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Abstract

In many languages, non-standardized varieties
make the development of NLP models challeng-
ing. This paper explores various fine-tuning
techniques and data setups for training Swiss
German to Standard German speech-to-text
translation models. While fine-tuning on all
available Swiss German data yields the best
results, ASR pre-training lowers performance
by 1.48 BLEU points, and jointly training on
Swiss and Standard German data reduces it
by 2.29 BLEU. Our dialect transfer experi-
ments suggest that an equivalent of the Curse
of Multilinguality (Conneau et al., 2020) ex-
ists in dialectal speech processing, as training
on multiple dialects jointly tends to decrease
single-dialect performance. However, introduc-
ing small amounts of dialectal variability can
improve the performance for low-resource di-
alects.

1 Introduction

Swiss German (Schweizerdeutsch) is considered
one of the most distinct and lively varieties of Ger-
man with unique features on the phonological, mor-
phological, syntactic and lexical levels'. It is a
continuum of mostly High Alemannic German di-
alects in Switzerland, spoken by more than 5 mil-
lion people. Swiss German is used extensively
in everyday situations, including spoken commu-
nication, text messaging, local and national TV
programs, and even regional parliaments. Stan-
dard German (Hochdeutsch) is used for formal and
institutionalized forms of communication (Chris-
ten et al., 2020). This coexistence of two varieties
with clearly separated use cases in a single speaker
group has been described as diglossia by several re-
searchers (Ferguson, 1959; Ender and Kaiser, 2009;
Russ, 1990).

'For a complete list of Swiss German particularities, we
refer the reader to Russ (1990) and Christen (2019).
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Swiss German dialects can vary significantly
within Switzerland, sometimes even leading to
difficulties in understanding between Swiss Ger-
man speakers from distant regions (Christen, 2010).
Due to particularities on all linguistic levels, Swiss
dialects are hard to understand for many German
speakers outside of Switzerland (Ender and Kaiser,
2009) and German learners who are primarily fa-
miliar with Standard German (Schlatter, 2024).
This makes the need for systems that can translate
from Swiss German speech to Standard German
text apparent. It could facilitate the integration of
non-Swiss-German speakers into Swiss society by
enabling them to understand local TV programs,
radio shows, dialectal voice messages, and con-
versations between their co-workers. Furthermore,
dialectal speech translation can help preserve di-
alectal varieties and make language technologies
more accessible to dialect speakers, contributing to
the development of fair and equitable technologies
(Joshi et al., 2024). In a study by Blaschke et al.
(2024), 61% of respondents were in favor of sys-
tems that can translate dialect speech to Standard
German text. This highlights the demand for dialec-
tal translation systems beyond academic interests.

In the case of Swiss German, Automatic Speech
Recognition (ASR) and Speech Translation (ST)
are closely related. As Swiss German does not
have any standardized written form and all of its
speakers understand Standard German (Ender and
Kaiser, 2009), it seems natural to prioritize Swiss
German speech to Standard German text ST instead
of Swiss German speech to Swiss German text
ASR. Although there are works about the latter
(Garner et al., 2014; Scherrer et al., 2019), ST is
the subject of most research (Khosravani et al.,
2021b,a; Paonessa et al., 2023; Sicard et al., 2023;
Mutal et al., 2023) and was one of the shared tasks
at the Swiss Text Analytics Conference? in 2021

2https://www.swisstext.org/
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(Pliiss et al., 2021) and 2022 (Pliiss et al., 2023b).

Although the area is being actively researched,
SwissText 2022 (Pliiss et al., 2023b) has demon-
strated that the problem is far from being solved.
None of the participating teams were able to
outperform the baseline model, a simple Trans-
former fine-tuned on three datasets. Later works
achieved improvements over this baseline by us-
ing more data and experimenting with fine-tuning
pre-trained models (Sicard et al., 2023; Pliiss et al.,
2023a,b). However, they did not explore further
pre-training, nor did they utilize all the available
data for Swiss German, or employ Standard Ger-
man data. Paonessa et al. (2023) showed that one of
the main challenges is that Swiss German ST needs
to handle a considerable amount of dialectal vari-
ability. They found that some dialects benefit from
positive transfer from related dialects, whereas oth-
ers negatively influence overall performance. It
remains unclear, however, how many dialects can
be used together to improve performance and when
performance starts to degrade. Here, we expect a
breaking point as observed for the Curse of Mul-
tilinguality (Conneau et al., 2020) even for the
closely related Swiss dialects. Furthermore, we
don’t know how small amounts of dialectal vari-
ability affect performance.

We aim to close these research gaps by:

1. Exploring fine-tuning and pre-training to im-
prove performance for Swiss German ST and
determine the usefulness of Standard German
data.

2. Investigating whether there is a Curse of Mul-
tidialectality for Swiss German.

3. Observing how small amounts of dialectal
variability affect the performance of Swiss
German ST models.

2 Multidialectal Speech Processing

Joshi et al. (2024) highlight that variability within
dialects of a language is one of the biggest chal-
lenges for dialectal NLP. This issue, referred to as
multidialectality in the present work, has already
been investigated in speech processing. ASR sys-
tems are often only trained on standard accents,
making them perform poorly on other dialects
of the same language (Sanabria et al., 2023; Par-
sons et al., 2023). Yadavalli et al. (2022) find
that a model trained on multiple Telugu dialects
jointly performs worse than a system trained on

each dialect separately, indicating negative transfer.
Similar issues have been observed for Japanese
(Imaizumi et al.,, 2020), Chinese (Ding et al.,
2024), Tibetan (Zhao et al., 2019), Flemish/Dutch
(Herygers et al., 2023), Armenian (Arthur et al.,
2024), and Arabic (Nasr et al., 2023; Ali et al.,
2021).

