
Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025), pages 1–18
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Streaming Sequence Transduction through Dynamic Compression

Weiting Tan♠ Yunmo Chen♠ Tongfei Chen♡

Guanghui Qin♠ Haoran Xu♠ Heidi C. Zhang♣

Benjamin Van Durme♠ Philipp Koehn♠
♠Johns Hopkins University ♡Microsoft ♣Stanford University

Abstract

We introduce STAR (Stream Transduction with
Anchor Representations), a novel Transformer-
based model designed for efficient sequence-
to-sequence transduction over streams. STAR
dynamically segments input streams to cre-
ate compressed anchor representations, achiev-
ing nearly lossless compression (12×) in
Automatic Speech Recognition (ASR) and
outperforming existing methods. Moreover,
STAR demonstrates superior segmentation
and latency-quality trade-offs in simultaneous
speech-to-text tasks, optimizing latency, mem-
ory footprint, and quality.1

1 Introduction

Sequence transduction, also referred to as sequence-
to-sequence modeling, has shown remarkable suc-
cess across various domains, including speech
translation (Liu et al., 2019; Di Gangi et al., 2019;
Li et al., 2020) and automatic speech recognition
(Prabhavalkar et al., 2023; Li, 2021; Gulati et al.,
2020). Traditionally, these models operate under
the assumption of fully observing input sequences
before generating outputs. However, this require-
ment becomes impractical in applications necessi-
tating low latency or real-time output generation
such as simultaneous translation (Ma et al., 2019;
Chang and Lee, 2022; Barrault et al., 2023, inter
alia). The concept of streaming sequence transduc-
tion (Inaguma et al., 2020; Kameoka et al., 2021;
Chen et al., 2021; Wang et al., 2022; Chen et al.,
2021; Xue et al., 2022), or stream transduction,
arises to address this challenge. Unlike traditional
sequence transduction, stream transduction oper-
ates on partially observed input sequences while
simultaneously generating outputs. This requires
deciding when to initiate output generation, a task
inherently tied to identifying critical triggers within

1 Codes available at: https://github.com/
steventan0110/STAR

Figure 1: When YIELD is triggered, the current seg-
ment’s information is compressed into an anchor repre-
sentation to generate the next output.

the input sequence. Triggers mark moments when
sufficient input information has been received to
initiate output generation, thus minimizing latency.
Consequently, they partition the input sequence
into discrete segments, with outputs accessing only
information preceding each trigger.

Locating these triggers poses a significant chal-
lenge. Prior approaches have explored methods
that employ fixed sliding windows to determine
triggers (Ma et al., 2019, 2020b), or learning mod-
els to predict triggers (Ma et al., 2020c; Chang and
Lee, 2022), yet timing remains a complex issue.
Beyond reducing latency, another challenge for
stream transduction is how to efficiently represent
historical information while optimizing memory
usage. Prior work (Rae et al., 2020; Tay et al.,
2022; Bertsch et al., 2023, inter alia) has mostly fo-
cused on improving the efficiency of Transformer
but does not investigate streaming scenarios. Re-
ducing the memory footprint for streaming systems
introduces additional complexity as models must
determine when certain information becomes less
relevant for future predictions.

In this work, we propose Stream Transduction
with Anchor Representations (STAR), a novel ap-

1

https://github.com/steventan0110/STAR
https://github.com/steventan0110/STAR

proach designed to maximize the benefits of stream
transduction, optimizing both generation latency
and memory footprint. STAR dynamically seg-
ments the input stream into buffers that contain
similar levels of information. Then, it introduces
the concept of anchors, which aggregate a buffer of
information (multiple vector representations) into
single-vector anchor representations. Once an an-
chor representation is yielded, it triggers the gener-
ation process to yield another token.

We present a learning strategy to train STAR
end-to-end so that the model learns to dynamically
select anchor positions with the following objec-
tives: (1) anchor positions are selected such that
each segment contains the right amount of infor-
mation for generating the next output; (2) anchor
representation effectively compress the informa-
tion of its preceding segment. For example, in
fig. 1, the model triggers YIELD at index 3 (which
makes it an anchor position), compressing the in-
formation of the current chunk X = (x1, x2, x3)
into anchor representation z1 to generate output
y1. Such a process repeats each time YIELD is
triggered. To summarize, our contributions are as
follows: (1) we propose STAR that dynamically
segments and compresses input streams, trading-
off among latency, memory footprint, and perfor-
mance for stream transduction; (2) we validate the
effectiveness of our approach on well-established
speech-to-text tasks. Our results show that STAR
greatly outperforms existing methods, obtaining
better compression ability and excelling in quality-
latency trade-offs.

2 Methodology

2.1 Problem Formulation

In sequence-to-sequence transduction, feature
X = (x1, . . . ,xTx) is normally first extracted
from the raw input sequence. Then the decoder can
encode and use such features to generate an output
sequence Y = (y1, . . . , yTy). The encoder and
decoder can be implemented using various mod-
els such as Recurrent Neural Networks (Hochreiter
and Schmidhuber, 1997; Chung et al., 2014; Lip-
ton, 2015) and Transformers (Vaswani et al., 2017),
depending on the input and output characteristics.
In the context of streaming sequence transduction,
where the input (and their features X) is partially
observed, a causal encoder and decoder are nec-
essary. The causal encoder processes the partially
observed feature X<τ (τ ≤ Tx) to produce their

Algorithm 1 High-level overview of STAR
1: Input: Input stream X , threshold β
2: Output: Output stream Y
3: Initialize: cached repr. Z ← ∅; buffer B ← ∅
4: while y ̸= EOS :
5: α← 0;B ← ∅ ▷ clear buffer
6: while x← READ(X) : ▷ READ new inputs
7: APPEND(B,x) ▷ add to buffer
8: α← α+ Fseg(x)
9: if α ≥ β : ▷ yield triggered

10: H = Fenc(B | Z) ▷ encode segment buffer
11: z = COMPRESS(H)
12: APPEND(Z,z) ▷ embedding for segment
13: y ← Fdec(·|Y ,Z)
14: yield y
15: break

encoding. Suppose the first k outputs are already
generated, the causal decoder sample the next out-
put yk+1 with P(yk+1|X<τ ,Y<k+1; θ), where θ
represents the parameter set.

Deciding when to generate (yield) a new token is
the core of streaming sequence transduction where
a segmenter/predictor (Moritz et al., 2020; Chang
and Lee, 2022) is typically trained to control tim-
ing for yield operation. Our approach to tackling
stream transduction is outlined in algorithm 1. It
involves a learnable segmenter that scores the im-
portance of each input feature to decide if enough
information has been accumulated in the current
buffer of features. As the segmenter scores input
feature in a frame-wise fashion (algorithm 1, line
8), we accumulate the scores α until it reaches a
pre-defined threshold β. When the threshold is
reached, it indicates that enough information has
been accumulated in the current buffer B of fea-
tures. Subsequently, we compress the features into
a single vector representation z that we call an-
chor representation (line 11). z is computed for
each buffer and cached into the history anchors
Z, which is then conditioned by the decoder to
generate new tokens (lines 12-13). The details of
our segmentation and compression mechanism are
introduced in §2.2.

2.2 Segmentation with Dynamic Compression

In this section, we provide details of different com-
ponents in algorithm 1. We first describe how to
learn the segmenter Fseg(·) with feedback from
the encoder-decoder’s cross-attention. Then we
present how anchor representations are obtained
through our selection-based compression method.

