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Abstract

This paper reports NYA’s submissions to the
IWSLT 2025 Offline Speech Translation (ST)
task. The task includes three translation direc-
tions: English to Chinese, German, and Ara-
bic. In detail, we adopt a cascaded speech
translation architecture comprising automatic
speech recognition (ASR) and machine transla-
tion (MT) components to participate in the un-
constrained training track. For the ASR model,
we use the Whisper medium model. For the
neural machine translation (NMT) model, the
wider and deeper Transformer is adopted as
the backbone model. Building upon last year’s
work, we implement multiple techniques and
strategies such as data augmentation, domain
adaptation, and model ensemble to improve the
translation quality of the NMT model. In ad-
dition, we adopt X-ALMA as the foundational
LLM-based MT model, with domain-specific
supervised fine-tuning applied to train and op-
timize our LLM-based MT model. Finally,
by employing COMET-based Minimum Bayes
Risk decoding to integrate and select translation
candidates from both NMT and LLM-based
MT systems, the translation quality of our ST
system is significantly improved, and competi-
tive results are obtained on the evaluation set.

1 Introduction

The Offline Speech Translation (ST) Task converts
source audio into target text. Currently, two pri-
mary approaches dominate the ST field: the cas-
caded system and the end-to-end (E2E) system.
The traditional cascade system (Matusov et al.,
2005a) decouples the ST task into an automatic
speech recognition (ASR) and a machine transla-
tion (MT) task. The source speech is first tran-
scribed into text in the source language, which
is then translated into text in the target language
using a neural machine translation (NMT) model.
However, it often leads to higher architectural com-
plexity and error propagation (Duong et al., 2016),

affecting subsequent MT tasks. To alleviate this
problem, the end-to-end ST architecture (Bérard
et al., 2016) is proposed. The E2E ST system
employs a single neural network to directly map
source-language audio to target-language text, by-
passing intermediate symbolic representations. For
end-to-end ST architectures, a key limitation is
the scarcity of parallel speech-text data. In con-
trast, the widespread availability of large-scale
ASR and MT datasets facilitates the development
of high-precision ASR and MT systems through
comprehensive training. Therefore, the cascaded
ST system typically outperforms the E2E ST sys-
tem (Anastasopoulos et al., 2022; Agarwal et al.,
2023; Ahmad et al., 2024; Abdulmumin et al.,
2025). Thus, we choose the cascaded ST scheme
consisting of ASR and MT systems for the task.

The main architecture of the traditional NMT
model is the encoder-decoder. Recently, large
language models (LLMs) based on decoder-only
architectures have demonstrated remarkable per-
formance across various natural language pro-
cessing (NLP) tasks. In the MT task, only
the most advanced LLMs like GPT-4 (Achiam
et al., 2023) can match the performance of su-
pervised learning-based encoder-decoder state-of-
the-art (SoTA) models such as NLLB (Costa-Jussà
et al., 2022), yet their effectiveness still falls short
of expectations in low-resource languages and spe-
cialized domains. Therefore, many studies (Xu
et al., 2023, 2024b,a; Aryabumi et al., 2024) are fo-
cused on applying LLMs to smaller-scale models,
broader language coverage, and more diverse ap-
plication scenarios in machine translation, demon-
strating significant advancements in the field. For
example, X-ALMA (Xu et al., 2024a) is one of the
top-performing translation models built on LLMs,
capable of matching or even surpassing WMT win-
ners and GPT-4 in some language pairs and scenar-
ios. Therefore, unlike in previous work, we imple-
ment both NMT and LLM-based MT approaches
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and investigate their combination to achieve im-
proved translation performance.

We participate in the unconstrained training track
of the offline speech translation task. And the Whis-
per (Radford et al., 2023) medium model is directly
employed for the ASR system in the source lan-
guage. We also explore audio segmentation meth-
ods, such as Supervised Hybrid Audio Segmenta-
tion (SHAS) (Tsiamas et al., 2022), to segment the
source audio for better ST results. In the MT task,
we widely collect a large amount of parallel data
and monolingual data from various data sources.
For the NMT system, we use the Transformer ar-
chitecture (Vaswani et al., 2017) as the backbone
model and implement multiple optimization tech-
niques and strategies such as Back Translation (BT)
(Sennrich et al., 2016), Forward Translation (FT),
Domain Adaptation (DA), and Ensemble (Ganaie
et al., 2022) to improve the translation quality of
the NMT model. For the LLM-based MT system,
we use X-ALMA as the foundational model and
adopt supervised fine-tuning (SFT) to train and op-
timize the LLM-based MT model. Subsequently,
we adopt Minimum Bayes Risk (MBR) (Kumar
and Byrne, 2004) decoding to select the transla-
tion candidates from both NMT and LLM-based
MT systems and obtain significant improvements
in translation quality.