Researchers have proposed various techniques
to mitigate performance drops due to multidialec-
tality, with a primary focus on Automatic Speech
Recognition (ASR). Using pre-trained models has
been found to outperform monolingual training
from scratch (Arthur et al., 2024; Luo et al., 2021).
Imaizumi et al. (2022) suggest dialect-aware ASR
modeling by simultaneously performing dialect
identification and ASR for Japanese dialects, Dan
et al. (2022), Das et al. (2021), and Yadavalli et al.
(2022) apply similar multi-task training approaches
to Chinese, English, and Telugu. Using the stan-
dard and dialectal varieties together during train-
ing has been found to increase performance for
Tunisian Arabic (Messaoudi et al., 2021), for multi-
ple other Arabic dialects (Chowdhury et al., 2021),
and for Thai when combined with curriculum learn-
ing3 Suwanbandit et al. (2023).

3 Swiss German ST

For German, research in dialectal speech process-
ing is scarce. Wepner (2021) calls for adapting
ASR systems to Austrian German as they observe
a performance discrepancy between German Stan-
dard German and Austrian Standard German. Sim-
ilarly, Baum et al. (2010) find an increase of 24.8%
in WER when evaluating a German ASR system
on dialectal utterances, and Wirth and Peinl (2022)
see the need to include dialectal varieties in Ger-
man ASR datasets. Paonessa et al. (2023) find that
the multidialectal nature of Swiss German, briefly
described in the introduction, is one of the main
challenges for Swiss German ST. They observe pos-
itive and negative transfer between dialects, mainly
depending on their overall similarity as determined
by Scherrer and Stoeckle (2016).

Swiss German ST is actively researched, and

many datasets have been released in the past years*.

3This is a multi-stage training approach where a model is
trained on increasingly complex tasks (Bengio et al., 2009).

*This is not the case for other German dialects. ASR
datasets have been released for Upper-Saxon (Herms et al.,
2016), Austrian German (Schuppler et al., 2014), and the
Southern Bavarian dialect De Zahrar (Gulli et al., 2024). How-
ever, we did not find any freely available datasets or other
research on ST for these dialects, nor the widely spoken Bavar-
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Table 1 lists these datasets and their abbrevia-
tions. STT and SDS were both collected by crowd-
sourcing with a web recording tool, similar to the
Common Voice datasets (Ardila et al., 2020). They
contain Standard German sentences that partici-
pants were asked to translate into their dialect and
record. SPC was automatically compiled from au-
dio recordings of the Bernese cantonal parliament.
These were automatically aligned with their Stan-
dard German transcriptions. Similarly, GRZH con-
tains speech from the Zurich parliament. It does,
however, not include transcriptions. AM is the only
dataset we found that contains dialectal transcrip-
tions. It was compiled by segmenting interviews
that were conducted and transcribed in Swiss Ger-
man.

Abbr.  Dataset Totalh Trainh Cantons T

STT STT4SG-350 (Pliiss et al., 2023a) 343 239 17 StG
SDS SDS-200 (Pliiss et al., 2022) 200 50 21 StG
SPC Swiss Parliaments Corpus (Pliiss et al., 2020) 293 217 N/S  StG
SDial  SwissDial (Dogan-Schénberger et al., 2021) 36 36 8 StG
GRZH Gemeinderat Ziirich Corpus (Pliiss et al., 2021) 1208 1208 N/S -
AM ArchiMob (Samardzic et al., 2016) 80 0 14 SwG

Total data with Standard German labels 872 542 - StG

Table 1: Swiss German speech datasets. Total h and
Train h show the number of hours and the hours used in
our experiments, respectively.

Abbreviations for the T (Transcriptions) column: StG =
Standard German, SwG = Swiss German.

Early work on Swiss German to Standard Ger-
man ST has focused on single dialects and pipeline
systems (Garner et al., 2014), as ST data was
scarce. However, Khosravani et al. (2021a) em-
phasize that the lack of a standard orthography and
limited resources make it difficult to train cascade
systems, making end-to-end architectures domi-
nate the Swiss German ST area (Nigmatulina et al.,
2020; Biichi et al., 2020; Sicard et al., 2023; Pliiss
et al., 2023a).

Current state-of-the-art models for Swiss Ger-
man ST mostly follow the pre-train and fine-tune
paradigm. Pliiss et al. (2023a) fine-tune an XLS-R
1B model on the STT dataset and achieve state-of-
the-art performance on the SDS, STT, and Swiss-
Text2021 test sets (69.6 BLEU, 74.7 BLEU, and 66
BLEU, respectively). Sicard et al. (2023) find that
Whisper exhibits strong zero-shot capabilities for
Swiss German, outperforming the previously men-
tioned model on the SPC test set. Paonessa et al.
(2023) trained three small models on the STT data,
with XLS-R 0.3B outperforming Whisper S and
a Transformer model trained from scratch. These

ian, Swabian, and Alsatian dialects.

findings make it difficult to determine which archi-
tecture is the most suitable for Swiss German ST.
Furthermore, recent pre-trained multilingual mod-
els, such as SeamlessM4T (Communication et al.,
2023) and AudioPalLM (Rubenstein et al., 2023),
have not yet been evaluated for this task.

