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Abstract

Intermediate Layer Distillation (ILD) is a vari-
ant of Knowledge Distillation (KD), a method
for compressing neural networks. ILD requires
mapping to align the intermediate layer sizes of
the teacher and student models to compute the
loss function in training, while this mapping
is not used during inference. This inconsis-
tency may reduce the effectiveness of learning
in intermediate layers. In this study, we pro-
pose LoRAILD, which uses LoRA adapters to
eliminate the inconsistency. However, our ex-
perimental results show that LoRAILD does
not outperform existing methods. Furthermore,
contrary to previous studies, we observe that
conventional ILD does not outperform vanilla
KD. Our analysis of the distilled models’ in-
termediate layers suggests that ILD does not
improve language models’ performance.

1 Introduction

The LLM’s performance is rapidly improving on
various natural language processing (NLP) tasks
at the cost of the huge parameter size, resulting in
enormous computational costs. Therefore, reduc-
ing the parameter size while retaining the model’s
performance is an important research topic.

Knowledge distillation (KD) (Buciluǎ et al.,
2006; Hinton et al., 2015) is one of the model com-
pression methods. KD employs two models: a
teacher model and a student model. The teacher
model is already trained for a specific task. The
teacher’s output serves as soft labels that guide the
student model that mimics the teacher’s behavior.

While KD usually uses the output of the teacher,
intermediate layer distillation (ILD) (Romero et al.,
2015) uses the information of intermediate layers
as well; ILD has been claimed to be superior to the
vanilla KD in previous studies (Sun et al., 2019;
Passban et al., 2021; Haidar et al., 2022).

In this study, we introduce LoRAILD, which
is designed to improve the conventional ILD by

employing the LoRA (Hu et al., 2021) adapter in
aligning sizes of intermediate layers between the
teacher and the student. We evaluate the perfor-
mance of LoRAILD through empirical compar-
isons with conventional KD baselines. In general,
we find that our LoRAILD does not outperform the
conventional ILD baselines, and even the conven-
tional ILD is not necessarily superior to the vanilla
KD, at least in our experimental settings.

2 Background

2.1 Knowledge Distillation
In KD (Buciluǎ et al., 2006; Hinton et al., 2015),
a student model is trained using a loss function
based on the difference between its output and the
teacher’s output, as well as a loss function calculat-
ing errors against gold labels. KD’s combined loss
function L is defined as (1).

L = λLCE + (1− λ)LKD (1)

LKD = KL(Teacher(X), Student(X)), (2)

where LCE is the cross-entropy loss, KL(·, ·) is
the KL divergence. Teacher(X) and Student(X)
are the probability distributions obtained as outputs
when X is input to the teacher and the student,
respectively. In training the student, the parameters
of the teacher are fixed.

2.2 Intermedite Layer Distillation
Intermediate layer distillation (ILD) (Romero et al.,
2015) is a variant of KD. ILD uses not only the
teacher and student outputs but also the informa-
tion of their intermediate layers. ILD requires the
alignment of the number of layers and layer sizes
between the student and the teacher.

When the number of layers between two mod-
els differs, adjustment is necessary, which is the
focal topic of past ILD research. PKD (Sun et al.,
2019) heuristically selects the same number of lay-
ers from the teacher as those in the student. In
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Figure 1: Overview of LoRAILD (blue: teacher, green: student, yellow: linear mapping)

PKD, the selected layers are consistent through the
student training. ALP-KD (Passban et al., 2021)
constructs groups of teacher layers, and each group
corresponds to a layer in the student. The outputs
from layers in a group are aggregated by calculat-
ing the weighted average. RAIL-KD (Haidar et al.,
2022) dynamically selects layers of the teacher at
random in each epoch.

When the intermediate layer size is inconsistent
between the teacher and the student, the size must
be aligned to compute the loss function. Previous
studies (Romero et al., 2015; Haidar et al., 2022)
employed some mapping methods for the align-
ment. FitNets (Romero et al., 2015) employed con-
volutional regressors, and RAIL-KD (Haidar et al.,
2022) used linear layers for mapping. During stu-
dent training, these mappings are trained alongside
all the other parameters of the student. However,
the mappings are used only in the student train-
ing phase, so the model’s structure is inconsistent
between training and inference.

This inconsistency might degrade the effective-
ness of ILD. If only the mappings are tuned very
well with a task while the intermediate layers of
the student might not develop good features, re-
moving the mappings in inference will degrade the
student’s performance.

