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Abstract

We present our IWSLT 2025 submission for
the low-resource track on North Levantine
Arabic to English speech translation, build-
ing on our IWSLT 2024 efforts. We retain
last year's cascade ASR architecture that com-
bines a TDNN-F model and a Zipformer for
the ASR step. We upgrade the Zipformer to
the Zipformer-Large variant (253 M parame-
ters vs. 66 M) to capture richer acoustic rep-
resentations. For the MT part, to further allevi-
ate data sparsity, we created a crowd-sourced
parallel corpus covering five major Arabic di-
alects (Tunisian, Levantine, Moroccan, Alge-
rian, Egyptian) curated via rigorous qualifica-
tion and filtering. We show that using crowd-
sourced data is feasible in low-resource scenar-
ios as we observe improved automatic evalua-
tion metrics across all dialects. We also experi-
mented with the dataset under a high-resource
scenario, where we had access to a large, high-
quality Levantine Arabic corpus from LDC.
In this setting, adding the crowd-sourced data
does not improve the scores on the official
validation set anymore. Our final submission
scores 20.0 BLEU on the official test set.

1 Introduction

Dialectal Arabic speech translation (ST) remains
one of the most challenging tasks in spoken lan-
guage processing due to (i) the scarcity of high-
quality, parallel speech—text resources for non-
standardized varieties, (ii) high phonetic and or-
thographic variability among dialects, and (iii) do-
main mismatches between available corpora (e.g.,
broadcasts in Modern Standard Arabic) and con-
versational speech. Although end-to-end mod-
els and pre-trained encoders have advanced gen-
eral ASR and NMT, most publicly available data
still target Modern Standard Arabic (Al-Fetyani
et al., 2023; Ali et al., 2016), leaving dialectal
variants under-resourced. Previous IWSLT eval-
uations (Yan et al., 2022; Anastasopoulos et al.,

2022; Agarwal et al., 2023; Hussein et al., 2023;
Boito etal.,2022; Ahmad et al., 2024) have tackled
these issues using transfer learning and fine-tuning
strategies, yet a comprehensive solution for multi-
ple dialects is still lacking.

In our IWSLT 2024 submission, ALADAN
achieved first place in the Levantine Arabic task
by combining a cascade ASR pipeline (TDNN-F
+ Zipformer) with fine-tuned NLLB and prompt-
driven LLMs (Command-R), leveraging a crowd-
sourced parallel corpus for Tunisian and Levantine
Arabic. We also demonstrated that prudent data
normalization and a hybrid system combination
(ROVER) yield substantial WER and BLEU im-
provements. Building on this success, our IWSLT
2025 system introduces two key innovations:

* Multi-Dialect ASR with Zipformer-Large:
We replace last year's Zipformer (66M parame-
ters) with the 253M-parameter Zipformer-Large
to better model long-range dependencies and
acoustic nuances in dialectal speech. We also
train a single multi-dialect model instead of
deriving dialect-specific ASR models via fine-
tuning.

* Expanded multi-dialect crowd-sourcing: We
extend our crowd-sourced collection beyond
Tunisian and Levantine to include Moroccan, Al-
gerian, and Egyptian dialects, yielding more than
160k new parallel sentences after rigorous qual-
ity control. These data are used to fine-tune the
NLLB-200 and Cohere Command-R models un-
der QLoRA, enhancing cross-dialect robustness.

Our paper is organized as follows. Section 2 de-
tails the data collection and normalization proce-
dures. Section 3 presents our ASR and ST models,
detailing their architecture, training, fine-tuning,
and performance on Levantine datasets and inter-
nal tests. In Section 4, we conclude with a discus-
sion of future directions for low-resource dialect
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translation.

2 Methods

2.1 Text normalization

The absence of standardized conventions across
different Arabic dialects requires the development
of robust text normalization procedures to reduce
ambiguity. In this work, we adopt the same text
normalization methodology used in Ben Kheder
et al. (2024). Our normalization process operates
on the character- and word-level. Character-level
normalization promotes uniformity in the ortho-
graphic representation of various dialects, improv-
ing consistency across datasets. Table 1 summa-
rizes the rules used in our experiments.

