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Abstract

In this paper we describe NAVER LABS Eu-
rope submission to the instruction-following
speech processing short track at IWSLT 2025.
We participate in the constrained settings, de-
veloping systems that can simultaneously per-
form ASR, ST, and SQA tasks from En-
glish speech input into the following target
languages: Chinese, Italian, and German.
Our solution leverages two pretrained mod-
ules: (1) a speech-to-LLM embedding pro-
jector trained using representations from the
SeamlessM4T-v2-1large speech encoder; and
(2) LoRA adapters trained on text data on top
of L1lama-3.1-8B-Instruct. These modules
are jointly loaded and further instruction-tuned
for 1K steps on multilingual and multimodal
data to form our final system submitted for eval-
uation.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable success across various text-based natu-
ral language processing tasks (Achiam et al., 2023;
Touvron et al., 2023; Jiang et al., 2024; Yang et al.,
2024; Alves et al., 2024; Martins et al., 2024a),
motivating research into extending them to other
modalities. This has led to the development of mul-
timodal LLMs capable of processing speech, audio,
images and video (Team et al., 2023; Driess et al.,
2023; Rubenstein et al., 2023; Liu et al., 2023; Tang
et al., 2023; Défossez et al., 2024; Hu et al., 2024,
Laurencon et al., 2024; Huang et al., 2024; Nguyen
et al., 2025; Ambilduke et al., 2025).

This year IWSLT Instruction-following Speech
Processing Track focuses on the leveraging of
LLMs and speech foundation models (SFM)
to build solutions capable to perform multi-
lingual tasks from English speech input and
textual multilingual instructions (Abdulmumin
et al., 2025). NAVER LABS Europe (NLE)

* Equal contribution.

participates in the constrained setting of the
short track, where the tasks proposed are
automatic speech recognition (ASR), speech
translation (ST) and multilingual spoken question
answering (SQA). The target languages for ST
and multilingual SQA are Chinese, Italian and
German. The participants are allowed to use the
speech backbone SeamlessM4T-v2-large (Bar-
rault et al., 2023) and the text LLM
Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) for both training and data generation.

Our submitted systems leverage all the avail-
able data from the constrained settings, together
with data automatically obtained using both back-
bones. We train two types of systems in parallel:
(1) speech-to-text ASR/ST/SQA projectors that
project the averaged speech representation from
the SeamlessM4T-v2-1arge encoder to the embed-
ding space of a frozen L1ama-3.1-8B-Instruct;
(2) text-only LoRA adapters (Hu et al., 2022),
plugged on top of the same frozen LLM. Once
both systems are separately trained, we show that
we can merge them, increasing overall speech per-
formance, by fine-tuning for only 1K steps on mul-
timodal multilingual data.

This system paper is organized as follows. Sec-
tion 2 describes the preprocessing applied to the
data used in this challenge. Sections 3 and 4 de-
scribe our training pipeline and experimental set-
tings, respectively. Section 5 presents our experi-
ments and discussion. Section 6 presents the sub-
mitted system. Section 7 concludes the paper.

2 Data

For training our models, we leverage the data
from the constrained setting: CoVoST2 (Wang
et al., 2020), EuroParlST (Iranzo-Sanchez et al.,
2020) and SpokenSQuAD (Lee et al., 2018).
With the agreement of the organizers, we also
take advantage of the SeamlessM4T-v2-1arge to
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produce extra synthetic speech data (Seamless
TTS) and multilingual text data (Seamless MT).
Llama-3.1-8B-Instruct is used to rephrase SQA
answers. ACL 60-60 (Salesky et al., 2023) is used
for validation and evaluation only. We now present
our data preprocessing (Section 2.1) and prompt
format (Section 2.2).

2.1 Data Preprocessing

We produce both speech-to-text and text-to-text
instructions to train our systems. For the afore-
mentioned datasets, we produce the following
splits, where * denotes synthetic splits obtained
via SeamlessM4T-v2-large MT, { indicates
splits generated with SeamlessM4T-v2-large
TTS; and } marks those derived through
Llama-3.1-8B-Instruct-based rephrasing.

¢ CoVoST2:

— ASR and ST/MT (en-de; en-zh)

¢ EuroParlST:

— ASR and ST/MT (en-de; en-it)

* SpokenSQuAD:

— ASR' and MT (enf-de*; en-it*; enf-zh*)
— SQA/QA (en'-en; enf-de*; en'-it*; enf-zh*)

— fluent SQA/QA (enf-ent; enf-de**; ent-it*#;
enf-zh*%)

¢ ACL 60-60:
— ASR and ST/MT (en-de; en-it*; en-zh)

Below we detail dataset-specific preprocessing.
Statistics are presented in Table 1.

CoVoST2 and EuroParlST CoVoST2 covers
English to German and Simplified Chinese lan-
guage directions. EuroParlST covers English
to German and Italian. ASR splits for these
datasets were built by merging the existing lan-
guage splits and deduplicating the audio files. For
both, language-specific ST and MT splits are cre-
ated by aligning translations to English speech and
reference transcriptions, respectively.

SpokenSQuAD The SpokenSQuAD dataset is
organized into two jsons, train and test. Each split
is organized in themes, each with several para-
graphs. For each paragraph, TTS audio files are
available, aligned at the sentence level.! For each

'The format is themeID_paragraphID_sentencelD.

sentence, questions (each with several answers) are
available. We performed the following modifica-
tions to this dataset:

* Duplicated answers: we removed duplicated
answers to the same question using exact
string matching, as well as any questions that
required more than one audio file to answer,
since we are participating in the SHORT track.

* Validation set: we created a validation set by
selecting the first 20 themes of the training
set and removing them from training (3,102
entries).

* New TTS audio: we generate new TTS
audio files for the training set using
SeamlessM4T-v2-1large. Resynthesizing the
source audio for this dataset was necessary
due to existing dataset misalignment, which
we detail in Appendix Section A.1.

