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Abstract

In this paper, we design a Speech-to-Text Trans-
lation (ST) system to translate English into
Hindi, Bengali, and Tamil, and vice versa.
We explore both cascaded and End-to-End
(E2E) approaches as part of the IWSLT 2025
Indic shared task. In the cascaded systems,
we leverage the pre-trained Wav2Vec2 model
from AI4Bharat’s Vakyansh project, and then
fine-tune it for Automatic Speech Recognition
(ASR). The resultant ASR outputs are then
translated using the adapted IndicTrans2 Neu-
ral Machine Translation (NMT) model with
IWSLT task-specific data. In the E2E approach,
we train models from scratch using only the
IWSLT dataset, leveraging the Fairseq Speech
Translation framework which uses transformer-
based encoder-decoder architecture optimized
for multilingual speech inputs. In the paper, the
performance of these two distinct approaches
in handling low-resource Indic speech transla-
tion tasks is compared. Although in the E2E
approach, the pre-trained Acoustic model is not
leveraged, its results in the En-Indic setting are
impressive. However, this approach does not
perform well in the Indic-En setting due to lack
of sufficient training data. On the other hand,
the cascaded approach leverages pre-trained
models and outperforms for all language pairs.

1 Introduction

In a global and borderless economy, seamless com-
munication is essential, with speech being the most
natural medium. Overcoming language barriers
through intelligent systems is crucial for real-time
interaction and bridging the digital divide (Arora
et al., 2013). Speech-to-text translation has a vital
role to play in facilitating communication across
language barriers. Recent advancements in the
area of speech technology have resulted in state-
of-the-art performance in the speech recognition
task (Baevski et al., 2020a; Radford et al., 2022)

and machine translation (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2016; Vaswani et al., 2017) for almost all major
languages. This encourages the advent of direct
speech translation of speech, leading to the rise
of two different paradigms of achieving the same.
They are: Cascaded and End-to-End speech trans-
lation. In the cascaded speech-to-text (ST) transla-
tion paradigm, the task of translating speech from
a source language to text in a target language is
broken down into two distinct modules. The recent
rise of cascaded ST systems (Mujadia and Sharma,
2023; Prakash et al., 2023; Mhaskar et al., 2023)
for translating the educational content in Indian
languages show the effectiveness of this approach.

Automatic Speech Recognition (ASR): The
input speech in the source language is first tran-
scribed into text using an ASR system.

Machine Translation (MT): The transcribed
source language text is then translated into the tar-
get language using a Neural Machine Translation
(NMT) system.

This pipeline-based approach is advantageous
for modular development, allowing the ASR and
MT components to be trained independently and
optimized using speech datasets, even when paral-
lel ST corpora are limited. However, a limitation of
cascaded ST is the potential propagation of errors
from ASR to MT, where transcription errors can
negatively impact the translation quality. End-to-
End Speech Translation is another paradigm that
directly translates spoken utterances in one lan-
guage into text in a target language, bypassing
intermediate steps such as ASR and MT (Weiss
et al., 2017). This approach enables the model
to learn joint representations that capture both
acoustic and linguistic features, resulting in effi-
cient inference and reduced error propagation com-
pared to traditional cascaded pipelines (Sperber
and Paulik, 2020). Leveraging architectures such
as encoder-decoder transformers, end-to-end ST
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Lang-pair Train Dev Test
# of Audios Total duration # of Audios Total duration # of Audios Total duration

En–Hi 205,201 680h 54m 11,669 40h 47m 36,245 93h 13m
En–Bn 205,203 680h 54m 11,671 40h 48m 36,245 93h 13m
En–Ta 205,203 680h 54m 11,671 40h 48m 36,245 93h 13m
Hi–En 248,872 653h 52m 397 0h 59m 579 1h 20m
Bn–En 64,868 157h 57m 395 1h 0m 866 1h 15m
Ta–En 211,303 478h 9m 457 0h 59m 956 2h 11m

Table 1: Statistics of the speech translation dataset provided for the IWSLT 2025 Shared Task. Durations are shown
in hours and minutes.