Dialect Normalizations
All dialects | 5=>,/¢=> <
apc/arz/ary Sor g => 8

aeb/arq B=>3/9=>

ary N=>s5/S=>3

Table 1: Characters normalization rules for different
Arabic dialects.

Word-level normalization, on the other hand, ad-
dresses orthographic variability in dialectal Arabic
and foreign words. This step employs rules de-
rived from a combination of a Word2vec model
and a weighted Levenshtein distance to identify or-
thographically similar words appearing in compa-
rable contexts. This process helps normalize clus-
ters of words such as:

* The Tunisian word for "anyway": ¢shwls
}L:g:‘o- G}L,ala- 44&,:1» t}y‘.’ tdﬁw‘.’ thala

* The Syrian word for "the computer":

For further details on the methodology, we refer
readers to (Ben Kheder et al., 2024).

2.2 Crowd-sourcing for parallel data
collection

We collaborate with Crowdee! crowd-sourcing
platform to create a parallel dataset. The goal
was to generate high-quality translations while ad-
dressing the challenges posed by dialectal varia-
tions in Arabic. In these tasks, transcripts from
CTS/YouTube datasets (described in Ben Kheder
et al. (2024)) are used as input.

'Crowdee—https:/ /www.crowdee.de/

2.2.1 Crowd worker filtering

We designed linguistic assessment comprising 40
questions for each of the five dialects. The test
evaluates linguistic competencies, including gram-
mar proficiency and the ability to translate between
the respective dialects and English using multi-
ple choice exercises. Only workers who demon-
strated sufficient linguistic skills were allowed to
contribute to the dataset.

2.2.2 Translation guidelines

To ensure the quality and completeness of transla-
tions, crowd workers receive detailed instructions:

* Providing a translation: Translate a single
sentence from a short conversational excerpt
(6 consecutive sentences corresponding to 3
speaking turns between 2 speakers, extracted
from our internal conversational telephone
data).

* Ranking confidence: Workers were asked
to rate their confidence in their translation as
"correct", "unsure", or "incorrect".

* Suggesting alternatives: Workers were en-
couraged to offer alternative translations if
possible.

* Adding comments: Additional comments
were invited to clarify translation choices or
highlight ambiguities.

2.2.3 Data filtering

Following the translation phase, a data cleaning
procedure was implemented to improve the qual-
ity of the dataset. This included:

* Removing machine-like translations: Sen-
tences with patterns indicative of machine-
generated translations were excluded.

* Language filtering: Sentences that were in
languages other than English (e.g., French or
Arabic) were removed.

* Word count discrepancy: Examples with
significant discrepancies in word count be-
tween the source and target were filtered out.

* Perplexity-based filtering: the GPT-2
model was used to compute the perplexity
of each translated sentence. We removed
all sentences that exceed 10 words with
perplexity greater than 100, as these likely
indicated low-quality translations.
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IWSLT24 IWSLT?22 Internal devs (CTS)
valid apc | dev aeb | testy aeb | apc | arz | arq | ary | aeb
TDNN-F 26.5 39.9 40.8 19.8 | 26.4 | 28.7 | 30.7 | 27.6
Zipformer-Large 21.8 31.7 32.7 14.5 | 20.8 | 23.7 | 23.9 | 22.3
Both 19.9 30.6 31.8 14.0 | 19.3 | 22.1 | 22.8 | 21.6

Table 2: WER (%) of ASR models on IWSLT24 Levantine Arabic (apc) validation, IWSLT22 Tunisian Arabic
(aeb) dev/test sets and 5 internal devs (apc, arz, arq, ary, acb). The Levantine "apc", Egyptian "arz", Algerian "arq"
internal devs correspond to telephone speech (CTS) while the ones for Moroccan "ary" and Tunisian Arabic "aeb"

correspond to YouTube data (radio).

3 Experiments

This section describes our experimental settings,
used data and results.

3.1 Data

In this subsection, we list the datasets we used for
training and evaluating our systems.