* Multilingual SQA/QA: we created multilin-
gual SQA/QA sets by first translating ques-
tions and answers to target languages us-
ing SeamlessM4T-v2-large. We then use
reference-free COMET?2 (Rei et al., 2022) to
filter out all pairs of questions and answers
that do not both score at least 0.85.

* Invalid splits: we created the invalid SQA
sets by deliberately mismatching context and
question themes, thereby creating unanswer-
able examples. The corresponding answers
were labeled as “Not answerable” in four lan-
guages (English, Italian, German and Chi-
nese), following the guideline answer pro-
vided by the task organizers. While we ac-
knowledge that a small, unknown subset of
these reassigned questions may still be answer-
able, we hypothesize that ensuring a thematic
mismatch between the reference context and
the question is the most effective strategy for
minimizing this issue.

e Fluent SQA/QA version: we created
an alternative SQA/QA training set using
Llama-3.1-8B-Instruct to regenerate the
dataset original answers as fluent sentences.
The motivation behind this was the observa-
tion that, since the original answers are made
of an exact extract of the reference audio/text,

2Unbabel/wmt22-cometkiwi-da
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Dataset Task Language # Samples
ASR en 289,413
CoVoST2 en-de 289,413
ST/MT en-zh 289,413
ASR en 35,372
EuroParlIST en-de 32,628
STMT en-it 29,552
ASR en 34,003
en-de 39,362
MT en-it 55,030
en-zh 25,078
en-en 34,0037
en-de 6, 5741
SpokenSQuAD SQA/QA en-it 16, 767"
en-zh 7,093"
en-en 32,320
en-de 4,169
fiuent SQAIQA 13,712
en-zh 3,424

Table 1: Training sets statistics by task. For ST/MT
sets, target side is duplicated. For SpokenSQuAD, f
highlights that the source speech is used twice (valid
and invalid questions, as described in Section 2.1).

the model had a difficult time answering some
out-of-domain questions fluently.’> More de-
tails are presented in Appendix Section A.2.

ACL 60-60 We use SeamlessM4T-v2-1arge to
generate Italian translations, since the data shared
only contained en-de and en-zh splits. We leverage
the dev set for checkpoint selection during training.
The eval set is used for testing.

2.2 Prompt Format

The goal of the short track of this challenge is to
produce a model that is capable to 1) transcribe En-
glish speech; 2) translate English speech into Ital-
ian, German and Chinese; 3) Answer multilingual
questions using English speech as input. In this
setting, the language of the question must match
the language of the answer.

To develop a model capable of smoothly switch-
ing between different tasks, we designed task
prompts with a consistent structure: regardless of
the task (ASR, ST, or SQA), the user turn begins
by encapsulating the speech embeddings within
textual tags. This is followed on a new line by
a task-specific instruction formulated as a ques-
tion, and finally, another line containing a common

3In the official IWSLT 2025 test set we observed examples
as the following. Question: “What are the names of the speak-
ers?” Our model’s answer: “yin and my colleague jiang”.
While the model answer is an exact and correct extraction

from the audio, we were unsure about how this would be
considered during evaluation.

suffix. The list of templates used is available in
Appendix Table 5.

3 Training Pipeline

Our training pipeline is illustrated in Figure 1. We
first train a speech projector on speech tasks (A),
and text LoRA weights on textual tasks (B). These
modules are then reloaded and adapted together on
both speech and textual tasks (C). In this section
we describe the key components used and the data
sampling strategy.

Foundation Models For speech, we leverage
SeamlessM4T-v2-large model, extracting speech
representations for all our audio data from its 24th
speech encoder layer (i.e. the last layer). Prior
to training, we average every 3 consecutive frame
vectors, reducing significantly the sequence length.
This simple trick allows us to train our models
with larger batches, while maintaining good perfor-
mance in speech tasks. All our models are built on
top of a frozen L1ama-3.1-8B-Instruct.

Speech Projector Architecture The speech pro-
jector consists of 4 Transformer encoder layers,
each with 8 attention heads. The input dimen-
sion is set to 1,024, the feed-forward network
dimension to 2,048, and the output dimension
to 4,096 to align with the embedding size of
Llama-3.1-8B-Instruct. A dropout rate of 0.1
is applied throughout, and the model employs pre-
layer normalization.

LoRA Adapters LoRA adaptation (Hu et al.,
2022) is applied to both the self-attention (Q/K
values, output projection) and feed-forward mod-
ules, and across all LLM layers. We use rank =
8, a = 16. We do not use dropout.

Data Sampling Strategy For training all our
models, we define an epoch as X steps across the
dataset, with X = %. To construct the
training data for each epoch, we sample batches
by first applying the predefined task-level sampling
ratios, followed by sampling based on the internal
domain-level splits within each task. In the case of
multimodal training (speech and text tasks mixed),
we consider speech as our main modality, using it
for defining epoch size and task ratio. Each time we
sample a task and language split that has a textual
equivalent (e.g., ST corresponds to MT; SQA to
QA), we also sample a batch from the correspond-
ing textual task. In practice, this means that every
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(A) Speech Projector
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Figure 1: Our training pipeline. A speech projector (A) and text LORA adapters (B) are trained in parallel using
speech-to-text and text-to-text data, respectively. These modules are then integrated during a brief multimodal

adaptation step (C).

time a batch from ST en-de split is sampled, a batch
from MT en-de follows it. We hypothesize that in-
terleaving similar speech and textual batches during
training provides regularization benefits, with the
text data serving as a stabilizing signal for learn-
ing (Pikabea et al., 2025).

4 Experimental Settings

Codebase We train our models using an internal
fork of torchtune (torchtune maintainers and con-
tributors, 2024), which allows us to process inter-
leaved representations of text and high-dimensional
vectors within the user turn during instruction tun-
ing. The high-dimensional vectors pass through our
speech projector, while the text prefix and suffix
user prompts are processed by the LLM embedding
layer. The obtained speech and text embeddings
are both concatenated and fed into the first layer of
the LLM which is trained on the masked input with
standard cross-entropy loss. Different learning rate
schedulers and optimizers are employed for the
speech projector and the LoRA weights, allowing
for more controlled and effective training of these
distinct model components.