4 Data and Models

In this section, we detail the models and datasets
used for our speech-to-text translation experiments
for Swiss German. The methodology used for the
experiments will be described in Section 5 and 6.

4.1 Data and Dialects

Swiss German datasets were briefly introduced in
Section 3. Table 1 summarizes them, and Table 2
lists the Standard German datasets we used for our
fine-tuning experiments. For Standard German, we
randomly sampled 180 hours from each dataset to
obtain a total of 540 hours, the same amount we
used for Swiss German. Initial experiments showed
that this yielded better performance for Swiss Ger-
man. To track model performance during training,
we use validation splits of Swiss German (STT,
SDS, SPC, GRZH) and Standard German (CV)
datasets. The SPC and GRZH validation sets are
not official splits and were created by randomly
sampling 10% and 1% of their training data, re-
spectively.

Abbr. Dataset Totalh Train h (long) Train h

CV Common Voice v17.0 (Ardila et al., 2020) 1423 933 180
MLS  Multilingual Librispeech (Pratap et al., 2020) 1995 1966 180
VP VoxPopuli (Wang et al., 2021a) 282 264 180

Total data with Standard German labels 3700 3163 540

Table 2: Standard German ASR datasets. Train h shows
the hours of speech used in our final experiments.

For the dialect transfer experiments, we only use
the STT dataset because it is the largest available
dataset that contains dialect region labels for ev-
ery utterance. The SDS and SwissDial datasets
also include dialect information, but the regions
differ from the STT regions, limiting their useful-
ness for dialect experiments. Figure 1 shows all
the regions from STT: Basel (BS), Bern (BE), Cen-
tral Switzerland (CS), Eastern Switzerland (ES),
Grisons (GR), Valais (VS), Zurich (ZH).

Test sets We use the test splits of STT, SDS,
SPC, as well as the test sets of the SwissText 2021
(Pliiss et al., 2021) and SwissText 2022 (Pliiss et al.,
2023b) shared tasks for model evaluation. To track
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Dialect regions in STT4SG-350

= Basel (BS)

= Bern (BE)

mmm Central Switzerland (CS)
Eastern Switzerland (ES)

47.75

4750

f Multiple subregions
= Valais (VS)

 Zurich (ZH)

47.25

47.00
§ 46.75
46.50
46.25

46.00

45.75

Latitude

Figure 1: Dialect regions (from Paonessa et al., 2023).

the performance of our systems in Standard Ger-
man ASR, we use the test split of CV. In addition to
evaluating the STT test set per dialect, we provide
the average performance over all datasets (includ-
ing and excluding CV, denoted as & and 9,,,¢cv,
respectively) to be able to compare the models’
robustness across different domains.

Data pre-processing All audios were resampled
to a sampling rate of 16,000 Hz, the rate accepted
by XLS-R. Similar to (Pliiss et al., 2023a), all tran-
scripts were normalized to only contain letters of
the English alphabet (a-z), numbers, and the Ger-
man umlauts d, d, ii. We use the unidecode pack-
age’ to transform all other characters with accents
or other special characters to ASCIL. Then we re-
move all the non-alphanumerical characters (in-
cluding punctuation) and lowercase the transcripts.
We apply this normalization to all transcripts and
translations used for training and evaluating our
models. SPC was filtered to only include samples
longer than 2 seconds and shorter than 15.5 sec-
onds.

4.2 Models

We use XLS-R (Babu et al., 2021) as the base
model for all our experiments. Its architecture is
based on wav2vec 2.0 (Baevski et al., 2020), which
is designed to learn high-quality speech represen-
tation through self-supervised learning, similar to
masked language modeling in BERT (Devlin et al.,
2019).

XLS-R is a multilingual version of wav2vec
2.0 and was pre-trained on 128 languages using
436,000 hours of unlabeled data for one million
updates. In this way, the model learned power-
ful speech representations in several languages,

Shttps://github.com/avian2/unidecode

similar to what happens for multilingual text mod-
els such as mBERT (Pires et al., 2019; Wu and
Dredze, 2019; Tanti et al., 2021). Through fine-
tuning, these representations can later be leveraged
for downstream tasks across multiple domains and
languages.

We train all of our models with Fairseq (Wang
et al., 2020) and use the official checkpoints of
XLS-R 300M and 1B (after the pre-training) as
a starting point. We add a randomly initialized
linear layer on top of the network and freeze the
Transformer part of the network for the first 10,000
updates, similar to (Baevski et al., 2020). For gen-
erating the transcriptions, we use CTC decoding
because Paonessa et al. (2023) found that it yields
better results for Swiss German ST than seq2seq
decoding. Additionally, we add a 5-gram language
model (LM)® for decoding (LM fusion decoding)
as this was shown to improve results, especially in
low-resource contexts (Baevski et al., 2020; Babu
etal., 2021). All results reported in this paper are
achieved by applying LM fusion when applying
CTC decoding.