Learning Segmenter with Cross-attention We
propose a learnable segmenter trained with feed-

2

back from the encoder-decoder cross-attention. Fol-
lowing algorithm 1, a segmenter is used to evaluate
(score) input features as they are read into the sys-
tem. Such scores s = Fseg(X) are then used to
determine if YIELD is triggered (i.e., whether to seg-
ment streams). Effective segmentation is crucial
in streaming sequence transduction to avoid sub-
optimal transformation due to premature triggering
or increased latency from delayed output. Since
the ideal segmentation depends on several factors
(the input’s information density, the input and out-
put’s modalities, and the task at hand, etc.,), we
rely on the cross-attention between the encoder and
decoder to guide the segmenter (shown in fig. 2).

Specifically, we follow cross-attention from
Transformers (Vaswani et al., 2017) to use three
projections WQ,WK,WV to generate the query
vector yWQ ∈ RTy×d, the key vector hWK ∈
RTx×d and the value vector hWV ∈ RTx×d (where
d is the dimensionality of the representation) and
compute cross-attention as:

S(h,y) = (hWk)(yWQ)
T (1)

Then, as illustrated in fig. 2, we inject seg-
menter’s scores into it the cross attention:

S̃(h,y) = S(h,y) + Fseg(x) (2)

The updated cross-attention S̃(h,y) is then used to
transform the value vector WV and will be used by
the decoder to compute the loss function. Since the
segmenter’s scores are injected in equation (2), it
can be updated with end-to-end back-propagation.
Specifically, suppose the loss objective L is com-
puted, with the chain rule, we have the gradient for
the predicted score α = Fseg(x) as:

∇L
∇α

=
l∑

i=1

∇L
∇S̃i(h,y)

· ∇S̃i(h,y)

∇α

=
l∑

i=1

∇L
∇S̃i(h,y)

· ∇
∇α

(S(h,y) +α)

=

l∑

i=1

∇L
∇S̃i(h,y)

where l is the number of transformer layer and
S̃i(h,y) is the cross-attention for ith layer. We ob-
serve that the gradient impacting the segmenters is
directly proportional to the gradient on the cross-
attention logits. Consequently, by injecting cross-
attention, we can train segmenters to prioritize po-
sitions that are more significant to the decoder.

Figure 2: Visualization for the training of the segmenter
through feedback from the encoder-decoder’s cross-
attention.

After training the segmenter, we predict scores
s = Fseg(x) for input features and use the scores to
segment the input sequence. Note that the predicted
scores can be used differently based on the task. In
the special case where the whole sequence is fully
observed (i.e., regular non-streaming tasks), we do
not YIELD output anymore. Instead, we simply
select the top k scoring positions as anchors and
use their representation for the decoder to generate
outputs, as formalized below (I is a set of indices):

I = SELECTTOPk(s) (3)

H = Fenc(x) ∈ RTx×d (4)

Z = H[I] ∈ Rk×d (5)

The compression rate is then r = Tx/k ∈ [1,∞)
assuming k ≤ Tx. In a more general case where
streaming is enabled, the score is commonly accu-
mulated (Inaguma et al., 2020; Ma et al., 2020c) un-
til a certain threshold is reached. We use a threshold
β = 1 throughout experiments. Specifically, we
first scale s to [0, 1] range values α = sigmoid(s)
and accumulate α following algorithm 1 (line 8) to
YIELD new output. The accumulation of scores is a
natural way to ensure a similar level of information
is contained in each buffer. This corresponds to a
larger buffer when the sound signal is sparse (see
appendix A for visualization), which gives better
latency-quality control.

Compression with Anchor Representation Ev-
ery time an anchor is predicted by our trained seg-
menter, the model triggers generation with some
buffer B ∈ Rb×d of b features. Subsequently, we
transform such features into a high-dimensional
representation H ∈ Rb×d with a causal encoder2.

2 In practice, we are inspired by BERT (Devlin et al., 2019)
to add a special type embedding e to anchor tokens before

3

Figure 3: Visualization for the proposed “selection as
compression” method. Input features are transformed
by the encoder and we only select the encoding at the
anchor position (where YIELD is triggered) as the com-
pressed representation.

The causality of such an encoder ensures that rep-
resentations at later positions contain information
only from earlier positions. Then, we only select
the representation at the anchor position (the last
index of the current buffer) z = H[b] ∈ R1×d to
represent the information of the whole buffer B.
Selected representations are also called anchor rep-
resentations/vectors. For example, in fig. 3, YIELD

is triggered at index 3; therefore we first transform
the features into representations H = Fenc(B|Z),
and select H[3] as the anchor vector z to decode
the next output with cached representation Z.

2.3 Model Training
To train models for streaming sequence transduc-
tion, we primarily rely on the conventional objec-
tive – negative log-likelihood (NLL) loss:

LNLL(X,Y , θ) = − logP(Y |X; θ)

= −
Ty∑

t=1

logP(yt|Y<t,Z<t; θ)

(6)
Note that the loss is defined over X,Y as both
input and output sequences are fully observed dur-
ing training. In addition, the loss defined in equa-
tion (6) is slightly different than regular NLL in that
the decoder can only use representation observed
so far (Z<t) to generate the tth output. This method
is also referred to as Infinite-Lookback (Arivazha-
gan et al., 2019; Liu et al., 2021, IL) and is used
to mitigate the train-test mismatch as future repre-
sentation cannot be observed during inference. Be-
sides using NLL to update the encoder and decoder,

passing through the encoder

we also follow prior work (Chang and Lee, 2022)
to regularize the segmenter so that the number of
YIELD is the same as the output length Ty. Due to
page limitations, we refer readers to appendix B
for more details.

3 Experiments: Non-Streaming
Compression

We experiment on the non-streaming ASR task
to better demonstrate the effectiveness of our
selection-based compression method, since we do
not need to consider the quality-latency trade-off
as in the streaming scenario. We compare our
method with other common baselines like Con-
volutional Neural Networks (Lecun and Bengio,
1995; Krizhevsky et al., 2012, CNN) and Continu-
ous Integrate and Fire (Dong and Xu, 2020, CIF).

Datasets and Evaluation Metrics We conduct
experiments on the LibriSpeech (Panayotov et al.,
2015) and LibriTTS (Zen et al., 2019) dataset’s
“Clean-360h” section, which contains 360 hours
of speech and their corresponding transcriptions.
To evaluate ASR performance, we compute the
word error rate (Morris et al., 2004, WER) between
reference transcriptions and the generated text.

3.1 Training Setup
Compression with Anchor Representations In
§2, we propose a general approach for stream
transduction with dynamic compression. Now
we instantiate the framework for the ASR task.
We first use WAV2VEC2.0 (Baevski et al., 2020)
to extract features X from the input speech se-
quence. We then use a 4-layer decoder-only Trans-
former3 as our causal encoder for compression,
from which we select out anchor representation
z. The segmenter is implemented with a 2-layer
Feed-Forward Network. For the decoder, we use
a 4-layer decoder-only Transformer with an addi-
tional linear layer as the language modeling head.
For details of hyperparameters, we direct readers
to appendix F.

