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Abstract

We propose using prompts made up of multiple
problems to evaluate LLM capabilities, an ap-
proach we call multi-problem evaluation. We
examine 7 LLMs on 4 related task types con-
structed from 6 existing classification bench-
marks. We find that while LLMs can generally
perform multiple homogeneous classifications
at once (Batch Classification) as well as when
they do so separately, they perform significantly
worse on two selection tasks that are conceptu-
ally equivalent to Batch Classification and in-
volve selecting indices of text falling into each
class label, either independently or altogether.
We show that such a significant performance
drop is due to LLMs’ inability to adequately
combine index selection with text classification.
Such a drop is surprisingly observed across all
LLMs attested, under zero-shot, few-shot, and
CoT settings, and even with a novel synthetic
dataset, potentially reflecting an inherent capa-
bility limitation with modern LLMs.

1 Introduction

In recent years, large language models (LLMs)
have demonstrated remarkable natural language un-
derstanding and reasoning capabilities measured by
a wide range of benchmarks (OpenAI, 2023; Belt-
agy et al., 2020; Gemini-Team, 2023; Anthropic,
2024). However, given their internet-scale train-
ing data, there is growing concern over whether
LLMs’ often superhuman benchmark performance
is achieved due to data contamination (Jacovi et al.,
2023; Sainz et al., 2023). Several studies (Wu et al.,
2024; Mirzadeh et al., 2024) have demonstrated
the limitations of LLMs’ reasoning capabilities by
showing that their performance significantly drops
when given the same reasoning tasks but with dif-
ferent assumptions or conditions. These studies are
often done through synthetic data generation.

In this study, we explore the limitations of LLM
capabilities through multi-problem evaluation, a

Figure 1: Standard single-problem evaluation versus
multi-problem evaluation.

simple evaluation method that leverages existing
benchmarks to construct prompts made up of mul-
tiple problems. As illustrated in Fig 2, unlike con-
ventional single-problem evaluation that prompts
an LLM to solve a single problem at a time, multi-
problem evaluation prompts an LLM to solve mul-
tiple problems at once in a single input prompt.
In this study, we leverage 6 existing classification
benchmarks to construct prompts made up of mul-
tiple homogeneous problems to form 4 contrastive
task types and examine various LLMs on these task
types to explore their limitations. Because of the
combinatory nature of constructing prompts from
multiple problems, it is less likely for LLMs to
encounter exact long multi-problem prompts dur-
ing pre-training, which makes our evaluation less
susceptible to data contamination.

We find that while LLMs can typically handle
multiple classifications simultaneously (Batch Clas-
sification) as well as when performed separately,
they exhibit a significant drop in performance on
two selection tasks that are conceptually equiva-
lent to Batch Classification and involve selecting
indices of text falling into each class label, either
independently or altogether. We show that this drop
results from LLMs’ inability to adequately com-
bine index selection with text classification, which
persists across all tested LLMs, under zero-shot,
few-shot, or Chain-of-Thought (CoT, Wei et al.,
2023) settings, and with a novel synthetic dataset.
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Figure 2: The 4 types of evaluation tasks in the form of a <task, input, output> triplet.

Input Format Benchmark # Samples Objective

Single-text SST-2 1,821 Sentiment analysis
CoLA 1,043 Grammatical acceptability
AGNews 1,000 Topic classification

Text-pair MRPC 1,725 Paraphrase detection
SNLI 1,000 Natural language inference
WiC 1,400 Word sense disambiguation

Table 1: Classification benchmarks used in the study.
We use the test splits wherever possible, except for
CoLA, for which we use the dev split, since the test
split is not publicly available. For AGNews and SNLI,
we randomly sample 1,000 examples from the test splits.

2 Related Work

Prompting LLMs with multiple problems at
once. Given the non-trivial cost of deploying
LLMs at large scale, recent studies (Cheng et al.,
2023; Laskar et al., 2023; Son et al., 2024; Lin
et al., 2024) have proposed various prompt-level
approaches that place multiple problems in a single
prompt to improve input token utilization to save
LLM inference costs. However, they do not aim to
discover limitations in LLM capabilities.

LLM Evaluation While there have been sev-
eral surveys dedidcated to the evaluation of spe-
cific topics, e.g., hallucination (Huang et al., 2023;
Rawte et al., 2023), bias and fairness (Gallegos
et al., 2024; Li et al., 2024), and alignment (Wang
et al., 2023; Liu et al., 2024), we note that cur-
rent LLM evaluation has predominantly focused
on LLM’s performance on prompts consisting of
single problems. Each of such prompts presents a
single problem, which expects one specific answer.

3 Experimental Setup

This section describes the data, tasks, LLMs, and
performance metric used for our experiments.

3.1 Data

We construct homogeneous multi-problem tasks
from existing single-problem benchmarks. We con-
sider the following 6 classification benchmarks, as
described in Table 1: SST-2 (Socher et al., 2013),
CoLA (Warstadt et al., 2019), AGNews (Gulli,
2004), MRPC (Dolan and Brockett, 2005), SNLI
(Bowman et al., 2015), and WiC (Pilehvar and
Camacho-Collados, 2019). They cover two clas-
sification paradigms, i.e., single-text and text-pair
classification, as well as six distinct task objectives.

3.2 Evaluation Tasks

We conduct our multi-problem evaluation on 4 re-
lated types of tasks, conceptualized in Fig 2, using
the 6 existing benchmarks introduced above. We
define task size n as the number of classification
problems included in a prompt and m as the num-
ber of unique class labels in a given benchmark.
The full prompt templates used for these task types
are provided in Appendix C, where the overall lim-
ited effect of prompt variation is also discussed.