3.1.1 ASRdata

* Training: We used 4200h of multi-dialect
multi-domain data to train our ASR mod-

els. For more details, readers may refer to
(Ben Kheder et al., 2024).

* Evaluation: The models are evaluated on the
dev sets from IWSLT22 (aeb) and IWSLT24
(apc). We conduct additional tests on inter-
nal devs corresponding to conversational tele-
phone speech ("arq", "arz" and "apc" devs)

and YouTube data ("aeb" and "arz").

3.1.2 NMT data

For the crowd-sourcing experiments, used the
crowd-sourced datasets to finetune the NMT mod-
els and LLMs. The sizes of the datasets are listed in
Table 3. For evaluation, we used a held-out part of
the crowd-sourcing datasets, parts of the AraBench
dataset (Sajjad et al., 2020) and the IWSLT 2024
test set from the dialectal Arabic shared task. For
the final submission, we used the same datasets
as our last year's submission (Ben Kheder et al.,
2024),i.e. LDC2012T09, PADIC, MADAR, Glob-
alVoices, smaller crowd-sourced data, IWSLT22
Tunisian Arabic and the official training dataset for
this task, provided by the organizers.

Dialect Sentences (k)
arq (Algerian) 51.9
arz (Egyptian) 52.8
ary (Moroccan) 19.1
apc (Levantine) 14.8
aeb (Tunisian) 22.7

Table 3: NMT crowd-sourced dataset sizes.

3.2 Metrics

We score ASR using word error rate (WER). To
measure the quality of the MT, we use 3 met-
rics: BLEU (Papineni et al., 2002), ChrF (Popovic,
2015) and XCOMET-XL (Guerreiro et al., 2024).

3.3 ASR
3.3.1 ASR models

Our ASR front-end follows the cascade design
of (Ben Kheder et al., 2024), combining a con-
ventional TDNN-F model with an end-to-end Zip-
former. The key innovation in this year’s sub-
mission is the replacement of last year's 66 M-
parameter Zipformer-M with a much larger, 253
M-parameter "Zipformer-Large" and the design of
a single multi-dialect model (instead of deriving
dialect-specific models via fine-tuning).

1. TDNN-Fmodel: 15 layers of factorized TDNN
with ReLU activations (layer dimension 1920)
and linear bottlenecks (dimensions 320, 240)
trained using the LF-MMI objective.

2. Zipformer-Large: The base design follows
the "Zipformer-L" configuration of (Yao et al.,
2023), modified as follows:

Configuration

CNN kernel sizes {63, 31, 15, 15,31, 6}

Encoder hidden dim. | {192, 512, 1024, 1536, 512,256}

Feed-forward dim. {512, 768, 1024, 2048, 1024, 768}

Table 4: Configuration of Zipformer-Large.
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The output of the two models are combined us-
ing the ROVER algorithm.

3.3.2 Training procedure

We train multi-dialect models using all available
data to take advantage of the acoustic and linguis-
tic similarities between different Arabic dialects.
The TDNN-F model is trained for 20 epochs (on
all data) using Ir=1e-3 and the Zipformer model is
trained for 80 epochs using Ir=4e-3.

3.3.3 Results

Table 2 shows the WERs of our ASR systems after
applying the normalization procedure. This nor-
malization significantly improved the WERs for
"apc" and "aeb" by 10% and 18%, respectively.
The combined model achieved even greater im-
provements, demonstrating the complementarity
of the two models and outperforming all WERS re-
ported in (Agarwal et al., 2023) for "aeb".

3.4 Speech translation

For speech translation (ST), we apply the cascaded
approach: we use the ASR to obtain transcriptions
and then we translate them using an NMT.

3.4.1 MT models

We finetune one pretrained NMT model (NLLB-
1.3B) and 3 LLMs: Command-R V0.1 (4-bit
quantized, CohereForAlI/c4ai-command-r-v01-
4bit), Aya Expanse 8B and EuroLLM 9B In-
struct. We use QLoRA finetuning, using the trans-
formers, peft and trl libraries. We set the LoRA
rank size to r = 32 and o = 16. We finetuned the
models by AdamW optimizer, with warmup ratio
of 0.03. We ran multiple training runs with learn-
ing rates Ir = {2e — 4,1e — 4,5e — 5,1e — 5}.