S Fine-Tuning Experiments

To improve the state-of-the-art of Swiss German ST
and investigate whether using data from a closely
related language (Standard German) is beneficial
for ST performance, we conduct a series of exper-
iments. Experiments 1-4 focus on different fine-
tuning strategies and data setups, while Experiment
5 involves continued pre-training of XLS-R. All
experiments aim to improve overall Swiss German
translation performance and train robust models
that perform well across different data domains.

5.1 Overview and Setup

Table 3 is an overview of all the fine-tuning experi-
ments. Experiment 1 recreates the baseline model
from Pliiss et al. (2023a). In Experiment 2, we
extend the fine-tuning data to all available Swiss
German ST datasets to investigate how the addi-
tional variance introduced through these datasets
affects performance on STT and/or specific dialect
regions.

In Experiments 3 and 4, we use a multi-stage
fine-tuning approach’. This has been shown to

SSimilarly to (Pliiss et al., 2023a), the LM was trained with
kenlm (https://kheafield.com/code/kenlm/) on 100M
Standard German sentences. Details are in Appendix A.

"In some works (e.g., (Suwanbandit et al., 2023)), this is
also referred to as curriculum learning.
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improve performance on low-resource tasks in MT
(Imankulova et al., 2019; Luo et al., 2019), ASR
(Medeiros et al., 2023; Deng et al., 2023; Yang
et al., 2022), and ST (Kesiraju et al., 2023; Stoian
et al., 2020; Wang et al., 2021b). Experiment 3
applies ASR pre-training (Kesiraju et al., 2023;
Stoian et al., 2020) on Standard German data in the
first step. Then, the resulting model is fine-tuned
on the Swiss German ST data. In Experiment 4,
we shuffle equal parts of the Standard German and
Swiss German datasets together and fine-tune the
model on all of them jointly in the first step. Then,
we again fine-tune the resulting model on the Swiss
German ST data.

In Experiment 5, we explore further pre-training
on unlabeled Swiss German data. This is also
called continued pre-training or language-specific
pre-training and has been shown to improve down-
stream ASR performance (Bartelds et al., 2023;
Nowakowski et al., 2023; Paraskevopoulos et al.,
2024; Huang and Mak, 2023). XLS-R’s pre-
training data does not include any Swiss German,
and the model might benefit even more from further
pre-training on Swiss German data. Due to com-
putational limitations, we do not use the labeled
Swiss data for continued pre-training. However, we
use it to fine-tune the resulting model in a second
step.

Training Configuration We use the same hy-
perparameters as (Pliiss et al., 2023a), who base
theirs on (Babu et al., 2021). The only difference
is that we use 1 GPU (NVIDIA A100 with 80 GB
of memory) for training instead of 4. We tried to
make up for this by using 4x the gradient accumu-
lation steps but initial experiments showed that the
performance gains were not worth the increased
training time. The hyperparameters are listed in
Table 8 in Appendix B.

Evaluation After fine-tuning, we generate pre-
dictions for the test sets described in Section 4.1
and evaluate the best model of the training run by
BLEU and WER®. As Swiss German ST is more
of a translation task, we use BLEU for the primary
evaluations. The BLEU score is computed with
SacreBLEU? (Post, 2018) on the references that
were normalized as described in section 4.1. For
the per-dialect results, we calculate the BLEU score

8This is usually done in Swiss German ST, see Pliiss et al.
(2023a, 2021, 2023b); Sicard et al. (2023)
Version 2.4.0

using the entire corpus of the respective dialect. To
calculate WER, we use the jiwer package!®.

As fine-tuning our models is resource-intensive,
we are not able to conduct multiple training runs
with different random seeds to determine if the
differences between models are statistically signif-
icant. Instead, we use bootstrapping resampling
to calculate system BLEU scores, as proposed in
Koehn (2004) and implemented by SacreBLEU.
This allows us to calculate confidence intervals and
the statistical significance of BLEU score differ-
ences.

5.2 Results

Table 4 summarizes the results of the fine-tuning
experiments. Using all available labeled data to
fine-tune XL.S-R proved to be the most effective ap-
proach, yielding the best overall model. While our
model did not outperform the previously published
baselines on each test set individually (see Figure 4
in Appendix C), we achieved the best average per-
formance (2,,,cy) across all test sets. This is most
likely because the test set domains are very differ-
ent, and we can assume that the domain-specific
data resulted in some interference with the other
domains.

Experiments 3 and 4 demonstrated that using
Standard German data does not improve Swiss
German dialect translation performance. Neither
the ASR pre-training nor mixing Standard Ger-
man and Swiss German data during fine-tuning
improved the results for Swiss German. However,
the Standard German data helped improve perfor-
mance on the Common Voice dataset, adding 39.9
to the BLEU score when comparing the model only
trained on Swiss German data (AllSwiss) and the
model trained on a mixture of Swiss and Standard
German data (Joint_ft). Nevertheless, the average
Swiss German performance dropped by 2.29 BLEU
for this setup. We observed this drop when the ra-
tio of Swiss German and Standard German data
was kept equal, and when 7 times more Standard
German was used. We suspect that there were no
improvements over A/[Swiss, because the model is
incapable of learning Standard German ASR and
Swiss German ST simultaneously without any ad-
ditional task separation, resulting in interference of
the Standard German data.