Among these 4 task types, Single Classification
(SingleClf) and Batch Classification (BatchClf)
are classification tasks where an LLM is prompted
to solve one or a batch of classification problems at
once, respectively. Index Selection One Category
(SelectOne) and Index Selection All Categories
(SelectAll) are two reformulations of BatchClf.
Instead of making multiple classifications under
BatchClf, these two tasks instruct LLMs to select
indices of text falling into each label class, either
independently in m separate prompts (SelectOne)
or altogether in a single prompt (SelectAll).

We design the two selection tasks to test LLM’s
understanding of the classifications performed un-
der BatchClf. Since selection tasks of size n may
have anywhere from 0 to n correct indices per class,
spurious correlations are less likely during our eval-
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Figure 3: Average accuracy of the 7 LLMs on the 4 task types across task sizes for each benchmark.

uation, given the combinatory answer space.

3.3 LLMs and Evaluation Settings
We evaluate 7 LLMs from 4 model families with
greedy decoding: Vicuna (13B, Chiang et al.,
2023), Mistral 7B (Jiang et al., 2023), Mixtral 8x7B
(Jiang et al., 2024), Llama-3 8B and 70B (Instruct,
Meta, 2024), GPT-3.5, and GPT-4 (OpenAI, 2023).
We conduct the main experiments under zero-shot
and selectively experiment with other prompting
strategies in the follow-up experiments in Section 5.
See Table 5 in Appendix A for model details.

Performance metric We measure the average
per-problem accuracy (PPA) to unify the evalua-
tion across the four task types. PPA, defined in
Equation 1, is the average accuracy of classifying
n problems with each prompt or, in the case of
SelectOne, in each set of directly related prompts
targeting different class labels.

PPA =
1

n

n∑

i=1

δ(I(Pi), Ai) (1)

I(Pi) is the inferred LLM-generated answer to the
ith problem in the input prompt, Ai is the ground
truth, and δ(i, j) = 1 iff i = j and 0 otherwise. For
the two index selection tasks, I(Pi) is determined
by considering the LLM’s assignments of indices
to all class labels. Other than assigning an index
to a wrong class label, there are two more error
types. First, LLMs may assign an index with more
than one class label, i.e., an contradiction error.
Second, LLMs may assign no labels to an index at
all, namely, an non-excluded middle error.

To compare performance difference, we use
Mann-Whitney U tests for significant testing and
Cohen’s d (Cohen, 1969) for measuring effect size.

4 Results

Fig 3 shows the average accuracy on the 4 task
types across task sizes for each benchmark with
the related full results for each LLM provided in

> 90% SCAcc > 80% SCAcc > 75% SCAcc

Vicuna 13B 79.3 93.1 93.1
Mistral 7B 76.7 83.3 100.0
Mixtral 8x7B 63.3 83.3 86.7
Llama-3 8B 73.3 90.0 100.0
Llama-3 70B 80.0 100.0 100.0
GPT-3.5 56.7 83.3 90.0
GPT-4 100.0 100.0 100.0

Overall 75.6 90.4 95.7

Table 2: Percent of time that BatchClf performance
surpasses a threshold percent of SingleClf accuracy
(SCAcc) across benchmarks.

BatchClf vs
SelectOne

BatchClf vs
SelectAll

SelectOne vs
SelectAll

Mean Acc Dif 32.0 12.1 -19.9
Std Dev 16.9 15.3 12.0
Cohen’s d 1.8 0.8 -1.0

Table 3: Pairwise accuracy difference (x vs y = x - y).
All the differences are statistically significant and with
a large effect size (| Cohen’s d | ≥ 0.8).

Appendix A.3. We exclude the results of Vicuna
on AGNews at task size 100 as the prompts exceed
the model’s context length. Two main observations
are as follows.

LLMs can handle multiple classifications at
once with minimal performance loss. Although
BatchClf accuracy generally declines as the task
size increases, all LLMs achieve accuracy of at
least 90% that of SingleClf across benchmarks
most of the time (see Table 2). Overall, the Single-
Clf accuracy for the 7 LLMs is 75.5% on average
and the BatchClf counterpart is 72.3%, a minor
3.2% absolute drop from the former.

LLMs perform significantly worse on the se-
lection tasks. Despite the impressive BatchClf
performance, LLMs nearly always perform much
worse in SelectOne and SelectAll than BatchClf,
even when the task size is just 3 or 5. The over-
all discrepancy in accuracy between BatchClf and
the two tasks is large and statistically significant
(32.0% for SelectOne and 12.1% for SelectAll, see
Table 3) and generally increases with a larger task
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Figure 4: Average accuracy of the 7 LLMs on the two
simplified index selection tasks based on AGNews. We
provide the original results from BatchClf, SelectOne,
and SelectAll for easy comparisons.

size. Similarly, Table 3 also shows a large and sta-
tistically significant difference between SelectOne
and SelectAll, in favor of the latter.

These significant performance differences may
not be human-like, given the conceptual equiva-
lence of the three tasks underlyingly. For example,
humans should at least be able to classify and select
a small number (e.g., 3/5) of texts (mostly short
sentences) equally well simply by thinking over the
problems (i.e., zero-shot).

5 Follow-up Experiments

We perform a series of follow-up experiments to
further understand and validate our main findings.
More details about these experiments are presented
in Appendix B.

5.1 Can LLMs do Index Selection?
While we argue that the LLMs’ weaker perfor-
mance on SelectOne and SelectAll is due to a weak-
ness in combining classification with index selec-
tion, an alternative explanation would be that they
just generally struggle at index selection. To ex-
clude this possibility, we simplify the two index
selection tasks by directly replacing each line of
text with its gold standard label in the prompts for
AGNews, which has most labels. We then ask the
LLMs to select the indices of lines containing each
label with minimal modifications to the original
task instructions.