systems are trained on pairs of ST translation data,
allowing them to implicitly align and map source
audio to target textual content (Dong et al., 2018).
This methodology has shown promising results in
multilingual and low-resource settings, especially
when supported by self-supervised pretraining and
transfer learning from large ASR and MT models
(Bérard et al., 2018; Wang et al., 2020). However it
faces key limitations such as the scarcity of parallel
speech-to-translation data. These models simulta-
neously learn acoustic processing, language under-
standing, and translation, leading to slower con-
vergence and reduced performance, especially in
low-resource settings. Additionally, it also struggle
with varied pronunciations and code-switching due
to the lack of intermediate transcripts which could
be normalized or transliterated. So continuing
the work towards low-resource language pairs, In-
aguma et al. (2020) propose a multilingual end-to-
end speech translation framework utilizing shared
encoder and decoder components. This architec-
ture leverages parameter sharing and cross-lingual
transfer learning, leading to significant improve-
ments in translation quality. Salesky et al. (2021)
focus on speech translation in low-resource settings
and explored strategies such as multilingual fine-
tuning and data augmentation. Their findings indi-
cate that these methods can effectively compensate
for limited training data and improve translation
accuracy across modalities.

2 Data

In the IWSLT 2025 Indic Speech Translation
Shared Task (Abdulmumin et al., 2025), multilin-
gual speech translation dataset spanning six distinct
language pairs involving English and three indic
languages are released. Table 1 shows the statistics
of the audio corpus that is aimed to support both
training and evaluation of speech translation sys-
tems in low-resource settings. For the training set,

each language pair offers a substantial volume of
audio data. The En-Bn (English–Bengali), En-Hi
(English–Hindi), and En-Ta (English–Tamil) pairs
have 205,000 audio samples, amounting to approx-
imately 681 hours. The Hi-En (Hindi–English)
direction includes the largest dataset, comprising
248,872 audio segments with a total duration of ap-
proximately 654 hours. The Ta-En (Tamil–English)
pair includes 211,303 training audios, summing up
to 478 hours, while the Bn-En (Bengali–English)
dataset is slightly smaller in size with 64,868 sam-
ples and 158 hours of speech data. For validating
the models, the devset is also provided for each
language pair which is approximately 6% in case
of En-Indic pairs, while it is below 1% in case of
Indic-En pairs. For this shared task, no other syn-
thetic data has been used by performing Machine
Translation on source language ASR output or syn-
thesizing speech from the target language text.

3 Methodology

3.1 Cascaded S2T

For this experiment, we finetune CLSRIL-231 2

(Gupta et al., 2022), a self-supervised model that is
designed to leverage cross-lingual speech represen-
tations from raw audio dataset. The pre-training
dataset consists of approximately 10,000 hours of
audio data across 23 Indic languages. The archi-
tecture of CLSRIL-23 is based on Wav2Vec 2.0
(Baevski et al., 2020b), where the base version has
12 transformer blocks with 768 dimensional feaure
vector size and 12 attention heads. It comprises
of multi-layer convolutional feature encoder that
processes raw audio inputs into latent speech rep-
resentations. These representations are then fed
into a Transformer network, which captures con-

1https://github.com/Open-Speech-EkStep/
vakyansh-models

2https://github.com/Open-Speech-EkStep/
vakyansh-wav2vec2-experimentation
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textual information over the entire sequence. The
model is trained on a contrastive loss function to
distinguish true quantized latent representations
from distractors, facilitating the learning of robust
speech representations.

ASR Fine-Tuning: For the IWSLT Indic track
task, we fine-tune CLSRIL-23 using the dataset
provided by the organizers, which included par-
allel speech and text data for the target Indic lan-
guages. The fine-tuning process involves the fol-
lowing steps:

• Data Preparation: In this step, we align and
preprocess the provided speech and text pairs
to ensure the compatibility with the input re-
quirements of our model.

