecture that can perform both ASR

and ST. This architecture combines the high-quality
audio representation from the pre-trained acoustic
models with the excellent performance of LLMs to
serve as an end-to-end speech translation system,
while still having the ability to transcribe from the
audio signal. Our systems, after being fine-tuned
with the Low-Rank Adaptation (LoRA; Hu et al.,
2021) technique, achieve a solid performance in
both speech recognition and translation.

The paper is structured as follows:
• Section 2 describes the details of our chosen

network architecture, along with the dataset
used for its training and evaluation.

• Section 3 provides the ASR and ST evaluation
results of the model in different public test
sets.

• Section 4 proposes possible directions to im-
prove the architecture.

2 Methods and Dataset

2.1 Architecture

The overall architecture is illustrated in Figure 1.
For each training sample, given the speech signal,
its corresponding transcript, and the translated text,
the speech hidden features are obtained using a
speech encoder. In this step, we experimented with
SeamlessM4T (Barrault et al., 2025) and Whisper
encoder (Radford et al., 2022).

Next, the speech features represented as a time
sequence of vectors, at the “frame rate” of 20ms,
are fed to a projection layer, in order to convert the
feature dimension to match the LLM’s embedding
dimension. For a better match between the speech
encoder and the LLM, we use a length adapter
which effectively reduces the “frame rate” of the
sequence. The resulting speech embeddings are
subsequently given to the LLM as the prompt for
it to generate the corresponding transcription and
the translated text simultaneously. The LLM is
fine-tuned in the next-token-prediction fashion to
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Figure 1: The overall architecture includes a frozen
speech encoder component, a modal projection layer,
and a fine-tuned LLM. Red arrows denote the usage of
tokens during training, and blue arrows indicate tokens
generated during inference; while black arrows repre-
sent the prompt fed to the LLM. The original modal-
ity of the model is indicated by the token color, from
left to right: violet for text instruction, blue for source-
language speech tokens, green for target-language text
tokens. Length adapter is a part of the Projection step.

complete the sequence with the translation into the
target language.

2.2 Speech Encoder

We adopted SeamlessM4T (Barrault et al., 2025)
and Whisper (Radford et al., 2022) as the speech
encoders, utilizing their capability of extracting
high-quality representation from audio data. From
both architectures, we only employed the encoder
part of the pre-trained seamless-m4t-v2-large1

and whisper-large-v3,2 respectively, in order to
extract the audio hidden features.

2.3 Length Adapter

The length of the speech feature sequence can be
longer than the supported length of the LLM, as a
result, it is more favorable to shorten it beforehand.

Because the speech encoder part of the Seam-
lessM4T architecture already contains a length
adapter layer (Figure 2), we decided not to add any
adapter layer, but used it as-is for SeamlessM4T-
based models.

For Whisper-based models, a convolution-based
downsampling layer with a kernel size of 25x5 and
a stride of 25 is used to reduce the length of the

1https://huggingface.co/facebook/
seamless-m4t-v2-large

2https://huggingface.co/openai/
whisper-large-v3

3https://github.com/facebookresearch/seamless_
communication/blob/main/docs/m4t/README.md

Figure 2: Details of the SeamlessM4T-v2 architecture,3

where the red region is the speech encoder part

speech feature sequence from 1500 tokens (each
corresponds to 20ms) to 60 tokens (each encodes
500ms). The detail of the convolution adapter layer
is illustrated in Figure 3.

Figure 3: Details of the convolution adapter. Note that
the convolution windows do not overlap.

2.4 Projection Layer

For the projection layer, we used only one simple
three-layer ReLU-activated feed-forward network,
with the hidden size of 4096, to map from the en-
coder’s hidden size to the corresponding LLM’s
hidden size. This layer ensures the resulting speech
representation is well integrated into the LLM’s
embedding space, giving it enough information for
the downstream task.

2.5 LLMs

We experimented with three different
pre-trained LLMs available on Hugging-
Face, namely Llama-3.1-8B-Instruct,4

4https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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EuroLLM-9B-Instruct,5 and gemma-3-12b-it.6

We summarize the examined combinations of
components in Table 1.

Speech Enc. LLM Adapter
seamless-m4t Llama-3.1-8B-Instruct L

N/A-v2-large EuroLLM-9B-Instruct E

S gemma-3-12b-it G

whisper Llama-3.1-8B-Instruct L
25x5
Convolution-large-v3 EuroLLM-9B-Instruct E

W gemma-3-12b-it G

Table 1: Details of our six examined combinations of
components, testing each of the speech encoders ( S ,
W ) with each of the LLMs ( L , E , G ).

2.6 Dataset
All models were trained using the CoVoST2 dataset
(Wang et al., 2020), a large multilingual corpus
built from the Common Voice corpora (Ardila et al.,
2020), which contains the audio data, the English
transcription of such audio and the translation of
the transcription into multiple languages. Specif-
ically, we used the English-to-German subset of
the dataset, with approximately 184 hours of audio
data.

