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Abstract

Although paralinguistic information is critical

for human communication, most spoken dia-

logue systems ignore such information, hinder-

ing natural communication between humans

and machines. This study addresses the recog-

nition of paralinguistic attitudes in user speech.

Specifically, we focus on four essential atti-

tudes for generating an appropriate system re-

sponse, namely agreement, disagreement, ques-

tions, and stalling. The proposed model can

help a dialogue system better understand what

the user is trying to convey. In our experi-

ments, we trained and evaluated a model that

classified paralinguistic attitudes on a reading-

speech dataset without using linguistic informa-

tion. The proposed model outperformed human

perception. Furthermore, experimental results

indicate that speech enhancement alleviates the

degradation of model performance caused by

background noise, whereas reverberation re-

mains a challenge.

1 Introduction

In human dialogue, people communicate various

messages through paralinguistic features of speech,

such as prosody and voice quality. Speech can con-

vey emotions and attitudes through paralinguistic

features regardless of linguistic information. Hu-

mans can recognize four intentions, namely affirm,

deny, ask for repetition, and filler, with high accu-

racy using only paralinguistic features (Ishi et al.,

2008). Moreover, humans can convey six inten-

tions, namely criticism, doubt, naming, suggestion,

warning, and wish, through prosodic patterns irre-

spective of lexical meaning (Hellbernd and Samm-

ler, 2016). The paralinguistic information transmit-

ted in this manner can affect listener behavior.

By contrast, paralinguistic information is ig-

nored by most spoken dialogue systems, which

adopt a cascaded pipeline of automatic speech

recognition (ASR) and a linguistic dialogue model.

This restriction requires users to convey their mes-

sages using only linguistic information; otherwise,

miscommunication can occur. The limited paralin-

guistic ability in spoken dialogue systems impedes

natural communication with humans.

In this study, we address the challenge of en-

abling a spoken dialogue system to recognize at-

titudes expressed through paralinguistic features

in user speech. Specifically, we focus on four at-

titude classes, namely agreement, disagreement,

questions, and stalling. Table 1 lists these defini-

tions. In the case of no confusion, the agreement,

disagreement, question, and stalling classes are ab-

breviated as A, D, Q, and S, respectively. Among

other paralinguistic information, the four attitudes

are critical in determining the reaction of a system.

These attitudes are typically accompanied by the

four main types of boundary pitch movement at

the end of prosodic phrases (Igarashi and Koiso,

2012). Using prosody is an effective way to con-

trol voice interactive devices (Zhang et al., 2022).

We believe that spoken dialogue systems should

also be able to recognize paralinguistic attitudes to

communicate naturally with humans. Note that this

study does not aim to comprehensively theorize the

paralinguistic aspects of dialogue acts. The pro-

posed model focuses on resolving the ambiguity

that arises when spoken dialogue systems try to

understand user speech by relying solely on lexical

information and ignoring paralanguage.

Only one of the four attitudes is deemed to ac-

company a single utterance. This is understood

by the fact that boundary pitch movement at the

end of an utterance substantially affects the attitude.
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Figure 1: Example usage of the proposed model
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Table 1: Paralinguistic attitude classes

Attitude Expected reaction

Agreement in favor, accept to continue performing the approved action, moving

on to the next

Disagreement against, dissatisfied, request to stop canceling the rejected action, asking for

instructions

Question not understand, confirm facts, listen back answering the question, rephrasing the

previous utterance

Stalling thinking, worried, request to wait waiting for instructions, providing addi-

tional information

Therefore, articulating multiple attitudes in a single

utterance is challenging for most users of spoken

dialogue systems. In other words, the paralinguis-

tic attitudes investigated in this study are mutually

exclusive and evoked in units of utterances.

We introduce one of the expected uses of our

model, as illustrated in Fig. 1. An input user utter-

ance is processed in parallel using an ASR model

and a paralinguistic attitude recognition model.

The transcription and the inferred attitude are subse-

quently passed on to a large language model (LLM).

Finally, a text-to-speech (TTS) model synthesizes a

system utterance according to the output generated

by the LLM. Previous studies have explored meth-

ods to process paralinguistic cues in conjunction

with transcripts by employing LLMs (Lin et al.,

2024; Xue et al., 2024; Kang et al., 2024). A sim-

ple approach is to concatenate the transcript and

class label in a prompt, for example: "transcript

<attitude>."

2 Model

The network structure of the proposed model is

listed in Table 2. The input feature of the pro-

posed model is a waveform. The main part is a self-

supervised learning (SSL) model called HuBERT-

large (Hsu et al., 2021). The layer depth at which an

embedding vector is obtained from the SSL model

is optimized on the validation data, following (Zhu

and Sato, 2023). The embedding vector yielded

from the SSL model is averaged over time and

passed to head layers that comprise two fully con-

nected layers and a softmax layer. The output is

the posterior probability of the attitude classes.