Fig 4 shows that LLMs can perform in the sim-
plified selection tasks much better than the origi-
nal ones, with Llama-3 70B, GPT-3.5, and GPT-4
even achieving (nearly) 100% accuracy across task
sizes. The 7 LLMs’ overall performance in the sim-
plified selection tasks is even slightly higher than
their overall BatchClf accuracy. The previously
observed performance gap between SelectOne and

Task SelectOne + CoT SelectAll + CoT BatchClf
Model

Vicuna 23.0 25.8 53.2 57.6 68.7
Mistral 7B 38.3 47.5 56.8 60.5 71.2
Mixtral 8x7B 47.4 38.7 65.1 58.4 73.4
Llama-3 8B 39.0 41.8 62.4 59.0 73.3
Llama-3 70B 59.4 67.1 72.9 79.2 79.4
GPT-3.5 45.5 47.5 66.7 66.3 71.9
GPT-4 66.3 71.8 78.8 81.8 81.9

Overall 45.5 48.6 65.1 66.1 74.3

Table 4: Aggregate average accuracy of SelectOne and
SelectAll with and without 1-shot-CoT for each LLM.
BatchClf performance is also provided for comparisons.

SelectAll also disappears for almost all LLMs (see
Appendix B for full results). In general, LLMs can
indeed do index selection.

In conclusion, it appears that the tested LLMs
perform less well on SelectOne and SelectAll as
compared to BatchClf because they cannot ad-
equately combine the index selection task and
the classification tasks in response to a zero-shot
prompt. Put differently, LLMs lack true understand-
ing of the problems presented in different forms,
even when the number of problems is quite small
(e.g., 3 or 5), which may not be human-like.

5.2 Does CoT Help?

In light of the results above, we use 1-shot-CoT to
prompt LLMs to do BatchClf first and then perform
the two index selection tasks on the 6 benchmarks
with a fixed task size 10. Table 4 shows that while
overall LLMs benefit from CoT for both SelectOne
and SelectAll, the benefits are generally larger for
SelectOne than SelectAll (3.1% versus 1.0% im-
provement) and not consistent across models with
Mixtral 8x7B performing even worse with CoT.
Moreover, the task complexity hierarchy among
BatchClf, SelectOne, and SelectAll remains in vir-
tually all cases. We leave to future studies the
investigation of how CoT may further help with the
two selection tasks.

5.3 Does Few-Shot Prompting Help?

To test the generality of the main findings, we first
re-run all experiments for CoLA providing 2 ex-
emplars in the prompts and with a fixed task size
5 for tasks other than SingleClf. We find that few-
shot prompting is mostly detrimental across LLMs,
particularly so for SelectOne and BatchClf. As a re-
sult, SelectAll shows an overall better performance
than BatchClf and the performance gap between
SelectOne and SelectAll becomes much larger. Full
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Figure 5: Full results on the novel benchmark created on top of SST-2 where the task objective is to decide if a text
pair shares the same sentiment.

results are in Table 8 in Appendix B for space rea-
sons.

5.4 Testing on a Novel Benchmark
As argued in Section 1, multi-problem evaluation
is less susceptible to data contamination, given the
combinatory nature of constructing prompts from
multiple problems. To further mitigate the concern
of data contamination, we create a novel bench-
mark with 1,000 distinct and label-balanced text
pairs sampled from SST-2. The task is to determine
if each text pair shares the same sentiment, which
we believe is unlikely to appear in the training data
of LLMs. We run experiments on this benchmark
using the same experimental setup described in
Section 3 for the text-pair benchmarks. The results
in Fig 5 are consistent with our main results.

6 Conclusion

We propose multi-problem evaluation and present a
comprehensive multi-problem evaluation of LLMs,
leveraging 6 existing classification benchmarks
and 4 related task types constructed from those
benchmarks. Our results provide new insights
into the multiple problem handling capabilities of
LLMs: LLMs are competent multi-problem solvers
for multiple homogeneous classification problems
(Batch Classification), but they perform signifi-
cantly worse on two selection tasks that are con-
ceptually equivalent to Batch Classification and
involve selecting indices of text falling into each
class label, either independently or altogether. This
is due to their inability to adequately combine index
selection with text classification. The surprisingly
consistent performance drop on the two selection
tasks observed across 7 LLMs and a wide range
of evaluation settings potentially indicates an in-
herent limitation with modern LLM capabilities.
This also showcases the potential of multi-problem
evaluation as a useful and effective in discovering
limitations of LLM capabilities.

There are several directions worth future explo-
rations. For example, to better understand how well
how LLMs can handle multiple problems in gen-
eral, it is important to test LLMs with other types
of problems (e.g., reasoning problems) and with
multiple heterogeneous problems (e.g., mixing dif-
ferent benchmarks/tasks). It is also important to
understand what causes LLMs to perform worse
or better when prompted with multiple problems,
such as benchmark, task size, and model’s context
length. In particular, model-level ablation studies
are needed if we want to know how LLMs obtain
the ability to handle multiple problems at once and
how to improve their understanding capabilities.
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A Experimental details

A.1 LLM Details

Table 5 describes the specific versions for the 7
LLMs we use in the paper and highlights their dif-
ferences in terms of open weights, training with
Reinforment Learning from Human Feedback or
RLHF (Christiano et al., 2017), architecture, num-
ber of parameters, and context window size. We
use OpenAI API and TogetherAI API to call GPT
LLMs and non-GPT LLMs, respectively.

A.2 LLM Output Parsing Code

The LLM output parsing code contains over 200
lines of regular expressions to parse LLM outputs
and we include it in this submission for review.
The code takes into accounts the following five
variables during parsing: task type, benchmark,
model, task size, and target label (for SelectOne).
This is to ensure our code can handle cases when
LLMs generate undefined labels, un-instructed ex-
planations, or even wrong answer format (e.g., a
non-JSON output for SelectOne and SelectAll).