3 Method

3.1 LoRAILD

To tackle the problem of structure inconsistency,
we propose LoRAILD, which employs LoRA
adapters replacing the conventional mappings. As
LoRAILD utilizes the LoRA adapters both in the
training and the inference phase by design, the dis-
crepancy of model structure no longer exists.

LoRA (Hu et al., 2021) is one of the methods to
reduce the computational cost during training by

assigning two low-rank matrices of size Ri×r and
Rr×o to a certain module in the model and only
training them. i and o are the number of input and
output sizes of the module to be assigned, respec-
tively. Since low-rank matrices have the same ar-
chitecture as linear mapping and the r value, which
is the output size of the input-side matrix, can be
set manually, we can convert the intermediate layer
size of the teacher and the student into the same by
setting the r properly. Thus, they can be used as a
substitute for conventional linear mappings. More-
over, these matrices are used in the inference phase.
Therefore, we can maintain linear mappings by us-
ing low-rank matrices. Figure 1b shows the outline
of LoRAILD. In the conventional ILD, the loss is
calculated using the output of a linear layer (yellow
part of Figure 1a). In contrast, in LoRAILD, the
loss function is calculated using the output of the
input-side matrix of the LoRA adapter (trapezoidal
part of Figure 1b).

The loss function is given by equation (4).

LILD =
1

N

∑

x∈batch

∥∥∥∥∥
hTx

∥hTx ∥2
− hSθ

x

∥hSθ
x ∥2

∥∥∥∥∥

2

2

(3)

L = λ1LCE + λ2LKD + λ3LILD (4)

N is the batch size, h∗x is the output of the input-
side matrix of the LoRA adapter for x. The outputs
of each layer are concatenated to compute the loss
function. The T and Sθ denote the teacher and the
student, respectively. The LCE and LKD are the
same as in equation (1). This is the same as the
loss function used in previous ILD methods (Sun
et al., 2019; Haidar et al., 2022).

3.2 Alignment of layers

While LoRA adaptors address the size alignment
issue, we still need to fill the gap between the num-
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ber of layers in the teacher and the student. In this
study, we employ the following three methods.

Fixed Always select the same layer during student
training.

Average Allocate some layers of the teacher to
each layer of the student, and average the out-
put of the allocated layers.

Random Randomly select a layer of the teacher
for each layer of the student. The sequence
of the selected layers is preserved. The ran-
dom selection is performed at each mini-
batch (Random step) or each epoch (Random
epoch).

Fixed, Average, and Random are almost the same
as those used in the previous studies: PKD (Sun
et al., 2019), ALP-KD (Passban et al., 2021), and
RAIL-KD (Haidar et al., 2022). Unlike ALP-KD,
h is simply averaged, and a weighted average is not
used in the Average method.

Appendix A shows the alignment patterns be-
tween the student and teacher layers for Fixed and
Average.

3.3 Curriculum Learning

LoRAILD did not perform well in our preliminary
trials, where we observed that LILD decreased first
and LCE did not decrease well. In order to make
sure LCE to decrease, we introduced curriculum
learning in which only LCE and LKD are trained
first, and LILD is added to L later.

4 Experiment

4.1 Experimantal Settings

In our experiments, we use RoBERTa-large (Liu
et al., 2019) for the teacher and DistilRoBERTa-
base (Sanh et al., 2019) for the student. LoRA
adapters are added to both models. The teacher
trains only LoRA adapters, and the student trains
both LoRA and the original model.

The dataset used in this experiment consists of
six tasks from the GLUE (Wang et al., 2018) bench-
mark: CoLA, MRPC, QNLI, RTE, SST-2, and STS-
B. Since the GLUE benchmark does not publish
the gold labels for the test set, we use the origi-
nal validation set as a test set, 10 percent of the
original training set for validation, and the remain-
ing 90 percent for training. The evaluation metrics
are the Matthews correlation coefficient for CoLA,

the F1 score for MRPC, the Pearson correlation
coefficient for STS-B, and accuracy for the others.

Baselines are the finetuned student without
KD (w/o KD), the model with normal KD (Vanilla
KD), RAIL-KD (RAIL-KDc, RAIL-KDl), and
the model RAIL-KDc with curriculum learning
(Curriculum); curriculum learning was not used
in the original RAIL-KD paper (Haidar et al.,
2022). In RAIL-KDl, LILD is computed per layer,
while RAIL-KDc uses concatenated intermediate
outputs. The hyperparameters are listed in Ap-
pendix C.

All reported metrics are the average of five runs,
and we conduct one-tailed permutation tests at a
significance level of 2.5%.