2 Dataset

2.1 Text Data

The training set is divided into two parts: general
data and domain data. For general data, we retain
the same data configuration of En2Zh and En2De
as last year (Zhang et al., 2024). For En2Zh and
En2De, we make full use of a large amount of
monolingual data through BT and FT. For En2Ar,
in addition to utilizing the data provided by IWSLT
2025, we incorporate several large-scale open-
source text datasets such as NLLB (Costa-Jussà
et al., 2022), CCAligned (El-Kishky et al., 2019),
HPLT (Aulamo et al., 2023) and etc. For domain-
specific data, we crawl a substantial amount of
domain-specific videos from websites and use the
bilingual subtitles provided by these sites to create
domain-specific training sets.

We employ sBERT (Reimers and Gurevych,
2019, 2020) to calculate semantic similarity for
all parallel text data and filter out text pairs with
similarity scores lower than 0.7. Table 1 presents
the size of our MT corpus after filtering.

Corpus En2Zh En2De En2Ar
General data 27M 20M 126M
Domain data 4M 4M 236K

Table 1: Data statistics of MT corpus.

2.2 Data Pre-processing

For semantically filtered data, we perform text pre-
processing according to last year’s rules and proce-
dure (Zhang et al., 2024) to enhance data quality.

After text pre-processing, these sentences are
tokenized by a SentencePiece (SPM) model (Kudo
and Richardson, 2018). The SPM model is trained
separately on sampled data, with vocabulary sizes
set as follows: 40k in English, 37k in Chinese, 37k
in German, and 40k in Arabic. Both the source and
target sides share the same dictionary.

3 Speech Translation System

3.1 ASR System

We utilize the Whisper 1 (Radford et al., 2023)
model in conjunction with the SHAS 2 (Tsiamas
et al., 2022) method to implement our ASR system
within a cascaded framework.

SHAS functions as a Voice Activity Detection
(VAD) mechanism within the ASR system, en-
abling the segmentation of lengthy audio files into
shorter segments. We experiment with various pa-
rameters and ultimately settle on the parameter set
of (5, 30, 0.5), which we apply across all scenarios
except for the accent challenge data.

Whisper is an advanced multilingual ASR sys-
tem, providing robust performance across vari-
ous audio conditions, including accented speech
and noisy environments. The open-source mod-
els range from tiny to large, addressing different
computational needs. We choose the medium-sized
Whisper model for its suitability as the ASR model
in our speech translation system.

3.2 MT System

Due to differences in training paradigms and learn-
ing objectives, traditional NMT tends to produce
more literal translations while LLM-based MT gen-
erates more paraphrased outputs. The LLM ap-
proach shows better fluency and greater robustness
to ASR errors, though it may occasionally overlook
details or produce redundant hallucinations. These

1https://github.com/openai/whisper
2https://github.com/mt-upc/SHAS
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two approaches exhibit complementary strengths
in machine translation. Therefore, both NMT and
LLM-based MT approaches are developed and in-
tegrated for our machine translation system.

3.2.1 NMT Model
Our NMT model in the speech translation system
is built using the Transformer architecture imple-
mented with the Fairseq toolkit (Ott et al., 2019).
This model is designed with a wider and deeper
structure, including an 18-layer encoder, 6-layer
decoder, and 16 self-attention heads. This architec-
ture enables the model to capture complex patterns
and dependencies in the data effectively. Our NMT
model is trained on parallel data from three lan-
guage directions (English to Chinese, German, and
Arabic) to form a one-to-many translation model.