Overall, our code achieves about 99.9% overall
parsing rate. The unparsable cases mostly come
from SingleClf outputs where LLMs output un-
defined labels, such as “Mixed” or “Netual” for
SST-2. For BatchClf outputs, we implement a se-
ries of rules to extract both defined and undefined
labels, because of the order of the extracted labels
affects the final evaluation. For SelectOne and Se-
lectAll, our code extracts JSON object, fixes cases
where the JSON object has formatting issues, or
extracts a series of text indices when there is no
JSON object identified in the output.

A.3 Full Results

The full results obtained from the main experiments
are visualized in Fig 6. We exclude the results of
Vicuna on AGNews when task size is 100 because
the prompts exceed the model’s context length.

A.4 Task Complexity Hierarchy

In Table 3 from Section 4, we demonstrate the
overall task complexity hierarchy among BatchClf,
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Model Version Open Weights With RLHF MoE # Parameter Context Window Size

Vicuna (Chiang et al., 2023) v1.5 ✓ ✗ ✗ 13B 4,096
Mistral 7B (Jiang et al., 2023) Instruct-v0.2 ✓ ✗ ✗ 7B 8,192
Mixtral 8x7B (Jiang et al., 2024) Instruct-v0.1 ✓ ✗ ✓ 47B 8,192
Llama-3 8B (Meta, 2024) Instruct ✓ ✓ ✗ 8B 8,192
Llama-3 70B (Meta, 2024) Instruct ✓ ✓ ✗ 70B 8,192
GPT-3.5 turbo-0125 ✗ ✓ ✗ - 16,385
GPT-4 (OpenAI, 2023) turbo-2024-04-09 ✗ ✓ ✗ - 128,000

Table 5: The 7 LLMs we use, all instruction finetuned. For the two GPT LLMs, it is commonly assumed that both
are larger than GPT-3 (a 175B LLM) with GPT-4 being the largest. For Mixtral 8x7B, a Mixture of Experts (MoE)
LLM, although each token has access to 47B parameters, but only uses 13B active parameters during inference.

SelectOne, and SelectAll. It is found that Selec-
tOne > SelectAll > BatchClf, where “>” denotes a
“more complex than” relationship.

Similar to Fig 3, which describes the aggre-
gate average accuracy across benchmarks, Fig 7
describes the aggregate average accuracy across
LLMs. Although there are few cases shown in Fig 6
where the overall complexity hierarchy among
BatchClf, SelectOne, and SelectAll does not hold
(e.g., Vicuna on MRPC for task size 50), these
cases are exceptional and likely due to the interac-
tions of multiple factors in play, such as model,
benchmark, input length, and context windows.
Nevertheless, the overall task complexity hierar-
chy is clear both in Fig 3 (benchmark-level) and in
Fig 7 (model-level).

A.5 Limited Effect of Prompt Variations
Throughout our research project, we have also tried
prompts with different wordings and structures un-
til we finally unified the prompt designs presented
above. More concretely, we initially instructed
LLMs to produce indices line by line for SelectOne
and did not include any formatted output example
in SelectAll prompts for almost all classification-
related experiments. The table below shows the
average performance of each LLM on SelectAll
and SelectOne using current and earlier prompt
templates. Clearly, the effects of prompt variations
are minimal (except for GPT-3.5 on SelectOne) and
the findings in the paper remain valid.

B Follow-up Experiments

B.1 Simplified Index Selection Tasks
Fig 8 shows the full results for the two simplified
index selection tasks, along with results for the two
original selection tasks and BatchClf, based on AG-
News. Clearly, (1) all LLMs perform much better
in the simplified tasks than the original ones; (2)
Mixtral 8X7B, Llama-3 70B, GPT-3.5, and GPT-4
can do these simplified selection tasks even better

task SelectOne (Early) SelectAll (Early)
model

Vicuna 17.9 (15.4 ) 43.2 (44.5)
Mistral 7B 31.5 (31.8) 51.5 (44.2)
Mixtral 8x7B 38.4 (39.1) 60.1 (60.5)
Llama-3 8B 33.0 (34.5) 54.6 (56.8)
Llama-3 70B 54.2 (54.7) 70.0 (70.4)
GPT-3.5 41.4 (28.3) 63.4 (61.3)
GPT-4 65.4 (64.7) 78.0 (76.7)
Overall 40.4 (38.5) 60.2 (59.2)

Table 6: Model performance on the two selecting tasks
using the finalized prompts and early prompts.

than their BatchClf performance consistently, with
the latter three achieving nearly 100% accuracy in
most cases; (3) the task complexity hierarchy be-
tween SelectOne and SelectAll nearly disappears
for all LLMs except Vicua, implying that it may be
challenging for Vicuna to perform index selection
tasks in general.

B.2 1-shot-CoT Results

Table 7 presents the full 1-shot-CoT results across
benchmarks and LLMs with a fixed task size 10.
As demonstrated in Section 5, CoT improves the
LLMs’ performance in SelectOne and SelectAll
with an overall larger positive effect on the for-
mer, but the improvement is not consistent both
across benchmarks and across LLMs. For exam-
ples, LLMs tend to benefit from CoT for both se-
lection tasks constructed from SST-2, CoLA, and
SNLI (see the “Overall” results in Table 7).

B.3 Few-shot Results

Table 8 shows the full 2-shot results on CoLA for
each LLM, which shows a general negative effect
of few-shot prompting. According to these results,
LLMs performs much worse in SelectOne with an
overall accuracy going down to 25.2% from 58.1%.
Similarly, the negative effect is larger on BatchClf
than on SelectAll, making the overall BatchClf
accuracy lower than SelectAll, although the former
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Figure 6: Full average accuracy of the 7 LLMs on the 4 tasks across the 6 benchmarks.

Figure 7: Aggregate average accuracy on the 4 tasks averaging over results from the 6 benchmarks for each LLM.
“Overall” presents the average results across all LLMs for each one of the 4 task.

129



is still often higher than the latter under the same
test conditions.