For evaluation, we used the test sets from the
Offline Speech Translation track of IWSLT 20217

and 2022,8 because they are the two latest develop-
ment sets whose golden labels are available. These
datasets are from the TED domain, in which the au-
dios contain clean speech from the speaker mixed
with some occasional noise from the audience; thus,
we believe these are suitable for development. As
all models can perform both ASR and ST, evalu-
ation results for both tasks are described in Sec-
tions 3.2 and 3.3, respectively.

2.7 Multi-task Training
To obtain a system that can perform both ASR and
ST tasks, we decided to train the model on the
following three tasks:

1 Transcribing the English audio to English text;
2 Directly translating the English audio to Ger-

man text; and
3 Simultaneously transcribing the English audio

to English text, and translating such audio to
German text.

5https://huggingface.co/utter-project/
EuroLLM-9B-Instruct

6https://huggingface.co/google/gemma-3-12b-it
7https://iwslt.org/2021/offline
8https://iwslt.org/2022/offline

With tasks 1 and 3 , the LLM is given cor-
responding instructions depending on each task.
For task 2 , we used two different prompts in ei-
ther English or German, to prepare the model for
processing both English and German instructions.
With this setup, we randomly divided the training
dataset into four subsets using a uniform distri-
bution, where each part was associated with an
instruction according to the task and the relevant
language. We decided to split the dataset and train
the model on only one epoch, instead of duplicating
the dataset four times and training for four epochs,
due to limited time and resources. Details about
each task and the corresponding instructions are
described in Table 2.

Task Instruction # examples
transcribe
1

Transcribe the English audio 72,067

translate_en
2

Translate the English audio to
German

72,600

translate_de
2

Übersetzen Sie den englis-
chen Ton ins Deutsche

72,455

both 3 Transcribe then translate the
following English audio to
German

72,291

Table 2: Details of our four tasks, each demonstrated by
roughly a quarter of the fine-tuning items

2.8 Training and Inference Details
All systems were fine-tuned using 16-bit LoRA (Hu
et al., 2021) adapters in bfloat16 precision, with
the following LoRA parameters: rank of r = 256,
alpha of α = 256. The effective batch size was
set to 8. Other training hyperparameters included
the learning rate of 1e− 5 with 100 warmup steps,
and an AdamW optimizer (Loshchilov and Hutter,
2019) with a cosine scheduler (Loshchilov and Hut-
ter, 2017). All systems were trained for 1 epoch.

For each example, the training data is for-
matted as follows: “<bos> {user_header}
{instruction} {audio_features} {assis-
tant_header} {output} <eos>”. The cross-
entropy loss was computed only for the tokens
following “{assistant_header}”. Each system’s
training loss details are illustrated in Figure 4.

During inference, for each audio data, the
LLMs were prompted using the following for-
mat: “<bos> {user_header} {instruction}
{audio_features} {assistant_header}”, then
generated the output, subject to the task, in an auto-
regressive manner. We performed inference using
the beam search algorithm, with a beam size of 2
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Figure 4: Training loss of systems

for all systems. All evaluation results are described
in Sections 3.2 and 3.3.

3 Evaluation

3.1 Metrics and Tools
For the Offline Speech Translation task, we eval-
uated all models using standard metrics, namely
BLEU (Papineni et al., 2002), COMETDA

22 (Rei
et al., 2022a),9 and COMETKIWI-DA

22 (Rei et al.,
2022b).10 For the Automatic Speech Recognition
task, we used WER, the standard metric for speech
recognition.

For the evaluation purpose, we used the SLTev
(Ansari et al., 2021) library,11 because it supports
both MT and ASR evaluation in one package, us-
ing sacreBLEU (Post, 2018) to calculate BLEU
score. However, since SLTev does not report any
COMET-family metrics, we had to change the
structure of the sentence with mwerSegmenter,12

to automatically resegment the models’ output ac-
cording to the reference, before evaluating with the
unbabel-comet13 package. The evaluation was
done using python-3.11.5, SLTev-1.2.3, and
unbabel-comet-2.2.2.

3.2 ASR Results
Table 3 details the ASR evaluation results against
the IWSLT 2022 test set (tst2022). We reported
the WER score after applying the “LPW” pre-
processing strategy available in SLTev, which first
lowercased every character, removed all punctua-
tion, then used the built-in mwerSegmenter tool to
resegment the output transcripts. Due to some bugs

9https://huggingface.co/Unbabel/
wmt22-comet-da

10https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

11https://github.com/ELITR/SLTev
12https://www-i6.informatik.rwth-aachen.de/web/

Software/mwerSegmenter.tar.gz
13https://github.com/Unbabel/COMET

when processing the IWSLT 2021 test set (tst2021),
mwerSegmenter failed to run during evaluation,
hence we could not obtain the results. It can be seen
that the model with seamless-m4t-v2-large as
the speech encoder and EuroLLM-9B-Instruct as
the decoder has the best result among all systems.

3.3 Offline ST Results

Tables 4 and 5 report the BLEU and COMET-
family scores, respectively, on the two test sets,
with two corresponding instructions. For evalu-
ating with BLEU, we included both docAsWhole
score, which concatenated all reference segments
and candidate complete segments as two docu-
ments, and mwerSegmenter score, which reseg-
ments complete candidate segments according to
reference segments to minimize WER. Similar to
Section 3.2, mwerSegmenter scores for IWSLT
2021 test set could not be obtained, hence we did
not include them.