Inference Settings We perform inference using
torchtune, with a batch size of 1 and greedy de-
coding. The maximum number of new tokens was
limited to 300. Unless explicitly stated otherwise,
this decoding strategy was consistently applied
across all experimental settings. Additional dis-
cussion regarding multimodal inference is present
in Appendix Section B.1.

Evaluation Metrics We evaluate our models on
speech (ASR, ST, SQA) and text (MT, QA) tasks
when relevant. For ASR, we score word error rate

(WER) using HuggingFace evaluate library with
default settings and MMS normalization (Pratap
et al., 2024). For ST/MT we present two evalua-
tion metrics: BLEU4 computed with sacrebleu
library (Post, 2018)*, and COMET (Rei et al.,
2022).> For SQA/QA, we use LLM-as-a-judge
evaluation scripts from the bergen library® (Rau
et al.,, 2024). We use their “yes/no” quality
assessment evaluation format including the English
reference text, the multilingual questions and the
generated answers. We report average accuracy
across four LLMs: EuroLLM-9B-Instruct (Mar-
tins et al., 2024b), Gemma3-12B-Instruct,
Gemma3-27B-Instruct (Team et al., 2025), and
Llama3.1-7@0B-Instruct.

Baselines We compare our results with both
backbones we use for training. We evaluate
MT and QA using the reference transcripts and
Llama-3.1-8B-Instruct in zero-shot settings,
and we evaluate SeamlessM4T-v2-1arge in both
ASR and ST.

5 Experiments

We now present our results for ASR, ST, and SQA.
Section 5.1 introduces the models used in our ex-
periments, followed by results and discussion in
Section 5.2.

5.1 Our Models

In this section, we describe the models used in our
experiments. Additional hyperparameter details
are provided in Appendix C.

*The signature is “nrefs:1lcase:mixedleff:noltok: TOKI
smooth:explversion:2.3.1”, with TOK = zh for Chinese,
and 13a for the other languages.

SUnbabel/wmt22-comet-da

®https://github.com/naver/bergen
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A.1 Speech Projector (ASR/ST) This version of
our speech projector focuses on ASR and ST tasks,
which do not require any complex reasoning capa-
bility of the LLM. For ASR, we sample CoVoST2
and EuroParlST with probabilities 0.8 and 0.2 re-
spectively. For ST, we sample proportionally to the
datasets size, and set language sampling probabili-
ties for the pairs en-de, en-zh, and en-it to 0.3, 0.4,
and 0.3 respectively. We trained for 4 epochs using
AdamW with learning rate of le — 4, a constant
learning rate scheduler, and gradient accumulation
of 16. This model trains for 4.6 days in a single
A100-80GB, and the best checkpoint is obtained
after 18.2 hours.

A.2 Speech Projector (ASR/ST/SQA) This ver-
sion of our projector extends A.l, including the
SQA task. We use task sampling probabilities of
0.4, 0.35, and 0.25 for ASR, ST and SQA respec-
tively. For the ASR and ST tasks, we use the same
data ratios as defined above. For the SQA task,
we leveraged both valid and invalid splits, with
language-specific sampling probabilities for En-
glish, German, and Italian set to 0.4, 0.3 and 0.3,
respectively. We do not train with Chinese SQA.
This model trains for 4.75 days in a single A100-
80GB, and the best checkpoint is obtained after
27.36 hours. The best checkpoints for both ver-
sions of the speech projector are selected using its
average ST performance on the ACL 60-60 dev
split across all language directions. Additional
hyper-parameters for A.1 and A.2 are presented in
Appendix Section C.1.

B. Text-only LoORA (MT/QA) We train LoORA
weights on top of L1ama-3.1-8B-Instruct using
all text-to-text data from Table 1, and by using
probability sampling of 0.6 and 0.4 for MT and
QA respectively. We train for one epoch using
AdamW with learning rate of 3e — 4, weight decay
of 0.1, and 100 warm-up steps. Batch size of 10,
and gradient accumulation of 8 is used. This model
trains for approximately 4 days in a single A100-
80GB. We select the last checkpoint.

C. Multimodal (A.x + B) We restart training by
using both one of the speech projectors detailed
above, and the text-only LoRA weights. We adapt
our models using all speech (ASR/ST/SQA) and
textual (MT/QA) tasks. We experiment with two
versions of the SQA/QA training sets: the original
short lowercase answers, and the fluent SQA/QA
version we created. In preliminary experiments, we

observed that as little as 100 steps were enough to
successfully integrate the projector representation
to the LoRA weights, but the best performance
gains were obtained with 1K steps, which is the
value we adopt for the experiments presented in
the next section. We use learning rate of le — 5
for the speech projector, and of 3e — 4 for the
LoRA weights. We use a batch size of 16, and
gradient accumulation of 16. This model trains for
approximately 6 hours in a single A100-80GB. We
select the last checkpoint.

5.2 Results and Discussion

Table 2 presents our results for ASR, ST/MT
and SQA/QA. ACL 60-60 eval set is used for
ASR and ST/MT. SpokenSQuAD official test set
is used for English SQA/QA. A smaller auto-
matically obtained version is used for multilin-
gual SQA/QA.” In the top portion, we present
results for Llama-3.1-8B-Instruct before and
after LORA fine-tuning on text-only data. The mid-
dle portion of the table presents the speech back-
bone (SeamlessM4T-v2-large) and our projector-
only models: for these rows, the only adaptation is
the training of a speech projector that is plugged
to a frozen L1lama-3.1-8B-Instruct. Finally, the
bottom portion of the table presents results from
the merging of our text backbone (text-only LoRA)
and the projectors of the middle portion via multi-
modal training. Additionally, ACL 60-60 ASR/ST
dev results are presented in Appendix Table 7.