C Full Prompts

C.1 Prompt Templates for SingleClf,
BatchClf, SelectOne, and SelectAll

Tables 13 to 14 show the complete prompt tem-
plates for the four task types (i.e., SingleClf, Batch-
Clf, SelectOne, and SelectAll) tailored for SST-
2, CoLA, AGNews, MPRC, SNLI, and WiC, re-
spectively. While there are differences in the ex-
act wording of a prompt template for each task
type across the 6 classification benchmarks, each
prompt template type shares a similar underlying
structure and can be easily applied to other classifi-
cation benchmarks.

Throughout our research project, we have also
tried prompts with different wordings and struc-
tures until we finally unified the prompt designs
presented above. For example, we initially asked
LLMs to directly generate indices line by line in-
stead of a JSON output for SelectOne and we did
not provide any formatted example for SelectAll.
We also put the output format instruction in the end
of each prompt for SelectAll, instead of in the be-
ginning. Although we observed certain task-level
performance variations, which are expected, the
overall complexity among the 4 task types (Selec-
tOne > SelectAll > BatchClf > SingeClf) remains
unchanged, despite the variations in the prompts.
This indicates the overall limited effects of reword-
ing and restructuring prompts.

C.2 Prompt Templates for the Two Index
Selection Tasks

Table 15 presents the two prompt templates used
for the two simplified index selection tasks based
on AGNews.

C.3 One-Shot-CoT Prompt Templates for the
Two Index Selection Tasks

To construct a 1-shot-CoT exemplar, we first ran-
domly sampled 10 examples from each benchmark
that do not appear in our test examples. We then
put these 10 examples into the prompt template for
SelectOne or SelectAll, followed by a constructed
answer. The answer first explicitly classifies the 10
examples into the corresponding class labels, and
then perform index selection based on the gener-
ated class labels.

Table 16 shows the complete answer templates
for SelectOne and SelectAll for each classification
benchmark.

130



Benchmark SST-2 CoLA AGNews MRPC SNLI WiC
Model Task

Vicuna SelectOne 38.5 22.2 16.8 15.8 9.9 34.5
+ CoT 52.6 53.9 12.1 12.1 11.5 12.5

SelectAll 66.7 65.7 42.2 67.4 28.2 48.8
+ CoT 81.7 69.2 40.9 63.9 40.9 48.9

BatchClf 89.1 73.2 70.4 66.7 59.3 53.4

Mistral 7B SelectOne 53.3 52.8 41.5 36.6 23.3 22.2
+ CoT 66.5 55.1 44.8 59.4 29.5 29.5

SelectAll 68.3 63.6 48.2 58.4 54.7 47.9
+ CoT 74.4 68.2 57.0 68.5 47.6 47.3

BatchClf 79.6 76.8 78.1 74.0 69.1 49.6

Mixtral 8x7B SelectOne 76.5 61.0 46.2 45.2 23.8 32.0
+ CoT 41.5 67.3 12.9 48.4 25.1 37.2

SelectAll 85.3 68.4 62.9 65.9 56.2 52.0
+ CoT 49.0 67.4 57.8 66.5 58.9 51.1

BatchClf 80.2 80.9 71.6 70.8 73.3 63.7

Llama-3 8B SelectOne 67.8 50.8 55.1 21.7 21.4 17.3
+ CoT 85.0 48.9 22.1 50.7 22.3 22.0

SelectAll 85.0 62.9 59.6 64.8 50.1 52.2
+ CoT 85.8 66.5 45.3 64.5 39.8 52.3

BatchClf 92.0 76.8 79.5 62.8 69.2 59.5

Llama-3 70B SelectOne 83.6 72.7 67.4 61.0 32.3 39.3
+ CoT 94.7 79.7 75.2 67.9 69.4 15.8

SelectAll 87.3 79.6 76.2 71.7 68.6 53.9
+ CoT 96.1 83.7 85.5 73.9 77.3 58.4

BatchClf 96.4 82.8 86.8 73.5 75.2 61.7

GPT-3.5 SelectOne 71.9 65.8 47.6 25.2 28.4 33.8
+ CoT 80.2 71.7 57.9 26.8 26.5 22.1

SelectAll 83.1 79.7 68.3 61.5 55.8 51.6
+ CoT 89.5 77.5 58.8 70.2 50.5 51.2

BatchClf 95.0 81.8 86.4 52.7 57.4 58.0

GPT-4 SelectOne 88.6 80.8 66.4 58.1 53.8 50.0
+ CoT 84.5 81.9 67.8 60.1 77.0 59.6

SelectAll 92.4 84.0 79.2 73.5 80.8 62.8
+ CoT 91.3 83.7 85.4 76.2 83.3 71.0

BatchClf 96.0 84.0 86.7 72.6 83.8 68.4

Overall SelectOne 68.6 58.0 48.7 37.7 27.6 32.7
+ CoT 72.1 65.5 41.8 46.5 37.3 28.4

SelectAll 81.2 72.0 62.4 66.2 56.3 52.7
+ CoT 81.1 73.7 61.5 69.1 56.9 54.3

BatchClf 89.8 79.5 79.9 67.6 69.6 59.2

Table 7: Full 1-shot-CoT results for all benchmarks and LLMS. The task size is fixed at 10.
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Task SingleClf BatchClf SelectOne SelectAll
Model Benchmark

Vicuna CoLA 78.8 71.0 48.6 59.6
+ 2-shot 69.0 50.4 14.8 64.0

Mistral 7B CoLA 81.5 74.4 47.4 59.4
+ 2-shot 80.2 65.0 25.0 60.4

Mixtral 8x7B CoLA 84.4 81.2 65.0 70.6
+ 2-shot 81.8 73.2 19.8 72.4

Llama-3 8B CoLA 80.2 79.4 33.4 61.2
+ 2-shot 74.3 46.6 0.6 63.8

Llama-3 70B CoLA 82.8 83.4 71.2 79.6
+ 2-shot 81.8 82.0 29.2 80.8

GPT-3.5 CoLA 84.2 79.6 63.4 76.2
+ 2-shot 79.5 76.8 38.2 72.8

GPT-4 CoLA 85.1 83.8 77.8 83.6
+ 2-shot 85.7 80.8 48.6 81.0

Overall CoLA 82.4 79.0 58.1 70.0
+ 2-shot 78.9 67.8 25.2 70.7

Table 8: Full 2-shot results on CoLA. We use a fixed task size 5 for tasks other than SingleClf, whose task size is 1
by default. We provide the related zero-shot results for easy comparisons.
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Figure 8: Full results for the two simplified index selection tasks versus the original tasks based on AGNews.