As described in §2, we train the Encoder-
Decoder model with a segmenter learned through
cross-attention feedback. Given the extracted fea-
ture X = (x1, x2, · · · , xTx) and a target compres-
sion rate r ∈ [1,∞), we select top k = Tx/r
scoring positions and use their encodings as an-
chor representations (following equation (5)). We

3 Following the implementation of GPT2 from Hugging-
face https://huggingface.co/gpt2

4

https://huggingface.co/gpt2

then feed the anchor representation Z to the de-
coder to generate text tokens. In practice, most
input speeches from LibriTTS are less than 10 sec-
onds, corresponding to a feature sequence of length
Tx = 10∗16000/320 = 500 (with a standard sam-
pling rate 16 kHz and WAV2VEC2.0 has a stack of
CNNs that reduce input sequence by 320×). There-
fore, we chose some reasonable compression rates
(i.e., r = 12, 18, 30) to test our compression meth-
ods. We now briefly describe two baselines that we
compared against: CNNs and CIF.

Baseline: CNN A simple compression compo-
nent is CNN. After we obtain speech feature X , we
apply CNNs with pre-defined strides to compress
the feature. The encoder (a vanilla Transformer-
Encoder module without our selection-based com-
pression) further transforms such compressed fea-
tures into encoder representations for the decoder
to generate outputs. To enhance the capacity of
CNNs, we follow Zeghidour et al. (2021); Défos-
sez et al. (2022) to add two CNNs with kernel size
(5, 1) and stride size (1, 1) as residual connection.
More details about CNNs and their configurations
are available in fig. 13 (in appendix F).

Baseline: CIF Continuous Integrate and Fire
(Dong and Xu, 2020; Dong et al., 2022; Chang
and Lee, 2022) uses a neural network to predict
scores for each position and accumulates the scores
until a threshold is reached, thereafter triggering
the generation of a new token (called FIRE by the
original paper). For each segment, CIF averages
representations in the segment by directly weighing
them with the predicted scores. For a fair compari-
son with prior work, we adopt the implementation
from Dong et al. (2022) into our codebase.

There are two major differences between our
method and CIF: firstly, STAR segmenter leverages
cross-attention between encoder-decoder to interac-
tively update representations, whereas CIF employs
a weighted average of representations solely from
the encoder side; secondly, STAR pushes infor-
mation to condense in particular anchor at YIELD

positions and performs explicit selections, whereas
CIF’s representations are averaged across each seg-
ment. Broadly, these distinctions mirror the differ-
ences between hard and soft attention mechanisms
(Xu et al., 2015; Luong et al., 2015). We refer read-
ers to appendix B and the original paper (Dong and
Xu, 2020) for more details.

1 12 18 30
15

20

25

30

35

40

45

50

55

W
or

d
E

rr
or

 R
at

e
(%

)

15.0

24.2

16.8

15.9

34.4

19.7

18.0

55.0

22.6

19.8

ASR (LibriTTS)
CNN
CIF
STAR

1 12 18 30

5

10

15

20

25

30

3.7

7.0

4.23

4.0

11.4

5.21

4.32

31.4

7.63

4.8

ASR (LibriSpeech)
CNN
CIF
STAR

Compression Rate
Figure 4: ASR performance (evaluated by WER)
by different compression methods. From the figure,
STAR outperforms other compressors and the gap en-
larges as the compression rate increases.

3.2 Results of Different Compression Methods

We test the compression performance on three com-
pression rates r ∈ {12, 18, 30}. As shown in
fig. 4, our compression module obtains the best
performance, achieving almost lossless compres-
sion when r = 12, and consistently outperforms
the other two methods on different compression
rates. By comparing the trend in detail, we find that
CNNs are sub-optimal as the compressor because
they operate on a small local window and change
the underlying feature representation, which might
be hard for the encoder and decoder to adapt to.
Now comparing CIF and STAR. As the compres-
sion rate increases, the gap between STAR and CIF
also increases. When r = 30, STAR outperforms
CIF by about 3 WER points on both LibriSpeech
and LibriTTS. From the results, we have veri-
fied that STAR is more effective in compressing
representation compared to CNN and CIF. Later
in our analysis (see §5), we provide evidence of
STAR achieving more robust compressed represen-
tations. Lastly, to exclude the influence from the
text decoder, we also designed a speech similarity
task in appendix D to show that STAR results in
better-compressed speech representation.

4 Streaming Experiments: Simultaneous
Speech Recognition and Translation

Datasets For our simultaneous S2T experiments,
we use the English-German (EN-DE) portion of
the MuST-C V1 (Di Gangi et al., 2019) dataset for
speech translation (ST). We also include results
for simultaneous ASR using LibriSpeech and Lib-

5

600 800 1000 1200 1400

24

26

28

30

32

34
W

or
d

E
rr

or
 R

at
e

(%
)

ASR (LibriTTS)

Model

STAR
CIF

1200 1400 1600 1800 2000 2200 2400

14

16

18

20

22

W
or

d
E

rr
or

 R
at

e
(%

)

ASR (LibriSpeech)

800 1000 1200 1400 1600 1800

12

13

14

15

16

B
LE

U
 S

co
re

 (x
10

0)

EN-DE Translation

Differentiable Average Lagging

Figure 5: Lateny-Quality trade-off for CIF and STAR. The five markers on the line correspond to different WAIT-k
strategies (from left to right, WAIT-k ∈ {1, 2, 3, 4, 5}).

riTTS. Note that since our method is based on a
general Encoder-Decoder Transformer, it is not tai-
lored to ASR by leveraging monotonic alignment
or using small character-level vocabulary.

Evaluation Metric To evaluate the quality of
generated output, we use WER for the ASR task
and BLEU (Papineni et al., 2002) for the speech
translation task. For simultaneous S2T, latency
measurement is essential and we resort to the com-
monly used metric, Differentiable Average Lagging
(Arivazhagan et al., 2019, DAL), which was orig-
inally proposed for simultaneous text translation
and later adapted to speech translation in (Ma et al.,
2020a). The smaller the DAL, the better the system
in terms of latency. We refer readers to appendix G
for details on the latency metric.

Experiment Setup Our first step is to train an
speech-to-text (S2T) streaming model without a
segmenter. To make WAV2VEC2.0 causal, we
add a causal mask and train it jointly with the en-
coder and decoder until convergence. Once the
vanilla streaming S2T model is trained, we freeze
the causal WAV2VEC2.0 model as the feature ex-
tractor and start fine-tuning the encoder and the
decoder with the segmenter.

Experimental Results We show the experiment
results in fig. 5 where we plot WER/BLEU v.s.
DAL to demonstrate the quality-latency trade-off
for each system. In our evaluation, we adapt the
WAIT-k policy (Ma et al., 2019) for all systems.
Here WAIT-k denotes the number of speech seg-
ments we encode first before decoding text tokens.
A larger WAIT-k value generally results in higher
latency but better S2T performance. In our work,
we focus on low-latency scenarios where flexible
decision policies like CIF and STAR are most use-
ful; Therefore, we set WAIT-k value to 1 to 5.

We first present the baseline system for simul-

Figure 6: Quality-latency trade-off for fixed-decision
S2T model. Each line corresponds to a different WAIT-k
strategy and each marker corresponds to a stride size of
{120, 200, 280, 360, 440}ms.

taneous ASR with a fixed decision policy in fig. 6.
We use the vanilla streaming S2T model (no com-
pression) and apply a fixed stride size to slide
through the speech and generate text tokens. As
shown in fig. 6, using a large stride like 360ms
(i.e., each chunk corresponds to a speech feature of
length 0.36× 16000/320 = 18) or 440ms, simul-
taneous ASR achieved < 20 WER. However, the
latency is also extremely high (over 2000 DAL).
For smaller strides, quality of generated output is
suboptimal because not enough information is pro-
vided for the text decoder to generate each new
token. A flexible decision policy could alleviate
such issues and provide better latency-quality trade-
off. From fig. 5, we see that for both CIF and STAR,
their output has better quality when the latency is
low. For instance, on LibriTTS, STAR achieves
about 24 WER with a DAL smaller than 800 while
the best-performing fixed decision policy only ob-
tains such performance with a DAL of about 1200.