Performance of Text-only Models (topline) We
observe that zero-shot Llama-3.1-8B-Instruct
presents strong performance in both MT and QA
tasks. By adding LoRA adapters on top of it, we in-
crease translation performance in detriment of QA
performance. We partially attribute this drop in QA
performance to the SpokenSQuAD answer format,
that is very short and might be judged as incom-
plete by the LLM evaluation. However, we also
scored ROUGEI1 (Lin, 2004) recall, which mea-
sures the intersection between the reference answer
tokens and the produced one, finding that those
scores were similar to the LLM-as-a-judge metric.®
This result confirms that the QA performance is
worse after text adaptation.

"Statistics for the multilingual test set are presented in
Appendix Table 3.

8For en, de, it and zh splits ROUGEI recall scores were
respectively: 81.4%, 63.1%, 69.5%, 79.0%.
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ASR (WER) ST/MT (BLEU) ST/MT (COMET) SQA/QA (LLM-AS-A-JUDGE)
Model (fine-tuning tasks) en en-de en-it en-zh | en-de en-it en-zh | en-en en-de en-it en-zh
Text-only Models (MT/QA)

Llama-3.1-8B-Instruct (zero-shot) - 2388 3551 45.89 | 0.779 0.806 0.809 | 91.8% 92.0% 88.6% 84.6%
B. Text-only LoRA (MT/QA) - 41.69 4831 53.65 | 0.838 0.863 0.867 | 83.4% 757% 714% 69.5%
Speech-only Models (ASR/ST/SQA)

SeamlessM4T-v2-large 17.6 2795 43.54 33.58 | 0.737 0.788 0.753 - - -
A.1 Speech Projector (ASR/ST) 19.8 27.58 36.30 40.62 | 0.760 0.796 0.793 - - - -
A.2 Speech Projector (ASR/ST/SQA) 19.9 2720 36.60 40.72 | 0.760 0.797 0.792 | 0.7% 05% 03%  0.6%
Multimodal Models (ASR/ST/SQA)
A.1 + B (ASR/ST/MT/SQA/QA) 17.7 30.37 41.22 4276 | 0.758 0.791 0.795 | 79.8% 71.9% 694% 65.5%
A.1 + B (ASR/ST/MT/fluentSQA/fluentQA) 18.6 30.75 40.48 42.51 | 0.755 0.788 0.789 | 90.3% 852% 829% 76.4%
A.2 + B (ASR/ST/MT/SQA/QA) 18.2 2991 3813 43.12 | 0.759 0.786 0.799 | 80.5% 74.9% 68.0% 66.7%
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA) 18.7 29.68 3228 4338 | 0.763 0.782 0.798 | 91.1% 87.3% 84.8% 78.0%

Table 2: Results for the different models and backbones used in this work. ASR and ST scores are obtained using
ACL 60-60 eval set, while SQA/QA scores are obtained using SpokenSQuAD test set.

Speech Projectors We observe that both A.1 and
A.2 are equally capable of performing ASR and
ST, which is consistent with the fact that both are
trained on the same data. However, we observe that
A.2, the model that trains with SQA data, is unable
to produce SQA output. We believe this is a limi-
tation of the projector approach: we train a model
capable of biasing the output of the LLM, which
works well for content tasks such as ASR and ST.
For a reasoning task, further adaptation might be
required in order to force the model to comply to
the instruction. Additional results for CoVoST2
and EuroParlST are presented in Appendix Table 6,
and they confirm that both models are very similar
in ST performance.

Multimodal Training We observe that our ef-
ficient multimodal training is beneficial, consis-
tently increasing scores for ASR and ST. Our mul-
timodal models outperform the speech projector
models by 1-2 WER points in the ASR task. For
ST task, in BLEU scores, the multimodal mod-
els always outperform speech projector models
while in COMET there are some mixed results,
with some models presenting slight deterioration
for some language pairs. Finally, in the SQA task,
while the speech projector model A.2 failed to
learn the task effectively, our multimodal mod-
els achieved strong results, outperforming the text
topline (B) performance across all language set-
tings, and reaching scores that are close to the
Llama-3.1-8B-Instruct topline, despite work-
ing from the speech signal.

ASR Performance We observe that our mod-
els are competitive with SeamlessM4T-v2-large,
scoring slightly worse than the baseline for some

configurations. Overall, for ACL 60-60 we ob-
serve quite elevated WER scores, compared to the
ones we obtained for the training ASR datasets (see
Appendix Table 6). We believe this is partially
due to the nature of the dataset. We manually in-
spected some of the data, observing that some of
the audio files contain leffover fragments from pre-
vious sentences. Moreover, looking at the tran-
scriptions, we observed that these faithfully repro-
duced the audio, without applying any normaliza-
tion or removing disfluencies (e.g. repeated and
filler words were kept). We find that disfluent tran-
scriptions are hardly produced by LLM-based mod-
els or SeamlessM4T-v2-1arge, that both tend to
translate the content into a clean format. Therefore,
we believe the WER scores presented in our results
table are not representative of the models real ASR
capabilities.

German MT/ST Performance Across all ex-
periments, we observed that our models consis-
tently performed poorly on German, the language
for which we had the largest amount of training
data. This could be attributed to the LLM’s inher-
ent limitations in handling German, as reflected
by its relatively lower performance in zero-shot
settings (Llama-3.1-8B-Instruct) for the en-de
pair for both BLEU and COMET, compared to en-
it and en-zh. Nonetheless, training the model on
multilingual speech-only data for the ST task led to
an improvement of 3—4 BLEU points. Incorporat-
ing multimodal data (i.e., both ST and MT) yielded
an additional gain of 2-3 BLEU points, further en-
hancing performance. For COMET, speech-only
and multimodal training does not improve COMET
scores over the text topline.
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Overall ST Performance We observe that the
speech projectors (A.1 and A.2) outperform the
backbone SeamlessM4T-v2-1arge for en-zh using
BLEU, and in all languages using COMET. Then,
multimodal training further increases the BLEU
scores, but in some cases, this training slightly
hurts the COMET scores. Since this difference
in COMET is very small (en-de 0.005; en-it 0.008;
en-zh 0.004), and since the BLEU scores increase,
we attribute this to some formatting bias that could
be happening during adaptation. The Appendix
Section C.2 discusses the matter further.