3.4.2 MT results

First, we compare the base and the finetuned mod-
els on the crowd-sourced test set (with reference
transcriptions on the source side) and on the apc
test set from IWSLT 2024 low-resource Arabic Di-
alectal Speech translation task. The results are
presented in Table 5. We see that for all dialects,
the evaluation scores improve significantly for all
models. The best scoring finetuned model across
all the dialects is the Command-R model, while
all the other models are competitive. Of the base
models, without finetuning, Command-R and Aya-
expanse-8B provide the best scores. In particular,
for the IWSLT test set (apc/iwslt), we obtain a large
improvement in automated scores even though it is

a different domain (interviews with refugees) from
our crowd-sourced training data (telephone conver-
sations).

We also compare the base and the finetuned
Command-R and NLLB models on the part of the
test sets in the AraBench dataset. The comparison
is shown in Table 10 in Appendix B. Here, base
NLLB performs the best on these test sets and fine-
tuning decreases the performance for NLLB, but
improves it for Command-R.

3.4.3 ST results

We evaluated both base and finetuned NLLB and
Command-R models on ASR outputs from the
crowd-sourced and IWSLT test sets (Tables 6 and
7). As with reference transcriptions, finetuning
with crowd-sourced data significantly improves
performance across dialects. Although the BLEU
and ChrF scores are similar, Command-R consis-
tently outperforms NLLB in XCOMET-XL. Our
finetuned model scores 23.7 BLEU on IWSLT,
compared to 28.7 for the top shared task sys-
tem and 20.9 for the runner-up, despite those sys-
tems using much more fine-tuning data, including
in-domain training set. This shows that crowd-
sourcing is a viable option to improve automated
metric scores for dialectal Arabic ST even on out-
of-domain test sets.

3.5 Final submission

We also finetuned the Command-R model on the
same datasets as our submission from last year
(Ben Kheder et al., 2024). We note that, as op-
posed to the previously described experiments, we
trained the models for document-level translation,
with a maximum context size of 100 lines, same
as last year. We experimented with adding the
crowd-sourced data described earlier on top of
these datasets and the results are shown in Table 8.
Adding crowd-sourced data on top of an already
large and high-quality dataset does not have any
positive effect on BLEU and ChrF scores. For the
final submission, we selected 29 checkpoints with
best BLEU scores on the validation set, translated
the test set with them and ran Minimum Bayes
risk decoding using wmt22-comet-da score as the
objective function. The final official results from
IWSLT 2025 (Abdulmumin et al., 2025) are shown
in Table 9.
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Base model

Finetuned model

Model Language @ BLEU ChrF COMET BLEU ChrF COMET
arq 5.8 259 0.558 24.8 47.8 0.765
arz 14.8 36.9 0.586 31.8 52.9 0.807
NLLB apc 154 38.0 0.657 29.5 51.0 0.836
ary 16.2 39.7 0.528 33.5 554 0.726
aeb 17.3 40.2 0.549 30.9 532 0.741
iwslt24/apc 19.2 44.6 0.689
arq 12.6 343 0.573 28.8 49.2 0.778
arz 18.0 42.1 0.624 33.2 53.6 0.820
Command-R-V0.1-4bit  apc 20.1 42.4 0.661 354 55.7 0.856
ary 20.2 44.5 0.596 333 54.7 0.718
aeb 20.3 44.8 0.613 31.0 53.4 0.759
iwslt24/apc 19.7 45.9 0.818 28.2 534 0.848
arq 9.8 313 0.519 27.0 48.2 0.773
arz 21.1 44.5 0.611 323 52.7 0.805
EuroLLM-9B apc 16.0 40.2 0.599 31.8 52.6 0.839
ary 19.5 45.1 0.514 31.7 53.7 0.712
acb 21.1 45.6 0.578 29.7 522 0.750
arq 13.4 34.7 0.557 26.8 47.8 0.775
arz 24.8 473 0.632 32.8 53.1 0.815
Aya-expanse-8b apc 21.8 43.7 0.644 33.0 53.1 0.845
ary 24.8 48.4 0.568 31.8 53.1 0.707
aeb 234 47.9 0.607 29.3 51.7 0.747

Table 5: Results of base and finetuned models on our test sets and IWSLT 2024 test set in text-to-text translation
(using reference transcriptions of the source speech as the source for the MT).