Comparing CIF with STAR across three datasets
(LibriSpeech, LibriTTS, and MUST-C), we find
that STAR consistently achieves better perfor-
mance, obtaining a lower WER (or higher BLEU)
score with relatively lower latency across differ-
ent WAIT-k strategies. This demonstrates that

6

Figure 7: Memory usage and reduction from our
proposed method (with compression rates r ∈
{2, 5, 10, 20}). More results and detailed setup are pro-
vided in appendix E.

STAR gives a better flexible policy to YIELD new
tokens, and the compressed representation encodes
more information for target text generation. In ap-
pendix A, we compare qualitative examples and
visualize the difference in the segmentation from
CIF and STAR. Overall, we find the segmentation
from STAR better corresponds to the target texts,
achieving superior simultaneous S2T performance.

5 Analysis

5.1 Memory Efficiency
Since STAR condenses information in each buffer
into anchor representation, it enhances memory ef-
ficiency by caching compressed representation for
the decoder to generate outputs. With a compres-
sion rate r, a batch size b, and input features of aver-
age length Tx, and hidden dimension d, our system
compresses the encoder representation from bdTx

to bdTx/r. Besides memory consumption, note
that cross-attention computation (equation (1)) is
quadratic w.r.t. encoder representation’s length;
thus, our method reduces the cost of its computa-
tion by a factor of r2. Besides theoretical analy-
sis, we benchmark the actual memory usage and
the percentage of usage reduction achieved by dif-
ferent compression rates. From fig. 7, we show
that with a rate of r = 10 (which achieves nearly
lossless compression), STAR reduces the memory
consumption by more than 30% when transducing
an input feature of length longer than 3,000. For
the full details of our benchmark setup and results,
we refer readers to appendix E.

5.2 Robustness
In this section, we evaluate the robustness of
streaming models (CIF and STAR) by subjecting
them to compression and segmentation conditions
different from their training setup. We find that

12 5 1012 20 30 40 50
Compression Rate

20

30

40

50

60

70

80

W
or

d
E

rr
or

 R
at

e
(%

)

CIF-12
STAR-12

Figure 8: CIF and STAR based model trained with com-
pression rate 12 are evaluated on various compression
rates (ranges from 1 to 50). For a lower compression
rate (≤ 12), both models preserve their quality well. For
a higher compression rate (> 12), STAR is more robust
and its performance degrades slower than CIF.

.
STAR is more robust than CIF, retaining better
transduction when operating on context windows
not exposed to during training.

Various Compression Rates at Inference As de-
tailed in §3, we trained CIF- and STAR-based mod-
els with a compression rate of r = 12 (denoted as
CIF-12 and STAR-12) and tested them under vary-
ing compression rates. Both models perform well
at r ≤ 12, as expected since they are trained for
12× compression. However, when r > 12, STAR-
12 shows significantly less degradation compared
to CIF-12, indicating superior retention of informa-
tion. This resilience arises from STAR’s design,
which focuses information into anchor positions,
ensuring each anchor retains substantial informa-
tion even at higher compression rates. In contrast,
CIF’s averaging approach leads to increased inter-
ference between representations.

Different Segmentations In §4, we tested CIF-
and STAR-based models under a shared fixed seg-
mentation policy, where segments were of uniform
size (⌊Tx/Ty⌋). This setup evaluates robustness to
segmentation changes. Results in fig. 9 show that
while both models experience performance drops,
STAR remains robust, achieving < 30 WER with
a DAL of 800, whereas CIF exceeds 80 WER. This
highlights STAR’s ability to better compress and
retain information within anchor representations,
making it more robust to policy changes.

Moreover, we let the the two models use all pre-
viously computed representations (thus no com-
pression is performed) and name such models CIF-
ALL and STAR-ALL in fig. 9. We find that CIF-
ALL still greatly lags behind the performance of
STAR even when all previous representations are
used. This shows that CIF is not a robust method as

7

Figure 9: Latency-quality trade-off for CIF and
STAR using a fixed decision policy instead of their own
predicted segmentation. The five markers on the line
correspond to five WAIT-k strategies (from left to right,
WAIT-k ∈ {1, 2, 3, 4, 5}).

it only obtains good performance when aggregating
representations using its learned segmentation. On
the contrary, STAR is much more robust; in fact,
from fig. 9, we find that STAR has a very close
performance compared to its non-compressed ver-
sion STAR-ALL, providing another evidence of its
robust compression quality.

6 Related work

End-to-end Streaming Speech-to-text For
streaming/simultaneous speech-to-text tasks,
learning speech representation and policies for
READ and YIELD is essential. Previous methods
like RNN-Transducer (Graves, 2012) and Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006) leverage monotonic alignment for
low error rate transcription. Recent work (Moritz
et al., 2020; Tsunoo et al., 2020) further extends
transformers for streaming ASR using modified
attention and beam search.

For speech translation, Ma et al. (2019) proposed
the Wait-K strategy with a fixed decision policy
that read chunks of equal-length text for decoding
and Ma et al. (2020b) adapted the wait-k strategy
for simultaneous speech translation. Instead of
a fixed decision policy, SimulSpeech (Ren et al.,
2020) trained segmenters with CTC loss. Zeng
et al. (2021) also use CTC for guidance on word
boundary learns to shrink the representation and
proposes the Wait-K-Stride-N strategy that writes
N tokens for each READ action. Dong et al. (2022)
and Chang and Lee (2022) use CIF to learn seg-
mentation for the speech sequences and trigger the
YIELD action whenever CIF FIRE a new representa-
tion. Additionally, Arivazhagan et al. (2019) and
Ma et al. (2020c) support a more adaptive strat-
egy where dynamic READ and YIELD are possible.
However, even for such an adaptive strategy, a good

decision policy still matters (Ma et al., 2020b).

Efficient Methods for Transformers Prior work
studied efficient methods to scale Transformers to
long sequences (Tay et al., 2022), including sparse
patterns (Beltagy et al., 2020), recurrence (Dai
et al., 2019), kernelized attentions (Choroman-
ski et al., 2021), etc. Some of them can be ap-
plied in the streaming settings, such as Streaming
LLMs (Xiao et al., 2023), Compressive Transform-
ers (Rae et al., 2020), etc. Moreover, Tworkowski
et al. (2023); Bertsch et al. (2023) proposed to ap-
ply kNN to the attention to select a subset of past
tokens, akin to the segmentation process in this pa-
per. Similar to the residual connection in our paper,
Nugget (Qin and Van Durme, 2023) trains a scorer
to select a subset of tokens to represent texts. More
recently, Tan et al. (2024) and Qin et al. (2023)
also combine context compression with efficient
fine-tuning methods like LoRA (Hu et al., 2021) to
expand context length for large language models.