Data augmentation techniques like back transla-
tion (Sennrich et al., 2016) and forward translation
are employed to enhance the quality and diversity
of the training data. Back translation involves trans-
lating the target language back into the source lan-
guage, while forward translation transforms the
source language into the target language. These
methods leverage additional monolingual resources
to generate synthetic bilingual data. In total, we
utilize approximately 23M sentences of BT and FT
data, including 18M sentences of En2Zh data and
5M sentences of En2De data. When employing
the data generated by BT or FT models, we adopt
the tagged BT method (Caswell et al., 2019) by
appending a distinctive <BT> token at the begin-
ning of the source sentence. This approach enables
the model to distinguish between supervised and
semi-supervised data during the training process.

Domain adaptation is also performed to fine-tune
the model for specific domains. In-domain data is
selected and used to train monolingual language
models, which then score all language pairs. Spe-
cific thresholds are set to filter parallel data that is
closer to the target domain. This process ensures
that the model performs well in domain-specific
scenarios, enhancing its overall translation quality
and adaptability to different contexts.

3.2.2 LLM-based MT
LLMs have demonstrated impressive performance
across various NLP tasks. Since most LLMs are
primarily pre-trained on English, they still face
limitations in multilingual translation tasks. Con-
sequently, the paradigm of applying LLMs to mul-
tilingual translation tasks has been extensively

studied. Among these, X-ALMA currently rep-
resents the state-of-the-art in open-source multi-
lingual machine translation models. It supports
bidirectional translation between English and 49
languages, achieving SoTA performance on the
COMET-22 metric across all 50 language direc-
tions.

In this task, we find that the release of the
X-ALMA3 open-source model already achieves
competent translation quality. Building upon the
baseline, we perform supervised fine-tuning to en-
hance its domain-specific capabilities. In order
to ensure data quality, we filter in-domain paral-
lel data based on the reference-free CometKiwi
(Rei et al., 2022b) metric. Subsequently, we con-
duct parameter-efficient adaptation of the model
through Low-Rank Adaptation (LoRA) (Hu et al.,
2022) fine-tuning, which is applied to all modules
of the feed-forward network.

3.2.3 Minimum Bayes Risk Decoding

Unlike Maximum-A-Posteriori (MAP) estimation,
which selects the single most probable hypothesis,
Minimum Bayes Risk (MBR) (Kumar and Byrne,
2004) considers the entire distribution of possible
outcomes and chooses the decision that minimizes
the average loss across them. For MT, MBR de-
coding employs evaluation metrics like COMET
(Rei et al., 2022a) to choose the hypothesis with the
highest average score against other candidates. A
substantial body of research (Fernandes et al., 2022;
Finkelstein et al., 2023) has demonstrated that
MBR decoding can effectively enhance translation
quality across both NMT and LLM-based MT mod-
els. The N-best candidates from the NMT model
are produced via beam search, while those from
the LLM-based MT model are generated through
temperature scaling and nucleus sampling. We em-
ploy COMET-based MBR decoding to rerank all
the translation candidates from both subsystems,
ultimately selecting the final translation output.

4 Experiments and Results

All NMT models are implemented using the open-
source Fairseq toolkit (Ott et al., 2019). For LLM
fine-tuning, we utilize the open-source ALMA
toolkit 4 (Xu et al., 2024a). We evaluate the perfor-
mance of MT models using case-sensitive Sacre-

3https://huggingface.co/haoranxu/X-ALMA
4https://github.com/fe1ixxu/ALMA
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Model
En2Zh En2De

COMET BLEU COMET BLEU
NMT baseline 0.7988 34.70 0.7081 25.23
+ BT & FT 0.7995 35.03 0.7248 26.36
+ DA 0.8181 35.21 0.7315 26.34
+ MBR 0.8342 35.53 0.7572 25.41
LLM baseline (X-ALMA) 0.8200 32.74 0.7437 25.44
+ SFT 0.8221 33.44 - -
+ MBR 0.8337 33.58 0.7560 24.77
MBR Ensemble NMT&LLM 0.8417 36.01 0.7708 25.71

Table 2: COMET and BLEU scores of NMT and LLM-based MT systems on the IWSLT tst-2022 test set

BLEU5 (Post, 2018) and COMET6 (Rei et al.,
2022a) metrics, based on the tst2022 and tst2010
test sets. Specifically, tst2022 is used to assess
En2De and En2Zh, while tst2010 is applied for
En2Ar. For audio segmentation, we adopt SHAS
with parameters set to (5,30,0.5). Finally, we utilize
mwerSegmenter 7 (Matusov et al., 2005b) toolkit
for the resegmentation and alignment of translation
results.