It is known that speech SSL models embed

prosodic information in their hidden representa-

tions (Lin et al., 2023; de la Fuente and Jurafsky,

2024). Moreover, the explicit incorporation of pitch

Table 2: Model structure

Layer Output size

HuBERT 1024× T

Mean pooling 1024

Fully connected 1024

Fully connected 1024

Softmax 4

T denotes the number of time frames.

into the input features in our preliminary exper-

iments did not enhance the model performance.

Hence, we chose to use only the hidden representa-

tion of the HuBERT model.

We note that linguistic information was not used

as an input feature. One reason for this choice is

that a cascaded pipeline of ASR and the attitude

recognition model cause considerable latency in

generating a system response. To use linguistic

information, the paralinguistic attitude recognition

model should wait until the ASR model yields a

transcription, inevitably causing additional latency.

Thus, we made the model recognize attitude using

only acoustic features to avoid hindering smooth

communication. Another reason is that a spoken

phrase can be accompanied by distinct intentions

depending on its paralinguistic features regardless

of linguistic information (Ishi et al., 2008; Tang

et al., 2016; Hellbernd and Sammler, 2016). There-

fore, linguistic features were not significant in rec-

ognizing the four paralinguistic attitudes. Another

motivation was to avoid the domain dependence of

linguistic features. Linguistic choices are affected

by situations where dialogue occurs and the rela-

tionship between participants. Previous studies on

paralinguistic information employing linguistic fea-

tures focused on a specific domain, such as meet-

ings (Ortega and Vu, 2018; Maltby et al., 2023)
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and news delivery (Takatsu et al., 2019). We used

only acoustic features so that the model is useful in

various domains.

3 Data

In this study, speeches read in Japanese by crowd

workers and actors were used. Table 3 and Fig. 2

show the number of utterances and distribution of

duration, respectively.

3.1 Crowd workers’ speech

We used a Japanese reading speech dataset col-

lected by (Sato and Miyazawa, 2023). In this sec-

tion, we briefly review the dataset. It contains five

sets of 63 scripts, including words, phrases, sen-

tences, fillers, and back channels. A spoken sen-

tence can be accompanied by a paralinguistic atti-

tude regardless of its semantic content. Therefore,

the same speaker read each script aloud with four

attitudes in this dataset. In the recording process,

138 crowd workers read one script set of size 63

aloud with four paralinguistic attitudes. Another 20

crowd workers evaluated the utterances in which

each speech was heard by two or three listeners.

By using a statistical quality estimation method,

19,821 high-quality utterances were selected. This

method estimates the quality of utterances from

the speaker’s intention and listeners’ evaluations,

while considering their reliability.

3.2 Actors’ speech

In this study, we collected additional recordings us-

ing the same procedure. Six actors read a script set

of size 63 aloud with four paralinguistic attitudes.

Because we added a small number of recordings,

the number of utterances per attitude was greater

than 378. After recording, 31 crowd workers eval-

uated 384 randomly sampled utterances, each of

which was heard by five listeners. We assumed that

the attitudes intended by the actors were correct

and used all the utterances without filtering.

The results are summarized in Table 4. The

macro-F1 score of the human perception of the

actors’ speech was 0.829.

4 Experiments

We trained and evaluated a paralinguistic attitude

recognition model using a speech dataset of crowd

workers and actors. All speech data were processed

at a sampling rate of 16 kHz on a single channel.

Table 3: Number of utterances in the dataset

Crowd
Actors

workers

Agreement 8,581 470

Disagreement 976 378

Question 6,048 379

Stalling 4,216 379

Total 19,821 1,606
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Figure 2: Duration distribution

The HuBERT model was frozen, and the head lay-

ers were fine-tuned during training. We measured

the performance in terms of the macro-F1 score

using six-fold cross-validation. For each fold, the

entire dataset was split into six sets, namely four

for training, one for validation, and one for testing.

We augmented the training data four-fold by

adding background noise and reverberation to im-

prove model robustness. Noise signals were ran-

domly selected from the DEMAND (Thiemann

et al., 2013), MUSAN (Snyder et al., 2015), and

FSD50K (Fonseca et al., 2022) datasets. The signal-

to-noise ratio was randomly chosen from the uni-

form distribution from -10 to 10 dB. Room impulse

responses were randomly sampled from the BIRD

database (Grondin et al., 2020). Whether noise or

reverberation was added during the test depended

on the evaluation settings, as explained below.

We set the layer depth at which the HuBERT-

Table 4: Human perception of the actors’ speech

Perceived

A D Q S

In
te

n
d

ed

A 451 10 5 14

D 2 339 133 6

Q 12 52 385 31

S 23 24 18 415

F1 = 0.829
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Table 5: Evaluation of the proposed model on the actors’

speech

Predicted

A D Q S
A

ct
u

a
l

A 453 4 1 12

D 5 330 43 0

Q 9 43 326 1

S 20 0 4 355

F1 = 0.909

large model yielded an embedding vector to 12

based on the validation data. This result is consis-

tent with the findings of previous studies in which

paralinguistic information was incorporated into

the middle layers of the SSL models (Pepino et al.,

2021; Li et al., 2022; Zhu and Sato, 2023).