Speech Representation Traditionally, acoustic
features are extracted by filter-bank features, mel-
frequency cepstral coefficients, or bottleneck fea-
tures (Muda et al., 2010; Davis and Mermelstein,
1980). More recent work relies on self-supervision
to learn speech representations. For example,
Zeghidour et al. (2021) and Défossez et al. (2022)
learn acoustic representation by reconstructing the
original audio. To learn semantic representation,
masked language modeling, and contrastive learn-
ing objectives are popularized by widely used rep-
resentations from Hubert (Hsu et al., 2021), w2v-
BERT (Chung et al., 2021) and Wav2Vec (Schnei-
der et al., 2019; Baevski et al., 2020). All these
models use CNNs as a building block to downsam-
ple speech signals/representations.

7 Conclusion and Future Work

We introduce STAR, a model designed for dynamic
compression and transduction of streams. STAR
features a segmenter learned via encoder-decoder
cross-attention and employs a selection-based com-
pression approach. Our experiments across mul-
tiple speech-to-text tasks confirm STAR’s supe-
rior compression performance and latency-quality
trade-off relative to established methods such as
Convolutional Neural Networks and Continuous
Integrate-and-Fire. In the future, we hope to ex-
tend this framework to facilitate streaming non-
autoregressive generation.

8

References
Abien Fred Agarap. 2018. Deep learning using rectified

linear units (relu). ArXiv, abs/1803.08375.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruom-
ing Pang, Wei Li, and Colin Raffel. 2019. Monotonic
infinite lookback attention for simultaneous machine
translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 1313–1323, Florence, Italy.
Association for Computational Linguistics.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Preprint, arXiv:2006.11477.

Loïc Barrault, Yu-An Chung, Mariano Coria Megli-
oli, David Dale, Ning Dong, Mark Duppenthaler,
Paul-Ambroise Duquenne, Brian Ellis, Hady Elsa-
har, Justin Haaheim, John Hoffman, Min-Jae Hwang,
Hirofumi Inaguma, Christopher Klaiber, Ilia Ku-
likov, Pengwei Li, Daniel Licht, Jean Maillard, Rus-
lan Mavlyutov, Alice Rakotoarison, Kaushik Ram
Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guil-
laume Wenzek, Yilin Yang, Ethan Ye, Ivan Ev-
timov, Pierre Fernandez, Cynthia Gao, Prangthip
Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom
Kozhevnikov, Gabriel Mejia Gonzalez, Robin San
Roman, Christophe Touret, Corinne Wong, Carleigh
Wood, Bokai Yu, Pierre Andrews, Can Balioglu,
Peng-Jen Chen, Marta R. Costa-jussà, Maha Elbayad,
Hongyu Gong, Francisco Guzmán, Kevin Heffernan,
Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alex
Mourachko, Benjamin Peloquin, Juan Pino, Sravya
Popuri, Christophe Ropers, Safiyyah Saleem, Hol-
ger Schwenk, Anna Sun, Paden Tomasello, Chang-
han Wang, Jeff Wang, Skyler Wang, and Mary
Williamson. 2023. Seamless: Multilingual expres-
sive and streaming speech translation. Preprint,
arXiv:2312.05187.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The Long-Document Transformer.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew R. Gormley. 2023. Unlimiformer: Long-
Range Transformers with Unlimited Length Input.

Chih-Chiang Chang and Hung-yi Lee. 2022. Exploring
continuous integrate-and-fire for adaptive simultane-
ous speech translation. In Interspeech 2022. ISCA.

Junkun Chen, Mingbo Ma, Renjie Zheng, and Liang
Huang. 2021. Direct simultaneous speech-to-text
translation assisted by synchronized streaming asr.
In Findings.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2021. Rethinking Attention with Per-
formers. In International Conference on Learning
Representations (ICLR).

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. Preprint, arXiv:1412.3555.

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng
Chiu, James Qin, Ruoming Pang, and Yonghui Wu.
2021. W2v-bert: Combining contrastive learning
and masked language modeling for self-supervised
speech pre-training. Preprint, arXiv:2108.06209.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive Language Models Be-
yond a Fixed-Length Context. In Annual Meeting of
the Association for Computational Linguistics (ACL).

S. Davis and P. Mermelstein. 1980. Comparison of
parametric representations for monosyllabic word
recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech, and Signal Pro-
cessing, 28(4):357–366.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019. MuST-C: a
Multilingual Speech Translation Corpus. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2012–2017, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Linhao Dong and Bo Xu. 2020. Cif: Continuous
integrate-and-fire for end-to-end speech recognition.
Preprint, arXiv:1905.11235.

Qian Dong, Yaoming Zhu, Mingxuan Wang, and Lei
Li. 2022. Learning when to translate for streaming
speech. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 680–694, Dublin,
Ireland. Association for Computational Linguistics.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi. 2022. High fidelity neural audio compres-
sion. Preprint, arXiv:2210.13438.

Eduardo Fonseca, Jordi Pons, Xavier Favory, Fred-
eric Font, Dmitry Bogdanov, Andres Ferraro, Ser-
gio Oramas, Alastair Porter, and Xavier Serra. 2017.
Freesound datasets: A platform for the creation of
open audio datasets.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. Preprint, arXiv:1211.3711.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data

9

https://api.semanticscholar.org/CorpusID:4090379
https://api.semanticscholar.org/CorpusID:4090379
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2312.05187
https://arxiv.org/abs/2312.05187
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2305.01625
http://arxiv.org/abs/2305.01625
https://doi.org/10.21437/interspeech.2022-10627
https://doi.org/10.21437/interspeech.2022-10627
https://doi.org/10.21437/interspeech.2022-10627
https://api.semanticscholar.org/CorpusID:235422036
https://api.semanticscholar.org/CorpusID:235422036
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/2108.06209
https://arxiv.org/abs/2108.06209
https://arxiv.org/abs/2108.06209
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.18653/v1/N19-1202
https://doi.org/10.18653/v1/N19-1202
https://arxiv.org/abs/1905.11235
https://arxiv.org/abs/1905.11235
https://doi.org/10.18653/v1/2022.acl-long.50
https://doi.org/10.18653/v1/2022.acl-long.50
https://arxiv.org/abs/2210.13438
https://arxiv.org/abs/2210.13438
https://arxiv.org/abs/1211.3711
https://arxiv.org/abs/1211.3711
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891

with recurrent neural networks. In Proceedings of
the 23rd International Conference on Machine Learn-
ing, ICML ’06, page 369–376, New York, NY, USA.
Association for Computing Machinery.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and
Ruoming Pang. 2020. Conformer: Convolution-
augmented transformer for speech recognition.
CoRR, abs/2005.08100.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. Preprint, arXiv:2106.07447.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Hirofumi Inaguma, Yashesh Gaur, Liang Lu, Jinyu Li,
and Yifan Gong. 2020. Minimum latency training
strategies for streaming sequence-to-sequence asr.
ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6064–6068.

H. Kameoka, Kou Tanaka, and Takuhiro Kaneko.
2021. Fasts2s-vc: Streaming non-autoregressive
sequence-to-sequence voice conversion. ArXiv,
abs/2104.06900.

O. Khattab and Matei A. Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural
Information Processing Systems, volume 25. Curran
Associates, Inc.

Yann Lecun and Yoshua Bengio. 1995. Convolutional
Networks for Images, Speech and Time Series, pages
255–258. The MIT Press.

Jinyu Li. 2021. Recent advances in end-to-end auto-
matic speech recognition. ArXiv, abs/2111.01690.