• Model Finetuning: We initialize the pre-
trained CLSRIL-23 model and add a fully con-
nected layer on top of the transformer block to
perform character-level classification. During
fine-tuning, we keep the weights of the feature
encoder frozen, allowing only the transformer
and classification head to be updated. For fine-
tuning the model, the learning rate is kept at
3e-5 with a batch size of 32, and we train it
for 50 epochs to optimize performance on the
task.

• Evaluation: Using the provided validation
set, the effectiveness of model are evaluated
in terms of Word Error Rate (WER) and Char-
acter Error Rate (CER).

By fine-tuning on the provided dataset, the model
refine its previously learned features to better cap-
ture the unique patterns and properties present in
the data.

Machine Translation
For the text translation component of the speech

translation pipeline, we fine-tune the IndicTrans23

(Gala et al., 2023), a multilingual NMT model. It
is capable of translating from English to 20 Indic
languages and vice-versa. The model has 1.1 bil-
lion parameters pre-trained on a mixture of paral-
lel corpora, combining general-domain, news, and
publicly available data sources, making it suitable
for fine-tuning it for this shared task on Indic low
resource languages. The process of fine-tuning is
as the following:

• Data Preparation: We perform script normal-
ization, Unicode standardization, whitespace

3https://github.com/AI4Bharat/IndicTrans2/

cleanup, and special character filtering to re-
duce the noise present in the dataset. To en-
able multilingual translation to the target lan-
guage, we prepend language-specific prefix
tokens to the source sentences, following the
original IndicTrans2 multilingual setup. Fi-
nally, we tokenize the processed data using the
SentencePiece tokenizer (Kudo and Richard-
son, 2018) released with IndicTrans2, ensur-
ing compatibility with its subword vocabulary
and avoiding out-of-vocabulary (OOV) issues
during training and inference.

• Model Fine-tuning: We use a deep trans-
former model designed to handle the complex-
ity of multilingual neural machine translation.
This architecture comprises of 18 encoder and
18 decoder layers, each with a hidden dimen-
sionality of 1024 and Feed-Forward Network
(FFN) layers of size 8192. The model is
fine-tuned using a learning rate of 3e-5 and
AdamW (Loshchilov and Hutter, 2017) op-
timizer, with a weight decay of 0.01 to pre-
vent overfitting. We enable mixed precision
training to make efficient use of GPU mem-
ory and accelerate computation. For evalu-
ation, we monitor performance on the vali-
dation set using the SacreBLEU (Post, 2018)
metric, which provide a reliable estimate of
translation quality across different language
pairs.

3.2 End-to-End S2T
For our end-to-end speech translation experiments,
we use a small-scale transformer-based encoder-
decoder model available in the Fairseq Speech-
to-Text framework4 (Ott et al., 2019; Wang et al.,
2020). This model utilizes an encoder embedding
dimension of 256 and a feed-forward network with
a dimension of 2048. Both the encoder and decoder
use 4 attention heads and a dropout rate of 0.1 for
regularization. The model inherits from the base
architecture, which by default configures 6 layers
each for the encoder and decoder. This configura-
tion is effective from the starting point for training
and evaluating end-to-end speech translation sys-
tems, especially in low-resource or computationally
constrained settings.

• Data Preparation: We use the provided script
4https://github.com/facebookresearch/fairseq/tree/

main/examples/speech_to_text
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Cascaded-Unconstrained-monolingual E2E-Constrained-monolingual
Lang-pair ChrF++ BLEU Lang-pair ChrF++ BLEU

En-Hi 64.1749 44.093 En-hi 54.4822 34.6119
En-Bn 65.2117 36.9565 En-bn 58.2243 31.5668
En-Ta 66.1503 29.341 En-ta 56.0757 21.3467
Hi-En 67.0583 41.0425 Hi-En 42.9691 15.4153
Bn-En 44.8855 14.7731 Bn-En 14.3009 0.459
Ta-En 41.1644 15.7004 Ta-En 26.2496 5.0473

Table 2: Comparison of translation performance between Cascaded-Unconstrained and End-to-End Constrained
systems using ChrF++ and BLEU scores.

in the framework to prepare the speech dataset
for training. It processes the audio and tran-
scription files organized in each language
pair’s respective directory and splits into train
and validation sets. For each audio segment,
it extracts the log Mel filterbank features and
generates corresponding manifest files (stored
in a tab separated format) with the metadata.
The script also builds a vocabulary file using
SentencePiece and a config file needed for the
Fairseq training.