Further pre-training the XLS-R on Swiss Ger-
man speech from the GRZH corpus did not improve

Ohttps://jitsi.github.io/jiwer/
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No. Name Description Fine-tuned from Fine-tuning data Total hours
1 Baseline Baseline replication from Pliiss et al. (2023a) XLS-R 1B STT 239
2 AllSwiss  Fine-tune XLS-R on all available labeled data for SwWG ST XLS-R 1B STT, SPC, SDS, SDial 542

3.1 ASR Fine-tune model for StG ASR XLS-R 1B CV, MLS, VP 542

3.2 ASR_ft Fine-tune StG ASR model on SwG ST data 3.1 ASR STT, SPC, SDS, SDial 542

4.1 Joint Jointly fine-tune on shuffled StG ASR and SwG ST data XLS-R 1B CV, MLS, VP, STT, SPC, SDS, SDial 1084

4.2 Joint_ft Fine-tune jointly trained model on SwG ST data 4.1 Joint STT, SPC, SDS, SDial 542

5.1 SwSSL Continued pre-training on unlabeled SwG data XLS-R 1B GRZH 1208

5.2 SwSSL_ft Fine-tune SwG pre-trained model on SwG ST data SwSSL STT, SPC, SDS, SDial 542

Table 3: Overview of fine-tuning experiments. StG = Standard German, SwG = Swiss German.
Test set BLEU WER
STT4SG Baseline AllSwiss ASR ASR_ft Joint Joint_ft SwSSL_ft || STT4SG Baseline AllSwiss ASR ASR_ft Joint Joint_ft SwSSL_ft

STT 74.7 719 722 9.6 70.2 68.9 69.4 70.9 14.0 159 15.6 73.9 16.8 17.7 17.5 16.4

SDS 69.6 66.8 67.2 6.6 65.2 63.0 63.5 66.3 18.2 19.9 19.6 78.7 20.9 22,5 222 20.3

SPC 54.9 52.8 61.3 7.3 60.2 60.2 60.5 60.7 30.2 324 244 79.8 25.6 25.6 254 24.8

ST21 66.0 62.4 64.7 10.1 64.1 62.5 62.7 62.9 20.7 229 214 73.6 21.7 22.6 224 22.7

ST22 - 73.7 739 11.8 724 71.5 71.8 73.2 - 14.7 143 69.6 15.6 15.9 15.7 15.1

Dnocv 66.3 65.5 679 9.1 66.4 65.2 65.6 66.8 20.8 212 19.1 75.1 20.1 20.9 20.6 19.9

CvV 35.7 37.7 849 46.5 78.8 77.6 33.8 - 45.8 443 8.6 36.6 12.6 13.3 48.7

2] 60.5 62.9 21.7 63.1 67.5 67.6 61.3 - 253 233 64 229 19.5 194 24.7

Table 4: Results of the baseline from Pliiss et al. (2023a) and our experiments.

fine-tuning results either. We conjecture that this
is due to low data quality and overfitting to the
Zurich dialect, which was the only dialect in the
dataset. Performance might benefit from (1) audio
pre-processing or cleaning, and (2) adding more
dialects to the unlabeled pre-training dataset.

Figure 2 shows the per-dialect results of the mod-
els. Comparing the best systems from Experiments
1-5 in Figure 2, it becomes evident that Standard
German data does not help improve the perfor-
mance for any specific dialect but rather introduces
more dialectal variability that negatively affects
performance. The model AllSwiss performs best
for the Berne dialect, possibly due to the additional
Berne data from SPC. This demonstrates that more
in-dialect data helps improve performance even if
that data is from a completely different domain.
However, the over-representation of Berne data re-
sulted in performance drops for other dialects (e.g.,
Valais and Zurich) when comparing AllSwiss to our
Baseline, which was trained on the STT dataset bal-
anced by dialect. These drops are even more sub-
stantial for the model trained jointly on Standard
and Swiss German data, resulting in a performance
loss of 7.8 BLEU for Valais.

6 Dialect Transfer Experiments

In these experiments, we vary the number and di-
versity of dialects in the training data to study the
effect of dialectal variability on performance and
determine if there is an equivalent to the Curse of
Multilinguality (Conneau et al., 2020) for dialects.

Best results for each dataset are bold.

—e— Baseline
—o— AliSwiss

—o— SwSSL_ft

62

Central Eastern Valais Zurich

Switzerland ~ Switzerland

Grisons

Berne

Basel

Figure 2: Per-dialect results of the fine-tuning experi-
ments for the STT test set.

6.1 Overview and Setup

In the first set of experiments (DT1), we train a to-
tal of 7 models on 1, 2, 4, and 7 dialects. We use the
Valais (VS) dialect region data as a starting point
for one set of models, as this is the most distant
dialect from all the others (Scherrer and Stoeckle,
2016; Paonessa et al., 2023). For a second set of
models, we use the Zurich (ZH) region dialect be-
cause this was found to be the most similar to the
other dialects. In the second set of experiments
(DT2), we keep the dialect regions the same but
add 10 minutes of speech data for every region
that is not included. This allows us to investigate
whether a small amount of data from different di-
alect regions can increase total performance. Table
5 contains an overview of these experiments.