Table 2 presents the COMET and BLEU scores
for various NMT and LLM systems on the tst2022
test set. For NMT models, the integration of
BT&FT data and domain adaptation demonstrates a
notable enhancement of nearly 2% COMET scores
across both En2Zh and En2De. This highlights
the importance of domain-specific data for model
performance. For LLM-based MT models, we
perform LoRA fine-tuning on the X-ALMA pre-
trained model with in-domain parallel data filtered
by COMET-Kiwi (threshold is 0.82) for En2Zh,
which brings slight translation improvements. The
COMET-based MBR decoding achieves significant
improvements in COMET scores, whether applied
to candidate selection for a single translation model
or two different types of translation systems (NMT
and LLM). It is noteworthy that the En2De results
of the single system indicate an inverse relationship
between the COMET and BLEU scores.

Table 3 presents the performance of our final
submitted ST system in the unconstrained training
track of the offline speech translation task. Based
on the results of "MBR Ensemble NMT&LLM"
in Table 2, we train multiple models using a sim-
ilar approach and achieve further improvements
in COMET scores by integrating them through

5https://github.com/mjpost/sacrebleu
6https://github.com/Unbabel/COMET
7https://www-i6.informatik.rwth-aachen.de/web/

Software/mwerSegmenter.tar.gz

Test set COMET BLEU
En2Zh tst-2022 0.8454 35.89
En2De tst-2022 0.7736 25.81
En2Ar tst-2010 0.8689 23.85

Table 3: COMET and BLEU scores of the ST system
on the IWSLT test sets

MBR decoding. The COMET scores for En2Zh
and En2De reach 84.54% and 77.36% on tst2022,
respectively. Since the En2Ar track does not pro-
vide an in-domain development set, we present the
performance of En2Ar on the out-of-domain set
tst2010 for reference.

5 Conclusion

This paper presents our submission to the IWSLT
2025 offline speech translation task. For the uncon-
strained track, we adopt a cascaded speech transla-
tion architecture consisting of the ASR and MT sys-
tems. For the ASR system, we directly employ the
open-source Whisper medium model, which has
shown outstanding performance and strong robust-
ness across various scenarios for English speech
recognition tasks. For the MT system, we investi-
gate both NMT-based and LLM-based approaches
and explore optimization strategies including data
augmentation, domain adaptation, MBR decoding,
and model ensemble. Experimental results demon-
strate that integrating NMT with LLM-based MT
models while applying these techniques yields sig-
nificant performance improvements. Our final sys-
tem achieves COMET scores of 0.8454, 0.7736,
and 0.8689 for EN→ZH, EN→DE on the IWSLT
tst-2022 test set, and EN→AR on the tst-2010 test
set, respectively.
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Cattoni, Anna Currey, Georgiana Dinu, Kevin Duh,
Maha Elbayad, et al. 2022. Findings of the iwslt
2022 evaluation campaign. In Proceedings of the
19th International Conference on Spoken Language
Translation (IWSLT 2022), pages 98–157.

Viraat Aryabumi, John Dang, Dwarak Talupuru,
Saurabh Dash, David Cairuz, Hangyu Lin, Bharat
Venkitesh, Madeline Smith, Jon Ander Campos,
Yi Chern Tan, et al. 2024. Aya 23: Open weight re-
leases to further multilingual progress. arXiv preprint
arXiv:2405.15032.

Mikko Aulamo, Nikolay Bogoychev, Shaoxiong Ji,
Graeme Nail, Gema Ramírez-Sánchez, Jörg Tiede-
mann, Jelmer Van Der Linde, and Jaume Zaragoza.

2023. Hplt: High performance language technolo-
gies. In Proceedings of the 24th Annual Conference
of the European Association for Machine Translation,
pages 517–518.

Alexandre Bérard, Olivier Pietquin, Laurent Besacier,
and Christophe Servan. 2016. Listen and translate: A
proof of concept for end-to-end speech-to-text trans-
lation. In NIPS Workshop on end-to-end learning for
speech and audio processing.