SQA performance Overall, we observe that by
replacing SQA by fluent SQA, we drastically in-
creased our SQA/QA scores. However, results for
ASR slightly deteriorate. We hypothesize that this
is due to the old SQA task being closer to the ASR
task. For the original SQA, the answer is always
a direct transcript of a portion of the input text,
which as a task has a better synergy with ASR. In
intermediate experiments, we observed that adding
the original SQA data to the multimodal training
was always beneficial for the ASR performance of
the model.

Final Discussion Overall our results show that
it is possible to train text (B) and speech adap-
tation (A) in parallel, and then to align both via
joint instruction tuning (C). By separating the pre-
training of both components, we are able to focus
hyper-parameter search at the merging stage, using
two components that are already competent in their
respective modalities. Despite improvements in
scores over speech-only models, our best models
do not beat the topline working from text for ST,
but they do outperform SeamlessM4T-v2-large
across all language pairs and metrics. Moreover,
for SQA, we highlight that the obtained scores are
in some cases very close (en-en, en-it) to the text
topline, despite using speech as input context.

6 Submitted Model

Table 2 presented the results for our multimodal
models. Due to the reasons highlighted in Sec-
tion 2.1, we only consider two models for submis-
sion: the ones which were trained with fluent SQA.
This is because we believe that these models will
suffer the least from domain shift, since they are
capable of producing full fluent sentences for SQA.

We observe that both models (A.1 and A.2-
based) seem to be equally capable of ASR (18.6

and 18.7). We evaluated language confusion for
these two splits, finding that the output produced
was English in 98% and 98.5% of the cases respec-
tively. These models differ more in terms of ST
performance: they obtained averages of 37.9 and
35.1 BLEU score points respectively. Finally, these
models present the following average accuracy for
SQA: 83.7% and 85.3%. In summary, while the
A.1-based model seem much more capable in ST,
the A.2-based model has a very slight edge in ASR
and SQA.

Therefore, we decided to select the A.1-based
model as our primary submission model. For pro-
ducing the decoding of the test set, we transform
the instructions into our own prompt format, and
submit the output of the same model, with the
same decoding settings for all splits: greedy de-
coding using 150 as maximum number of tokens.
A brief post-submission discussion is provided in
Appendix Section C.2.1.

7 Conclusion

In this paper, we presented NLE’s submission to the
instruction-following speech processing short track
at IWSLT 2025, constrained setting. We developed
multimodal models that simultaneously performed
ASR, ST, and SQA tasks from English speech input
into Chinese, German and Italian. Our approach is
simple yet effective: we decoupled training, train-
ing a speech projector on speech-to-text tasks, and
LoRA adapters on text-to-text tasks. Then, both
modules are loaded and the resulting multimodal
model was instruction-tuned for a few steps on mul-
tilingual and multimodal data to produce the final
system submitted for evaluation.
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en de it zh
8,026 3,272 783 627

# lines

Table 3: Statistics for the SpokenSQuAD SQA/QA
test sets. The multilingual version is obtained via
SeamlessM4T-v2-large translation of questions and
answers, with posterior quality filtering based on
COMET scores.

A Data Preprocessing and Prompts

A.1 SpokenSQuAD TTS data

In this section we explain the misalignment we
found in the SpokenSQuAD train split, as well as
our procedure for creating the new TTS split.

Train Split Misalignment During the prepro-
cessing of the train split of SpokenSQuAD, we
witnessed cases of misalignment: for some given
paragraphs, the corresponding audios were shifted
by a factor varying between 1 and 3. For instance,
the first audio in a given paragraph was incorrectly
named as “1”, instead of “0”, shifting all the para-
graph’s alignment. We listened to all cases we were
able to flag, manually correcting them. However,
we believe this hinted to a deeper alignment issue,
as the obtained training set seemed to be difficult
to learn. We observed that models trained with this
training set included were unable to generalize to
SpokenSQuAD’s validation and test sets, always
producing random Wikipedia sentences when re-
ceiving the SpokenSQuAD’s TTS voice as input.

New TTS Source Audio Generation We use
SeamlessM4T-v2-1large to produce new source
audio for the SpokenSQuAD training set (34,003
sentences). For each entry in this set, we re-
synthesize its SQuAD reference text by randomly
sampling one of the 200 speakers present in
SeamlessM4T. This results in a more diverse train-
ing set, since the original TTS used a single female
voice for all sentences. We also generated extra
speech data using all different questions present
in this training set, producing a second ASR set
containing speech for 28,000 questions.

A.2 SpokenSQuAD Answers Regeneration

SpokenSQuAD answers are direct extracts from the
reference text, formatted as lowercase text without
punctuation. We discovered this presented a limita-
tion when training our models on SQA. The trained
models over-fitted to that format, solving SQA as

a transcription task of the relevant portion of the
source audio. While conceptually correct, this ap-
proach can result in generalization issues if more
than one extract is required to answer the ques-
tion, as the model never observed such a setting
during training, and it will thus have the tendency
to transcribe everything between the two points of
interest.

We use Llama-3.1-8B-Instruct to regenerate
all answers in our multilingual training set. The
prompt used for regeneration is presented in Ta-
ble 4. After regeneration, we remove answers
generated in the wrong language using an auto-
matic language identification tool. Statistics are
presented in Table 1.

A.3 Data Statistics

Table 3 presents the statistics for the multilingual
test set of SpokenSQuAD.

A4 Our Prompts

Table 5 presents our prompt format. We designed
our prompts to be very similar, independently of the
target task. The language of the question defines
the answer’s target language.

B Additional Results

CoVoST2 and EuroParlST Results Table 6
presents results for relevant models on the in-
domain test sets from CoVoST2 and EuroParlST.
We observe that the multimodal adaptation im-
proves the speech projectors’ ASR and BLEU
scores, while slightly decreasing COMET scores.

ACL 60-60 Dev Results Table 7 presents
ACL 60-60 dev split scores for some of the models
presented in the main results table (Table 2).