4.2 Result

CoLA MRPC QNLI RTE SST-2 STS-B

Teacher 0.594 0.884 0.947 0.798 0.959 0.912

w/o KD 0.567 0.876 0.906 0.676 0.919 0.881
Vanilla KD 0.566 0.874 0.912 0.622 0.925 0.883

RAIL-KD
RAIL-KDc 0.568 0.892 0.916 0.658 0.929 0.882
RAIL-KDl 0.585 0.882 0.907 0.522 0.907 0.886
Curriculum 0.568 0.889 0.912 0.677 0.928 0.881

LoRAILD
Fixed 0.565 0.880 0.912 0.651 0.922 0.880
Average 0.596 0.874 0.913 0.656 0.921 0.886
Random step 0.592 0.846 0.916 0.637 0.920 0.881
Random epoch 0.573 0.886 0.911 0.659 0.915 0.882

Table 1: Results on test set

Table 1 shows the result. Bold figures indicate
the best performance for each task. They are sig-
nificantly higher than underlined ones. None of the
LoRAILD-based models showed clear improve-
ment from the baselines. Fixed and Random epoch
did not outperform previous methods in any task.
Average showed the best scores in CoLA and STS-
B; however, we could not confirm their statisti-
cal significance. Although Random step achieved
the best score in QNLI among all the models, its
improvement is subtle and not statistically distin-
guishable from RAIL-KDc. Given the little im-
provement in LoRAILD, the LoRA adapters in
LoRAILD could not perform as we expected, and
they might disturb intermediate layers’ learning.

Moreover, none of the RAIL-KD models out-
performs w/o KD and Vanilla KD. These results
contradict the previous study’s outcome; they re-
ported that RAIL-KD (Haidar et al., 2022) outper-
formed w/o KD and Vanilla KD at all tasks in their
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Figure 2: Clustering scores (ILO means intermediate layer output)
left: Teacher, middle: Student’s hSθ

x , right: Students’ intermediate layer output

experiment. The lower performance of RAIL-KD
than Vanilla KD aligns with our hypothesis that
removing the linear mapping during inference may
degrade the effectiveness of ILD.

5 Analysis

5.1 Analysis method

To examine how the intermediate layers of the mod-
els embed features in RAIL-KD and LoRAILD, we
conduct a cluster analysis of features used in loss
calculation and intermediate layer outputs. For
both the teacher and the student of LoRAILD,
RAIL-KD, and w/o ILD (λ3 = 0), we obtain h∗x
and direct outputs from intermediate layers, where
the models are fed with our training set. Note
that hTx in this section is the value before layer
alignment. We cluster the obtained vectors by k-
means (MacQueen, 1967) clustering (k = 21). We
use the same tasks as our experiment except for
STS-B, which is regression.

We evaluate the clusters by calculating the Ad-
justed Rand Index (ARI) (Hubert and Arabie, 1985;
Steinley, 2004) against gold clusters that are con-
structed according to the gold labels.

The higher ARI suggests the student acquires
better representation for solving the task through
the training. A higher ARI for the teacher means
its intermediate layers provide more useful infor-
mation to train the student.

5.2 Analysis result

Figure 2 illustrates the ARI scores. The left and
middle matrices indicate the scores calculated for
hTx and hSθ

x from the teacher and the student, re-
spectively. The right matrix indicates the scores for
the outputs from the student’s intermediate layer.
Each cell corresponds to an aggregated score across

1All the tasks employed in our analysis are binary classifi-
cation.

the tasks by averaging. In BERT, the latter layers
process the semantics of sentences (Tenney et al.,
2019; Jawahar et al., 2019). As the tasks used in
this analysis, except for the CoLA, concern the
semantics of the sentences, the latter layers play
important roles in these tasks.

In the left figure, hTx in RAIL-KD indicates a
lower score in the latter layers (≥ 18) compared
to the original intermediate layer output of the
teacher (Teacher ILO), suggesting information use-
ful for the tasks is not provided to the student. On
the other hand, LoRAILD scored higher in the lat-
ter layers, indicating that the teacher conveys more
useful information to the student. We initially hy-
pothesized that removing the linear mapping could
degrade the performance because it also removes
information learned in the linear mapping. How-
ever, we found that the linear mapping in RAIL-KD
does not actually learn information about the task;
rather, it degrades the quality of the teacher signal
from Teacher ILO.

In the middle and right figures, RAIL-KD does
not show improvement from w/o ILD in the latter
layers (≥ 4), while LoRAILD successfully does.

This result indicates that our LoRAILD provides
a better method to align the intermediate layers
between the student and the teacher.