4.1 Comparison with humans

We compared the performance of human listeners

with our model on the actors’ speech. In this ex-

periment, we did not add noise or reverberation to

the test data. The speech utterances of the crowd

workers were not necessarily suitable for evaluat-

ing human perception because those on which the

listeners disagreed were excluded during the filter-

ing process. Therefore, we used the actors’ speech

to compare human perception with the proposed

model. Table 5 presents the results of the model

evaluation. The macro-F1 score of the model mea-

sured using the actors’ speech was 0.909.

We found that the proposed model outperformed

human perception, as depicted in Tables 4 and 5.

Moreover, the human confusion between the dis-

agreement and question attitudes was reduced in

the model prediction.

4.2 Evaluation of the model

Moreover, we evaluated the performance of our

model on all the data (i.e., all the speech by the

crowd workers and the actors). No noise or rever-

beration was introduced to the test data. For the

actors’ speech, we assumed the intended attitudes

to be the ground truth. For the crowd workers’

speech, we regarded the attitudes determined by

the quality estimation method as the ground truth.

Table 6 presents the results. The macro-F1 score

of the model evaluated using all data was 0.912.

No significant difference was observed between

the model performance on the speech of the

actors (F1=0.909) and that of all the speakers

Table 6: Evaluation of the proposed model on all the

speech

Predicted

A D Q S

A
ct

u
a
l

A 8744 13 106 188

D 19 1049 286 0

Q 203 192 6009 23

S 234 0 13 4348

F1 = 0.912

Table 7: Evaluation of the proposed model on all the

speech in the noisy and reverberant conditions

Condition
Enhanced

F1
speech

Clean 0.912

Noisy 0.625

Noisy ✓ 0.844

Noisy and reverberant 0.449

Noisy and reverberant ✓ 0.492

(F1=0.912). Therefore, the quality estimation

method effectively selected quality speech.

4.3 Robustness to noise and reverberation

Real-world applications of spoken dialog systems

are inevitably affected by noise and reverberation.

Therefore, we evaluated model performance in

noisy and reverberant environments using all the

data. Specifically, we examined three conditions:

(1) clean, (2) noisy, and (3) noisy and reverberant.

The clean condition was identical to the one de-

scribed in Section 4.2. Noise and reverberation

were added in the same manner as the training

data. Furthermore, we investigated the effects of

speech enhancement. A state-of-the-art speech en-

hancement model, MP-SENet (Lu et al., 2023), is

applied to the disturbed test data. The MP-SENet

model simultaneously performs speech denoising

and dereverberation. Table 7 presents the results.

In our experiment, noise and reverberation de-

graded the model performance even though data

augmentation was used during training. The use

of speech enhancement considerably improved

model performance in the noisy condition. By

contrast, the degradation due to reverberation was

marginally mitigated. The results indicate that the

influence of reverberation remains a challenge in

paralinguistic attitude recognition. This can be ex-

plained by the fact that prosody, which is difficult
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to estimate in reverberant environments, is a key

factor in communication through paralinguistic in-

formation.

5 Conclusion

This study addressed paralinguistic attitude recog-

nition in user speech for spoken dialogue sys-

tems. Specifically, we focused on four essen-

tial attitudes for determining a system reaction,

namely agreement, disagreement, questions, and

stalling. We trained and evaluated the model us-

ing a reading-speech dataset of actors and crowd

workers. The proposed model outperformed hu-

man perception when evaluating the actors’ speech

under a clean condition. Furthermore, the proposed

model achieved almost the same performance on

the crowd workers’ speech after filtering by qual-

ity. Noise and reverberation degraded the model

performance. Speech enhancement can alleviate

the degradation caused by noise. However, the in-

fluence of reverberation remains a challenge. The

use of paralinguistic attitude recognition enables

spoken dialogue systems to understand what users

convey through speech.

Finally, we discuss future research directions.

We used a reading-speech dataset in this study.

However, the manner in which attitudes are ex-

pressed through paralinguistic features varies de-

pending on the situation in which speech utterances

occur. Human speech directed to spoken dialogue

systems is more diverse than reading speech but

more controlled than casual everyday conversation.

Therefore, we should investigate paralinguistic at-

titude recognition for speech directed to dialogue

systems. Another direction is to clarify how to de-

termine a system reaction, given an inferred user’s

paralinguistic attitude. Moreover, joint models

of speech enhancement and paralinguistic attitude

recognition should be examined to alleviate the

degradation caused by reverberation.
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