Xian Li, Changhan Wang, Yun Tang, C. Tran, Yuqing
Tang, Juan Miguel Pino, Alexei Baevski, Alexis Con-
neau, and Michael Auli. 2020. Multilingual speech
translation from efficient finetuning of pretrained
models. In Annual Meeting of the Association for
Computational Linguistics.

Zachary Chase Lipton. 2015. A critical review of recur-
rent neural networks for sequence learning. CoRR,
abs/1506.00019.

Dan Liu, Mengge Du, Xiaoxi Li, Ya Li, and Enhong
Chen. 2021. Cross attention augmented transducer
networks for simultaneous translation. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 39–55, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Yuchen Liu, Hao Xiong, Zhongjun He, Jiajun Zhang,
Hua Wu, Haifeng Wang, and Chengqing Zong. 2019.
End-to-end speech translation with knowledge distil-
lation. In Interspeech.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3025–3036, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,
Jiatao Gu, and Juan Pino. 2020a. SIMULEVAL: An
evaluation toolkit for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 144–150, Online. Association
for Computational Linguistics.

Xutai Ma, Juan Pino, and Philipp Koehn. 2020b.
SimulMT to SimulST: Adapting simultaneous text
translation to end-to-end simultaneous speech trans-
lation. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
582–587, Suzhou, China. Association for Computa-
tional Linguistics.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Pu-
zon, and Jiatao Gu. 2020c. Monotonic multihead
attention. In International Conference on Learning
Representations.

Niko Moritz, Takaaki Hori, and Jonathan Le. 2020.
Streaming automatic speech recognition with the
transformer model. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6074–6078.

Andrew C. Morris, Viktoria Maier, and Phil D. Green.
2004. From wer and ril to mer and wil: improved

10

https://doi.org/10.1145/1143844.1143891
https://arxiv.org/abs/2005.08100
https://arxiv.org/abs/2005.08100
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://api.semanticscholar.org/CorpusID:215737044
https://api.semanticscholar.org/CorpusID:215737044
https://api.semanticscholar.org/CorpusID:233231613
https://api.semanticscholar.org/CorpusID:233231613
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://api.semanticscholar.org/CorpusID:240419899
https://api.semanticscholar.org/CorpusID:240419899
https://api.semanticscholar.org/CorpusID:227840539
https://api.semanticscholar.org/CorpusID:227840539
https://api.semanticscholar.org/CorpusID:227840539
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1506.00019
https://doi.org/10.18653/v1/2021.emnlp-main.4
https://doi.org/10.18653/v1/2021.emnlp-main.4
https://api.semanticscholar.org/CorpusID:119309065
https://api.semanticscholar.org/CorpusID:119309065
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://aclanthology.org/2020.aacl-main.58
https://aclanthology.org/2020.aacl-main.58
https://aclanthology.org/2020.aacl-main.58
https://openreview.net/forum?id=Hyg96gBKPS
https://openreview.net/forum?id=Hyg96gBKPS
https://doi.org/10.1109/ICASSP40776.2020.9054476
https://doi.org/10.1109/ICASSP40776.2020.9054476
https://api.semanticscholar.org/CorpusID:18880375

evaluation measures for connected speech recogni-
tion. In Interspeech.

Lindasalwa Muda, Mumtaj Begam, and I. Elam-
vazuthi. 2010. Voice recognition algorithms using
mel frequency cepstral coefficient (mfcc) and dy-
namic time warping (dtw) techniques. Preprint,
arXiv:1003.4083.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5206–5210.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Rohit Prabhavalkar, Takaaki Hori, Tara N. Sainath,
Ralf Schlüter, and Shinji Watanabe. 2023. End-
to-end speech recognition: A survey. Preprint,
arXiv:2303.03329.

Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil
Rao, and Benjamin Van Durme. 2023. Nugget 2d:
Dynamic contextual compression for scaling decoder-
only language models. Preprint, arXiv:2310.02409.

Guanghui Qin and Benjamin Van Durme. 2023. Nugget:
Neural agglomerative embeddings of text. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 28337–28350.
PMLR.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar,
and Timothy P. Lillicrap. 2020. Compressive Trans-
formers for Long-Range Sequence Modelling. In
International Conference on Learning Representa-
tions (ICLR).

Yi Ren, Jinglin Liu, Xu Tan, Chen Zhang, Tao Qin,
Zhou Zhao, and Tie-Yan Liu. 2020. SimulSpeech:
End-to-end simultaneous speech to text translation.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3787–
3796, Online. Association for Computational Lin-
guistics.

Steffen Schneider, Alexei Baevski, Ronan Collobert,
and Michael Auli. 2019. wav2vec: Unsuper-
vised pre-training for speech recognition. Preprint,
arXiv:1904.05862.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Sijun Tan, Xiuyu Li, Shishir G Patil, Ziyang Wu, Tian-
jun Zhang, Kurt Keutzer, Joseph E. Gonzalez, and
Raluca Ada Popa. 2024. LLoCO: Learning long con-
texts offline. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 17605–17621, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2022. Efficient Transformers: A Survey.
ACM Computing Surveys, 55(6):1–28.

Emiru Tsunoo, Yosuke Kashiwagi, and Shinji Watanabe.
2020. Streaming transformer asr with blockwise syn-
chronous beam search. Preprint, arXiv:2006.14941.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Pi-
otr Miłoś. 2023. Focused Transformer: Contrastive
Training for Context Scaling.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Peidong Wang, Eric Sun, Jian Xue, Yu Wu, Long
Zhou, Yashesh Gaur, Shujie Liu, and Jinyu Li. 2022.
Lamassu: A streaming language-agnostic multilin-
gual speech recognition and translation model using
neural transducers. INTERSPEECH 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient Streaming
Language Models with Attention Sinks.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention.
In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 2048–2057, Lille,
France. PMLR.

Jian Xue, Peidong Wang, Jinyu Li, Matt Post, and
Yashesh Gaur. 2022. Large-scale streaming end-to-
end speech translation with neural transducers. In
Interspeech.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan
Skoglund, and Marco Tagliasacchi. 2021. Sound-
stream: An end-to-end neural audio codec. Preprint,
arXiv:2107.03312.

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J.
Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu. 2019.
Libritts: A corpus derived from librispeech for text-
to-speech. Preprint, arXiv:1904.02882.

Xingshan Zeng, Liangyou Li, and Qun Liu. 2021. Real-
TranS: End-to-end simultaneous speech translation
with convolutional weighted-shrinking transformer.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 2461–2474,
Online. Association for Computational Linguistics.