We observe that the system with
seamless-m4t-v2-large as the encoder and
EuroLLM-9B-Instruct as the language model
achieves the best scores in all evaluation metrics,
compared to the other systems. With the instruc-
tion associated with the task “both” (Table 2), the
system excels in translation results, suggesting that
the inclusion of English transcript provided useful
assistance in translation.

Comparing between the two prompt variations
“translate_en” and “translate_de” for this
task, the latter one leads to more solid overall re-
sults. For example, consider the S + E system: for
tst2022, while “translate_en” instruction might
outperform that of “translate_de”, but the dif-
ference is small; while results for tst2021 shows a
contrastive situation, where “translate_de” sur-
passes “translate_en’ by a considerable amount.
This behavior also appears in other systems, lead-
ing us to believe that the system can perform bet-
ter when the instruction provided is in the rel-
evant target language. As a result, we chose
“translate_de” prompt with S and E as our
submission to the Offline Speech Translation
and Instruction Following task, under the “con-
strained+LLM” evaluation condition.

4 Future Work

For the IWSLT 2025 Offline Speech Translation
and Instruction Following tasks, we have only con-
ducted experiments for the English-to-German di-
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Model transcribe both
Enc. LLM tst2022 tst2022

S
L 14.1% 17.3%

E 13.4% 16.7%

G 20.0% 24.2%

W
L 24.3% 26.6%

E 47.9% 47.5%

G 38.6% 38.5%

Table 3: ASR evaluation results (WER↓)

Model translate_en translate_de both
Enc. LLM tst2021 tst2022 tst2021 tst2022 tst2021 tst2022

S
L 39.53 / - 37.55 / 26.58 39.50 / - 37.58 / 26.66 42.01 / - 38.15 / 29.78
E 41.50 / - 38.47 / 30.65 41.94 / - 37.73 / 29.83 44.28 / - 40.82 / 32.33
G 37.37 / - 33.72 / 24.93 36.70 / - 33.66 / 25.25 42.17 / - 37.70 / 29.73

W
L 33.02 / - 31.54 / 19.47 33.64 / - 30.02 / 19.62 39.48 / - 37.76 / 26.64
E 22.43 / - 22.02 / 9.24 22.21 / - 23.32 / 9.83 32.91 / - 31.50 / 19.56
G 27.23 / - 27.34 / 14.67 27.34 / - 27.81 / 14.67 35.37 / - 34.72 / 22.95

Table 4: Offline ST en2de BLEU results, with both docAsWhole↑ and mwerSegmenter↑ scores, respectively

Model translate_en translate_de both
Enc. LLM tst2021 tst2022 tst2021 tst2022 tst2021 tst2022

S
L 61.11 / 53.85 68.05 / 62.38 68.69 / 62.63 67.88 / 62.02 69.49 / 64.66 69.48 / 64.80
E 62.57 / 56.13 71.06 / 66.04 70.38 / 65.11 70.62 / 65.46 71.59 / 66.93 71.05 / 66.53
G 59.09 / 51.87 66.01 / 60.33 66.33 / 60.48 66.08 / 60.10 67.90 / 62.75 68.20 / 63.28

W
L 52.80 / 43.13 61.99 / 53.47 62.73 / 54.55 62.02 / 53.73 66.66 / 60.71 66.38 / 60.00
E 42.73 / 30.45 48.33 / 35.93 48.22 / 35.80 49.48 / 36.95 58.35 / 47.78 56.85 / 46.70
G 48.10 / 36.40 55.36 / 44.11 55.75 / 44.10 54.10 / 42.70 61.49 / 52.65 61.54 / 52.86

Table 5: Offline ST en2de COMETDA
22 ↑ and COMETKIWI-DA

22 ↑ results, respectively

rection; hence, in the future, we will expand our
experiments to more language pairs and directions.
In addition, we have some ideas to improve the
pipeline:

• Try other modal adapter methods, like Q-
Former (Li et al., 2023b).

• Experiment with smaller variants of the LLMs
for faster training and inference, while retain-
ing the quality in translation, by distilling
knowledge from fine-tuned systems.

• Build a Direct Preference Optimization (DPO;
Rafailov et al., 2024) or Contrastive Prefer-
ence Optimization (CPO; Xu et al., 2024)
dataset to apply into the training pipeline. Xu
et al. (2024) showed that their CPO approach
improved the performance of medium-sized
LLMs, so we will try following the same idea.

5 Conclusion

In this paper, we leveraged pre-trained speech en-
coders and LLMs and connected them into an end-
to-end architecture to participate in the IWSLT

2025 Offline Speech Translation and Instruction
Following tasks. Our primary goal was to develop
a system that could perform both ASR for En-
glish audio, and ST from English audio to Ger-
man text. In our experiments, the model with
seamless-m4t-v2-large as the speech encoder
and EuroLLM-9B-Instruct as the LLM yielded
the best results in evaluation of both ASR and ST
tasks, suggesting that this pair could be a promising
combination for end-to-end models.
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