Training Configuration We use XLS-R 300M
for all the dialect transfer experiments (see Ap-
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Full data 10 min of data

VS, ZH, CS, GR, BS, BE, ES
ZH, CS, GR, BS, BE, ES
VS, CS, GR, BS, BE, ES

CS, GR, BS, BE, ES
VS, GR, BS, BE, ES
BS, BE, ES
VS, BE, ES

Name Base

0
vs_1
zh_2
vs_2
zh_2
vs_4
zh_4

all

h (DT1)
0

34
33.46
67.46
66.96
135.92
136.17
238.71

h (DT2)
116

35
34.45
68.29
67.79
136.42
136.67
238.71

\S
ZH
VS, ZH
ZH, CS

\S
7ZH
Vs
ZH
Vs
ZH

VS, ZH, CS, GR
ZH, CS, GR, BS
VS, ZH, CS, GR, BS, BE, ES

Table 5: Overview for the dialect transfer experiments.
The column Base shows the base dialect, 10 min of
data shows the regions added for DT2. h (DT1) and h
(DT2) are the amounts of speech data used to train the
first and second sets of experiments, respectively.

pendix B for more details on why this was chosen).
We train each of our models on the balanced STT
train set, filtered to only include the respective di-
alects. This amounts to 34 hours of speech data per
dialect region. We use the same setup as described
in Section 5 with the hyperparameters from Table
8 for the column All others.

Evaluation With the BLEU score, we compare
the STT test set performance of the models. To
determine whether there is a Curse of Multilingual-
ity (Conneau et al., 2020) in Swiss German ST, we
look at how the performance of the base dialect
develops when adding more dialects in DT1. To
investigate the influence of small amounts of added
dialectal variability, the models from DT1 and DT2
are compared. Whether performance differences
are significant is determined by BLEU’s bootstrap-
ping resampling as described in Section 5.

6.2 Results

The results of the DT1 and DT2 are displayed in
Table 6 and 7, respectively.

Table 6 shows that for VS, performance is high-
est when the model is only trained on VS data and
lowest when the training data only contains ZH
data. Adding any non-VS data decreases BLEU
scores, hinting at a Curse of Multidialectality. ZH
exhibits the highest performance when the model is
trained on the closely related dialects CS, GR, and
BS in addition to ZH data. For most other regions
and overall performance, models are best when us-
ing all the dialects for training. For BS and CS,
models perform best when trained only on ZH, CS,
GR, and BS, suggesting that VS, BE, and/or ES
data have a negative impact on performance. This
is another indicator of a Curse of Multidialectality.

Table 7 shows similar trends as the first set of
experiments: VS performance is highest when us-
ing the highest percentage of VS data for training,
while ZH peaks at 4 dialects that are closely re-
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lated. We observe similar results for BS, GR, and
CS. In Figure 3 we see that VS performance is sig-
nificantly lower when adding 10 minutes of speech
from all other dialect regions, indicating again that
VS is strongly affected by other dialects. ZH, on
the other hand, seems to benefit from the additional
variety, exceeding the results from the DT1 Ex-
periments. BE and the overall performance also
benefit.

Contrary to DT1, GR now performs best when
the training set contains only 4 dialects, suggesting
that GR benefits from small amounts of variabil-
ity from other dialects but is negatively affected
if this variability is too high (i.e., when using all
data for BE, VS, and ES). Another explanation
could be that the very distant dialects of VS and/or
BE significantly affect performance for GR when
used entirely, but might enhance the model’s gen-
eralizability by introducing a beneficial amount of
variability when only small amounts of data are
used. Further experiments are necessary to investi-
gate how much variability is beneficial and when it
negatively affects performance.

The Curse of Multidialectality Even though the
model trained on all dialects performs well for both
regions, there is a drop of 3.37 BLEU for VS com-
pared to vs_1, the model trained on the VS data
only. Paonessa et al. (2023) report similar findings.
They trained 7 XLS-R models, one on each of the
7 regions from the STT dataset and found that the
model trained on VS data is the only one that out-
performs the model trained on the full dataset on its
base dialect (in this case, VS). All the other models
showed a performance drop of 1-5%, suggesting
that they strongly benefit from cross-dialectal trans-
fer. For ZH (and BS, CS, GR), however, our results
indicate that this is only the case up to a certain
number of (similar) dialects 3 < D, < 6 be-
fore performance drops slightly but significantly
(0.97 BLEU in our case when comparing the per-
formance for ZH of zh_4 and the model trained
on all dialects). To determine the exact value of
Doz, we would need to train models on every
number of dialects between 1 and 7. Furthermore,
we conjecture that D,,,,,. is higher when more sim-
ilar dialects are included in the training set and
lower otherwise. The fine-tuning experiments also
suggest this: adding Standard German data in Ex-
periments 3 and 4 can be considered as introducing
another "dialectal” variety. After doing this, we saw
a performance drop for almost all dialect regions



Name Regions VS ZH BE BS GR CS ES Overall
vs_1 VS 67.8 432 36.8 356 40.0 46.1 250 424
vs_2 VS,ZH 67.1 65.1 494 534 572 640 519 584
vs_.4 VS,ZH,CS,GR 647 658 540 562 656 66.1 585 615
all all 64.4*% 672 62.0 637 67.2 683 656 655
zh_ 1 ZH 40.7 644 444 510 569 61.7 557 53.6
zh_ 2 ZH, CS 487 665 53.1 549 596 676 578 584
zh_ 4 7ZH,CS,GR,BS 525 682 571 643 667 683 638 63.0
all all 644 672 62.0 637 67.2 683 656 65.5

Table 6: BLEU scores of the DT1 Experiments using around 34 hours of speech data for each dialect region specified
in the Regions column. The best result per region is underlined and bold. Insignificant changes in BLEU as per
bootstrap resampling for a system compared with the system in the row above are marked with *.