Task Prompt template

SingleClf Indicate the sentiment for the following line of text. The sentiment shall be
either ‘Positive’ or ‘Negative.’

Text: $text
Sentiment:

BatchClf Indicate the sentiment for each of the $num following lines of text. The
sentiment shall be either ‘Positive’ or ‘Negative.’

Texts, one per line:

$texts

The sentiments for each of the $num lines of text, one per line:

SelectOne Go over the $num lines of text below and list the index numbers of the lines with
$polarity sentiment according to the following instructions: If none of the texts
show $polarity sentiment, write ‘None.’ If all the texts show $polarity sentiment,
write ‘All.’ Otherwise, provide the index numbers for each text with $polarity
sentiment.

Output your responses in JSON format with the key ‘$polarity’. A for-
matted example output is provided below.
{‘$polarity’: [None/All or index numbers for the texts with $polarity sentiment]}

Texts, one per line:

$texts

JSON output:

SelectAll Go over the $num lines of text below. First, list the index numbers of the lines
with positive sentiment. Then, list the index numbers of the lines with negative
sentiment. If none of the texts show a particular sentiment, write ‘None.’ If all
the texts show a particular sentiment, write ‘All.’ Otherwise, provide the index
numbers of the texts that fit a particular category.

Output your responses in JSON format with two keys: ‘positive’ and
‘negative.’ A formatted example output is provided below.
{‘positive’: [None/All or index numbers of positive sentences], ‘negative’:
[None/All or index numbers of negative sentences]}

Texts, one per line:

$texts

JSON output:

Table 9: Prompt templates for SST-2. Words immediately preceded by the dollar sign $ are placeholders. For the
single-text classification task (SST-2, CoLA, AGNews), the sequence of texts in the place of ‘$texts’ are indexed
starting with ‘1’ and each text is separated by a newline.
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Task Prompt template

SingleClf Indicate the grammatical acceptability for the following line of text. The
acceptability shall be either ‘Acceptable’ or ‘Unacceptable.’

Text: $text
Grammatical acceptability:

BatchClf Indicate the grammatical acceptabilities for each of the $num following lines of
text. The acceptability shall be either ‘Acceptable’ or ‘Unacceptable.’

Texts, one per line:

$texts

Grammatical acceptabilities for each of the $num lines of text, one per
line:

SelectOne Go over the $num lines of text below and list the index numbers of the lines that
are grammatically $acceptability according to the following instructions: If none
of the texts are grammatically $acceptability, write ‘None.’ If all the texts are
grammatically $acceptability, write ‘All.’ Otherwise, provide the index numbers
for each grammatically $acceptability text.

Output your responses in JSON format with the key ‘$acceptability’. A
formatted example output is provided below.
{‘$acceptability’: [None/All or index numbers of $acceptability sentences]}

Texts, one per line:

$texts

JSON output:

SelectAll Go over the $num lines of text below. First, list the index numbers of the lines
that are grammatically acceptable. Then, list the index numbers of the lines
that are grammatically unacceptable. If none of the sentences show a particular
acceptability, write ‘None.’ If all the sentences show a particular acceptability,
write ‘All.’ Otherwise, provide the index numbers of the texts that fit a particular
category.

Output your responses in JSON format with two keys ‘acceptable’ and
‘unacceptable.’ A formatted example output is provided below.
{‘acceptable’: [None/All or index numbers of acceptable texts], ‘unacceptable’:
[None/All or index numbers of unacceptable texts]}

Texts, one per line:

$texts

JSON output:

Table 10: Prompt templates for CoLA.
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Task Prompt template

SingleClf Classify which news category the following line of text belongs to among the
following four categories: ‘Business,’ ‘Sports,’ ‘World,’ and ‘Sci/Tech.’

Text: $text
News category:

BatchClf Classify which news category each of the $num following lines of text belongs
to among the following four categories: ‘Business,’ ‘Sports,’ ‘World,’ and
‘Sci/Tech.’

Texts, one per line:

$texts

News categories for each of the $num lines of text, one per line:

SelectOne This is a news classification task in which each line of text belongs to one of
four categories ‘Business,’ ‘Sports,’ ‘World,’ and ‘Sci/Tech.’

Go over the $num lines of text below and list the index numbers of the
lines that can be classified as $category according to the following instructions:
If none of the texts can be classified as $category, write ‘None.’ If all the texts
can be classified as $category, write ‘All.’ Otherwise, provide the index numbers
of the texts that can be classified as $category.

Output your responses in JSON format with the key ‘$category’. A for-
matted example output is provided below.
{‘$category’: [None/All or index numbers of the texts that can be classified as
$category]}

Texts, one per line:

$texts

JSON output:

SelectAll This is a news classification task in which each line of text belongs to one of
four categories ‘Business,’ ‘Sports,’ ‘World,’ and ‘Sci/Tech.’

Go over the $num lines of text below and list the index numbers of the
lines that belong to each category according to the following instructions: If
none of the texts can be classified as a particular category, write ‘None.’ If all the
texts can be classified as a particular category, write ‘All.’ Otherwise, provide
the index numbers of the texts that can be classified as the category.