Language BLEU ChrF COMET Language BLEU ChrF COMET

arq 6.0 23.7 0.567 NLLB arq 21.2 40.7 0.731

arz 13.3 349 0.609 arz 26.2 46.3 0.757

NLLB apc 13.6 343 0.663 apc 242 442 0.790
ary 14.2 36.1 0.522 ary 257 47.8 0.643

aeb 13.6 352 0.504 aeb 23.2 45.4 0.646

arq 7.0 27.0 0.569 arq 21.7 41.6 0.741

arz 15.5 36.9 0.607 arz 26.0 46.7 0.767

Command-R apc 17.1 38.6 0.671 Command-R apc 27.2 47.6 0.805
ary 17.3 40.4 0.563 ary 25.4 47.1 0.652

aeb 18.0 40.8 0.559 aeb 232 45.4 0.673

iwslt24/apc 16.5 42.1 0.766 iwslt24/apc 23.7 48.6 0.803

Table 6: Cascaded speech translation scores of base,
non-finetuned models on our test sets (using our ASR
transcriptions of the source speech).

4 Conclusions

In this work, we demonstrated that carefully engi-
neered data collection and model adaptation can
substantially advance low-resource dialectal Ara-
bic speech translation. By expanding our crowd-
sourced parallel corpus to five dialects (Tunisian,
Levantine, Moroccan, Algerian, Egyptian), includ-
ing rigorous qualification tests and multi-stage fil-
tering, we provided rich, targeted material for
NMT fine-tuning. Upgrading our acoustic front-
end to a 253 M-parameter Zipformer-Large and
combining it with TDNN-F via ROVER further
drove down WER. On the translation side, fine-
tuning NLLB-200 and Command-R models, with

Table 7: Cascaded speech translation scores of fine-
tuned models on our test sets.

Valid 2024  Test 2024

2024 dataset 2024 ASR 30.3/53.5  27.5/50.6
2025 ASR 31.4/54.7 27.4/50.3

Human 33.5/58.5 -

+new crowd 2024 ASR 29.9/53.3  27.4/50.3
2025 ASR 31.1/54.6 27.2/50.2

Human 33.6/58.7 -

Final MBR 32.5/55.6 28.0/51.7

Table 8: BLEU/ChrF scores of document-level models
trained on our last year's dataset and after adding the
new crowd-sourced dataset described above. We also
compared using our last year's ASR model with this
year's improved model and to the human reference tran-
scription.
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Submission Name BLEU COMET CHRF
AIB_Marco contrastivel 15.82 0.6456 36.23
AIB Marco contrastive2 10.53 0.5727 27.69
AIB_Marco contrastive3 16.22 0.6669 37.48
AIB_Marco contrastive4 16.47 0.683 37.96
AIB_Marco primary 12.01 0.6547 34.19
ALADAN primary 20.02 0.6613 39.91
jhu contrastivel 15.39 0.6569 3591
jhu primary 14.64 0.6493 36.23
lia contrastivel 21.02 0.6983 42.92
lia contrastive2 21.45 0.694 43.13
lia primary 22.56 0.7193 44.72
kit contrastivel 19.11 0.6832 40.95
kit contrastive2 21.93 0.6968 44.67
kit primary 23.34 0.7043 45.09

Table 9: The official results of the Levantine Arabic
task from IWSLT 2025. Our submission in bold.