6 Conclusion

Our experimental result (Table 1) showed that ILD
did not improve performance from Vanilla KD
regardless of using the intermediate layers (Lo-
RAILD) or not (RAIL-KD). Although our anal-
ysis revealed that our LoRAILD provided better
alignment for intermediate layers, this improve-
ment did not improve the downstream tasks. Thus,
we conclude that the current ILD approach has little
impact on the performance of the language model.
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7 Limitation

Different experimental settings from the previ-
ous studies Although our experimental results re-
port negative results not aligned with those reported
in RAIL-KD (Haidar et al., 2022), our finding does
not directly reject the previous results. Instead, our
results suggest that ILD might not be generalizable
to different settings as initially expected.

The RAIL-KD and other baselines used in our
experiment employ different base models, datasets,
and hyperparameters from their original ones, so
our experiment does not completely replicate their
original settings.

We acknowledge that our teacher models are dif-
ferent from the previous studies. This is because
the teacher models used in the previous study are
not publicly available. Also, the architecture of the
teacher model we used differs from that of the pre-
vious studies because of the addition of the LoRA
adapter.

As for the data set, as described in section 4.1,
our dataset split is different. 90% of the GLUE
train set was used as our train set, the remaining
10% of the GLUE train set as a validation set, and
the original validation set as a test set.

Due to the different conditions described above,
we had to perform a hyperparameter search to find
the optimal values for our settings.

Scope of our experiments Our study addressed
a scenario in which the intermediate layer size of
the teacher and student models is different, and
we always have to transform the outputs and align
their sizes. Thus, the intermediate layer output
from the teacher model was not directly used as the
teacher signal for the student model in any of our
experiments. We acknowledge that we have no con-
clusion for a case where the intermediate layer size
is the same between the teacher and student and
ILD can use the direct outputs from the teacher’s
intermediate layers without any alignment. That
case is outside of the scope of this paper.
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A Alignment

Fixed

Student Teacher

0 3
1 7
2 11
3 15
4 19
5 23

Average

Student Teacher

0 0, 1, 2, 3
1 4, 5, 6, 7
2 8, 9, 10, 11
3 12, 13, 14, 15
4 16, 17, 18, 19
5 20, 21, 22, 23

Table 2: Alignment

Table 2 shows the alignment of the student and
teacher models for the alignment methods Fixed
and Average. LILD was computed using the vector
of concatenated hSθ

x from layer 0 to layer 5 of the
student model, and the vector of concatenated hTx
from layers 3, 7, ..., and 23 of the teacher model.

In Average, the concatenation of averages of hTx
from layer 0, 1, 2, and 3, ... , average of hTx from
layer 20, 21, 22, and 23 was used to calculate LILD.

B Results on Validation Set

Table 3 shows results on validation set as well as
test set.

C Hyperparameters

The hyperparameters used in the experiments are
shown in Table 4. In the middle part of the table,
epochs where we initiated curriculum learning are
illustrated. In the curriculum learning, (λ1, λ2, λ3)
is varied from the initial to the final state; only
the RTE task experimented with two different final
states.

CoLA MRPC QNLI RTE SST-2 STS-B

Teacher 0.673 0.894 0.935 0.779 0.960 0.920

w/o KD 0.615 0.872 0.894 0.692 0.947 0.896
Vanilla KD 0.635 0.888 0.903 0.716 0.954 0.916

RAIL-KD
RAIL-KDc 0.625 0.902 0.905 0.716 0.954 0.917
RAIL-KDl 0.633 0.899 0.899 0.597 0.952 0.916
Curriculum 0.650 0.903 0.907 0.748 0.955 0.920

LoRAILD
Fixed 0.628 0.883 0.905 0.688 0.955 0.912
Average 0.637 0.871 0.904 0.717 0.954 0.919
Random step 0.633 0.848 0.904 0.680 0.956 0.913
Random epoch 0.627 0.888 0.904 0.726 0.955 0.912

Table 3: Result for valitation set

Learning rate {1, 2, 5}e-{4, 5}
r (output size of mapping) 32
Epoch (Teacher model) 4
Epoch (Student model) 20

Curriculum Learning

Tasks Epoch to start

CoLA 5-10
MRPC 5-10
QNLI 5-10
RTE 5-10
SST-2 2-4
STS-B 2-4

States (λ1, λ2, λ3)

Initial state (0.5, 0.5, 0)
Final state (0.333, 0.333, 0.333)
Final state(RTE only) (0.5, 0, 0.5)

Table 4: Hyperparameters
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