Output your responses in JSON format with the following keys: ‘busi-
ness,’ ‘sports,’ ‘world,’ and ‘sci/tech.’ A formatted example output is provided
below.
{‘business’: [None/All or index numbers of texts in ‘business’ category], ‘sports’:
[None/All or index numbers of texts in ‘sports’ category], ‘world’: [None/All
or index numbers of texts in ‘world’ category], ‘sci/tech’: [None/All or index
numbers of texts in sci/tech category]}

Texts, one per line:

$texts

JSON output:

Table 11: Prompt templates for AGNews.
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Task Prompt template

SingleClf Compare text A with text B and determine if text A is a paraphrase of text B.
Respond with ‘Yes’ if text A is a paraphrase, and ‘No’ if it is not.

$text
Answer:

BatchClf Compare text A with text B for the following $num text pairs and determine if
text A is a paraphrase of text B line by line. Respond with ‘Yes’ if text A is a
paraphrase, and ‘No’ if it is not. Provide your answers line by line.

$texts
Answers:

SelectOne Go over the $num text pairs below and list the index numbers of the text pairs
where text A $be a paraphrase of text B according to the following instructions:
If none of the text pairs satisfy this condition, write ‘None.’ If all the text pairs
satisfy this condition, write ‘All.’ Otherwise, provide the index numbers of the
text pairs where text A $be a paraphrase of text B.

Output your responses in JSON format with the key ‘answer’. A for-
matted example output is provided below.
{‘answer’: [None/All or index numbers of the text pairs where text A $be a
paraphrase of text B]}

Here are the text pairs:

$texts
JSON output:

SelectAll Go over the $num text pairs below. First, list the index numbers of the
text pairs that contain paraphrases. Then, list the index numbers of the
text pairs that contain non-paraphrases. If none of the text pairs satisfy a
condition, write ‘None.’ If all the text pairs satisfy a condition, write ‘All.’
Otherwise, provide the index numbers of the text pairs that satisfy each condition.

Output your responses in JSON format with two keys: ‘yes’ for para-
phrases and ‘no’ for non-paraphrases. A formatted example output is provided
below.
{‘yes’: [None/All or index numbers of text pairs that contain paraphrases], ‘no’:
[None/All or index numbers of text pairs that contain non-paraphrases]}

Here are the text pairs:

$texts
JSON output:

Table 12: Prompt templates for MRPC. For the text-pair classification task (MRPC, SNLI, WiC), the sequence of
text pairs in the place of ‘$texts’ are indexed starting with ‘1’ and each text pair is separated by two newlines (each
text pair ends with a newline be design, followed by another newline before the next text pair).
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Task Prompt template

SingleClf Given the following premise and hypothesis, determine the inference relation
between them. Respond with ‘Entailment’ if the hypothesis logically follows
from the premise, ‘Contradiction’ if they are in direct opposition, and ‘Neutral’
if neither applies.

$text
Inference relation:

BatchClf Given the following $num pairs of premises and hypotheses, determine the
inference relation for each pair line by line. Respond with ‘Entailment’ if the
hypothesis entails the premise, and ‘Contradiction’ if they contradict. If neither
is the case, respond with ‘Neutral.’ Provide your answers line by line.

$texts
Inference relations for the $num text pairs provided above:

SelectOne Go over the $num text pairs below and list the index numbers of the text
pairs where the inference relation between the premise and the hypothesis is
$relationship according to the following instructions: If none of the text pairs
contain $relationship inference relation, write ‘None.’ If all text pairs contain
$relationship inference relation, write ‘All.’ Otherwise, provide the index
numbers of the text pairs where the inference relation between the premise and
the hypothesis is $relationship.

Output your responses in JSON format with the key ‘$relationship’. A
formatted example output is provided below.
‘$relationship’: [None/All or index numbers of text pairs that contain $relation-
ship inference relation]

Here are the text pairs:

$texts
JSON output:

SelectAll Go over the $num text pairs below. First, list the index numbers of the text
pairs that contain entailment inference relation. Then, select all text pairs
that contain contradiction inference relation. Finally, select all text pairs
that contain neutral inference relation. If none of the text pairs satisfy a
condition, write ‘None.’ If all the text pairs belong satisfy a condition, write ‘All.’
Otherwise, provide the index numbers of the text pairs that satisfy each condition.

Output your responses in JSON format with three keys: ‘entailment’,
‘contradiction’, and ‘neutral’. A formatted example output is provided below.
{‘entailment’: [None/All or index numbers of text pairs that contain entailment
inference relation], ‘contradiction’: [None/All or index numbers of text pairs
that contain contradiction inference relation], ‘neutral’: [None/All or index
numbers of text pairs that contain neutral inference relation]}

Here are the text pairs:

$texts
JSON output:

Table 13: Prompt templates for SNLI.
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Task Prompt template

SingleClf Analyze the usage of the given target word in the two subsequent contexts. The
target word may appear in various grammatical forms in each context. Respond
with ‘Yes’ if it maintains the same meaning across both contexts, and ‘No’ if it
does not.

$text
Answer:

BatchClf Analyze the usage of the following $num target words in the two contexts
that immediately follow them. These target words may appear in different
grammatical forms across the two subsequent contexts. Determine if each target
word maintains the same meaning in the two subsequent contexts. Provide your
answers line by line, indicating ‘Yes’ if it does and ‘No’ if it does not.

$texts
Answers:

SelectOne Analyze the following $num target words and determine the index numbers
of the target words where the same meaning $be maintained across the two
contexts that immediately follow them. These target words may appear in
different grammatical forms in each context. If none of the target words satisfy
this condition, write ‘None.’. If all the target words satisfy this condition, write
‘All.’ Otherwise, provide the index numbers.