Isaac Caswell, Ciprian Chelba, and David Grangier.
2019. Tagged back-translation. arXiv preprint
arXiv:1906.06442.

Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Long Duong, Antonios Anastasopoulos, David Chiang,
Steven Bird, and Trevor Cohn. 2016. An attentional
model for speech translation without transcription.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 949–959, San Diego, California. Association
for Computational Linguistics.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzmán, and Philipp Koehn. 2019. Ccaligned: A
massive collection of cross-lingual web-document
pairs. arXiv preprint arXiv:1911.06154.

Patrick Fernandes, António Farinhas, Ricardo Rei,
José GC de Souza, Perez Ogayo, Graham Neubig,
and André FT Martins. 2022. Quality-aware decod-
ing for neural machine translation. arXiv preprint
arXiv:2205.00978.

Mara Finkelstein, Subhajit Naskar, Mehdi Mirzazadeh,
Apurva Shah, and Markus Freitag. 2023. Mbr and qe
finetuning: Training-time distillation of the best and
most expensive decoding methods. arXiv preprint
arXiv:2309.10966.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Ma-
lik, Muhammad Tanveer, and Ponnuthurai N Sug-
anthan. 2022. Ensemble deep learning: A review.
Engineering Applications of Artificial Intelligence,
115:105151.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. 2022. Lora: Low-rank adap-
tation of large language models. ICLR, 1(2):3.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

210

https://doi.org/10.18653/v1/N16-1109
https://doi.org/10.18653/v1/N16-1109
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012


Shankar Kumar and Bill Byrne. 2004. Minimum bayes-
risk decoding for statistical machine translation. In
Proceedings of the Human Language Technology
Conference of the North American Chapter of the
Association for Computational Linguistics: HLT-
NAACL 2004, pages 169–176.

E. Matusov, S. Kanthak, and Hermann Ney. 2005a.
On the integration of speech recognition and statisti-
cal machine translation. In Proc. Interspeech 2005,
pages 3177–3180.

Evgeny Matusov, Gregor Leusch, Oliver Bender, and
Hermann Ney. 2005b. Evaluating machine transla-
tion output with automatic sentence segmentation. In
Proceedings of the Second International Workshop
on Spoken Language Translation, Pittsburgh, Penn-
sylvania, USA.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Ricardo Rei, José GC De Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André FT Martins.
2022a. Comet-22: Unbabel-ist 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585.

Ricardo Rei, Marcos Treviso, Nuno M Guerreiro,
Chrysoula Zerva, Ana C Farinha, Christine Maroti,
José GC De Souza, Taisiya Glushkova, Duarte M
Alves, Alon Lavie, et al. 2022b. Cometkiwi: Ist-
unbabel 2022 submission for the quality estimation
shared task. arXiv preprint arXiv:2209.06243.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96.

Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonol-
losa, and Marta R. Costa-jussà. 2022. SHAS: Ap-
proaching optimal Segmentation for End-to-End
Speech Translation. In Proc. Interspeech 2022, pages
106–110.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Haoran Xu, Young Jin Kim, Amr Sharaf, and
Hany Hassan Awadalla. 2023. A paradigm shift
in machine translation: Boosting translation perfor-
mance of large language models. arXiv preprint
arXiv:2309.11674.

Haoran Xu, Kenton Murray, Philipp Koehn, Hieu
Hoang, Akiko Eriguchi, and Huda Khayrallah. 2024a.
X-alma: Plug & play modules and adaptive rejec-
tion for quality translation at scale. arXiv preprint
arXiv:2410.03115.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024b. Contrastive pref-
erence optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint
arXiv:2401.08417.

Yingxin Zhang, Guodong Ma, and Binbin Du. 2024.
The nya’s offline speech translation system for iwslt
2024. In Proceedings of the 21st International Con-
ference on Spoken Language Translation (IWSLT
2024), pages 39–45.

211

https://doi.org/10.21437/Interspeech.2005-726
https://doi.org/10.21437/Interspeech.2005-726
https://aclanthology.org/2005.iwslt-1.19
https://aclanthology.org/2005.iwslt-1.19
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2022-59