11

https://api.semanticscholar.org/CorpusID:18880375
https://api.semanticscholar.org/CorpusID:18880375
https://arxiv.org/abs/1003.4083
https://arxiv.org/abs/1003.4083
https://arxiv.org/abs/1003.4083
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2303.03329
https://arxiv.org/abs/2303.03329
https://arxiv.org/abs/2310.02409
https://arxiv.org/abs/2310.02409
https://arxiv.org/abs/2310.02409
https://proceedings.mlr.press/v202/qin23a.html
https://proceedings.mlr.press/v202/qin23a.html
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
https://doi.org/10.18653/v1/2020.acl-main.350
https://doi.org/10.18653/v1/2020.acl-main.350
https://arxiv.org/abs/1904.05862
https://arxiv.org/abs/1904.05862
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2024.emnlp-main.975
https://doi.org/10.18653/v1/2024.emnlp-main.975
http://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2006.14941
https://arxiv.org/abs/2006.14941
http://arxiv.org/abs/2307.03170
http://arxiv.org/abs/2307.03170
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://api.semanticscholar.org/CorpusID:258968116
https://api.semanticscholar.org/CorpusID:258968116
https://api.semanticscholar.org/CorpusID:258968116
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
https://proceedings.mlr.press/v37/xuc15.html
https://proceedings.mlr.press/v37/xuc15.html
https://api.semanticscholar.org/CorpusID:248118691
https://api.semanticscholar.org/CorpusID:248118691
https://arxiv.org/abs/2107.03312
https://arxiv.org/abs/2107.03312
https://arxiv.org/abs/1904.02882
https://arxiv.org/abs/1904.02882
https://doi.org/10.18653/v1/2021.findings-acl.218
https://doi.org/10.18653/v1/2021.findings-acl.218
https://doi.org/10.18653/v1/2021.findings-acl.218

Supplementary Material

Appendix Sections Contents
Appendix A Qualitative Examples of Speech Segmentation

Appendix B More Details on Continuous Integrate and Fire

Appendix C STAR’s Robustness to Noise Injection

Appendix D Similarity Test for Compressed Speech Representation

Appendix E Benchmark Memory Usage with/without Compression

Appendix F Model Configurations and Hyper-parameters

Appendix G Measuring Latency: Differentiable Average Lagging

A Qualitative Examples of Speech Segmentation from Compressors

Figure 10: Qualitative Examples of CIF and STAR based Segmentation for Simul ASR
.

12

Figure 11: Qualitative Examples of CIF and STAR based Segmentation for Simul ASR
.

13

B Continuous Integrate and Fire

Figure 12: Illustration of Continuous Integrate and Fire.

Continuous Integrate and Fire (Dong and Xu, 2020, CIF) predicts a score for each position and dynamically
aggregates the semantic representation. As shown in fig. 12, CIF first computes a list of scores α
similar to our proposed method. Then, starting from the first position, it accumulates the scores (and
representation) until reaching a pre-defined threshold4 β. Once reaching the threshold, it FIRE the
accumulated representation and starts to accumulate again. As shown in fig. 12, suppose we originally
have representation z = (z1, · · · , z6) with corresponding scores α = (α1, · · · , α6). Suppose we reach
the threshold at t = 3, i.e., α1 + α2 + α3 >= β, then we FIRE the representation by taking the weighted
average of score and representation c1 = α1 ∗ z1 + α2 ∗ z2 + α3L ∗ z3. Here c1 becomes the compressed
representation for the region t = [1, 3]. Note that since α1 + α2 + α3 >= β, we have residual score
α3R = α1 + α2 + α3 − β, which is left for future accumulation, and we only use α3L = α3 − α3R when
weighting representation z3. More generally, suppose the previous FIRE occurs at position j and at current
step i the accumulated score reaches the threshold, the aggregated representation is computed as

h = αjR ∗ zj +
i−1∑

t=j+1

αt ∗ zt + αiL ∗ zi (7)

To enforce the compression rate r, we follow (Dong et al., 2022; Chang and Lee, 2022) to re-scale the
predicted scores so that the threshold β is reached Ty times when accumulating the scores:

αt = σ(st) (8)

α̃t =
βn∗

n̂
αt =

β · Ty∑Tx
t=1 αt

αt (9)

Here σ is the sigmoid function and n̂ is the normalization term (summation of un-scaled scores) and
n∗ denotes the number of desired selections, i.e., n∗ = Ty. We assume the input feature is longer than
the output (Tx > Ty), so re-scaling scores to YIELD Ty means we employ a dynamic compression rate
r = Tx/Ty while transducing the streams. Note that Ty is only observed during training and we cannot
re-scale s in test time. Therefore, we adopt a length penalty loss (Chang and Lee, 2022; Dong et al., 2022)
during training to regularize the segmenter to ensure proper learning of segmentations:

Llp(X,Y ; θ) = (n∗ − n̂)2 =

(
Ty −

Tx∑

t=1

σ (Fseg(xt))

)2

(10)

4 we set β = 1 throughout our experiments, following prior work (Dong et al., 2022; Chang and Lee, 2022)

14

Finally, our training objective is the combination of negative log-likelihood and length penalty loss:

L(X,Y ; θ) = LNLL(X,Y ; θ) + γLlp(X,Y ; θ) (11)

In practice, the segmenter is only trained for a few thousand steps (so is the length penalty loss) and we
set γ = 0.01.

Our method is fundamentally different because of how we treat the scorer and how we perform
compression. In CIF, the compression is performed as an aggregation (weighted average) within each
segmented block (decided by the scores and threshold). In STAR, we directly take out representations
and we force the semantic encoder to condense information to those important positions. In other words,
we did not explicitly perform aggregation like CIF but expect the semantic encoder to learn such
aggregation innately through training.

Another key difference is how the scorer is learned. In CIF, the weighted average with scores and
representation allows a gradient to flow through the scorer. For STAR, we inject the scores into cross-
attention to update the scorer. The major advantage of our approach is that the importance of position is
judged by the attention from the decoder to the encoder representation, which helps segment the
speech representation in the way that the text decoder perceives it.

For more details, we direct readers to the prior work (Dong and Xu, 2020; Dong et al., 2022; Chang
and Lee, 2022).

Model Noise Ratio

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Vanilla S2T 15.0 18.7 23.6 29.6 34.0 38.3 43.7 46.8 51.8 56.1 61.0

S2T + CNN 24.2 26.7 31.9 37.1 40.8 45.5 49.9 53.6 58.9 61.6 65.3
S2T + CIF 16.8 20.4 26.0 30.7 36.0 40.1 44.9 50.1 53.9 58.9 62.2
S2T + STAR 15.9 19.7 25.1 29.8 34.7 38.6 41.8 46.7 51.0 55.6 60.1

Table 1: Word Error Rate of models given the noise injection ratio from 0% to 50%. Best numbers are bolded and
better results are highlighted by the blue boxes while bad results are highlighted in yellow boxes. Compared to
other compression methods, our proposed STAR is the most robust model across all noise injection ratios. When the
noise ratio reaches beyond 30%, STAR even outperforms the S2T model without compression. All compression
models are trained with the compression rate 12.

C Noise Injection

In this section, we test the robustness of compression methods when noise is injected into the original clean
speech from LibriTTS. Instead of using synthetic signals such as Gaussian noise, we follow Zeghidour
et al. (2021) to use natural noise (e.g., noise from the air conditioner, shutting door, etc.,) from Freesound5

(Fonseca et al., 2017). We vary the ratio of noise injection from 5% to 30%, as shown in table 1. Given
a ratio, we first calculate the duration of noise L (e.g., if the ratio is 0.1 and speech is 10 seconds, then
we inject L = 1 second of noise) and randomly select a range of length L from the clean speech to
inject noise. As shown in table 1, as the noise ratio increases, STAR has the smallest degradation and
consistently outperforms CIF and CNNs. After reaching noise ratio ≥ 30%, STAR even outperforms the
vanilla S2T model without compression. Such findings show that STAR has a more robust performance
with the help of anchor representation, making it suffer less from noise injection and obtain better ASR
performance.