QLoRA for the latter, on this multi-dialect dataset
yielded significant BLEU and COMET gains on
our in-domain test sets. These findings confirm
that combining expanded crowd-sourcing with un-
supervised data augmentation and model scaling
is a viable and resource-efficient strategy to boost
dialectal Arabic translation, even when faced with
new domains. However, our experiments with the
final submission show that adding this dataset on
top of already extensive, high-quality corpora we
used to train our last year's submission does not im-
prove BLEU and ChrF scores on the official vali-
dation set. This suggests that the crowdsourcing
approach is more viable in low-resource scenarios,
as the knowledge provided by the crowdsourced
dataset might already be covered in the larger cor-
pora.
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We also compared line-by-line translation to trans-
lating the whole conversation for the crowd-
sourced dataset. We used the same document-level
prompt as (Ben Kheder et al., 2024). Surprisingly,
in this case translating line by line worked bet-
ter. We hypothesize that the repetitiveness of the
dataset causes this. Many simple utterances (e.g.
"Yeah.") are repeated next to each other in the train-
ing data, which leads the model to overestimate
the probability of repeating the same line in the
document-level translation. We leave a better un-
derstanding of this issue for future work.

B AraBench test set

We also evaluated our model on test sets from the
AraBench (Sajjad et al., 2020) benchmark, specif-
ically the MADAR (Bouamor et al., 2018) test
sets for dialects we used during finetuning. Con-
trary to the results on other test sets, the base
NLLB model scores the best, and fine-tuning on
our crowd-sourced data hurts the evaluation scores.
For Command-R, finetuning improves the scores
compared to the Command-R base model, but still
does not outperform base NLLB. We hypothesize
that this might be caused by presence of the test
set in the NLLB's training dataset, or by domain
mismatch.
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Base Finetuned
BLEU ChrF COMET BLEU ChrF COMET

madar.test.lev.0.jo.ar 47.3 65.2 0.924 423 61.5 0.938
madar.test.lev.0.1b.ar 42.1 59.5 0.863 36.3 54.9 0.884
madar.test.lev.0.pa.ar 45.6 62.4 0.911 41.9 59.5 0.928
madar.test.lev.0.sy.ar 459 62.9 0.911 41.5 59.4 0.926
madar.test.lev.1.jo.ar 474 64.4 0.876 43.7 61.4 0.930
NLLB madar.test.lev.1.sy.ar 47.1 63.9 0.899 41.3 59.7 0.909
madar.test.mgr.0.ma.ar 41.3 59.6 0.859 37.8 56.8 0.891
madar.test.mgr.0.tn.ar 36.4 54.4 0.818 31.7 50.5 0.845
madar.test.mgr.1.ma.ar 474 65.2 0.889 44.7 62.9 0.915
madar.test.mgr.1.tn.ar 30.6 49.4 0.815 27.0 46.4 0.844
madar.test.nil.0.eg.ar 45.7 63.1 0.904 413 59.8 0.931
madar.test.nil.1.eg.ar 52.8 68.8 0.926 50.2 66.5 0.944
madar.test.lev.0.jo.ar 39.3 59.3 0.943 42.8 61.1 0.946
madar.test.lev.0.1b.ar 29.9 50.6 0.876 334 53.0 0.892
madar.test.lev.0.pa.ar 394 58.2 0.934 43.9 60.4 0.942
madar.test.lev.0.sy.ar 39.0 583 0.931 42.1 59.5 0.941
madar.test.lev.1 jo.ar 40.5 59.5 0.929 43.8 61.6 0.938
Command-R madar.test.lev.1.sy.ar 39.6 58.6 0.918 429 60.5 0.928
madar.test.mgr.0.ma.ar 33.7 544 0.885 37.1 56.0 0.895
madar.test.mgr.0.tn.ar 222 429 0.792 29.5 48.2 0.847
madar.test.mgr.1.ma.ar 384 59.3 0.909 42.7 60.7 0.916
madar.test.mgr.1.tn.ar 20.0 40.8 0.805 253 44.5 0.850
madar.test.nil.0.eg.ar 40.1 59.4 0.935 43.0 60.9 0.942
madar.test.nil.1.eg.ar 45.5 63.5 0.943 50.2 66.5 0.952

Table 10: Automatic evaluation scores of base and finetuned models on MADAR test sets from the AraBench
benchmark.
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