SQA/QA BERT Scores Table 8 presents BERT
scores for the multimodal models presented in the
main results table (Table 2), computed after the
evaluation period and using the same settings from
Abdulmumin et al. (2025). We observe that scores
for languages other than English over the valid test
set are considerably lower than the LLM-as-judge
scores in Table 2. Prior to the evaluation period we
had evaluated our models using BERT score and
x1m-roberta-large, which yielded much higher
scores, similar to those obtained in the LLM-as-
judge evaluation. Those scores are presented in
Table 9.
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Context: [REFERENCE TEXT]
Question: [QUESTION]
Answer: [ANSWER]

Instruction: Reformulate the answer to be a natural sounding sentence that answers the question in the correct language.
Produce text in the same language of the question and answer. Do not make it too long, or add too much information.

Don’t add anything else to your answer.

Table 4: Regeneration prompt we gave to L1ama-3.1-8B-Instruct to regenerate the answers in the training set of

SpokenSQuAD.

User Prompt

Speech Prefix Content: <speech>[SPEECH EMBEDDINGS]</speech>\n

Text Prefix Content: <text>[SPEECH TRANSCRIPTION]</text>\n

ASR Question: Can you transcribe the Speech content into English text?\n

ST/MT (de)  Question: Konnen Sie den Inhalt der Rede in den deutschen Text iibersetzen?\n

ST/MT (it) Question: Puoi tradurre il contenuto del discorso in testo italiano?\n

ST/MT (zh)  Question: /REEFEIE N 2B AL A SCIE N\n

SQA/QA Question: [QUESTION]\n

Suffix Your answer:

Table 5: The user turn prompt template used for training our models. For speech tasks, the user prompt is given by

Speech Prefix+Task+Suffix, for text tasks, the user prompt is given by Text Prefix+Task+Suffix.

ST/MT instructions were obtained by translating the instruction “Can you translate the Speech content into
[German/Italian/Chinese] text?” to corresponding target languages using SeamlessM4T-v2-large.

| ASR | ST
CoVoST2 EuroParIST CoVoST2 EuroParIST
en-de en-zh en-de en-it
WER CER | WER CER | BLEU COMET | BLEU COMET | BLEU COMET ‘ BLEU COMET
A.1 (ASR/ST) 784 370 | 1121 730 | 3024 0789 | 40.14  0.806 | 25.06 0.840 | 27.55  0.860
A.2 (ASR/ST/SQA) ‘ 721 344 ‘ 10.98 7.18 ‘ 30.68  0.789 ‘ 40.63  0.807 ‘ 2521 0.841 ‘ 2836 0.859
A.1 + B (ASR/ST/MT/fluentSQA/fluentQA) | 7.59 355 | 1120 7.20 | 3142 0770 | 42.19  0.802 | 27.16  0.809 | 27.86  0.842
A2 + B (ASR/ST/MT/fluentSQA/fluentQA) | 7.01  3.25 ‘ 1082 7.11 ‘ 31.83 0772 ‘ 4236 0.804 ‘ 2670 0.812 ‘ 2777 0.848
Table 6: ASR and ST results for the test sets of CoVoST2 and EuroParIST.
ASR (WER) ST/MT (BLEU) ST/MT (COMET)
Model (fine-tuning data) en en-de en-it en-zh | en-de en-it en-zh
Text-only models (MT/QA)
Llama-3.1-8B-Instruct (zero-shot) - 21.27 33.81 44.01 | 0.732 0.757 0.755
B Text-only LoORA (MT/QA) - 3694 4981 5233 | 0.782 0.815 0.822
Speech-only models (ASR/ST/SQA)
SeamlessM4T-v2-large 25.3 2377 37.84 28.17 | 0.669 0.713 0.663
A.1 Speech Projector (ASR/ST) 15.9 26.77 36.34 38.65 | 0.718 0.750 0.753
A.2 Speech Projector (ASR/ST/SQA) 15.9 26.85 36.09 38.85 | 0.720 0.749 0.753
Multimodal models (ASR/ST/SQA)

A.1 + B (ASR/ST/MT/SQA/QA) 13.9 28.74 41.73 40.72 | 0.716 0.759 0.756
A.1 + B (ASR/ST/MT/AluentSQA/fluentQA) 14.4 2720 42.01 4123 | 0.712 0.752 0.753
A.2 + B (ASR/ST/MT/SQA/QA) 17.2 29.18 39.14 40.99 | 0.719 0.755 0.762
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA) 15.5 27.62 3322 41.74 | 0.726 0.749 0.764

Table 7: ACL 60-60 dev set results for the different models and backbones used in this work.
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Valid Questions Invalid Questions
en-en en-de en-it en-zh ‘ en-en en-de en-it

0975 0532 0.541 0.665 | 0.999 0.984 0.990 0.988
0975 0.536 0.546 0.666 | 0.999 0.990 0.989 0.991

en-zh

A.1 + B (ASR/ST/MT/fluentSQA/fluentQA)
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA)

Table 8: BERT scores for SpokenSQuAD test sets computed using the same settings from the organizers (default
model, bert_score version 0.3.13). Invalid questions corresponds to a version of the test set in which the questions
are impossible to answer given the speech context.

Valid Questions
en-de en-it

Invalid Questions
en-zh | en-en en-de en-it

0996 0997 0.996 0.997
0995 0.998 0.998 0.998

en-en en-zh

0.857 0.869 0.863 0.899
0.857 0.869 0.863 0.896

A.1 + B (ASR/ST/MT/fluentSQA/fluentQA)
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA)

Table 9: BERT scores for SpokenSQuAD test sets computed using x1m-roberta-large. All other settings are
equal to Table 8. Invalid questions corresponds to a version of the test set in which the questions are impossible to
answer given the speech context.