Output your responses in JSON format with the key ‘answer’. A for-
matted example output is provided below.
{‘answer’: [None/All or index numbers of the target words where the same
meaning $be maintained in the two subsequent contexts]}

Here are the target words along with their contexts:

$texts
JSON output:

SelectAll Analyze the following $num target words, which may appear in different
grammatical forms in the two subsequent contexts. First, list the index numbers
of target words that maintain the same meaning in the two subsequent contexts.
Then, list the index numbers of target words that do not maintain the same
meaning in the two subsequent contexts. If none of the target words satisfy a
condition, write ‘None.’ If all the target words satisfy a condition, write ‘All.’
Otherwise, provide the index numbers of the target words that satisfy each
condition.

Output your responses in JSON format with two keys: ‘yes’ for target
words used with consistent meanings and ‘no’ for those used with inconsistent
meanings. A formatted example output is provided below.
{‘yes’: [None/All or index numbers of target words used with consistent
meanings], ‘no’: [None/All or index numbers of target words used with
inconsistent meanings]}

Here are the target words along with their contexts:

$texts
JSON output:

Table 14: Prompt templates for WiC.
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Task Prompt template

SelectOne Simplified Go over the $num lines of text below and list the index numbers of the lines
that contain the word ‘$category’ according to the following instructions:
If none of the texts contain the word ‘$category,’ write ‘None.’ If all the
texts contain the word ‘$category,’ write ‘All.’ Otherwise, provide the in-
dex numbers of the texts that contain the word ‘$category’ each on a separate line.

Texts, one per line:

$texts

‘None,’ ‘All,’ or the index numbers of the texts that contain the word
‘$category,’ one per line:

SelectAll Simplified In this task, each line of text contains one of four words ’Business,’ ’Sports,’
’World,’ and ’Sci/Tech.’

Go over the $num lines of text below and list the index numbers of the
lines that contain each word according to the following instructions: If none
of the texts contain a particular word, write ‘None.’ If all the texts contain a
particular word, write ‘All.’ Otherwise, provide the index numbers of the texts
that contain each word.

Output your responses in JSON format with the following keys: ‘busi-
ness,’ ‘sports,’ ‘world,’ and ‘sci/tech.’ A formatted example output is provided
below.
{‘business’: [None/All or index numbers of texts containing ‘Business’], ‘sports’:
[None/All or index numbers of texts containing ‘Sports’], ‘world’: [None/All
or index numbers of texts containing ‘World’], ‘sci/tech’: [None/All or index
numbers of texts containing ‘Sci/Tech’]}

Texts, one per line:

$texts

JSON output:

Table 15: Prompt templates for simplified SelectOne and SelectAll based on AGNews. For SelectOne Simplified,
we used an earlier prompt template that asks LLMs to produce outputs line by line, instead of a JSON object. As
illustrated earlier, we find the effect of the two output formats for SelectOne to be minimal. Therefore, having a
JSON output should not make a meaningful difference.
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Benchmark Task Answer template

SST-2 SelectOne To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that lines {indices} show positive sentiment. Therefore, the answer in JSON format
is as follows: {final answer}

SST-2 SelectAll To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that lines {indices} show positive sentiment, and lines {indices} show negative
sentiment. Therefore, the answer in JSON format is as follows: {final answer}

CoLA SelectOne To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that texts in lines {indices} are unacceptable. Therefore, the answer in JSON format
is as follows: {final answer}

CoLA SelectAll To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that texts in lines {indices} are acceptable and texts in lines {indices} are unacceptable.
Therefore, the answer in JSON format is as follows: {final answer}

AGNews SelectOne To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that texts in lines {indices} can be classified as ‘Sports.’. Therefore, the answer in
JSON format is as follows: {final answer}

AGNews SelectAll To solve this task, let’s first classify the 10 lines of text above, one per line: {labels}
From here, we see that texts in lines {indices} can be classified as ‘Business,’ texts in lines {indices}
can be classified as ‘Sports,’ texts in lines {indices} can be classified as ‘World,’ and texts in lines
{indices} are ‘Sci/Tech.’ Therefore, the answer in JSON format is as follows: {final answer}

MRPC SelectOne To solve this task, let’s first determine if text A is a paraphrase of text B for the 10 lines of text above,
one per line: {labels}
From there, we see that text pairs in lines {indices} are paraphrases. Therefore, the answer in JSON
format is as follows: {final answer}

MRPC SelectAll To solve this task, let’s first determine if text A is a paraphrase of text B for the 10 lines of text above,
one per line: {labels}
From there, we see that text pairs in lines {indices} are paraphrases and text pairs in lines {indices} are
not. Therefore, the answer in JSON format is as follows: {final answer}

SNLI SelectOne To solve this task, let’s first determine the inference relation between the premise and the hypothesis for
the 10 lines of text above, one per line: {labels}
From there, we see that text pairs in lines {indices} contain entailment inference relation. Therefore,
the answer in JSON format is as follows: {final answer}

SNLI SelectAll To solve this task, let’s first determine the inference relation between the premise and the hypothesis for
the 10 lines of text above, one per line: {labels}
From there, we see that text pairs in lines {indices} contain entailment inference relation, text pairs in
lines {indices} contain contradiction inference relation, and text pairs in lines {indices} contain neutral
inference relation. Therefore, the answer in JSON format is as follows: {final answer}

WiC SelectOne To solve this task, let’s first determine if the target word is used with consistent meanings in the two
subsequent contexts for the num lines of text above, one per line: {labels}
From there, we see that text pairs in lines {indices} contain use the target words with inconsistent
meanings. Therefore, the answer in JSON format is as follows: {final answer}

WiC SelectAll To solve this task, let’s first determine if the target word is used with consistent meanings in the two
subsequent contexts for the num lines of text above, one per line: {labels}
From there, we see that text pairs in lines {indices} contain use the target words with inconsistent
meanings and text pairs in lines {indices} do not. Therefore, the answer in JSON format is as follows:
{final answer}

Table 16: Answer templates for the two selection tasks for each classification benchmark. {indices}: a list of indices
seperated by comma. {final answer}: answer in a JSON format specified by the SelectOne or SelectAll prompt.
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