Name Regions VS ZH BE BS GR CS ES  Overall
0+10 - 0 0 0 0 0 0 0 0
vs_1+10 VS 65.8 504 419 435 484 519 39.0 488
vs_2+10 VS,ZH 65.7* 639 496 533 58.0 632 543 583
vs_4+10 VS,ZH,CS,GR 65.7* 674 569 58.7 668 68.0 613 63.6
all all 644 67.2% 62.0 63.7 67.2* 68.3*% 65.6 655
zh_1+10 ZH 438 645 47.1 528 590 625 576 554
zh_2+10 ZH, CS 50.5 673 547 5677 607 679 602 59.8
zh_4+10 ZH,CS,GR,BS 537 69.1 582 645 678 68.8 645 639
all all 644 672 62.0 637 672 683 656 655

Table 7: BLEU scores of the DT2 Experiments using
included fully (specified in the Regions column).

(see Figure 2). These findings are reminiscent of
the Curse of Multilinguality but require a more
thorough investigation.

Introducing dialectal variability during train-
ing DT?2 shows that the performance for almost
all dialects improves when introducing dialectal
variability through only 10 minutes of data per di-
alect. The improvements for the monodialectal VS
model are the strongest: overall performance in-
creases by 6.45 BLEU, ZH by 7.19 BLEU, and ES
by 13.95 BLEU with only 60 minutes of additional
but highly varied data. The models with ZH as
the base dialect also benefit from this added data,
increasing performance for all dialects when com-
paring zh_1, the model only trained on ZH data,
and zh_1+10, which was trained on the complete
ZH data and 10 minutes of all other dialects. This
strongly suggests that even adding little dialectal
variability is crucial to improve performance. This
is an essential finding for dataset collection. When
primarily data for a distant dialect is available (VS

10 minutes of speech data for all the regions that are not

in our example), it is crucial to gather data from
as many other regions as possible, even if that is
only a small amount. In this way, overall model
performance can be improved with little data, and
underrepresented dialects can benefit.

7 Conclusion and Future Work

With respect to the research gaps identified in the
introduction, the main findings of this paper are the
following:

1. Standard German data is not beneficial for
Swiss German ST performance when used in ASR
pre-training or joint multilingual fine-tuning if a
good amount ST data is available (> 500 h). Fur-
ther pre-training XLS-R on noisy single-domain,
single-dialect data does not improve performance.

2. There are tendencies of a Curse of Multidialec-
tality for Swiss German ST, especially when the
dialects used for training are distant. Interestingly,
Conneau et al. (2020) identified 7-15 languages as
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Figure 3: BLEU scores of the dialect transfer experi-
ments with VS and ZH as base dialects. The models
shown as dotted lines are from DT?2, using 10 minutes
of audio for all the dialect regions that were not included
completely in the training set.

a breaking point. For ST, this number seems to be
lower, and language similarity matters even more.

3. Using data containing rich dialectal variabil-
ity is beneficial for the average performance of all
dialects, even if the resulting training set is unbal-
anced and mainly contains distant dialects (VS in
our case).

Future Work Imaizumi et al. (2022) introduced
dialect-aware modeling, a promising and easy-to-
implement approach that could help alleviate the
Curse of Multidialectality. By performing dialect
identification and ST simultaneously, the model
might learn better to utilize dialect-specific acous-
tic/linguistic information for translation and more
efficiently leverage cross-dialectal transfer. It is
also worth investigating whether Standard German
data proves beneficial for performance in this con-
dition. A similar approach would be to introduce
dialect id tags during training, as this has been
shown to help with many-to-one translation per-
formance in MT (Johnson et al., 2017; Fan et al.,
2021). Furthermore, one could experiment with dif-
ferent approaches for dataset balancing, e.g., by
considering the linguistic distances between the di-
alects as computed in Scherrer and Stoeckle (2016).
Instead of employing ASR pre-training, an existing
ST model (e.g., English —German) could be used

to initialize the weights of the Swiss ST model. In
contrast to an ASR model, an ST model has already
learned non-monotonic mappings and vocabulary
changes, which is crucial for Swiss German ST.
Considering that there are no open-source ST sys-
tems for other German dialects, benchmarking
our model on the performance of other, more dis-
tant dialects could be a fruitful experiment. This
would be a step towards an ST system capable of
translating all German dialects to Standard German,
ultimately facilitating communication and cultural
exchange between German-speaking countries im-
mensely.