• Model Training: For training the speech
translation model on the dataset, we use the
speech to text transformer architecture avail-
able in the Fairseq library. We set the max-
imum number of tokens per batch to 40000
to efficiently utilize GPU memory and the
training is capped at 200 epochs. To improve
generalization, we apply label smoothing with
a value of 0.1 and use a dropout rate of 0.3 to
regularize the model. The optimizer is Adam
(Kingma and Ba, 2014), with a learning rate
of 2e-3, and gradient clipping is set at 10.0 to
prevent exploding gradients. For inferencing,
we take the average of the last 10 checkpoints
as Vaswani et al. (2017) proved that the av-
eraged checkpoint performs better than the
single best checkpoint. SacreBLEU is used
for scoring the performance of the models.

4 Experimental Results

For the IWSLT 2025 Indic Speech Translation
Shared Task (Abdulmumin et al., 2025), we par-
ticipate in two different settings: a) Unconstrained
Cascaded and b) Constrained End-to-End speech-
translation track. The experiments are not multi-
lingual, but individual language-pairs are trained
separately. We conduct experiments on all six lan-
guage pairs: English to Hindi (en-hi), Bengali (en-

bn), Tamil (en-ta), and the reverse directions hi-en,
bn-en, ta-en respectively. The results of our exper-
iments are presented in Table 2, showing ChrF++
(Popović, 2017) and BLEU (Papineni et al., 2002)
scores for each language pair across both the cas-
caded and E2E settings.

English-to-Indic (en-hi, en-bn, en-ta): The cas-
caded system consistently outperform the E2E sys-
tem across all the language pairs. For example,
en-hi achieves a BLEU of 44.09 and ChrF++ of
64.17 in the cascaded setup, compared to 34.61
BLEU and 54.48 ChrF++ in the E2E setup. Simi-
larly, the en-bn model scores 36.95 BLEU (ChrF++:
65.21) in the cascaded mode versus 31.56 BLEU
(ChrF++: 58.22) in E2E. The trend continues with
en-ta, where the BLEU drops from 29.34 (ChrF++:
66.15) in cascaded to 21.34 (ChrF++: 56.07) in the
E2E.

These results indicate that the cascaded approach
remains advantageous for English-to-Indic transla-
tion, likely due to the mature ASR performance on
English audio and the robustness of the IndicTrans2
NMT system trained on diverse high-quality par-
allel corpora. The modular nature of the pipeline
allows each component to be fine-tuned indepen-
dently, maximizing their respective capabilities.

Indic-to-English (hi-en, bn-en, ta-en): The
performance gap between cascaded and E2E sys-
tems is more pronounced in the Indic-to-English
direction. For hi-en, the cascaded system achieves
41.04 BLEU and 67.05 ChrF++, compared to
15.41 BLEU and 42.96 ChrF++ in the E2E track.
For bn-en, the E2E model performs poorly, with
only 0.459 BLEU and 14.30 ChrF++, while the
cascaded model reaches 14.77 BLEU and 44.88
ChrF++. Preliminary analysis suggests that smaller
amount of training data and excessive use of code-
mixed language in the test set are the reason for
low score for the Bengali-English pair. Similarly,
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the BLEU score of ta-en model drops from 15.70
in the cascaded setup to 5.04 in the E2E setup.

The sharp decline in the E2E performance for
Indic-to-English suggests that ASR on Indic au-
dio remains a major challenge, especially in the
constrained setup where access to external data or
pre-trained language models is restricted. The E2E
system must learn both transcription and transla-
tion jointly, which becomes challenging in low-
resource settings or in speech settings consisting of
code-mixed, noisy, or accented content. This high-
lights the difficulty of training E2E models for the
Indic-origin speech, where the diversity in speech
patterns and lack of rich supervised training data
severely affect generalization.