Invalid Questions In Table 8 we also present eralisierung testen, konnte es mir so vorkommen,

BERT scores for an invalid multilingual test set,
made of the same reference audio files from the En-
glish test split (8,026 examples), but with incorrect

als ob wir in diesem Fall die Mddchen schlafen,
und ich sehe, dass sie schlafen, und ich sehe, dass
sie schlafen, (..) und ich sehe, dass sie schlafen,

questions. We observe that the BERT scores for  und ich sehe, dass”
this invalid split is very high, showcasing that our
models are fully capable of respecting the instruc-

tion format for incorrect answers.

B.1 Inference Issues

Through manual inspection of our model outputs,
we observed that in a small number of cases, in-
ference degenerates, resulting in repeated words or
sentences until the maximum token limit is reached.
We experimented with various inference strategies,
greedy decoding, top-p, and top-k sampling, as
well as different temperature settings, but were un-
able to identify a configuration that fully eliminated
the issue. We hypothesize that a lightweight post-
processing model could offer a simple and effective
solution to mitigate this problem. Below we give
some examples of inference degeneration for Chi-
nese and German.

An example of inference degeneration in Chi-
nese:

“FE 28 = B AR AT A A AR IR SRR A R
ok, Flan, EEEE ISR S T E
FHIFNR, BB TISRRERANR, EE
I TYIGRIRERIFIR, 8 E @ TGRS
ORI, (il R TI0)I4R

An example of inference degeneration in Ger-
man:

“In Zusammenhang mit der semantischen Par-
sierung, wenn wir nach der kompositionalen Gen-

197




C Models Hyperparameters

Table 12 lists the data splits used for each model
presented in results Table 2. Table 13 presents the
probability sampling employed during training.

C.1 Speech Projector (A) Hyperparameters

Architecture We explored multiple
architectures to map speech  embed-
dings from  SeamlessM4T-v2-large to
Llama-3.1-8B-Instruct. To train the speech
projector, speech features extracted from
SeamlessM4T-v2-1large are input to the projector,
and the resulting outputs are passed through a
frozen Llama-3.1-8B-Instruct model. The
speech projector, initialized with random weights,
is trained using cross-entropy loss on an ASR
task. Preliminary experiments demonstrated that
the Transformer encoder architecture consistently
outperformed both the Conformer and Multi-Layer
Perceptron architectures of similar parameter sizes.
Consequently, we adopt the Transformer encoder
architecture for all experiments presented in this
work.

Averaged Features As mentioned, in prelimi-
nary experiments, we experimented using the origi-
nal output of SeamlessM4T-v2-1large, as well as
performing average every 2 or 3 frames. We ob-
serve that averaging every 3 frames results in mod-
els that are considerably faster to train, while main-
taining similar performance to the original output.

Data Ratio For the ASR task, preliminary exper-
iments revealed that training solely on EuroparlST
ASR data resulted in poor generalization, whereas
incorporating CoVoST ASR data significantly im-
proved model robustness. For the ST task, we
defined the data sampling ratios according to the
target language distribution across the CoVoST and
EuroparlST datasets.

Batch Size ASR and ST tasks use a batch size of
16, while SQA is batched with size 8, due to the
longer user prompts.

Checkpoint Selection Checkpoints were se-
lected based on development set performance
across three or four configurations: ASR-best, ST-
best, SQA-best (A.2-only), and an All-best check-
point combining all tasks. We only present results
for ST-best checkpoints, which we found to pro-
duce the best scores in ST compared to the other
versions, while only marginally decreasing scores

in ASR compared to the ASR-best checkpoint. We
do not consider SQA-best checkpoints, as the over-
all SQA performance of projector-only models is
very low regardless of the checkpoint selection
method.

Exclusion of Chinese SQA Data During the
training of the speech projector (A.2), we excluded
Chinese SQA data. This was due to parallel ob-
servation in B models (text-only), in which we
observed that the LLM failed to generate coherent
Chinese answers. While later we were able to con-
firm that the issue did not come from the Chinese
split itself, this model was obtained simultaneously
to that finding, explaining why the data was not
included in this setting.

C.2 Multimodal Models (C) Hyperparameters

In this section we present some ablation experi-
ments for our multimodal adaptation setup. The
experiments are performed by producing variants
of the A./+B model, which is the model we submit-
ted to the challenge. Table 10 present ACL 60-60
dev split ASR and ST results that are discussed in
the next paragraphs.

Impact of Parameters Count During our multi-
modal merging step, we combine text-only LoRA
weights with our speech projector, yielding bet-
ter scores. Since this increase in scores could be
simply due the additional parameters, we trained
a variant of our model in which the merging step
is performed using a randomly initialized LoRA.
We observe that our training setup indeed benefits
from any additional weights during adaptation: the
models trained with a randomly initialized LoRA
outperform the speech projector backbone (A.1).
Adding textual tasks in this setting does not help the
system, which we hypothesize is due to the LoORA
weights not being pretrained on the textual task.
Finally, adapting using a pretrained LoRA model
further improves ASR and ST scores for two out of
three language directions (en-it and en-zh).

Impact of Textual Tasks For the multimodal
models presented in the main paper, we adapt
pretrained modules leveraging speech and textual
tasks. We thus investigated the impact of having
aligned speech and textual tasks during this adap-
tation. We observe that incorporating textual tasks
has little impact on ASR performance, while sub-
stantially improving ST performance for Italian.
The results are less favorable for German and Chi-
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ASR ST (BLEU) ST (COMET)

WER CER ‘ en-de en-it en-zh ‘ en-de en-it en-zh
A.1 (ASR/ST) 15.9 7.7 ‘ 26.77 36.34 38.65 ‘ 0.718 0.750 0.753
A.1 + random LoRA (ASR/ST/SQA) 17.4 82 |29.07 37.04 41.47 | 0.732 0.760 0.761
A.1 + random LoRA (ASR/ST/SQA) + (MT/QA) 16.4 7.7 | 28.07 38.88 41.24 | 0.725 0.755 0.760
A.1 + B (ASR/ST) 13.8 64 | 2791 28.88 41.70 | 0.728 0.743 0.760
A.1 + B (ASR/ST) + (MT) 14.9 72 12609 3297 41.10 | 0.715 0.741 0.755
A.1 + B (ASR/ST/SQA) 14.1 6.5 | 29.02 30.08 41.85 | 0.722 0.743 0.763
A.1 + B (ASR/ST/SQA) + (MT/QA) 14.4 6.5 | 27.20 42.01 4123 | 0.712 0.752 0.753
A.1 + B (ASR/ST/SQA) + (MT/QA) No synthetic data 18.8 9.2 | 2847 3297 40.03 | 0.717 0.741 0.753
A.1 + B (ASR/ST/SQA) + (MT/QA) Only synthetic data  13.9 6.6 | 29.71 39.80 42.04 | 0.721 0.751 0.754
A.1 + B (ASR/ST/SQA) + (MT/QA) 2K steps 14.3 6.4 ‘ 27.09 40.53 41.53 ‘ 0.713 0.753 0.755

Table 10: ACL 60-60 dev set ASR and ST scores for variants of our best model (A.1+B).