Limitations

Our work was constrained by computational re-
sources, which prevented us from performing mul-
tiple training runs to draw statistically sound con-
clusions on whether performance differences be-
tween models were significant. Furthermore, we
were unable to conduct the dialect transfer experi-
ments for all dialect regions, which restricted the
generalizability of our findings. As Swiss dialects
vary significantly, dividing them into homogeneous
regions remains a challenge. In our evaluations, we
treat the dialect regions as homogeneous dialects
even though they contain considerable variability.
This might affect our results. Lastly, a thorough
qualitative analysis of model outputs could have
revealed region-specific error patterns and other
limitations of our training and evaluation methods.
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A Language Model for decoding

We enhance XLS-R decoding by using LM fusion.
We trained several language models of different
sizes using the kenlm toolkit'! and determined the
best-performing model by evaluating the perfor-
mance of our baseline model on the Swiss German
test sets.

The best-performing LM is a 5-gram language
model trained on 100M Standard German sen-
tences compiled by concatenating EuroParl (Koehn,
2005)'2, NewsCrawl (Kocmi et al., 2022)'3, Tuda-
text'*, Parlspeech Bundestag + Nationalrat (Rauh
and Schwalbach, 2020)" and the transcriptions of
the STT, SPC, SDS, SDial train splits.

We fine-tuned the hyperparameters used for LM
fusion by observing the performance of our Base-
line model on the Swiss German test sets and

"https://kheafield.com/code/kenlm/

12h'ctps://www. statmt.org/europarl/v7/

13http: //data.statmt.org/news-commentary/v14/

14http: //1tdatal.informatik.uni-hamburg.de/
kaldi_tuda_de/

15https ://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/L40AKN

ended up with Im-weight=0.9, sil-weight=-1,
word-score=1, nbest=1. This configuration was
used to obtain all our results.

B Training Hyperparameters

Table 8 lists the hyperparameters used for all exper-
iments. These are mostly adapted from (Pliiss et al.,
2023a), who base theirs on (Babu et al., 2021).

Early stopping (or a maximum number of update
steps) was set in every experiment to avoid over-
fitting and wasting resources. Learning rates were
scheduled with Fairseq’s tri-state scheduler, which
warms up linearly for the first 6.25% of total steps,
then keeps the learning rate constant for 25% of the
total steps, and decays it exponentially afterward.

For the fine-tuning and pre-training experiments,
XLS-R 1B was used. For the second fine-tuning
step in Experiment 4, we had to adjust the learning
rate to le-6 because the model had already seen
the Swiss German data and did not converge with
a higher learning rate.

For continued pre-training, we use the same con-
figurations as (Babu et al., 2021) with modifications
inspired by (Bartelds et al., 2023). As pre-training
is computationally expensive and we train on one
GPU (instead of 200 as (Babu et al., 2021)), we
lower the batch size and apply gradient accumula-
tion. All hyperparameters are listed in Table 8. If
any parameters are not given, they were kept the
same as in the pre-training config of XLS-R (Babu
et al., 2021).

Unlike the fine-tuning experiments, the 300M
version of XLS-R (Babu et al., 2021) was used
for the dialect transfer experiments. The main rea-
son for this is that we train 14 models for our di-
alect transfer experiments, and this would consume
too many computational resources'®. Addition-
ally, Paonessa et al. (2023) showed that the results
of XLS-R 300M are transferable to XLS-R 1B
because both models have the same performance
curve with a gap of around 5 BLEU per dialect
region. All model trainings are conducted using
the hyperparameters from Table 8 (column All oth-
ers). However, for the first set of dialect transfer
experiments, we use the STT validation set only
containing the base dialect to track the model per-
formance during training.

!SFor instance, training the 300M version for 80k steps on
the STT balanced train set took 28 hours in Paonessa et al.
(2023). However, using XLS-R 1B with the same setup took
48 hours
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Ex1 Ex4.2 Ex5.1 Allothers

learning rate 3e-5 le-6 Se-5 3e-5
gradient accumulation 10 10 10 10
batch size (samples) 640k 640k 320k 640k
effective batch size 400 sec  400sec 200sec 400 sec
validation set STT  SwG-all GRZH SwG-all*
validation interval 1000 1000 400 1000
early stopping patience - 5 3 5
max. updates 80k 80k 80k 250k

Table 8: Hyperparameters for the fine-tuning, pre-
training and dialect transfer experiments. The exper-
iment numbers refer to Table 3. SwG-all refers to the
combined STT, SDS, and SPC validation sets.

*For Experiment 3.1, the CV validation set was used.

C Performance comparison to SoTA
models

Figure 4 shows the results of our models from the
fine-tuning experiments compared to SOTA models
for Swiss German ST. We hypothesize that the per-
formance difference between our baseline and the
baseline published in Pliiss et al. (2023a) has two
main reasons: (1) we trained on one GPU only, re-
sulting in a different batch size and overall training
time, (2) we used less data for training the language
model and a potentially different ngram order.
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Figure 4: Results of fine-tuning Experiments 1-5,
grouped by test set. STT4SG, Spaiche, and ST22 Base-
line are the models published in (Pliiss et al., 2023a),
(Sicard et al., 2023), and (Pliiss et al., 2023b) respec-
tively. For these models, we only used the available
performance metrics to compute the average (&,,cv ).
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