D Similarity Test with Compressed Representation

In §3.2, we show STAR’s superior performance on ASR, demonstrating the effectiveness of condensing
information to a few positions for the text decoder. In this section, we evaluate speech representation’s
similarity to further probe the quality of the compressed representation, without being influenced

5 We download the audio file for different noise from https://github.com/microsoft/MS-SNSD

15

https://github.com/microsoft/MS-SNSD

by the decoder. More specifically, we use the test set of LibriTTS and for each English transcription, we
compute its cosine similarity score against all other transcriptions, using a pre-trained sentence-transformer
encoder6 (it computes a sentence-level representation from BERT and perform mean pooling to obtain a
uni-vector representation). We regard the ranking from sentence-Transformer’s similarity as ground truth
(as the transcriptions are non-complex English sentences); then we use our speech semantic encoders to
compute cosine similarity for all pairs of speech representations and verify if the ranking is similar to the
ground truth.

For the baseline vanilla S2T model, we perform mean pooling (MP) on its encoder representation
c to obtain a uni-vector representation for each speech input and compute cosine similarities. For the
other three models with compression, we first obtain the compressed representation h and we try two
approaches to compute similarity. The first approach is the same as the baseline, where we apply MP on
the compressed representation to obtain uni-vector representations. The second approach is inspired by
the MaxSim (MS) algorithm used in ColBERT (Khattab and Zaharia, 2020), which computes the average
of maximum similarity across the compressed representations.

Then we measure the quality of our trained speech semantic encoders with metrics widely used in
retrieval and ranking–Normalized Discounted Cumulative Gain (nDCG) and Mean Reciprocal Rank
(MRR). From the results shown in table 2, STAR still obtains the best-performing representation, with
MRR@10 = 0.087, nDCG@10 = 0.453. Note that the performance is not very high as we did not train
the model specifically for the sentence similarity task. Rather, we used the similarity task as an intrinsic
measurement for the quality of condensed representations to exclude the influence of the text decoder.

Comparing the numbers in table 2, STAR consistently obtains better speech representation (for both
MP and MS algorithms) for the similarity task. Interestingly we find that STAR-30’s representation works
better in mean pooling compared to STAR-12, suggesting that more condensed information works better
for mean pooling. However, the MaxSim algorithm better leverages the multi-vector representation, which
enables STAR-12 to obtain the best ranking performance.

NDCG @ 10 MRR @ 10

Model MP MS MP MS

Vanilla S2T 0.407 N/A 0.053 N/A

Conv-12 0.399 0.41 0.035 0.053
CIF-12 0.418 0.444 0.056 0.078
STAR-12 0.429 0.453 0.064 0.087

STAR-18 0.429 0.446 0.055 0.078
STAR-30 0.437 0.441 0.078 0.08

Table 2: Performance of speech rankings by different representation. STAR achieves the best performance as
evaluated by NDCG@10 and MRR@10. The best performance is achieved through the MaxSim algorithm;
interestingly, STAR-30 achieves the best performance with the Mean Pooling algorithm.

E Memory Usage Benchmark

In this section, we describe our setup to benchmark memory usage, which compares our proposed
approach with a vanilla encoder-decoder model that does not support compression. We use Google Colab
with a runtime that uses a T4 (16G memory) GPU. Then for each experiment, we run it 5 times and
report the average in table 3. Both encoder and decoders follow our setup in appendix F, except that
the encoder’s maximum position is increased to 8,196 to support the benchmark experiment with long
sequences. Note that the sequence length reported is the length of the input feature (which we compress
by r ∈ {2, 5, 10, 20}). We set the output sequence’s length to be 1

10 of the input, similar to the ratio in our
simultaneous speech-to-text experiments.

6 In practice, we use public checkpoint from: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

16

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Stage Batch Size Seq Len No Compression With Compression

r=2 r=5 r=10 r=20

Inference 1 1000 1196 1076 1004 987 970
1 2000 2975 2509 2237 2138 2101
1 3000 5744 4736 4101 3894 3739
1 4000 9540 7711 6637 6269 6102
1 5000 14314 11493 9805 9237 8951
1 6000 OOM OOM 13587 12786 12434

Training 128 100 4964 4730 4209 4160 4124
128 200 10687 9948 9465 9302 9223

Table 3: Memory usage (MB) of the encoder-decoder model with and without our proposed compression method.
OOM: out of memory.

F Hyper-parameters

We provide hyper-parameters used for model configuration and training in this section. For different
compression rates, the CNNs’ stride configuration is shown in fig. 13. For example, a stride of (4,3) means
we stack two CNN blocks, one with stride 4 and another with stride 3, achieving a compression rate of 12.

In this section, we provide the hyper-parameters and training configurations for all our experiments. We
use a hidden dimension of 512 across all models. The tokenizer is developed using Byte Pair Encoding
(Sennrich et al., 2016, BPE), with a vocabulary size of 10,000. The segmenter is parameterized by
a 2-layer FFN with ReLU (Agarap, 2018) activation in between; the first FFN has input and output
dimensions both set to 512 and the second FFN has input dimension 512 with output dimension 1. Our
experiments are conducted using the Adam optimizer, configured with β1 = 0.9 and β2 = 0.999. These
experiments are conducted with a data-parallel setting with 4 A100 GPUs.

For the audio processing, we set the sampling rate to 16,000. In the encoder configuration, we use a
maximum of 1,024 positions for Automatic Speech Recognition (ASR) and 2,048 for Speech Translation
(ST), with each encoder consisting of 4 layers and 8 attention heads. The decoder mirrors the encoder in
its architecture, with 4 layers and 8 attention heads, but differs in its maximum positions, set at 512, and
its vocabulary size, also at 10,000.

For non-streaming ASR in our pre-training setup, both the encoder and decoder are trained to converge
with a learning rate of 1e-4, a batch size of 32, and a warmup of 10,000 steps. Subsequently, the
compression module (CNN/CIF/STAR) is fine-tuned using a learning rate of 5e-5 alongside the pre-trained
encoder and decoder. The segmenter is trained for 6,000 steps with feedback from the encoder-decoder’s
cross-attention, as discussed in §2, after which it is frozen. Post this, we further fine-tune the encoder and
decoder until convergence.

For streaming speech-to-text tasks, the feature extractor (WAV2VEC2.0), encoder, and decoder are
jointly trained with a learning rate of 5e-5, a batch size of 8, and gradient accumulation every 4 steps.
A causal mask is added to WAV2VEC2.0during this process. Following convergence, the compression
module undergoes fine-tuning using a learning rate of 5e-5 and a batch size of 16. Similar to the
non-streaming setup, the segmenter is updated only in the first 6,000 steps.

Figure 13: Left: Blocks of CNNs used to compress representation. Right: Stride sizes we used in experiments for
different compression rates.

17

G Differentiable Average Lagging

Consider a raw speech with length Tx which is segmented into |X| chunks. We define the length of ith

segment (chunk) as |Xi| (so that |X| =∑|X|
j=1 |Xj |), and we define di =

∑i
t=1 |Xt| as the total time that

has elapsed until ith speech segment Xi is processed. With the aforementioned notation, DAL is defined
to be:

DAL =
1

Ty

Ty∑

i=1

d′i −
i− 1

γ
(12)

where Ty is the length of text tokens and 1/γ is the minimum delay after each operation, computed as
1/γ =

∑|X|
j=1 |Xj |/Ty (i.e., the averaged elapsed time for each token is used as the minimum delay).

Lastly, d′i is defined as:

d′i =

{
di i = 0

max(di, d′i−1 + 1/γ) i > 0
(13)

The smaller the DAL, the better the system in terms of latency. For more discussions for DAL and
latency-quality trade-off in SimulST, we direct readers to prior work (Ma et al., 2020a; Arivazhagan et al.,
2019) for more details.

18