ASR/ST/SQA  average WER average BLEU
02/04/04 16.03 37.58
02/0.5/0.3 17.72 36.36
02/0.6/0.2 16.24 36.62

0.25/0.5/0.25 16.58 37.08
0.3/0.5/0.2 16.23 37.30

Table 11: ACL 60-60 dev and test set average WER and
BLEU scores for our best model (A.1+B) by varying
the ASR/ST/SQA ratios.

nese: in German, the addition of textual tasks leads
to a performance drop, whereas in Chinese, the
decline is minimal. Overall, these findings suggest
that the textual modality may be particularly benefi-
cial in low-resource settings. Italian, which has the
fewest training examples in our dataset, appears to
benefit the most from this adaptation.

Impact of SQA Examining the results in Ta-
ble 10, we observe that incorporating the SQA and
QA tasks leads to improvements in both ASR and
ST performance. We hypothesize that the SQA
task enhances the model’s adherence to the prompt
by encouraging it to attend to the information pro-
vided, thereby reducing both task and language
confusion.

Inclusion of Synthetic textual Data Table 11
presents the results of our investigation into the
inclusion of potentially noisy synthetic textual data
during training. We observe that excluding this
synthetic data (No synthetic data) negatively af-
fects both BLEU and WER scores. Conversely,
training exclusively with synthetic data (Only syn-
thetic data) yields improved performance across
all metrics. We attribute this to the fact that the

target text in the non-synthetic data is duplicated
from the speech task (i.e. the MT set is built from
the ST set), leading to reduced data diversity. Re-
moving this duplicated data introduces greater vari-
ability during the adaptation phase, which appears
beneficial. Finally, using both types of data leads
to improved performance for all languages except
German. As discussed in the main paper, we hy-
pothesize that this discrepancy is due to issues in
the German training data sourced from EuroParIST
and CoVoST2.

Number of Adaptation Steps Table 10 presents
results for a version of our model trained for twice
as long (2K steps). At this point, we observe
signs of training saturation: differences in ASR
and COMET scores across all metrics are minimal,
and BLEU scores drop for both German and Italian.
These results suggest that our adaptation step does
not require a considerable number of training steps.

Task Ratios On our preliminary experiments, we
tested different task ratios, selecting the one with
best average WER and BLEU scores over both
ACL 60-60 dev and test set. Table 11 presents
those results.

C.2.1 Post-submission Discussion

Due to time constraints, many of our ablation stud-
ies were conducted after the initial submission.
Upon analyzing these results (Table 10), we hy-
pothesize that there may be an issue with the Ger-
man training data: the more the model is exposed
to it during training, the worse the COMET scores
become. This hypothesis is supported by our Only
synthetic data results, which show improved BLEU
scores for German when we exclude textual data
from EuroParlST and CoVoST2. Additionally, our
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CoVoST EuroParIST SpokenSQuAD
ASR ST MT | ASR ST MT | ASR MT SQA/QA fluent SQA/QA

B Text-only LoORA X X v X X v X v v X
A.1 Speech Projector (ASR/ST) 4 X 4 v X 4 X X X
A.2 Speech Projector (ASR/ST/SQA) 4 X 4 v X 4 X/ (nozh) X
A.1 + B Multimodal model (ASR/ST/MT/SQA/QA) v v o/ 4 v o/ v 4 4 X
A.1 + B Multimodal model (ASR/ST/MT/fluentSQA/fluentQA) v v v v v v v v X v
A.2 + B Multimodal model (ASR/ST/MT/SQA/QA) v o/ 4 v 7/ v 4 4 X
A.2 + B Multimodal model (ASR/ST/MT/fluentSQA/fluentQA) v/ o/ v v o/ v 4 X v

Table 12: List of datasets and splits used for each model presented in Table 2. Statistics for number of examples can
be seen in Table 1.

ASR ST/MT SQA/QA (valid/invalid)
tas-k tas-k en-de en-it en-zh tas-k en-en en-de en-it en-zh
ratio | ratio ratio
Text-only LoRA X 0.6 04 0.3 0.3 04 02/005 02/005 0.2/0.05 0.2/0.05
A.l 0.4 0.6 0.3 0.4 03 X X X X X
A2 0.4 0.35 0.3 0.4 0.3 025 02/02 0.15/0.15 X 0.15/0.15
A.l1+B 0.2 0.4 0.4 0.3 0.3 04 02/005 02/0.05 02/005 0.2/0.05
A2+B 0.2 0.4 0.4 0.3 0.3 04 02/005 02/0.05 02/005 0.2/0.05

Table 13: Two-level sampling ratio for each model.

ablations suggest that using textual data selectively,
rather than uniformly, may be more effective. In
particular, textual supervision appears to be most
beneficial for Italian, with more limited gains ob-
served for the other two language directions.

Regarding SQA, we were surprised to find that
the evaluation setup provided by the organizers
yields scores that differ significantly from those
obtained with our own evaluation protocol (see
Tables 8 and 9). These discrepancies also extend to
the scores we obtain using LLM-as-judge (Table 2).
We plan to further investigate the limitations of our
current evaluation setup to better understand these
inconsistencies.
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