5 Conclusion

Our experiments show that cascaded models still
hold a strong edge in terms of accuracy and ro-
bustness, particularly in Indic to En settings while
end-to-end speech translation models can be an
alternative due to their simplicity and integration.
With further work of using transfer learning from
larger models, multilingual pre-training and data
augmentation techniques such as use of synthetic
data, E2E models can be at par with the cascaded
models by overcoming low-resource bottlenecks in
Indic languages.
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Ondřej Bojar, Claudia Borg, Fethi Bougares, Roldano
Cattoni, Mauro Cettolo, Lizhong Chen, William
Chen, Raj Dabre, Yannick Estève, Marcello Federico,
Marco Gaido, Dávid Javorský, Marek Kasztelnik,
and 30 others. 2025. Findings of the iwslt 2025 eval-
uation campaign. In Proceedings of the 22nd Interna-
tional Conference on Spoken Language Translation
(IWSLT 2025), Vienna, Austia (in-person and online).
Association for Computational Linguistics. To ap-
pear.

Karunesh Arora, Sunita Arora, and Mukund Roy. 2013.
Speech to speech translation: a communication boon.
CSI Transactions on ICT, 1.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020a. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Preprint, arXiv:2006.11477.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020b. wav2vec 2.0: A framework
for self-supervised learning of speech representations.

Advances in neural information processing systems,
33:12449–12460.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2016. Neural machine translation by
jointly learning to align and translate. Preprint,
arXiv:1409.0473.

Alexandre Bérard, Laurent Besacier, Ozan Caglayan,
and Adrien Bardet. 2018. End-to-end automatic
speech translation of audiobooks. In ICASSP 2018 -
IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 6224–6228. IEEE.

Liang Dong, Shuang Xu, and Bo Xu. 2018. Speech-
transformer: A no-recurrence sequence-to-sequence
model for speech recognition. In ICASSP 2018 -
IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 5884–5888. IEEE.

Jay Gala, Pranjal A Chitale, A K Raghavan, Varun
Gumma, Sumanth Doddapaneni, Aswanth Kumar M,
Janki Atul Nawale, Anupama Sujatha, Ratish Pudup-
pully, Vivek Raghavan, Pratyush Kumar, Mitesh M
Khapra, Raj Dabre, and Anoop Kunchukuttan. 2023.
Indictrans2: Towards high-quality and accessible ma-
chine translation models for all 22 scheduled indian
languages. Transactions on Machine Learning Re-
search.

Anirudh Gupta, Harveen Singh Chadha, Priyanshi Shah,
Neeraj Chhimwal, Ankur Dhuriya, Rishabh Gaur,
and Vivek Raghavan. 2022. Clsril-23: Cross lingual
speech representations for indic languages. Preprint,
arXiv:2107.07402.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, and
Shinji Watanabe. 2020. Multilingual end-to-end
speech translation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5911–5924.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA. Association for Computational
Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
EMNLP 2018, page 66.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Shivam Mhaskar, Vineet Bhat, Akshay Batheja, Sourabh
Deoghare, Paramveer Choudhary, and Pushpak Bhat-
tacharyya. 2023. Vakta-setu: A speech-to-speech
machine translation service in select indic languages.
arXiv preprint arXiv:2305.12518.

184

https://doi.org/10.1007/s40012-013-0014-4
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=vfT4YuzAYA
https://openreview.net/forum?id=vfT4YuzAYA
https://openreview.net/forum?id=vfT4YuzAYA
https://arxiv.org/abs/2107.07402
https://arxiv.org/abs/2107.07402
https://aclanthology.org/D13-1176/
https://aclanthology.org/D13-1176/


Vandan Mujadia and Dipti Misra Sharma. 2023. To-
wards speech to speech machine translation focusing
on indian languages. In Proceedings of the 17th Con-
ference of the European Chapter of the Association
for Computational Linguistics: System Demonstra-
tions, pages 161–168.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.
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